
Probabilistic Linear Algebra

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Simon Bartels

aus Pasewalk

Tübingen

2019

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der

Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 20.10.2020

Stellvertretender Dekan: Prof. Dr. József Fortágh

1. Berichterstatter: Prof. Dr. Philipp Hennig

2. Berichterstatter: Prof. Dr. Matthias Hein

Probabilistic Linear Algebra

Simon Bartels
Eberhard Karls Universität Tübingen

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich, Simon Bartels, die vorliegende Arbeit selbstständig angefertigt,
keine anderen als die angegebenen Hilfsmittel benutzt und alle Stellen, die dem Wortlaut
oder Sinne nach anderen Werken entnommen sind, durch Angabe der Quellen als Entlehnung
kenntlich gemacht habe. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner anderen
Prüfungsbehörde vorgelegen.

Ort, Datum Unterschrift

iii

Abstract

Linear algebra operations are at the core of many computational tasks. For example,
evaluating the density of a multivariate normal distribution requires the solution of a linear
equation system and the determinant of a square matrix. Frequently, and in particular in
machine learning, the size of the involved matrices is too large to compute exact solutions,
and necessitate approximation. Building upon recent work (Hennig and Kiefel 2012; Hennig
2015) this thesis considers numerical linear algebra from a probabilistic perspective.

Part iii establishes connections between approximate linear solvers and Gaussian inference,
with a focus on projection methods. One result is the observation that solution-based
inference (Cockayne, Oates, Ipsen, and Girolami 2018) is subsumed in the matrix-based
inference perspective (Hennig and Kiefel 2012). Part iv shows how the probabilistic
viewpoint leads to a novel algorithm for kernel least-squares problems. A Gaussian model
over kernel functions is proposed that uses matrix-multiplications computed by conjugate
gradients to obtain a low-rank approximation of the kernel. The derived algorithm kernel
machine conjugate gradients provides empirically better approximations than conjugate
gradients and, when used for Gaussian process regression, additionally provides estimates
for posterior variance and log-marginal likelihood, without the need to rerun. Part v is
concerned with the approximation of kernel matrix determinants. Assuming the inputs
to the kernel are independent and identically distributed, a stopping condition for the
Cholesky decomposition is presented that provides probably approximately correct (PAC)
estimates of the log-determinant with only little overhead.

v

Zusammenfassung

Operationen der linearen Algebra bilden häufig die Basis vieler anderer Algorithmen
und mathematischen Probleme. Beispielsweise, um die Dichte einer multivariaten Gauß-
Verteilung zu berechnen, benötigt man die Lösung eines lineares Gleichungssystem und die
Determinante einer quadratischen Matrix. Häufig, und insbesondere in Anwendungen des
Maschinellen Lernens, ist die Größe der involvierten Matrizen zu groß, um exakte Lösungen
berechnen zu können und man muss auf Approximationsmethoden zurückgreifen. Aufbauend
auf kürzlich veröffentlichten Arbeiten (Hennig und Kiefel 2012; Hennig 2015), betrachtet
diese Arbeit, Approximationsmethoden der linearen Algebra aus einer probabilistischen
Perspektive.

Part iii zeigt Verbindungen auf zwischen Approximationsalgorithmen für lineare Glei-
chungssysteme und Gaußscher Inferenz, mit einem Fokus auf Projektionsmethoden. Ein
Resultat ist die Beobachtung, dass lösungsfokussierte Inferenz (Cockayne, Oates, Ipsen
und Girolami 2018) enthalten ist in der matrixfokussierten Perspektive (Hennig und Kiefel
2012). Part iv zeigt, wie sich die probabilistische Perspektive nutzen lässt, um neue Appro-
ximationsalgorithmen zu entwickeln, hier für die Lösungen von Normalgleichungssystemen
für Kernmethoden. Mit einem speziellen Gauß-Prozess Modell über die Kernfunktion und
unter Verwendung von Matrixmultiplikationen mit der Methode der konjugierten Gradien-
ten erhält man eine näherungsweise Kernfunktion von niedrigem Rang. Der resultierende
Algorithmus kernel machine conjugate gradients gibt empirisch bessere Approximationen
als die Methode der konjugierten Gradienten, und, im Fall von Gauß-Prozess Regression,
gibt zudem Schätzungen für Unsicherheit und Evidenz, ohne Neustart des Algorithmus.
Part v beschäftigt sich der Approximation von Determinanten für Kernmatrizen. Unter der
Annahme, dass die Argumente der Kernfunktion unabhängig und identisch verteilt sind,
beschreibt dieser Teil eine Stopstrategie für die Cholesky-Dekomposition, die Näherungslö-
sungen der Log-Determinante mit gewünschter Präzision und Wahrscheinlichkeit ausgibt,
mit nur geringem Mehraufwand.

vii

Acknowledgments

I am most grateful for the endless patience, guidance and trust of my adviser Prof. Dr. Philipp
Hennig, for allowing me to deal with the ups and downs of working towards a Ph.D. in my
own way. As a colleague once put it: discussing research with Philipp is like pursuing a
Ferrari on a bicycle. It was an honor to write my dissertation under the supervision of such
a brilliant and at the same time humble and understanding researcher.

I am thanking Prof. Dr. Matthias Hein for the time and effort spent to evaluate this
thesis. Further, Prof. Dr. Kay Nieselt and Prof. Dr. Philipp Behrens have my gratitude for
sparing valuable time for my defense.

I am grateful for inspiration and support at all times from the probabilistic numerics
group: thank you, Edgar Klenske, Maren Mahsereci, Michael Schober, Hans Kersting,
Alexandra Gessner, Lukas Balles, Filip de Roos, Motonobu Kanagawa, Frank Schneider,
Matthias Werner, Felix Dangel, Susanne Zabel, Frederik Künstner, Agustinus Kristiadi,
Jonathan Wenger and Nicholas Krämer.

Many people have patiently listened to me while I was rambling about the mathematical
problems on the way to Part v. Thank you, Gabriele Abbati, Damien Garreau, Motonobu
Kanagawa, Hans Kersting, Jonas Kübler, Simon Julien-Lacoste, Krikamol Muandet, Alexan-
der Neitz, Giambatista Parascandolo, Michael Perrot, Carl Rasmussen, Luca Rendsburg,
Michael Schober, Sebastian Weichwald and everyone else I may have forgotten.

Special thanks go to Inna Zeitler for listening when I had a first idea and because it was
most inconvenient at the time. Special thanks go to Maja Rudolph for pointing me to the
works of David Freedman which eventually lead to discovering the theorem by Fan, Grama,
and Liu (2012). Special thanks go to Damien Garreau for the most difficult first proof-read
of Part v.

Thank you Jon Cockayne and Ilse Ipsen for inspiring discussions about probabilistic
views on linear solvers.

Thank you Pablo Garcia Moreno, Javier Gonzalez and Neil Lawrence for your supervision
at Amazon Cambridge.

On my path towards this degree, I am (in chronological order) grateful for the time
and effort which Prof. Karsten Wolf, Prof. Dietlinde Lau, Dr. Roland Ewald, Dr. Jan
Himmelspach, Prof. Dr. Clemens Câp, Prof. Dr. Frank Hutter, Manuel Blum and Prof. Hans
Rudolf Lerche invested into teaching and supervision.

Thank you Jonas Schöley for pushing me just the right way while writing this thesis.

Thank you Dr. Simon Donné for your couch the night before my defense.

ix

Contents

i Prologue 1
1 Introduction 3
2 Publications 5

ii Preliminaries 7
3 Introduction 9
4 Gaussian Process Regression and Regularized Least-Squares 11
5 Classic Linear Solvers 13

5.1 Arnoldi’s Procedure 13
5.2 Conjugate Gradients 14
5.3 Generalized Minimal Residual 16

6 Kronecker Calculus 19

iii Probabilistic Linear Solvers 21
7 Preliminaries 23

7.1 Introduction 23
7.2 Projection Methods 23
7.3 Constructing Probabilistic Linear Solvers 24

8 Probabilistic Interpretation of Projection Methods 27
8.1 Matrix-based Inference and Solution-based Inference 27
8.2 Left-information Views 28
8.3 Right-information Views 35
8.4 Preconditioning 37

9 Discussion 41
9.1 Summary 41
9.2 Future Directions 41

iv Probabilistic Solvers for Kernel Least-Squares Problems 43
10 Preliminaries 45

10.1 Introduction 45
10.2 Finite-rank Kernel 46

11 Model 47
11.1 Prior 47
11.2 Likelihood 49
11.3 Posterior 50

12 Conjugate Gradients for Kernel Machines 53
12.1 Properties 54
12.2 Related Work 56

13 Empirical Comparison of CG and KMCG 57

xi

13.1 Common Regression Datasets 58
13.2 Grid-structured Datasets 59

14 Discussion 67
14.1 Summary 67
14.2 Future Directions 67

v Probabilistic Kernel-Matrix Determinant Estimation 69
15 Preliminaries 71

15.1 Introduction 71
15.2 The Cholesky Decomposition 73
15.3 Martingales and Stopping Times 74

16 A Probably Approximately Correct Bound 75
16.1 Problem Definition 75
16.2 Stopping Condition 75
16.3 Discussion 78
16.4 Related Work 80

17 Proof of Theorem 27 81
17.1 Using the Stopping Conditions 83
17.2 DN is probably close to its Expected Value 84
17.3 Uτ is probably large enough 86

18 Application to Kernel Matrix Determinant Estimation 89
19 Discussion 93

19.1 Summary 93
19.2 Future Directions 93

vi Epilogue 97
20 Conclusions 99

20.1 Discussion 99
20.2 Future Work 100

vii Appendix 103
A Benchmark Datasets 105
B Gaussian Processes 107
C Additional Material for Part ii 109
D Additional Material for Part iii 111

D.1 Proof of Proposition 5 111
D.2 Proof of Theorem 15 112

E Additional Material for Part iv 117
E.1 Sampling from a Gaussian with Symmetric Kronecker Covariance 117
E.2 Proofs 117
E.3 Additional Experiments and Results 120

F Additional Material for Part v 129
Bibliography 133

xii

List of Figures

1 convergence of posterior mean (top plot) and trace of the posterior
covariance matrix (bottom plot) of the probabilistic interpretation
of GMRES from Proposition 11. 33

2 assessment of the uncertainty quantification. Plotted are ker-
nel density estimates for the statistic Z based on 500 randomly
sampled test problems for steps m = {1, 3, 5, 8, 10}. These are
compared with the theoretical distribution of Z when the posterior
distribution is well-calibrated. 34

3 the algorithm KMCG in comparison to CG on a toy setup. The
dataset consists of one hundred data-points where the targets are a
draw from a zero-mean Gaussian process with squared exponential
kernel (Eq. (43) with Λ = 0.25 and θ f = 2). The thin, black line is
the posterior mean of that Gaussian process (Eq. (1)). The light-
green line is the mean prediction produced by conjugate gradients
after P = 7 steps and the dark-red line is the mean prediction of
KMCG (where the number of inducing inputs M = N). 46

4 schematic summary of the proposed kernel approximation method.
48

5 progression of the posterior (Eq. (37)) for KMCG on the toy
example from Fig. 3 for P = 2, 4 and 8 conjugate gradients steps.
The columns show from left to right: mean, standard deviation,
standardized error (white refers to perfect calibration, green to
overconfidence and red to underconfidence) and a sample. 51

6 progression of the relative error ε f as a function of the number
of iterations of CG and KMCG for different datasets using the
squared-exponential kernel (Eq. (43)). The shaded area visualizes
minimum and maximum over all baseline runs. A cross denotes
the end of a crashed run. 60

7 progression of the relative error of the variance εvar as a function
of the number of iterations of KMCG and baseline for different
datasets using the squared-exponential kernel (Eq. (43)). The
shaded area visualizes minimum and maximum over all baseline
runs. A cross denotes the end of a crashed run. 61

xiii

8 progression of the relative error of the evidence εev as a function
of the number of iterations of baseline and KMCG for different
datasets using the squared-exponential kernel (Eq. (43)). The
shaded area visualizes minimum and maximum over all baseline
runs. A cross denotes the end of a crashed run. The small spikes
in the plots where KMCG appears to be close to the solution
correspond to changes of the estimate from too small to too large.

62

9 comparison of baseline and KMCG on grid-structured datasets
using the squared exponential kernel (Eq. (43)). The shaded area
visualizes minimum and maximum over all baseline runs. 64

10 comparison of KMCG and CG on the SOUND dataset using the
squared exponential kernel (Eq. (43)) with the hyper-parameters
from Dong, Eriksson, Nickisch, Bindel, and Wilson (2017). The
shaded area visualizes minimum and maximum over all baseline
runs. 65

11 evolution of the log determinant ln |Kn + 0.001I| for common
benchmark problems using the squared-exponential kernel Eq. (43).
The datasets have been centered and standardized but are oth-
erwise unprocessed. Note the different magnitudes of the y-axis.
The figure demonstrates that depending on the kernel and the
distribution of the dataset, there are cases in which a linear ex-
trapolation from some ln |Kn| is sufficient to estimate ln |KN | with
high relative precision. More details about the datasets can be
found in Appendix A. 72

12 the function HN(x) for different N. Increasing N requires a larger
ε for HN(ε) to fall below a certain threshold. However, in relation
to N the increase is small. The thresholds δ/2 and δ/2|S| become
relevant for Fig. 14. 77

13 relative overhead of the OpenBLAS Cholesky decomposition with
early stopping against without. Both algorithms compute the
Cholesky decomposition of identity matrices. The nuisance param-
eters were set to m := 256 and S := mb{m, ..., N − 1}/mc. The
parameters r and δ are in this case irrelevant for the performance,
since early stopping is impossible by design. With increasing
matrix size, the measurement noise is decreasing and more runs
remain below the one percent overhead mark. The experiments
were executed on an Intel i7 CPU with 32 Gigabytes of RAM
running Ubuntu 18.04. 78

xiv

14 visualization of the quantities of Theorem 28 for one random
shuffling of the SARCOS dataset (N = 40000), the squared-
exponential kernel (Eq. (43)) and σ2 := 0.001. The parameters
have been set to r := 0.1, δ := 0.25, m := 100, 1000 and S :=
{0.75N, 0.9N}. The deterministic upper bound is Un := Ln +

(N − n)C+. It may seem surprising that the upper bound for
m = 100 is higher than for m = 1000. However, recall that εµ

has a term C/m. In the last picture, both stopping conditions are
fulfilled for τ = 0.9N, for both m. This figure demonstrates that
Theorem 28 is not trivial. Arguably, it is desirable to achieve early
stopping for less conservative parameters than |S| = 2 and r = 0.1.
Section 19.2 discusses possibilities how to obtain more practical
versions of Theorem 27. 79

15 progression of the relative error ε f over training time for different
datasets using the squared-exponential kernel (Eq. 43). The shaded
area visualizes minimum and maximum over all baseline runs. A
cross denotes the end of a crashed run. 121

16 comparison of baseline and KMCG on grid-structured datasets
using the squared exponential kernel (Eq. 43). The shaded area
visualizes minimum and maximum over all baseline runs. A cross
denotes the end of a crashed run. It may seem surprising that
the runs on the 100 × 100 × 100 dataset take more than twice as
long. By chance the dataset contains more extreme values in the
kernel matrix, i.e. smaller than 1e−50. Multiplication with these
elements takes more time. 122

17 progression of the relative error ε f as a function of the number
of iterations of CG and KMCG for different datasets using the
Matérn kernel (Eq. 44). The shaded area visualizes minimum and
maximum over all baseline runs. A cross denotes the end of a
crashed run. 123

18 progression of the relative error of the variance as a function of the
number of iterations of KMCG and baseline for different datasets
using the Matérn kernel (Eq. 44). The shaded area visualizes
minimum and maximum over all baseline runs. A cross denotes
the end of a crashed run. 124

19 progression of the relative error of the evidence as a function of the
number of iterations of baseline and KMCG for different datasets
using the Matérn kernel (Eq. 44). The shaded area visualizes
minimum and maximum over all baseline runs. A cross denotes
the end of a crashed run. 125

20 progression of the relative error ε f over training time for different
datasets using the Matérn 5/2 kernel (Eq. 44). The shaded area
visualizes minimum and maximum over all baseline runs. A cross
denotes the end of a crashed run. 126

xv

21 progression of the relative error ε f over 100 CG-steps for different
datasets using the squared exponential kernel (Eq. 43), comparing
CG and FOM. The shaded area visualizes minimum and maximum
over all baseline runs. A cross denotes the end of a crashed run.
127

xvi

List of Tables

1 overview over frequently used letters and their context xxi
2 compact overview of all the definitions of Part v. 82
3 descriptions and sources for all datasets considered in this work. 106

xvii

List of Algorithms

1 Arnoldi’s procedure (Saad 2003, Algorithm 6.2) 14
2 the conjugate gradients algorithm (Hestenes and Stiefel 1952;

Saad 2003, p. 199f), adapted in notation and presentation to this
dissertation. 15

3 The algorithm referred to by Proposition 15, which reproduces the
search directions from CG. 37

4 Kernel Machine Conjugate Gradients 54

5 Cholesky decomposition according to Meister (2015, p. 48). The
letters of the indices have been adapted to fit with the notation
here. A blocked version of the algorithm can be found in Golub
and Van Loan (2013, p. 170). 73

xix

Notation

i, j, k, l, m discrete index variables
d, D number of dimensions
n, N number of datapoints
µ mean vector
Σ covariance matrix
I identity matrix, (I)ij = δij

N (x; µ, Σ) x is distributed multivariate normal with mean vector
µ and covariance matrix Σ

Km(A, b) Krylov space of order m generated by the matrix
A ∈ Rd×d and the vector b ∈ Rd

f−1(δ) arg supε∈R{ f (ε) ≤ δ}
σ(x1, ..., xN) the σ-Algebra generated from random variables

x1, ..., xN

1A indicator function for a set A

Table 1: overview over frequently used
letters and their context

Vectors are denoted with small bold letters x, matrices with capital
bold letters C. For a symmetric positive-definite (s.p.d.) matrix
M ∈ Rd×d and two vectors v, w ∈ Rd, I write 〈v, w〉M = vᵀMw
for the inner product induced by M, and ‖v‖2

M = 〈v, v〉M for the
corresponding norm. If 〈v, w〉M = 0 these vectors are called M-
conjugate.

I will slightly abuse notation to describe shifted and scaled subspaces
of Rd: Let S be an m-dimensional linear subspace of Rd with basis
{s1, . . . , sm}. Then for a vector v ∈ Rd and a matrix M ∈ Rd×d, let

v + MS = span(v + Ms1, . . . , v + Msm).

xxi

Part I

Prologue

“I have heard the heartbeat of the universe. I know the answers to
many questions. Ask me.” The apprentice gave him a bleary look.
It was too early in the morning for it to be early in the morning.
That was the only thing he currently knew for sure. “Er... what
does master want for breakfast?” he said. Wen looked down on
their camp and across the snowfields and purple mountains to the
golden daylight creating the world, and mused upon certain aspects
of humanity. “Ah,” he said. “One of the difficult ones.”

—Terry Pratchett, Thief of Time

1
Introduction

“‘What is the chance of an earthquake?’” Stark and Freedman (2003)

In their article, Stark and Freedman (2003) discuss how to interpret
the probability predicted by the U.S. Geological Survey that a large
earthquake will occur within the next 30 years in the San Francisco
Bay area. One concern (among many) raised in that article is that the
predicted probability of 0.7 ± 0.1 relies on simulations involving numer-
ical approximation techniques. The complaint is that the parameters
for the approximation algorithms have been set ad hoc, such that it is
not clear how reliable the outcomes of the simulations actually are.

There is no straightforward interpretation of the USGS probability fore-
cast. Many steps involve models that are largely untestable; modeling
choices often seem arbitrary. (Stark and Freedman 2003, p. 9)

Computationally intricate models for which numerical approximation is
inevitable are prevalent across sciences1. Ideally, one would like to run 1 Roeckner, Bäuml, Bonaventura,

Brokopf, Esch, and Giorgetta 2003;
Arras, Knollmüller, Junklewitz, and
Enßlin 2018; Nille, Toussaint, Sieglin,
and Faitsch 2018.

approximation algorithms only as long as is necessary for sufficiently
accurate solutions, since computation costs time, energy and hence,
money.

The problem translates into the two questions: how sensitive is
the model to approximation and how stable is the approximation. To
reason about the second question, the field of probabilistic numerics
(Hennig, Osborne, and Girolami 2015) investigates probabilistic numer-
ical methods (PNM) which return probability distributions, instead of
only point-estimates.

Probabilistic interpretations provide an alternative perspective on
numerical algorithms, and can also provide extensions such as the
ability to exploit noisy or corrupted observations (Hennig, Osborne,
and Girolami 2015; Cockayne, Oates, Sullivan, and Girolami 2017). Of
particular interest are those PNM whose estimate coincides with ap-
proximation methods from classic numerical analysis. The relationship
between PNM and classic methods has been explored for integration
(e.g. Karvonen and Sarkka 2017), ODE-solvers (Schober, Duvenaud,
and Hennig 2014; Schober, Särkkä, and Hennig 2018; Kersting, Sulli-
van, and Hennig 2018; Tronarp, Kersting, Särkkä, and Hennig 2019)
and PDE solvers (Cockayne, Oates, Sullivan, and Girolami 2016) in
some generality. Concerning linear algebra, attention has thus far been
restricted to the conjugate gradient (CG) method (Hennig 2015; Cock-
ayne, Oates, Ipsen, and Girolami 2018). CG is but a single member of

3

a larger class of iterative solvers, and applicable only if the matrix A is
symmetric and positive-definite. Broadening the understanding of the
connections between PNMs and classic linear solvers is the concern of
Part iii.

Linear algebra operations appear frequently across mathematical
problems: the omnipresent multivariate Gaussian probability distribu-
tion requires the evaluations of a determinant and a quadratic form,
Newton’s method for root finding and second order optimization re-
quires solving linear equation systems, to name two examples. In
particular, for Gaussian process inference, the size of modern machine
learning datasets makes approximation necessary, and therefore Gaus-
sian process inference will be the main application studied in this
thesis. Part iv describes a novel method arising from the probabilistic
perspective, particularly tailored for kernel least-squares problems of
which Gaussian process regression is an instance. Part v addresses
the question how statistical structure in numerical problems can be
exploited in classic numerical algorithms. The particular problem under
consideration is the computation of kernel-matrix determinants.

4

2
Publications

Some of the results presented in this thesis have been devised, developed,
and published in collaboration. Of relevance for this thesis are the
publications

• S. Bartels and P. Hennig (2016). “Probabilistic Approximate Least-
Squares.” In: Proceedings of Artificial Intelligence and Statistics
(AISTATS) for Part iii,

• S. Bartels, J. Cockayne, I. C. F. Ipsen, and P. Hennig (2019).
“Probabilistic Linear Solvers: A Unifying View.” In: Statistics and
Computing 29.6, pp. 1249–1263 also for Part iii, and

• S. Bartels and P. Hennig (2019). “Conjugate Gradients for Kernel
Machines.” In: ArXiv e-prints 1911.06048. arXiv:1911.06048 for
Part iv.

The results of Part v have not yet been published.
The most credit for the publication “Probabilistic Approximate

Least-Squares” goes to Philipp Hennig. The scientific ideas, the writing,
as well as the analysis are mainly his work. My main contribution was
the data generation.

“Probabilistic Linear Solvers: A Unifying View” has been initiated
by Jon Cockayne and me. Scientific ideas have been contributed
equally by all four authors. In particular, Propositions 8, 15 and 16
and Corollary 9 in this thesis (which are taken from the op. cit.) are
contributions by my collaborators. In due place, I will be giving exact
credit. The figures in Section 8.2.3 (also taken from op. cit.) have
been generated by me, based on Jon Cockayne’s simulation study from
Cockayne, Oates, Ipsen, and Girolami (2018). The analysis has been
performed by the two of us. All four authors have been contributing
equally to the scientific writing, everyone working in every part. The
final wording is more due to Jon Cockayne and Philipp Hennig.

Part iv corresponds to the publication Bartels and Hennig (2019)
which is currently under its second revision at the Journal of Machine
Learning Research (JMLR). I was the primary author and performed
the principal analysis and work. Philipp Hennig provided initial ideas,
direction and supervision.

For Part v, ideas, data generation, analysis and writing are my
own. The results are not yet published but will be submitted to the
International Conference on Machine Learning (ICML).

5

http://arxiv.org/abs/1911.06048

Part II

Preliminaries

Bevor ich fortfahre, will ich feierlich versichern, daß von jetzt ab
das Fäkalthema so erledigt ist, wie Chopin schon auf Seite 189
war. Auch mit der Schilderung erzieherischer Maßnahmen bei mil-
itärischen Organisationen bin ich am Ende. Es könnte zu leicht der
Verdacht entstehen, dieses Erzählwerk wäre antimilitaristisch oder
gar abrüstungsfreundlich bzw. aufrüstungsfreindlich. O nein, es
geht um Höheres, um – wie jeder unvoreingenommene Leser längst
weiß – um die Liebe und um die Unschuld. Daß die Umstände,
unter, die Details, mit denen ich beides hier zu schildern versuche,
die Erwähnung gewisser Formationen, Organisationen, Institutio-
nen notwendig macht, ist nicht meine Schuld, sondern die eines
Schicksals, mit dem jeder hadern mag, soviel er Lust hat.

—Heinrich Böll, Entfernung von der Truppe

3
Introduction

Each part in this thesis has its own “Preliminaries” chapter containing
background material specific to that part. This part contains back-
ground material that is of relevance for all or several of the parts to
follow. The following elaborations assume the reader to be familiar
with basics concepts of probability, such as σ-Algebra, Bayes rule and
expectation. Otherwise, the work by DeGroot and Schervish (2012)
is an excellent starting point. For an overview on (numerical) linear
algebra, Golub and Van Loan (2013) contains most information rel-
evant for this thesis. The definitions and properties of multivariate
Gaussian random variables and Gaussian processes are fundamental to
this dissertation, but likely familiar to the reader and are therefore in
Appendix B.

The exposition starts with Gaussian process regression and its con-
nection to kernel least-squares. The purpose of that chapter is to
provide the reader with an example application that all parts of this
thesis contribute to. Thereafter, two popular solvers for linear equation
systems are introduced: the generalized minimal residual (GMRES)
method and the method of conjugate gradients (CG). Part iii will
provide probabilistic interpretations of these solvers and Part iv shows
how to use them in combination with certain approximation methods
for kernel machines. The last chapter, Chapter 6, presents the Kro-
necker product and its symmetric sibling which will be a major tool
for Parts iii and iv.

9

4
Gaussian Process Regression and Regularized
Least-Squares

One of the main applications, for all parts of this work, are machine
learning algorithms involving operations with kernel matrices. Exem-
plary we will consider here regularized least-squares regression. Regular-
ized least-squares is known under a variety of names such as kernel ridge
regression (Hoerl and Kennard 1970), spline regression (e.g. Wahba
(1990)), Kriging (e.g. Matheron (1973)) and Gaussian process (GP) re-
gression (e.g. Rasmussen and Williams (2006)). The common principle
is the estimation of a regression function from a reproducing kernel
Hilbert space (RKHS) f : X → R over some domain X that minimizes
the regularized loss (Rasmussen and Williams 2006, Eq. (6.19))

L(f) =
1
2
‖ f ‖2

k +
1

2σ2

N

∑
i=1

(yi − f (xi))
2,

where (xi, yi) ∈ X × R, i = 1, . . . , N are observations, σ2 ∈ R+ is a
regularization parameter, k is the corresponding kernel and ‖ · ‖k is the
RKHS norm of f .

The minimizer of this loss has a closed-form solution that coin-
cides with the posterior mean of the Gaussian process p(f | X, y) =
GP(f ; f̄ , c̄) under a zero-mean prior p(f) = GP(f ; 0, k) and likelihood
p(y | f (X)) = N (y; f (X), σ2 I) (Kimeldorf and Wahba 1970; Wahba
1990; Rasmussen and Williams 2006):

f̄ (x∗) = kᵀ
∗ (K + σ2 I)−1y, (1)

c̄(x∗, x∗∗) = k(x∗, x∗∗)− kᵀ
∗ (K + σ2 I)−1k∗∗ (2)

where Kij = k(xi, xj), and k∗,i = k(x∗, xi). For medium-size datasets,1 1 For currently modern machines this
means roughly N ∼ 5 · 104 observa-
tions.the standard approach to solve Equations (1) and (2) is to compute a

Cholesky decomposition C (Benoit 1924) of the symmetric and positive
definite (s. p. d.) K + σ2 I at a cubic cost O(N3). For larger datasets,
a number of approximate algorithms have been proposed that yield an
approximation f̂ to f̄ in linear time.2 Comparative empirical studies like 2 Zhu, Williams, Rohwer, and

Morciniec 1998; Csató and Opper
2002; Snelson and Ghahramani 2007;
Walder, Kim, and Schölkopf 2008;
Rahimi and Recht 2009; Titsias 2009;
Lázaro-Gredilla, Quiñonero-Candela,
Rasmussen, and Figueiras-Vidal 2010;
Yan and Qi 2010; Le, Sarlos, and
Smola 2013; Solin and Särkkä 2014;
Wilson and Nickisch 2015; Hensman,
Durrande, and Solin 2018.

those of Chalupka, Williams, and Murray (2013) or Quiñonero-Candela
and Rasmussen (2005) indicate that some of these methods can provide
good approximations in a reasonable amount of time, although there is
no conclusive ‘best practice’ among these choices.

The machine learning community tends to prefer the methods above
over the linear solvers that will be introduced in Chapter 5. In compar-

11

ison the latter are computationally more expensive, and a linear solver
needs to run again for new test inputs when computing the posterior
uncertainty (Eq. (2)). Furthermore, Gaussian process regression often
requires the evaluation of the log marginal likelihood

ln p(y) = −1
2

yᵀ(K + σ2 I)−1y +
1
2

ln |2π(K + σ2 I)|−1, (3)

e.g. for model selection and linear solvers do not provide estimates for
the determinant, off-the-shelf.3 3 Conjugate gradients can be used to

estimate |K| (Filippone and Engler
2015), yet also requiring several runs.

12

5
Classic Linear Solvers

Consider the linear equation system

Ax∗ = b (LES)

where A ∈ Rd×d is no longer s.p.d. but more generally, an invertible
matrix, b ∈ Rd is a given vector and x∗ ∈ Rd is an unknown to be
determined. The problem can be solved exactly using for example
Gaussian elimination. The costs for solving such systems in general
scale as O(d3). This thesis is concerned with linear equation systems
so large that running exact algorithms is precluded.

Two approximation algorithms will be of particular interest: the
conjugate gradient (CG) method (Hestenes and Stiefel 1952) and the
generalized minimal residual (GMRES) method (Saad and Schultz
1986). The following presentation follows Saad (2003). Both methods
can be derived from Arnoldi’s procedure as outlined below.

5.1 Arnoldi’s Procedure

Arnoldi’s procedure (Saad 2003, Section 6.3) is used to construct or-
thonormal bases for Krylov spaces Km(A, r0) = span(r0, Ar0, ..., Am−1r0)

of general, nonsingular matrices A and vectors r0. Starting with
q1 = r0/‖r0‖2, for some vector r0, at each iteration j, the algorithm
multiplies the previous qj−1 by A and then orthonormalizes the result-
ing vector wj = Aqj−1 against all previous qi, using the Gram-Schmidt
procedure (cf. Algorithm 1).

Define

Qm :=
[
q1 . . . qm

]
∈ Rd×m,

hij := 〈Aqj, qi〉 1 ≤ i ≤ j ≤ m and

hj+1,j := ‖wi‖.

The basis vectors satisfy the relations

Qm+1H̃m = AQm = QmHm + hm+1,mqm+1eᵀm and (4)

Qᵀ
m AQm = Hm, (5)

13

where the upper Hessenberg matrix Hm is defined as

Hm =



h11 h12 h13 . . . h1,m−1 h1m

h21 h22 h23 . . . h2,m−1 h2m

0 h32 h33 . . . h3,m−1 h3m
... 0 h43 . . . h4,m−1 h3m
...

.
...

...

0 0 hm,m−1 hmm


∈ Rm×m

and

H̃m =

 Hm

hm+1,meᵀm

 ∈ R(m+1)×m.

Algorithm 1: Arnoldi’s procedure
(Saad 2003, Algorithm 6.2)

1 r0 ^ b − Ax0, β ^ ‖r0‖2, q1 ^ r0/β

2 for j = 1, . . . , m do
3 hij ^ 〈Aqj, qi〉
4 wj ^ Aqj − ∑

j
i=1 hijqi

5 hj+1,j ^ ‖wj‖2

6 if hj+1,j = 0 then
7 Stop
8 end if
9 qj+1 ^ wj/hj+1,j

10 end for
11 Define H̃m ∈ R(m+1)×m with elements hij

5.2 Conjugate Gradients

For general matrices A, conjugate gradients is known as Arnoldi’s
method for linear systems, or Full Orthoganalization Method (FOM)
(Saad 2003, p. 165). For some initial guess x0, FOM computes the
iterate

xm = x0 + Qmcm

where cm is chosen s.t. the residual rm := b − Axm is orthogonal to
Qm. This implies

0 = rᵀmQm

= bᵀQm − xᵀm AᵀQm

= bᵀQm − xᵀ0 AᵀQm − cᵀmQᵀ
m AᵀQm

� definition of xm (6)

14

= rᵀ0 Qm − cᵀm Hᵀ
m

� definition of Hm

= ||r0||2e1 − cᵀm Hᵀ
m

� by choice of q1

and hence, cm = ||r0||2H−1
m e1. For xm this implies

xm = x0 + ||r0||2Qᵀ
m H−1

m e1, or

= x0 + Qm(Q
ᵀ
m AQm)

−1Qᵀ
mr0 (FOM)

� when stopping simplification at Eq. (6)

where Eq. (FOM) will be relevant in Section 7.2. After running m steps
of Arnoldi’s procedure, solving the m × m linear equation system is
possible in O(m2) (Golub and Van Loan 2013, p. 179) s.t. xm can be
evaluated in O(d + m2).

If the matrix A is symmetric and positive definite, the Hessenberg
matrix Hm = Qᵀ

m AQm is tridiagonal which allows to simplify Arnoldi’s
procedure, then called symmetric Lanczos algorithm, and FOM can be
simplified to conjugate gradients.

Conjugate gradients is the method that produces in each step the
minimizer xm of the function φ(x) := 1/2xᵀAx − xᵀb where x ∈
x0 + Km(A, r0) (Nocedal and Wright 1999, Section 5) and shown in
Algorithm 2. Alternatively xm can be written as

xm = arg min
x∈x0+Km(A,r0)

‖Ax − b‖A,

which is interesting for a comparison to GMRES, following soon
(c.f. Eq. (8)). Algorithm 2: the conjugate gradients

algorithm (Hestenes and Stiefel 1952;
Saad 2003, p. 199f), adapted in nota-
tion and presentation to this disserta-
tion.

1 r0 ^ b − Ax0 � The initial residual ...

2 s0 ^ r0 � ... is the first search direction.

3 i ^ 0
4 while ||ri||2 > ε do
5 zi ^ Asi � the most expensive step: O(d2) matrix-multiplication

6 αi ^ rᵀi ri
sᵀi zi

� optimal linesearch along si for φ(x) := xᵀAx − 2xᵀb

7 xi+1 ^ xi + αisi � update to the solution

8 ri+1 ^ ri − αizi � analogue update to the residual

9 si+1 ^ ri+1 +
rᵀi+1ri+1

rᵀi ri
si � Gram-Schmidt applied to the new residual

10 i ^ i + 1
11 end while
12 return xi

The transition from FOM to CG takes the pages 196 to 200 in the
book by Saad (2003). The process itself is not relevant for this work.
Relevant is the fact that CG is a special case of FOM, when considering

15

probabilistic interpretations of conjugate gradients in Sections 8.2.1
and 8.3.2. Here, we will just show that the two algorithms produce the
same solutions in each step.

Proposition 1. If A is symmetric and positive definite, FOM and CG
produce the same solutions in each step.

Proof. Denote with s0, ..., sm−1 the conjugate gradients directions which
span the vector space Km(A, r0) (Nocedal and Wright 1999, Theo-
rem 5.3). The proof of Theorem 5.2 by Nocedal and Wright (1999,
p. 106) states that xm = arg minx∈x0+Km(A,r0)

φ(x) iff rᵀmsi for i =

0, ..., m − 1. By construction through Arnoldi’s procedure, Qm forms a
basis of Km(A, r0), and by definition of FOM Qᵀ

mrm = 0.

5.3 Generalized Minimal Residual

Another method derived from the Arnoldi procedure is the Generalized
Minimal Residual Method (Saad 2003, Section 6.5). GMRES computes
the iterate

xm = x0 + Qmcm

where cm is chosen to satisfy the optimality condition in Eq. (7).

‖rm‖2 = min
x∈Km(A,r0)

‖Ax − r0‖2 (7)

= min
x∈x0+Km(A,r0)

‖Ax − b‖2. (8)

That is, at iteration m, GMRES minimises the residual over the vector
space x0 + Km(A, r0). Hence,

cm = arg min
c∈Rm

‖AQmc − r0‖2 (9)

= ((AQm)
ᵀ(AQm))

−1 (AQm)
ᵀr0.

and

xm = x0 + Qm (Qᵀ
m AᵀAQm)

−1 Qᵀ
m Aᵀr0, (GMR)

where the above equation will be relevant in Section 7.2. The least-
squares problem in Eq. (9) can be solved exactly in O(d + m3) but
GMRES solves it more efficiently via Arnoldi’s method. To this end,
express the starting vector in the Krylov basis,

r0 = ‖r0‖2q1 = ‖r0‖2Qm+1e1,

and exploit the Arnoldi recursion from Eq. (4),

AQmc − r0 = Qm+1
(

H̃m+1c − ‖r0‖2e1
)

,

16

followed by the unitary invariance of the two-norm,

‖AQmc − r0‖2 = ‖H̃mc − ‖r0‖2 e1‖2.

Thus, instead of solving the least squares problem Equation (9), GM-
RES solves

cm = arg min
c∈Rm

‖H̃mc − ‖r0‖2 e1‖2. (10)

Solving above systems costs only O(m2) (Golub and Van Loan 2013,
p. 179) instead of the O(m3) for the naive solution of Eq. (9).

17

6
Kronecker Calculus

The Kronecker product will be a vital component throughout Parts iii
and iv. The Kronecker product and its symmetric version have been
studied, among others, by Loan (2000) and Magnus and Neudecker
(1980). The definitions used in this work slightly differ from the authors
above and instead follow Hennig (2015).

The Kronecker product for two arbitrary matrices A ∈ RN1×N2 ,
B ∈ RN3×N4 is defined as

[A ⊗ B]ij,kl := AikBjl

where i ∈ {1, ..., N1}, j ∈ {1, ..., N3}, k ∈ {1, ..., N2} and l ∈ {1, ..., N4},
and ij is not a product but a double-index. The following identities
about Kronecker products and the vectorization operator can be found
in Hennig and Kiefel (2013), and are restated here for the convenience
of the reader:

(A ⊗ B) vec (C) = vec (ACBᵀ) (K1)

(A ⊗ B)(C ⊗ D) =(AC)⊗ (BD) (K2)

(A ⊗ B)−1 =A−1 ⊗ B−1 (K3)

(A ⊗ B)ᵀ =Aᵀ ⊗ Bᵀ (K4)

(A + B)⊗ C =A ⊗ C + B ⊗ C (K5)

where1 A, B, C, D ∈ RN×N, and A and B are assumed to be in- 1 The conditions can be more general
but for ease of exposition, we assume
all matrices are square and of equal
size.

vertible. An appealing property of Kronecker-structured matrices
is their interaction with vectorized matrices. For a square matrix
A =

[
a1 . . . aN

]ᵀ
∈ RN×N, the operator vec () : RN×N _ RN2

stacks the rowsof A into one vector:

vec (A) =


a1
...

aN

 , with [vec (A)](ij) = [A]ij

and mat () : RN2 → RN ×RN transforms an N2 vector into an N × N
matrix, s.t. mat (vec (A)) = A. A vector product of vectorized matrices
corresponds to the trace of their product:

vec (A)ᵀ vec (B) = tr ABᵀ. (V1)

19

Proof.

tr ABᵀ = ∑
i
[ABᵀ]ii = ∑

i,j
AijB

ᵀ
ji = ∑

i,j
AijBij = vec (A)ᵀ vec (B)

The symmetric Kronecker product for two square matrices A, B ∈
RN×N of equal size is defined as

A⊗	B := ΓN(A ⊗ B)ΓN

where [ΓN]ij,kl := 1/2δikδjl + 1/2δilδjk satisfies

Γ vec (C) = 1/2 vec (C) + 1/2 vec (Cᵀ)

for all square-matrices C ∈ RN×N. Equivalently, one can write

(A⊗	B)ij,kl =
1
4

(
AikBjl + Ail Bjk + Bik Ajl + Bil Ajk

)
.

The symmetric Kronecker product inherits some of the desirable prop-
erties of the Kronecker product. Some of the following identities can,
again, be found in Hennig (2015), some are due to Loan (2000) and
Magnus and Neudecker (1980) and some are novel. The proof gives
exact credit.

Proposition 2. Let V , W ∈ RN×N be square matrices and Aᵀ, B ∈
RN×M be rectangular.

W⊗	W = ΓN(W ⊗ W) (SK1)

ΓM(A ⊗ A) = (A ⊗ A)ΓN (SK2)

V⊗	W = W⊗	V (SK3)

(A ⊗ A)(W⊗	W)(B ⊗ B) = (AW B)⊗	(AW B) (SK4)

W⊗	W − V⊗	V = (W + V)⊗	(W − V) (SK5)

(W⊗	W)−1 = (W−1⊗	W−1). (SK6)

The interpretation of Eq. (SK6) requires some care: symmetric Kro-
necker product matrices are rank deficient. Eq. (SK6) is to be read
in the sense that for symmetric Y ∈ RN×N, i.e. Y = Yᵀ, X :=
mat

(
(W−1⊗	W−1) vec (Y)

)
satisfies vec (Y) = (W⊗	W) vec (X) and

X is the unique symmetric solution.

The proof is part of Appendix C.

20

Part III

Probabilistic Linear Solvers

Spätestens hier wird der kluge Leser wissen, was wir, er und ich, nun
auch dem weniger klugen Leser nicht länger vorenthalten sollten:
daß dieses Erzählwerk wirklich eine reine Idylle werden soll, in der
Kloakendüfte dieselbe Funktion haben wie anderswo Rosendüfte, in
der die Auseinandersetzung mit dem Krieg vermieden oder zumind-
est sehr reduziert wird, die Nazi-Angelegenheit wie etwas zwischen
Schnupfen und Schwefelregen abgetan werden soll, [...]

—Heinrich Böll, Entfernung von der Truppe

7
Preliminaries

The first part of this thesis is concerned with the question how classic
linear solvers are connected to probabilistic numerical methods (PNM).
The motivation to answer this question is to gain a deeper understanding
of linear solvers; which assumptions are implicitly encoded and under
which circumstances, which solvers are preferable.

7.1 Introduction

The first publications, that show how to construct probabilistic linear
solvers are those by Hennig and Kiefel (2012), Hennig and Kiefel (2013)
and Hennig (2015). Their focus is mainly on the connection between
Gaussian inference and optimization—the only linear solver analyzed
is the conjugate gradient (CG) method. Later Cockayne, Oates, Ipsen,
and Girolami (2018) proposed a (seemingly) different approach, also
with a focus on CG. CG is but a single member of a larger class of
iterative solvers, and applicable only if the matrix A is symmetric and
positive-definite. This part is based on the publication “Probabilistic
Linear Solvers: A Unifying View” (Bartels, Cockayne, Ipsen, and
Hennig 2019) which explored the connection for a larger class of solvers,
in particular, projection methods. As a step towards a probabilistic
understanding of projection methods, the goal of that publication was,
for a given projection method, to find possible prior assumptions and
information1 s.t. the posterior mean estimate coincides with the solution 1 The meaning of “information” will

be defined properly Section 7.3.of the projection method.
Projection methods will be introduced in Section 7.2. Section 7.3

presents existing approaches to construct probabilistic linear solvers.
Thereafter, Chapter 8 shows connections between projection methods
and probabilistic linear solvers.

“Probabilistic Linear Solvers: A Unifying View” is a joint publication,
and Propositions 8, 15 and 16 and Corollary 9 are contributions by my
collaborators, which I will point out again in due time.

7.2 Projection Methods

Recall Eq. (LES) which describes the system of linear equations

Ax∗ = b (LES)

23

where A ∈ Rd×d is an invertible matrix, b ∈ Rd is a given vector and
x∗ ∈ Rd is an unknown to be determined. Denote with x0 an initial
guess and with rm := b − Axm the residual for an approximation xm.

Many iterative methods for linear systems belong to the class of pro-
jection methods (Saad 2003, p. 130f.), including popular linear solvers
such as the conjugate gradients (CG) (see Section 5.2) method and the
generalized minimal residual (GMRES) method (see Section 5.3). Saad
describes a projection method as an iterative scheme in which, at each
iteration, a solution vector xm is constructed by projecting x∗ into a
solution space Xm ⊂ Rd, subject to the restriction that the residual
rm = b − Axm is orthogonal to a constraint space Um ⊂ Rd.

More formally, each iteration of a projection method is defined
by two matrices Xm, Um ∈ Rd×m, and by a starting point x0. The
matrices Xm and Um each encode the solution and constraint spaces
as Xm = range(Xm) and Um = range(Um). The projection method
then constructs xm as xm = x0 + Xmαm with αm ∈ Rm determined by
the constraint Uᵀ

mrm = 0. If Uᵀ
m AXm is nonsingular, one obtains

αm = (Uᵀ
m AXm)

−1Uᵀ
mr0, and thus

xm = x0 + Xm(U
ᵀ
m AXm)

−1Uᵀ
mr0. (P)

Eq. (P) is tagged with a special letter as it will be referenced frequently
in Chapter 8 when examining probabilistic interpretations of projection
methods. Observe that another way to express Eq. (P) is

xm = x0 + P(x∗ − x0), where

P := Xm(U
ᵀ
m AXm)

−1Uᵀ
m A,

and note further that P is idempotent, i.e. PP = P. Thus P is a
linear projection, hence the name, projection method.

Differing from the presentation of FOM/CG and GMRES in Chap-
ter 5, in the projection method perspective, both algorithms perform
only a single step with the size of the Krylov subspace m fixed and de-
termined in advance. For FOM the spaces are Um = Xm = Km(A, b),
while for GMRES they are Xm = Km(A, b) and Um = AKm(A, b) (com-
pare Eq. (P) with Eqs. (FOM) and (GMR) on page 15 and page 16,
respectively).

7.3 Constructing Probabilistic Linear Solvers

Hennig (2015) and Cockayne, Oates, Ipsen, and Girolami (2018) pro-
posed two seemingly different approaches to probabilistic linear solvers.
In the matrix-based inference (MBI) approach of Hennig (2015), a prob-
ability measure is constructed on the matrix A−1, while the solution-

24

based inference (SBI) method of Cockayne, Oates, Ipsen, and Girolami
(2018) constructs a measure on the solution vector x∗.

7.3.1 Solution-Based Inference

To phrase the solution of Eq. (LES) as a form of probabilistic inference,
Cockayne, Oates, Ipsen, and Girolami (2018) consider a Gaussian
prior over the solution x∗, and condition on observations provided
by a set of search directions s1, . . . , sm, m < d. Let Sm ∈ Rd×m be
given by Sm := [s1, . . . , sm], and let information be given by ym :=
Sᵀ

m Ax∗ = Sᵀ
mb. Since the information is a linear projection of x∗, the

posterior distribution is a Gaussian distribution on x∗ (c.f. Lemma 35
in Appendix B):

Lemma 3 (Cockayne, Oates, Ipsen, and Girolami (2018)). Assume
that the columns of Sm are linearly independent. Consider the prior

p(x) = N (x; x0, Σ0).

The posterior from SBI is then given by

p(x | ym) = N (x; xm, Σm)

where

xm = x0 + Σ0 AᵀSm(S
ᵀ
m AΣ0 AᵀSm)

−1Sᵀ
mr0 (SBI)

Σm = Σ0 − Σ0 AᵀSm(S
ᵀ
m AΣ0 AᵀSm)

−1Sᵀ
mΣ0,

and r0 = b − Ax0.

The naive evaluation of Eq. (SBI) requires O(m3) floating point
operations, due to the inversion of Yᵀ

mW0Ym, which is still less than
for the original problem Eq. (LES). If Sm is chosen AᵀΣ0 A-orthogonal,
e.g. by applying Gram-Schmidt orthogonalization, the solution can be
updated progressively from the last guess, avoiding the O(m3) costs in
each step.

7.3.2 Matrix-Based Inference

In contrast to SBI, the MBI approach of Hennig (2015) treats the
matrix inverse A−1 as the unknown in the inference procedure. As in
the previous section, search directions Sm yield matrix-vector products
Ym ∈ Rd×m. In Hennig (2015) these arise from right-multiplying2 A 2 This work also considers a model

class that explicitly encodes symmetry
of A, such that the distinction between
left- and right- multiplication vanishes.
Proposition 15 in Section 8.3.2 will
make use of this model class.

with Sm, i.e. Ym = ASm. Note that

Sm = A−1Ym, or, equivalently vec (Sm) = (I ⊗Yᵀ
m) vec

(
A−1

)
. (11)

25

Thus Sm is a linear transformation of A−1 and the posterior is again
distributed Gaussian:

Lemma 4 (Lemma 2.1 in Hennig (2015)). Consider the prior

p
(

vec
(

A−1
))

= N
(

vec
(

A−1
)

; vec
(

A−1
0

)
, Σ0 ⊗ W0

)
. (12)

Then the posterior given the observations vec (Sm) = A−1Ym is given
by

p
(

vec
(

A−1
) ∣∣∣ vec (Sm)

)
= N

(
vec

(
A−1

)
; vec

(
A−1

m

)
, Σ0 ⊗ Wm

)
with

A−1
m = A−1

0 + (Sm − A−1
0 Ym)(Y

ᵀ
mW0Ym)

−1Yᵀ
mW0

Wm = W0 − W0Ym(Y
ᵀ
mW0Ym)

−1Yᵀ
mW0.

For linear solvers, the object of interest is x∗ = A−1b. Writing
A−1b = (I ⊗ bᵀ) vec

(
A−1

)
, and using Lemma 34 in Appendix B, the

associated marginal is also Gaussian, and given by

p(x | S, Y) = N (x; A−1
m b, bᵀWmb · Σ0). (MBI)

Again, the naive evaluation of Eq. (MBI) requires O(m3) floating
point operations, which can be avoided with Gram-Schmidt orthogo-
nalization.

The Kronecker structure of the prior covariance matrix in Eq. (12)
is by no means the only option that facilitates tractable inference. For
example, a diagonal covariance matrix would allow efficient inference,
as well. However, in absence of literature exploring other approaches
within MBI, throughout MBI will refer to the use of a prior covariance
matrix with Kronecker structure.

Since the typical approximate linear solver does not construct a
matrix inverse, the SBI view appears to be preferable. Also, MBI
has more model parameters than SBI. However, unlike in SBI, the
information obtained in MBI need not be specific to a particular solution
vector x∗ and thus can be propagated and recycled over several linear
problems, similar to the notion of subspace recycling (Soodhalter, Szyld,
and Xue 2014). Furthermore, MBI is able to utilize the information
ym := Sᵀ

mb, as well. In fact, this observation will be the key in the
following chapter, where it is shown that SBI is subsumed in MBI.

26

8
Probabilistic Interpretation of Projection
Methods

The insights presented in Bartels, Cockayne, Ipsen, and Hennig (2019)
can be summarized into three contributions. First, solution-based infer-
ence is a special case of matrix-based inference (Section 8.1). Second,
the derivations in that section reveal that two points of view are useful
to reason about probabilistic interpretations of projection methods:
whether information stems from left-multiplication (Section 8.2)

Yᵀ := SᵀA, (L)

or right-multiplication (Section 8.3)

Y := AS, (R)

with A.
To evaluate the expression for a projection method approximation

(Eq. (P)) both forms of multiplication are possible. In practice, the
implementations of GMRES and CG only perform right-multiplications,
yet, astonishingly, it was easier to find results presented in the right-
multiplied perspective and these are more general than for left-multi-
plication. The third contribution is a probabilistic understanding of
preconditioning (Section 8.4).

8.1 Matrix-based Inference and Solution-based Inference

One might suspect SBI and MBI to be equivalent, yet the posterior
from Lemma 4 is structurally different to the posterior in Lemma 3.
For the former, xm ∈ x0 + span(Sm − A−1

0 ASm) whereas for the latter
xm ∈ x0 + span(Σ0 AᵀSm). However, the posterior over the solution
vector from MBI can be made to coincide with the posterior from SBI,
if one considers observations in MBI as Sᵀ

m = Yᵀ
m A−1.

Proposition 5. Consider a Gaussian MBI prior

p(A−1) = N (A−1; vec
(

A−1
0

)
, Σ0 ⊗ W0),

conditioned on the left-multiplied information of Eq. (L). The associated
marginal on x (Eq. (MBI)) is identical to the SBI posterior on x arising
in Lemma 3 from p(x) = N (x; x0, Σ0), under the conditions

A−1
0 b = x0 and bᵀW0b = 1.

27

The proof can be found in Appendix D. The first condition can be
fulfilled for arbitrary x0 6= 0 by defining A−1

0 := x0(xᵀ0 b)−1xᵀ0 , or if
x0 = 0 by definining A−1

0 := 0. The second condition can be enforced
for an arbitrary covariance W̄0 by setting W0 := (bᵀW̄0b)−1W̄0. The
result in Proposition 5 shows that any result proven for SBI applies
immediately to MBI with left-multiplied observations.

8.2 Left-information Views

In this section we first show, in Proposition 6, that the conditional
mean from SBI after m steps corresponds to some projection method.
Then, in Proposition 7 we prove the converse: that each projection
method is also the posterior mean of a probabilistic method, for some
prior covariance and choice of information. After these general results,
the focus will be on left-information views on CG and GMRES.

Proposition 6 (SBI defines projection methods). Let the columns of
Sm be linearly independent. Consider SBI under the prior

p(x) = N (x; x0, Σ0),

and with observations ym = Sᵀ
mb. Then the posterior mean xm in

Lemma 3 is identical to the iterate from a projection method defined by
the matrices Um = Sm and Xm = Σ0 AᵀSm, and the starting vector x0.

Proof. Substituting Um = Sm and Xm = Σ0 AᵀSm into Lemma 3 gives
Eq. (P), as required.

The converse to this also holds:

Proposition 7. Consider a projection method defined by the matrices
Xm, Um ∈ Rd×m, each with linearly independent columns, and the
starting vector x0 ∈ Rd. Then the iterate xm in Eq. (P) is identical to
the SBI posterior mean in Lemma 3 under the prior

p(x) = N (x; x0, XmXᵀ
m) (13)

when search directions Sm = Um are used.

Proof. Abbreviate Z = Xᵀ
m AᵀUm and write the projection method

iterate from Eq. (P) as

xm = x0 + XmZ−ᵀUᵀ
mr0.

Multiply the middle matrix by the identity,

Z−ᵀ = ZZ−1Z−ᵀ = Z(ZᵀZ)−1

= Xᵀ
m AᵀUm(U

ᵀ
m AΣ0 AᵀUm)

−1,

28

and insert this into the expression for x0,

xm = x0 + Σ0 AᵀUm(U
ᵀ
m AΣ0 AᵀUm)

−1Uᵀ
mr0.

Setting Um = Sm gives the mean in Lemma 3.

A direct way to enforce the posterior occupying the solution space
is by placing a prior on the coefficients α in x = x0 + Xmα. Under a
unit Gaussian prior α ∼ N (0, I), the implied prior on x naturally has
the form of Eq. (13).

However, this prior is unsatisfying since it requires the solution space
to be specified a-priori, precluding adaptivity in the algorithm and
perhaps more worryingly, the posterior uncertainty over the solution is
a matrix of zeros even though the solution is not fully identified. Again
taking Z = Xᵀ

m AᵀUm:

Σm = Σ0 − Σ0 AᵀUm(U
ᵀ
m AΣ0 AᵀUm)

−1Uᵀ
m AΣ0

= XmXᵀ
m − XmZ(ZᵀZ)−1ZᵀXᵀ

m

= XmXᵀ
m − XmXᵀ

m

= 0.

Concerning this issue, Hennig (2015) and Bartels and Hennig (2016)
each proposed to adding additional uncertainty in the null space of Xm.
This empirical uncertainty calibration step has not yet been analyzed
in detail. Such analysis is left for future work.

Including the solution space Xm in the prior covariance matrix re-
quires it to be specified a-priori. For solvers like CG and GMRES which
construct Xm adaptively this assumption may appear problematic—a
probabilistic interpretation should use for inference only quantities that
have already been computed. From a projection method perspective,
the computation of Xm is part of the initialization, but practically such
methods choose m adaptively by examining the norm of the residual.1 1 Sometimes m is fixed a-priori, due to

memory or computation time limits.Nevertheless, the proposition provides a probabilistic view for arbitrary
projection methods and does not involve A−1, unlike the results pre-
sented in Hennig (2015) and Cockayne, Oates, Sullivan, and Girolami
(2017).

The above prior is not unique. The next proposition establishes
probabilistic interpretations of projection methods under priors that
are indepedent of solution- and constraint-space, albeit under more
restrictive conditions. The benefit of this is that m need not be fixed
a-priori. The following proposition is a contribution by Jon Cockayne.

Proposition 8. Consider a projection method defined by Xm, Um ∈
Rd×m and the starting vector x0. Further suppose that Um = RXm for

29

some invertible R ∈ Rd×d, and that AᵀR is symmetric positive-definite.
Then under the prior

p(x) = N
(

x; x0, (AᵀR)−1
)

and the search directions Sm = Um = RXm, the iterate in the projection
method is identical to the posterior mean in Lemma 3.

Proof. First substitute Xm = R−1Um into Eq. (P) to obtain

xm = x0 + R−1Um(U
ᵀ
m AR−1Um)

−1Uᵀ
mr0

= x0 + R−1 A−>AᵀUm(U
ᵀ
m AR−1 A−>AᵀUm)

−1Uᵀ
mr0

= x0 + Σ0 AᵀUm(U
ᵀ
m AΣ0 AᵀUm)

−1Uᵀ
mr0.

The third line uses Σ0 = (AᵀR)−1 = R−1 A−ᵀ. This is equivalent to
the posterior mean in Eq. (SBI) with Sm = Um.

A corollary which provides further insight arises when one considers
the polar decomposition of A. Recall that an invertible matrix A has a
unique polar decomposition A = PH, where P ∈ Rd×d is orthogonal
and H ∈ Rd×d is symmetric positive-definite. The following corollary
is a contribution by Ilse Ipsen.

Corollary 9. Consider a projection method defined by Xm, Um ∈ Rd×m

and the starting vector x0, and suppose that Um = PXm, where P arises
from the polar decomposition A = PH. Then under the prior

p(x) = N
(

x; x0, H−1
)

and the search directions Sm = Um = PXm, the iterate in the projection
method is identical to the posterior mean in Lemma 3.

Proof. This follows from Proposition 8. Setting R = P aligns the
search directions in Corollary 9 with those in Proposition 8. Since P
is orthogonal, P−1 = Pᵀ, and since H is symmetric positive-definite,
AᵀP = PᵀA = H by definition of the polar decomposition, which gives
the prior covariance required for Proposition 8.

This is an intuitive analogue of similar results by Hennig (2015) and
Cockayne, Oates, Sullivan, and Girolami (2017) which show that CG
is recovered under certain conditions involving a prior Σ0 = A−1.

When A is not symmetric and positive definite it cannot be used as
a prior covariance. This corollary suggests a natural way to select a
prior covariance still linked to the linear system, though this choice is
still not computationally convenient. Furthermore, in the case that A is
symmetric positive-definite, this recovers the prior which replicates CG:
note that each of H and P can be stated explicitly as H = (AᵀA)

1
2 and

P = A(AᵀA)−
1
2 . Thus in the case of symmetric positive-definite A we

30

have that H = A and P = I, so that the prior covariance Σ0 = A−1

arises naturally from this interpretation.

8.2.1 Conjugate Gradients

Recall from Section 5.2 that conjugate gradients can be seen as projec-
tion method with Xm = Um = Qm, where Qm is a basis of Km(A, r0). A
left-multiplied probabilistic interpretation for CG has been presented by
Cockayne, Oates, Ipsen, and Girolami (2018) for the choice Σ0 := A−1

and Sm being the conjugate gradients search directions. This is now a
consequence of Corollary 9. Novel is the interpretation Σ0 := QmQᵀ

m

following from Proposition 7.

Corollary 10. Under the prior

p(x) = N (x; x0, Σ0) where Σ0 = QmQᵀ
m,

and with observations ym = Qᵀ
mb, the SBI posterior mean Eq. (SBI) is

identical to the CG iterate xm in Eq. (FOM).

Above prior also gives a probabilistic interpretation of FOM, the
generalization of CG, when A is not a valid covariance matrix.

8.2.2 Generalized Minimal Residual

Now follow probabilistic linear solvers with posterior means that coin-
cide with the solution estimate from GMRES.

Corollary 11. Under the SBI prior

p(x) = N (x; x0, Σ0) where Σ0 = (AᵀA)−1

and the search directions Um = AQm, the posterior mean is identical
to the GMRES iterate xm in Eq. (GMR).

Proof. Substitute R = A and Um = AQm into Proposition 8 and
compare to Eq. (GMR).

This interpretation exhibits an interesting duality with CG for which
Σ0 = A−1 and Um = Qm. Another probabilistic interpretation follows
from Proposition 7.

Corollary 12. Under the prior

p(x) = N (x; x0, Σ0) where Σ0 = QmQᵀ
m, (14)

and with observations ym = Qᵀ
m Aᵀb, the SBI posterior mean Eq. (SBI)

is identical the GMRES iterate xm in Eq. (GMR).

31

Note that Proposition 11 has a posterior covariance which is not
practical, as it involves A−1. Cockayne, Oates, Sullivan, and Girolami
(2017) proposed replacing A−1 in the prior covariance with a precondi-
tioner, which does yield a practically computable posterior, but this
extension was not explored here. Furthermore, that approach yields
unsatisfactorily calibrated posterior uncertainty, as described in that
work. Corollary 12 does not have this drawback, but as mentioned
there, the posterior covariance is a matrix of zeroes.

8.2.3 Simulation Study

In this section the simulation study of Cockayne, Oates, Ipsen, and
Girolami (2018) will be replicated to demonstrate that the uncertainty
produced from GMRES in Proposition 11 is similarly poorly calibrated
to CG, owing to the dependence of the Arnoldi directions Qm on
x∗ by way of its dependence on b. Throughout the size of the test
problems is set to d = 100. The eigenvalues of A were drawn from an
exponential distribution with parameter γ = 10, and eigenvectors were
drawn uniformly from the Haar-measure over rotation-matrices (see
Diaconis and Shahshahani (1987)). In contrast to Cockayne, Oates,
Ipsen, and Girolami (2018) the entries of b are drawn from a standard
Gaussian distribution, rather than x∗. In that case, x∗ is a draw from
the GMRES prior N (0, (AᵀA)−1) by Lemma 34 in Appendix B. Hence,
the prior is perfectly calibrated for this scenario, and one would expect
that the posterior should be equally well-calibrated for m ≥ 1.

Cockayne, Oates, Ipsen, and Girolami (2018) argue that if the
uncertainty is well-calibrated, then x∗ can be considered as a draw from
the posterior. Under this assumption, i.e. Σ−1/2

m (x∗ − xm) ∼ N (0, I)
they derive the test statistic:

Z(x∗) := ‖Σ−1/2
m (x∗ − xm)‖ ∼ χ2

d−m.

Figure 1 shows the convergence of GMRES and below, the convergence
rate of the trace of the posterior covariance matrix Σm. Figure 2 dis-
plays the test statistic. It can be seen that the same poor uncertainty
quantification occurs; even after just 10 iterations, the empirical distri-
bution of the test statistic exhibits a profound left-shift, indicating an
overly conservative posterior distribution. Producing well-calibrated
posteriors remains an open issue in the field of probabilistic linear
solvers.

32

0 20 40 60 80 100
10−10

10−5

100

m

‖x
m
−

x† ‖
2

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

m

tr
(Σ

m
)/

tr
(Σ

0)

Figure 1: convergence of posterior
mean (top plot) and trace of the pos-
terior covariance matrix (bottom plot)
of the probabilistic interpretation of
GMRES from Proposition 11.

33

0 20 40 60 80 100 120 140
0.00
0.05
0.10
0.15
0.20
0.25
0.30

z

p(
z)

BayesGMRES
χ2

99

0 20 40 60 80 100 120 140
0.00
0.05
0.10
0.15
0.20
0.25
0.30

z

p(
z)

BayesGMRES
χ2

97

0 20 40 60 80 100 120 140
0.00
0.05
0.10
0.15
0.20
0.25
0.30

z

p(
z)

BayesGMRES
χ2

95

0 20 40 60 80 100 120 140
0.00
0.05
0.10
0.15
0.20
0.25
0.30

z

p(
z)

BayesGMRES
χ2

92

0 20 40 60 80 100 120 140
0.00
0.05
0.10
0.15
0.20
0.25
0.30

z

p(
z)

BayesGMRES
χ2

90

Figure 2: assessment of the uncer-
tainty quantification. Plotted are ker-
nel density estimates for the statistic
Z based on 500 randomly sampled test
problems for steps m = {1, 3, 5, 8, 10}.
These are compared with the theoret-
ical distribution of Z when the poste-
rior distribution is well-calibrated.

34

8.3 Right-information Views

Surprisingly, it is harder to find probabilistic interpretations that use
right-multiplied observations. A general result comparable to Propo-
sition 7 remains yet to be found. The following proposition has not
been published in Bartels, Cockayne, Ipsen, and Hennig (2019) but is a
result of considerations during the writing process of this dissertation.

Proposition 13. Consider a projection method defined by the ma-
trices Xm, Um ∈ Rd×m, each with linearly independent columns, and
the starting vector x0 ∈ Rd and assume that Xᵀ

m AᵀUm is invertible.
Assume further that

Uᵀ
m Ax0 = 0 (15)

and if x0 6= 0, that there exists a v 6= 0, s.t.

Xᵀ
m Aᵀv = 0. (16)

Then the iterate xm in Eq. (P) is identical to the projected MBI posterior
mean in Eq. (MBI) under the prior

p(A−1) = N
(

A−1;
1

vᵀb
x0vᵀ, V ⊗ UmUᵀ

m

)
(17)

when search directions Sm = Xm are used and where V is an arbitrary
s.p.d. matrix.

Proof.

A−1
m b

= A−1
0 b + (Sm − A−1

0 ASm)(S
ᵀ
m AᵀUmUᵀ

m ASm)
−1Sᵀ

m AᵀUmUᵀ
mb

� using Eq. (MBI)

= x0 + (Sm − 1
vᵀb

x0vᵀASm)(S
ᵀ
m AᵀUmUᵀ

m ASm)
−1Sᵀ

m AᵀUmUᵀ
mb

� using A−1
0 =

1
vᵀb

x0vᵀ

= x0 + (Xm − 1
vᵀb

x0vᵀAXm)(Xᵀ
m AᵀUmUᵀ

m AXm)
−1Xᵀ

m AᵀUmUᵀ
mb

� using definition of Sm

= x0 + Xm(Xᵀ
m AᵀUmUᵀ

m AXm)
−1Xᵀ

m AᵀUmUᵀ
mb

� using Eq. (16)

= x0 + Xm(U
ᵀ
m ASm)

−1Uᵀ
mb

� simplifying

= x0 + Xm(U
ᵀ
m ASm)

−1Uᵀ
m(b − Ax0)

� using Eq. (15)

35

Observe the symmetry with respect to Proposition 7 where the roles
of Xm and Um in prior and search directions are exchanged. Equations
(15) and (16) are trivially fulfilled when x0 = 0. If Xm = Um and A is
s.p.d. one can choose v := x0. This choice imposes the search directions
to be A-conjugate to the initial solution. For conjugate gradients this
is generally not the case.

8.3.1 Generalized Minimal Residual

Now follows a probabilistic interpretation of GMRES. Again, a general
result comparable to those in Section 8.2.2 remains future work.

Proposition 14. Assume that x0 = 0. Under the prior

p(A−1) = N (0, Σ ⊗ I)

and given Ym = AQm, where Qm are the Arnoldi directions, the implied
posterior mean over the solution given by A−1

m b is equivalent to the
GMRES solution.

Proof. Under this prior, b applied to the posterior mean is

A−1
m b =A−1

0 b + (Qm − A−1
0 Ym)(Y

ᵀ
mYm)

−1Yᵀ
mb

=Qm(Y
ᵀ
mYm)

−1Yᵀ
mb

=Qm(Q
ᵀ
m AᵀAQm)

−1Qᵀ
m Aᵀb

which is the GMRES projection (Eq. (GMR)) if x0 = 0.

If above proposition is true for x0 6= 0, it provides structural insights
into GMRES. For the choice Σ := I, one could say that running
GMRES is equivalent to inference over A−1 or x∗ under the assumption
that all entries are independent standard normal.

8.3.2 Conjugate Gradients

The following interpretation of conjugate gradients provides an expla-
nation of how the search directions can be motivated probabilistically.
The following proposition is a contribution by Philipp Hennig.

Proposition 15. Consider the prior

p(A−1) = N (vec
(

A−1
)

; vec (αI) , (βI + γW)⊗	(βI + γW))

where W := A−1. For all choices α ∈ R \ {0} and β, γ ∈ R+,0 with
β+ γ > 0, Algorithm 3 is equivalent to CG, in the sense that it produces
the same search directions si (scaled).

Proof. The proof is extensive and can be found in Appendix D.

36

In general, the solution estimate xm produced by Algorithm 3 differs
from the posterior over x in Eq. (MBI), since the CG estimate is
corrected by the step size computed in line 6. Fixing this rank-1
discrepancy would complicate the exposition of Algorithm 3 and yield
a more cumbersome algorithm. Proposition 15 is remarkable since, for
the case when γ = 0, it is the only result with a rank d prior matrix,
that does not involve A−1. Algorithm 3: The algorithm referred

to by Proposition 15, which repro-
duces the search directions from CG.

1 x0 ^ A−1
0 b � initial guess

2 r0 ^ Ax0 − b
3 for i = 1, . . . , m do
4 di ^ − A−1

i−1ri−1 � compute optimization direction

5 zi ^ Adi � observe

6 αi ^ − dᵀ
i ri−1
dᵀ

i zi
� optimal step-size

7 si ^ αidi � re-scale step

8 yi ^ αizi � re-scale observation

9 xi ^ xi−1 + si � update estimate for x

10 ri ^ ri−1 + yi � new gradient at xi

11 A−1
i ^ Ep(A−1|S,Y)A−1 � estimate A−1

12 end for
13 return xm

8.4 Preconditioning

This section discusses probabilistic views on preconditioning. Precondi-
tioning is a technique used to accelerate the convergence of iterative
methods (Saad 2003, Sections 9 and 10). A preconditioner P is a
nonsingular matrix satisfying two requirements:

1. linear systems Pz = c can be solved at low computational cost

2. and P is “close” to A in some sense.

Hence, solving systems based upon a preconditioner can be viewed
as approximately inverting A, and indeed many preconditioners are
constructed based upon this intuition. One distinguishes between right
preconditioners Pr and left preconditioners Pl, depending on whether
they act on A from the left or the right. Two-sided preconditioning
with nonsingular matrices Pl and Pr transforms implicitly Eq. (LES)
into a new linear problem

Pl APr z∗ = Plb, with x∗ = Prz∗. (18)

The preconditioned system can then be solved using arbitrary projec-
tion methods as described in Section 7.2, from the starting point z0

defined by x0 = Prz0. The probabilistic view can be used to create

37

a nuanced description of preconditioning as a form of prior informa-
tion. In the SBI framework, Proposition 16 below shows that solving
a right-preconditioned system is equivalent to modifying the prior,
while in Proposition 17 shows that left-preconditioning is equivalent to
making a different choice of observations. The following proposition is
a contribution by Philipp Hennig.

Proposition 16 (Right preconditioning). Consider the right-precondi-
tioned system

APrz∗ = b where x∗ = Prz∗. (19)

SBI on Eq. (19) under the prior

z ∼ N (z; z0, Σ0) (20)

is equivalent to solving Eq. (LES) under the prior

x ∼ N (x; Prz0, PrΣ0Pᵀ
r). (21)

Proof. Define B := APr and r̂0 = b − Bz0. Consider the prior defined
in Eq. (21). Lemma 3 implies that after observing information from
search directions Sm, the posterior mean equals

xm = Prz0 + PrΣ0BᵀSm(S
ᵀ
mBΣ0BᵀSm)

−1Sᵀ
m r̂0.

Left multiplying by P−1
r shows that this is equivalent to

zm := P−1
r xm

= z0 + Σ0BᵀSm(S
ᵀ
mBΣ0BᵀSm)

−1Sᵀ
m r̂0.

Now note that zm is the posterior mean from the prior Eq. (20) after
observing search directions Sm, when inferring the solution over of the
system Bz∗ = b.

Proposition 17 (Left preconditioning). Consider the left-precondi-
tioned system

Pl Ax∗ = Plb (22)

And the SBI prior

p(x) = N (x; x0, Σ0).

Then the posterior from SBI on Eq. (22) under search directions Sm is
equivalent to the posterior from SBI applied to the system Eq. (LES)
under search directions Pᵀ

l Sm.

38

Proof. Lemma 3 implies that after observing search directions Tm, the
posterior mean over the solution of Eq. (LES) equals

xm = x0 + Σ0 AᵀTm(T
ᵀ
m AΣ0 AᵀTm)

−1Tᵀ
mr0

where r0 = b − Ax0. Setting Tm = Pᵀ
l Sm gives

xm = x0 + Σ0BᵀSm(S
ᵀ
mBΣ0BᵀSm)

−1Sᵀ
mPl r̂0

where B := Pl A and r̂0 = Plb−Pl Ax0. Thus, xm is the posterior mean
of the system Bx∗ = Plb after observing search directions Sm.

If a probabilistic linear solver has a posterior mean which coincides
with a projection method, the Propositions 16 and 17 show how to
obtain a probabilistic interpretation of the preconditioned version of
that algorithm. With Proposition 5 these results carry over to MBI.

This interpretation of preconditioning is not unique. When using left-
multiplied observations, the same reasoning can be used to show that
left-preconditioning corresponds to a change in the prior belief, while
right-preconditioning corresponds to collecting different observations.

39

9
Discussion

9.1 Summary

This part showed that solution-based inference is contained within
matrix-based inference, which allows to transfer results from SBI to
MBI with left-multiplied information. This correspondence motivates
the classification of probabilistic interpretations as left-multiplied and
right-multiplied. Connections between probabilistic linear solvers and
the class of projection methods have been presented, and a probabilistic
interpretation of preconditioning.

9.2 Future Directions

Posterior uncertainty calibration remains a challenge for probabilistic
linear solvers. Direct probabilistic interpretations of CG and GMRES
yield posterior covariance matrices which are not always computable,
and even when the posterior can be computed, the uncertainty remains
poorly calibrated. Mitigating this issue without sacrificing the rate of
convergence provided by Krylov methods remains an important goal.

Another natural question to ask is whether other classes of linear
solvers such as stationary iterative methods (Saad 2003, Chapter 4)
have probabilistic interpretations. As an outlook for a non-Bayesian
probabilistic interpretation consider the following relation between
Jacobi-iteration (Saad 2003, pp. 105) and Gibbs sampling (Geman and
Geman 1984; Bishop 2006, pp. 542).

If all components of x∗ are identified, except for one, say the i-th
component, then one can identify this last component, by rearranging
the i-th equation for xi

xi =
1

Aii

bi −
d

∑
j=1
j 6=i

Aijxj

 , (23)

and has found the solution x∗ (assuming Aii 6= 0). The last sentence
can be expressed probabilistically as

p(xi | x1, ..., xi−1, xi+1, ..., xd) = δ

xi −
1

Aii

bi −
d

∑
j=1
j 6=i

Aijxj


 .

41

Given an initial guess x0, and a likelihood of the form above, Gibbs
sampling cycles through all variables in order and updates each by a
sample from the likelihood, where in this case the samples are determin-
istic and updated according to Eq. (23). At the same time, Eq. (23) is
the update rule for Jacobi-iteration. Hence, when using the last sample
as estimate, Gibbs sampling and Jacobi-iteration produce the same
output in each step.

42

Part IV

Probabilistic Solvers for Kernel Least-Squares
Problems

Hier soll der geduldige Leser verschnaufen. Ich schweife nicht ab,
sondern zurück, verspreche feierlich: das Fäkalienthema ist noch
nicht ganz erschöpft, Chopin aber endgültig erledigt, jedenfalls in
seiner Qualität, als Quantität werde ich, schon aus kompositorischen
Gründen, mich seiner noch einige Male bedienen müssen. Es wird
nicht mehr vorkommen. Reuevoll schlage ich mir an die Brust, jene,
deren Quantität bei meinem Hemdenschneider zu erfahren wäre,
deren Qualität aber so schwer zu definieren ist.

—Heinrich Böll, Entfernung von der Truppe

10
Preliminaries

The previous part compared and related probabilistic numerical meth-
ods and classic appproaches to approximation. The purpose of this
part is to present a possibility, to use the probabilistic perspective to
develop novel approximation algorithms. It is based on the publication
S. Bartels and P. Hennig (2019). “Conjugate Gradients for Kernel
Machines.” In: ArXiv e-prints 1911.06048. arXiv:1911.06048, currently
under revision. I was the primary author and performed the principal
analysis and work, Philipp Hennig provided initial ideas and direction.

10.1 Introduction

Regularized least-squares (kernel-ridge / Gaussian process) regression
is a fundamental algorithm of statistics and machine learning. Because
generic algorithms for the exact solution have cubic complexity in the
number of datapoints, large datasets require to resort to approxima-
tions. In the following, the computation of the least-squares prediction
is itself treated as a probabilistic inference problem. The key is a
structured Gaussian regression model on the kernel function that uses
projections of the kernel matrix to obtain a low-rank approximation of
the kernel and the matrix. This leads to an enhanced way to use the
method of conjugate gradients for the specific setting of least-squares
regression as encountered in machine learning dubbed kernel machine
conjugate gradients (KMCG). KMCG improves the approximation
of the kernel ridge regressor / Gaussian process posterior mean over
vanilla conjugate gradients and, when used in Gaussian process models,
allows computation of the posterior variance and the log marginal
likelihood (evidence) without further overhead. Recall the regularized
least-squares problem introduced in Chapter 4:

f̄ (x∗) = kᵀ
∗ (K + σ2 I)−1y. (1)

Instead of providing an approximation solely to the vector (K+σ2 I)−1y,
the approach uses the MVMs performed by CG to learn an approxima-
tion directly to the function k. This will allow to approximate Eqs. (2)
and (3) (restated below) as well, without rerunning CG.

c̄(x∗, x∗∗) = k(x∗, x∗∗)− kᵀ
∗ (K + σ2 I)−1k∗∗ (2)

ln p(y) = −1
2

yᵀ(K + σ2 I)−1y +
1
2

ln |2π(K + σ2 I)|−1 (3)

45

http://arxiv.org/abs/1911.06048

Chapter 11 proposes a model template that can be used to learn finite-
rank approximations to kernel functions. Then, Chapter 12 shows how
conjugate gradients can be used in combination.

−3 −2 −1 0 1 2 3

−2

0

2 exact
CG
KMCG

Figure 3: the algorithm KMCG in
comparison to CG on a toy setup.
The dataset consists of one hundred
data-points where the targets are a
draw from a zero-mean Gaussian pro-
cess with squared exponential kernel
(Eq. (43) with Λ = 0.25 and θ f =
2). The thin, black line is the pos-
terior mean of that Gaussian process
(Eq. (1)). The light-green line is the
mean prediction produced by conju-
gate gradients after P = 7 steps and
the dark-red line is the mean predic-
tion of KMCG (where the number of
inducing inputs M = N).

10.2 Finite-rank Kernel
An M-rank approximation to a kernel is a factorization of the form

k(x, z) ≈ φ(x)∗Σ−1φ(z) (24)

where φ(x) : X → CM, φ∗ denotes the conjugate transpose, and Σ

is an M × M Hermitian and positive definite matrix. Given such an
expansion one can use the matrix-inversion, and matrix-determinant
lemmata to approximate Equations (1) to (3) with the expressions
below

f (x∗) ≈ φ(x∗)∗A−1Φy (25)

c(x∗, z∗) ≈ σ2φ(x∗)∗A−1φ(z∗) (26)

ln p(y) ≈ −1
2

yᵀΦ∗A−1Φy − 1
2

ln |A| − N
2

ln(2πσ2) (27)

where φ(x∗)j = φj(x∗), Φij = φi(X j) and A := ΦΦ∗ + σ2Σ. Typically
M � N and therefore the computational costs to evaluate Equations
(25) to (27) reduce from O(N3) to O(NM2), i.e. linear in N. The
dominant factor is the matrix-matrix product ΦΦ∗.

An example for a finite-rank kernel that will become important later
is the Subset of Regressors (SoR) approximation (Quiñonero-Candela
and Rasmussen 2005)

kSoR(x, z) = k(x, XU)k(XU , XU)
−1k(XU , z) (28)

where XU is a set of M so called inducing inputs. The method proposed
in this work (KMCG) is related to SoR. Readers familiar with SoR
will be aware of the associated flaws, and methods to remedy them
(Quiñonero-Candela and Rasmussen 2005; Titsias 2009). For stationary
kernels and tests points far away from the data, the predictive uncer-
tainty (Eq. (26)) goes to zero. The Deterministic Training Conditional
(DTC) approximation alleviates this issue by using the exact kernel
for the prior uncertainty over the test inputs (Quiñonero-Candela and
Rasmussen 2005). In effect this is a substitution of Eq. (26) for Eq. (29)
below.

c(x∗, z∗) ≈k(x∗, x∗∗)− φ(x∗)∗
(

ΦΦ∗ + σ2 I
)−1

φ(z∗) (29)

We will apply the same substitution for our method KMCG.

46

11
Model

To approximate Equations (1) to (3), we will approximate the kernel
and, to this end, present a probabilistic estimation rule for k. The idea
is to treat the kernel as unknown and to choose prior and likelihood
such that the posterior mean kM is efficient to evaluate and yields
a kernel of finite rank. Substituting for this finite-rank kernel in
Equations (1) to (3) then allows to compute these expressions faster.
The following sections describe a prior over k, possible likelihoods and
resulting posteriors. Fig. 4 on page 48 shows a schematic summary of
this chapter.

11.1 Prior

Consider a Gaussian process prior over bivariate functions

k ∼ GP(k0, γψ) (30)

where ψ : X2 × X2 → R is a covariance function over kernel and
γ ∈ R+ is a scaling parameter. Since the posterior mean is meant to
be a substitution for the exact kernel, this is an exchange of one least-
squares problem for another. Without further assumptions, calculating
the posterior over k is more expensive than computing the equations
of interest (Eqs. (1) to (3)). Efficient inference is rendered possible by
imposing the following structure on ψ

ψ(k(a, b), k(c, d)) :=
1
2

w(a, c)w(b, d) +
1
2

w(a, d)w(b, c) (31)

for a, b, c, d ∈ X and where w is a covariance function on the domain
X. Consider the first addend. It states that the similarity between
k(a, b) and k(c, d) depends on the similarity of a and c, and b and
d–a natural assumption for kernel matrices. The second addend is a
symmetrization of the first. Observe that each addend is a product
kernel of two pairs of inputs and recall that a product kernel produces
Kronecker product matrices. The sum of the two products leads to
covariance matrices that have a symmetric Kronecker product form,
i.e. ∀A, B ∈ RN×N : ψ(A, B) = A⊗	B ∈ RN2×N2 (recall Chapter 6).
As in the previous part, this will allow a sufficiently efficient evaluation
of the posterior. Fig. 4 visualizes the variance and shows samples from
this prior for the toy setup from Fig. 3.

47

gr
ou

nd
-t

ru
th

in
R

2

−3 0 3
−3

0

3

x1

x 2

-2.0

0.0

2.0

−2 0 2
0

1

2

3

x1

k(
x 1

,0
)

The kernel k, here a squared exponential (Eq. 43) is assumed to be an unknown function.

pr
io

r
in

R
2

−3 0 3
−3

0

3

−3 0 3 −3 0 3 −3 0 3

k0
√

ψ |k−k0|√
ψ

− 1 sample

Section 11.1 describes a Kronecker-structured Gaussian process prior over the kernel. Above
pictures show from left-to-right: prior mean (zero), prior standard deviation, the absolute error

divided by the standard deviation minus one and a sample from this prior.

lik
el

ih
oo

d
on

N
2

=

Observations of k stem from matrix-vector multiplications with the kernel matrix K (Section 11.2),
sketched using random columns of the identity matrix.

po
st

er
io

r
in

R
2

−3 0 3
−3

0

3

−3 0 3 −3 0 3 −3 0 3

kM
√

ψM
|k−kM |√

ψM
− 1 sample

The posterior is again Gaussian (Section 11.3) and similar to the top, the pictures show from
left-to-right: mean, standard deviation, relative error and a sample. By design, the posterior mean
kM is an approximation of finite rank which allows to efficiently solve the original least-squares

problem (Section 10.2).

Figure 4: schematic summary of
the proposed kernel approximation
method.

48

This choice of prior offers a trade-off between efficient tractable
inference and the desire to encode as much prior structural information
about the kernel as possible. One desirable property to encode is
symmetry, and indeed, matrix-valued functions sampled from this prior
distribution are symmetric (c.f. Fig. 4 for examples, Appendix E.1 for
formal proof). Kernel functions are also positive definite. Unfortunately,
since the positive definite cone is not a linear sub-space of the vector-
space of real matrices, this property can not be encoded in a Gaussian
prior in closed form.1 However, it is possible to guarantee positive- 1 For example Hennig (2015) discusses

this problem and possible solutions.definiteness of the posterior mean point estimate through the specific
choice of prior parameters k0 = 0 (proof in Appendix E.2.1). For this
reason, k0 := 0 for the remainder. There are other properties of certain
kernels that would be desirable to encode, but which are not feasible
within the chosen framework without also sacrificing fast computability
at the same time. For example, stationarity of the kernel can not
be represented by a prior with Kronecker structure in the covariance
since a and b (and symmetrically c and d) do not appear together as
arguments to w.

The question remains how to choose w. Recall that w should
reflect the similarity between k(a, b) and k(c, d) which depends on
the similarity of a and c, and b and d. To measure the relationship
between inputs is exactly the purpose of the kernel k and we therefore
set

w := k

for the remainder. Even if k fails to capture similarity between inputs,
as choice for w it still captures the similarity between the kernel values.
Second, samples from the approximate kernel will be a function of w
and lastly, this choice is convenient computationally as expressions
simplify.

11.2 Likelihood

Having specified a prior over k, we will now be concerned with how to
obtain observations. We can use matrix-vector products with the kernel
matrix for learning a low-rank version of the kernel by introducing the
linear operator

T p : k 7→ vec

([∫∫
k(x, z)pi(x)pj(z) dx dz

]
ij

)
(32)

where i, j = 1...P, p = [p1, ..., pP] are densities or distributions.

Example 18 (Matrix-vector multiplication). Define T p with

pi(x) =
M

∑
j=1

sijδ(x − xuj). (33)

49

Then the evaluation of T pk reduces to a matrix vector product, that is
mat

(
T pk

)
= Sᵀk(XU , XU)S where Sij = sij, XU = [xu1 , ..., xuM].

The xuj can be datapoints or arbitrary elements of the domain X.
In Chapter 12 we will use the conjugate gradients search directions.

Example 19 (Integrals with Eigenfunctions). Let φi i = 1, ..., P be
orthogonal Eigenfunctions of k with respect to a density ν on X, i.e.∫

k(x, z)φi(z)ν(z) dz = λiφi(x)∫
φi(z)φj(z)ν(z) dz = δij

where λi ∈ R+ and δij is the Kronecker delta (compare Rasmussen and
Williams (2006, p. 96)). Then for

pi(x) = φi(x)ν(x)

the observations [mat
(
T pk

)
]ij = δijλi are spectral values of the kernel.

In essence, this example shows another possibility to express prior
knowledge over the kernel. This likelihood leads to the Projected Bayes
Regressor (Trecate, Williams, and Opper 1999), which is a historical,
deterministic precursor to the more widely known random Fourier
feature expansion of Rahimi and Recht 2008. For the purposes of this
thesis, Example 19 is a motivation for the generality of the observation
operator in Eq. (32). The example will not be considered further.

11.3 Posterior

The observation operator T p is linear, and hence transforms the Gaus-
sian prior into an also Gaussian posterior. Given the prior (Eq. (30))
and any likelihood of the previous section, the posterior is Gaussian
with:

p(k | Y , T p) = N (kM, wM)

kM = k0 + (T pψ)ᵀ(T p(T pψ)ᵀ)−1(vec (Y)− T pk0) (34)

ψM = ψ − (T pψ)ᵀ(T p(T pψ)ᵀ)−1T pψ (35)

The concrete posterior depends on the choice of T p. The following
propositions presents an approximation method that has a view as GP
inference with low-rank kernel and how it arises in our framework.

Proposition 20 (Subset of Regressors). Consider the prior of Eq. (30)
with k0 := 0 and w := k and the likelihood defined in Eq. (33) with
sij = δij. Then the posterior mean kM is equivalent to that of SoR:

kM(x, z) = kSoR = k(x, XU)k(XU , XU)
−1k(XU , z)

50

where XU are inducing inputs, not necessarily part of X.

The proof is part of Appendix E.2. An example of this posterior
distribution is shown in Fig. 4. Fig. 5 visualizes the progression of the
posterior for the KMCG algorithm, presented in the next chapter.

kM
√

ψM
|k−kM |√

ψM
− 1 sample

−3 0 3
−3

0

3

−3 0 3 −3 0 3 −3 0 3

−3 0 3
−3

0

3

−3 0 3 −3 0 3 −3 0 3

−3 0 3
−3

0

3

−3 0 3 −3 0 3 −3 0 3

-2.0 0.0 2.0

Figure 5: progression of the poste-
rior (Eq. (37)) for KMCG on the toy
example from Fig. 3 for P = 2, 4
and 8 conjugate gradients steps. The
columns show from left to right: mean,
standard deviation, standardized er-
ror (white refers to perfect calibration,
green to overconfidence and red to un-
derconfidence) and a sample.

51

12
Conjugate Gradients for Kernel Machines

The previous chapter introduced a probabilistic estimation rule for
the kernel k. This section presents another data-collection approach
using conjugate gradients that leads to a new approximation algorithm:
kernel machine conjugate gradients (KMCG).

The interest to use conjugate gradients for kernel machines goes back
to more than 25 years (Skilling 1993) and is still continuing (Davies
2015; Filippone and Engler 2015). Albeit quadratic costs per step, CG
has advantages over many of the approximation methods referenced in
the introduction. CG has only one parameter, the desired precision,
which is more natural than e.g. the number of inducing inputs for
inducing point methods (Quiñonero-Candela and Rasmussen 2005).
Thus the computational budget of CG is not fixed in advance but varies
as necessary for the problem at hand.

The approach is to run conjugate gradients for P steps on a kernel
matrix of size M and to treat the matrix multiplications (zi in Algo-
rithm 2) as observations in the model presented in Chapter 11. Formally
the likelihood is defined similar to the SoR likelihood (Example 18)
albeit scaled.

Definition 21 (Conjugate-gradients likelihood). Choose a subset X M

of size M from X and denote as yM ∈ RM the vector that contains the
corresponding entries of y. Run conjugate gradients (Algorithm 2 on
p. 15) with x0 := 0, A = k(X M, X M), b = yM and ε := 0.01||b||2. In
Eq. (32) set

pi(x) :=
M

∑
j=1

sjδ(x − xj) (36)

where sj is the j-th entry of vector si in iteration i of the CG algorithm.

Remark 22. KMCG uses only the CG search directions s1, ..., sP and
not the solution x̂.

Using this likelihood, the resulting approximate kernel (Eq. (34))
and approximate Equations are (cf. Proposition 41):

k̂M(x∗, x∗∗) = k(x∗, X M)S(SᵀKMS)−1Sᵀk(X M, x∗∗) (37)

f̂ (x∗) = k(x∗, X M)S(RᵀR + σ2SᵀKMS)−1Rᵀy (38)

ĉ(x∗, x∗∗) = k(x∗, x∗∗) (39)

− k(x∗, X M)S(SᵀKMS)−1Sᵀk(X M, x∗∗)

53

+ σ2k(x∗, X M)S
(

RᵀR + σ2SᵀKMS
)−1

Sᵀk(X M, x∗∗)

ln Ẑ =
1

2σ2 (y
ᵀy − yᵀR(RᵀR + σ2SᵀKMS)−1Rᵀy) (40)

+
1
2

ln |RᵀR + σ2SᵀKMS| − 1
2
|SᵀKMS|

+
1
2
(N − P) ln σ2 +

1
2

N ln 2π

where S := [s1, . . . , sP], R := k(X M, X)S and P is the number of CG
iterations.

Algorithm 4: Kernel Machine Conju-
gate Gradients

1 procedure KMCG(k, X, y, σ2, ε)
2 . (W.l.o.g.) assume that the inducing inputs are a subset of X.
3 . Denote this subset by X M.
4 . Let yM the be corresponding entries of y.
5 Conjugate Gradients(k(X M, X M), yM, ε) � ignore solution x̂

6 S ^[s1, ..., sP] � collect CG search directions

7 Z ^[z1, ..., zP] � Z = KMS

8 if M < N then
9 R ^ k(X, X M)S

10 else
11 R ^ Z � When X M = X above matrix multiplication is not necessary.

12 end if
13 L1 ^ chol(SᵀZ) � precompute required Choleskies

14 L2 ^ chol(σ2SᵀZ + RᵀR)

15 evaluate Eqs. (38) to (40)
16 end procedure

12.1 Properties

Fig. 5 shows how the approximation to the kernel progresses for the
toy example from Fig. 3. Computing the Cholesky of RᵀR + σ2SᵀKMS
costs O(NMP). After that evaluating the mean prediction is possible
in O(M) and the variance in O(MP).

In case P = M, KMCG reduces to SoR since all occurrences of S
in Eq. (37) cancel and what remains is the SoR kernel (Eq. (28)). If
KM has a favorable distribution of eigenvalues such that conjugate
gradients terminates in less than M steps (see Section 5.2), KMCG
can be used to speed up SoR.1 In practice, this kind of advantage can 1 The same applies to related methods

such as DTC (Quiñonero-Candela and
Rasmussen 2005) and Titsias’ method
(Titsias 2009).

only be expected to be beneficial when realized in low-level code. The
level of efficiency of existing low-level linear algebra routines makes it
challenging to evaluate this area.

Recall that the computational complexity of CG for the solution of
Eq. (30) in P iterations is O(N2P), that of inducing point methods with
M inducing inputs is O(NM2), and KMCG running for P iterations

54

on M inducing points has complexity O(NMP). While the main point
of the present paper is to “fix” problems of CG in kernel machines,
this structure hints at an interesting side-observation: Restricting the
number of steps P in advance can then allow to increase the number
of inducing points M beyond what would otherwise be feasible with
standard inducing input methods. The subsequent evaluation section
is dedicated to the case M = N, i.e. using the whole dataset which
places KMCG in direct competition to plain conjugate gradients.

12.1.1 Relationship to the Nadaraya-Watson estimator

Taking only one step (P = 1) implies S = yM and Eq. (38) takes the
following form

f̂ (x∗) = α
M

∑
m=1

k(xm, x∗)ym

where α =
yᵀ

MKMyM
σ2yᵀ

MKMyM+yᵀ
MKMKMyM

. The equation bears resemblance to
the Nadaraya-Watson estimator (Bishop 2006, p. 301f): a sum over all
training targets weighted by the similarity of the corresponding input
to the test input. However, the scaling-factor α is different.

12.1.2 Uncertainty

In addition to the posterior mean kM, the Gaussian formulation of the
approximation problem also provides a posterior variance ψM. It is a
natural question to which degree this object can be interpreted as a
notion of uncertainty or, more specifically, as an estimate of the square
error (k − kM)2. This section provides an analysis of this covariance
for KMCG, showing it to be an outer bound on the true error. Fig. 5
visualizes this for the toy dataset from Fig. 3.

Proposition 23 (relative error bound). The relative size of estimation
error and error estimate is bounded from above by 2.

(k(x, z)− kM(x, z))2

ψM(k(x, z), k(x, z))
≤ 2 (41)

Proof. Define kᵀ
x := k(x, X) and G := S(SᵀKS)−1Sᵀ. For KMCG

posterior mean and variance evaluate to (Appendix E.2):

kM(x, z) = kᵀ
x Gkz,

ψM(k(x, z), k(x, z)) =
1
2

(
k(x, x)k(z, z) + k(x, z)2

)
− 1

2

(
kᵀ

x Gkxkᵀ
z Gkz + (kᵀ

x Gkz)
2
)

=
1
2

(
k(x, x)k(z, z) + k(x, z)2

)

55

−
(

kM(x, x)kM(z, z)− kM(x, z)2
)

.

As a variance ψM(k(x, x), k(x, x)) is always larger than 0 which implies
k(x, x) ≥ kM(x, x) for all x. Thus ψM(k(x, z), k(x, z)) is bounded from
below by 1

2 k(x, z)2 − 1
2 kM(x, z)2 from which we can conclude

(k(x, z)− kM(x, z))2

ψM(k(x, z), k(x, z))
≤ 2

(k(x, z)− kM(x, z)2

k(x, z)2 − kM(x, z)2

= 2
(k(x, z)− kM(x, z)2

(k(x, z)− kM(x, z))(k(x, z) + kM(x, z))

= 2
|k(x, z)− kM(x, z)|
k(x, z) + kM(x, z)

≤ 2.

12.2 Related Work

In terms of using conjugate gradients for kernel machines there is
related work by Filippone and Engler (2015). Their algorithm ULISSE
is aimed at the estimation of the marginal likelihood p(θ | y) where θ

are hyper-parameters of the kernel k. They use a randomized conjugate
gradients to estimate gradients of the log-marginal likelihood (Eq. (3))
which in combination with Stochastic Gradient Langevin Dynamics
(SGLD) (Welling and Teh 2011) allows to sample from p(θ | y). Our
work is complementary to ULISSE. While running CG the matrix
multiplications the inference perspective in Chapter 11 can be used to
build a low-rank approximation of the kernel matrix which can serve
as preconditioner for the next SGLD step.

Using the Kronecker product for efficient inference has been explored
before for example in the KISS-GP framework (Wilson and Nickisch
2015). The difference to this work is that Wilson and Nickisch (2015)
factorize the kernel matrix K into a Kronecker-product where here it
is the covariance matrix of the prior ψ(K, K) over the kernel that has
Kronecker structure (cf. Eq. (30)). A synergy between their and our
approach is hard to imagine. However, the follow-up work by Pleiss,
Gardner, Weinberger, and Wilson (2018) uses Lanczos iteration to
build a low-rank approximation of a kernel matrix C for the variance
prediction. Presumably, one could use instead KMCG.

56

13
Empirical Comparison of CG and KMCG

This section elaborates the conceptual differences between CG and
KMCG and then compares both algorithms with numerical experiments.
Consider Eq. (1) restated below for convenience.

f̄ (x∗) = kᵀ
∗ (K + σ2 I)−1y (1)

CG computes an approximation to (K + σ2 I)−1y and uses the exact k∗.
In contrast, KMCG computes an approximation to k and substitutes
k∗ as well. That the systematic replacement of the kernel can be of
importance has been noted before by Rasmussen and Williams (2006,
p. 177) when comparing SoR and the Nyström method (Williams
and Seeger 2001). The SoR method approximates k with the kernel in
Eq. (28). In contrast Nyström uses the exact k∗ such that the predictive
variance (Eq. (2)) can become negative. They further observed that for
large M, Nyström and SoR have a similar performance, yet for small
M Nyström performs poorly. We will make the same observations for
CG and KMCG in the following comparison.

Conjugate gradients is used to solve the equations (K + σ2 I)α = y.
In contrast, since the goal of KMCG is to learn an approximation to the
kernel, the algorithm runs conjugate gradients on Kα = y, i.e. without
noise term. Both methods were evaluated in terms of the average
relative error

ε f :=
1

n∗

n∗

∑
k=1

∣∣∣∣∣ f̄ (x∗,k)− f̂ (x∗,k)

f̄ (x∗,k)

∣∣∣∣∣ , (42)

where x∗,k is a test-input not part of the training set.
The text-book version of conjugate gradients in Algorithm 2 is known

to be numerically unstable which is demonstrated in Appendix E.3.3,
and there exist different strategies to cope with this problem (Golub and
Van Loan 2013, p. 635). To explore the potential of KMCG, we bypass
this implementation issue using the slowest1 yet most stable solution: 1 Computing the exact solution is ac-

tually faster.complete reorthogonalization Golub and Van Loan 2013, p. 564 and
the explicit projection-method formulation, Eq. (FOM), to compute α.
Therefore the following comparison will be conceptually, i.e. over the
number of conjugate gradient steps. For completeness, Appendix E.3.1
contains results how KMCG performs in wall-clock time. Often the
baseline methods converge faster since block-matrix multiplication is
faster than looped matrix-vector multiplication. Baseline methods are
the Fully Independent Training Conditional (FITC) approximation

57

(Quiñonero-Candela and Rasmussen 2005) and the Variational Free
Energy (VFE) method (Titsias 2009) with inducing inputs randomly
selected from the dataset as recommended by Chalupka, Williams,
and Murray (2013). The baseline runs were repeated 10 times and
besides the average, each figure will show also the progressive minimum
and maximum over all runs to take into account for more elaborate
inducing-input selection schemes.

In all our experiments, we used two popular stationary kernel func-
tions: automatic relevance determination (ARD) Squared Exponential
(Eq. (43)) and ARD Matérn 5/2 (Rasmussen and Williams 2006, p. 83f,
p. 106),

kSE(d(x, z; Λ)) = θ f exp
(
−1

2
d2
)

(43)

k52(d(x, z; Λ)) = θ f

(
1 +

√
5d +

5
3

d2
)

exp
(
−
√

5d
)

(44)

where d = d(x, z; Λ) = ||x − z||Λ and Λ is a diagonal matrix. All
experiments were executed with Matlab R2019a on an Intel i7 CPU
with 32 Gigabytes of RAM running Ubuntu 18.04.

13.1 Common Regression Datasets

The datasets chosen are small such that computation of the exact
GP is still feasible. Origin and purpose the datasets can be found in
Table 3 in Appendix A. Each dataset has been shuffled and split into
two sets, using one for training and the other for testing. For each
dataset we optimized the kernel parameters running Carl Rasmussen’s
minimize function2 for 100 optimization-steps, where initially all kernel 2 This method is part of

the GPML toolbox (Ras-
mussen and Nickisch 2010), see
http://www.gaussianprocess.org/
gpml/code/matlab/doc.

hyper-parameters are set to 1.
Fig. 6 shows how the average relative error develops for the described

setup. Since the Matérn kernel experiments look very similar, these
figures are part of Appendix E.3.2. The upper x-axis displays the
number of conjugate gradients steps, the lower x-axis, the number of
inducing inputs. During early iterations the performance of CG is not
as reliable as KMCG and the latter also improves more consistently. For
the baselines, the number of inducing inputs M was set to M =

√
NP

such that O-notation costs are equivalent to KMCG. (Since KMCG
uses multiplications with K for observations, the costs per CG-step are
O(N2).) In comparison to the baselines, KMCG often provides a worse
approximation to start with but exhibits a faster convergence rate.

In contrast to plain conjugate gradients, KMCG naturally provides
estimates for variance (Eq. (2)) and evidence (Eq. (3)). Define the
average relative errors εvar and εev analogously to Eq. (42), respectively.
Figs. 7 and 8 show the average relative error of these estimates in
comparison to the baselines. For all datasets one can observe that the

58

http://www.gaussianprocess.org/gpml/code/matlab/doc
http://www.gaussianprocess.org/gpml/code/matlab/doc

approximation quality of KMCG for the evidence (Eq. (3)) is improving
at first and then worsening. KMCG is better at approximating the
quadratic form than the determinant. Therefore, the approximation
often ‘overshoots’.

The baselines clearly outperform KMCG in these experiments. A
possible explanation is that the baselines provide a better overall-
approximation to the kernel matrix: After P CG-steps, the KMCG
kernel is of rank P whereas using M inducing inputs, the VFE kernel is
of rank M (so is the FITC kernel, putting the diagonal correction aside).
Since M =

√
NP, the baselines can afford more inducing inputs M than

KMCG can afford CG-steps P. Overall, when it comes to real-time, the
baselines are preferable over KMCG. The picture changes when matrix-
multiplication is less expensive than O(N2) which is investigated in
the next section.

13.2 Grid-structured Datasets

In the previous section the baselines are the preferable estimators
over KMCG. This changes when matrix-multiplication costs less than
O(N2). For example when the kernel is a product kernel (such as
squared exponential) and the dataset has grid-structure, the costs for
matrix-multiplication are almost linearly in the number of data-points
(Wilson, Gilboa, Nehorai, and Cunningham 2014) such that the number
of CG-steps KMCG can take, matches the number of baseline inducing
inputs.

13.2.1 Artificial Datasets

The datasets considered in the following are artificial multi-dimensional
grids. For the training set3, along each axis, G points are equally spaced 3 Computing the exact solution is fea-

sible exploiting the Kronecker struc-
ture of the kernel matrix which we
use to evaluate the quality of the
approximation methods. However,
we may imagine datapoints missing,
s.t. matrix-vector multiplication is fast
but computing the exact solution is
not.

in [−G/4, G/4] distorted by Gaussian noise N (0, 10−3). One-hundred
test inputs are uniformly distributed over the [−G/4, G/4] cube. Targets
are drawn from a Gaussian process with squared exponential kernel
(length scales and amplitude equal to 1). The number of inducing
inputs had to be capped at 500 due to memory limitations.

Fig. 9 shows how the approximation error to mean, variance and
likelihood term evolves, zoomed in on the first 100 steps. In Ap-
pendix E.3.1, Fig. 16 shows the same comparison over time for the
whole 500 steps, stopping KMCG when it becomes slower than the
baselines. For reference, we include a 10 × 10 dataset to give an idea
how each method would evolve when investing more computational
power would be feasible.

On these datasets KMCG dominates the baseline methods. After
already one-hundred CG-steps, KMCG provides a useful approximation

59

M =289 354 409

10−2

10−1

100

101

ABALONE
N = 2088, D = 8

ε
f

M =340 417 481
PRECIPITATION

N = 2888, D = 2

M =405 496 573
PUMADYN

N = 4096, D = 32

M = 89 109 126

10−2

10−1

100

101

MPG
N = 196, D = 7

ε
f

CG
KMCG
VFE
FITC

M =548 671 775
POLETELECOMM

N = 7499, D = 26

M =577 706 815

10−2

10−1

100

101

ELEVATORS
N = 8299, D = 17

ε
f

20 40 60 80

10−2

10−1

100

101

M =525 643 742
AILERONS

N = 6874, D = 39

20 40 60 80

M = 90 110 127
TOY

N = 200, D = 1

20 40 60 80

CG-steps P CG-steps P CG-steps P

Figure 6: progression of the relative
error ε f as a function of the number
of iterations of CG and KMCG for
different datasets using the squared-
exponential kernel (Eq. (43)). The
shaded area visualizes minimum and
maximum over all baseline runs. A
cross denotes the end of a crashed
run.

60

M =289 354 409

10−2

10−1

100

101

ABALONE
N = 2088, D = 8

ε v
ar

M =340 417 481
PRECIPITATION

N = 2888, D = 2

M =405 496 573
PUMADYN

N = 4096, D = 32

M = 89 109 126

10−2

10−1

100

101

MPG
N = 196, D = 7

ε v
ar

FITC
VFE
KMCG

M =548 671 775
POLETELECOMM

N = 7499, D = 26

M =577 706 815

10−2

10−1

100

101

ELEVATORS
N = 8299, D = 17

ε v
ar

20 40 60 80

10−2

10−1

100

101

M =525 643 742
AILERONS

N = 6874, D = 39

20 40 60 80

M = 90 110 127
TOY

N = 200, D = 1

20 40 60 80

CG-steps P CG-steps P CG-steps P

Figure 7: progression of the relative
error of the variance εvar as a function
of the number of iterations of KMCG
and baseline for different datasets
using the squared-exponential kernel
(Eq. (43)). The shaded area visual-
izes minimum and maximum over all
baseline runs. A cross denotes the end
of a crashed run.

61

M =289 354 409

10−2

10−1

100

101

ABALONE
N = 2088, D = 8

ε e
v

M =340 417 481
PRECIPITATION

N = 2888, D = 2

M =405 496 573
PUMADYN

N = 4096, D = 32

M = 89 109 126

10−2

10−1

100

101

MPG
N = 196, D = 7

ε e
v

FITC
VFE
KMCG

M =548 671 775
POLETELECOMM

N = 7499, D = 26

M =577 706 815

10−2

10−1

100

101

ELEVATORS
N = 8299, D = 17

ε e
v

20 40 60 80

10−2

10−1

100

101

M =525 643 742
AILERONS

N = 6874, D = 39

20 40 60 80

M = 90 110 127
TOY

N = 200, D = 1

20 40 60 80

CG-steps P CG-steps P CG-steps P

Figure 8: progression of the relative
error of the evidence εev as a function
of the number of iterations of base-
line and KMCG for different datasets
using the squared-exponential kernel
(Eq. (43)). The shaded area visual-
izes minimum and maximum over all
baseline runs. A cross denotes the end
of a crashed run. The small spikes
in the plots where KMCG appears to
be close to the solution correspond to
changes of the estimate from too small
to too large.

62

to the posterior mean whereas the baselines hardly show any progress.
For the variance, the same computational effort is not enough. Though
the baselines find better solutions, all methods essentially fail to arrive
at a satisfactory solution of a relative error below one. The issue is
that all methods overestimate the posterior variance by two orders
of magnitude. The picture is similar for the evidence, albeit the
approximations are closer to the truth and KMCG performs slightly
better on average.

13.2.2 Natural Sound Modeling

For a real-world example of a grid-structured dataset, we repeat the
Natural Sound Modeling experiment considered by Turner (2010),
Wilson and Nickisch (2015), and Dong, Eriksson, Nickisch, Bindel, and
Wilson (2017). Given the intensity of a sound signal recorded over time,
the objective is to recover the signal in missing regions. All inputs
(i.e. including missing) are equidistant and hence the kernel matrix
(over all inputs) is Toeplitz for stationary kernel. The kernel matrix
over the given inputs is not Toeplitz, which forbids to use this structure
for exact inference. Nevertheless matrix-vector-multiplication can be
performed in linear time. We use the squared-exponential kernel with
the hyper-parameters used by Dong, Eriksson, Nickisch, Bindel, and
Wilson (2017). Since the exact posterior is infeasible to compute we
report only the standardized mean squared-error:

SMSE :=
1

V[y]

N∗

∑
j=1

(y∗,j − f̂ (x∗,j))
2.

To conform with the original experiment, we added for each baseline a
run where the inducing inputs where chosen to be on a regular grid.
The result of this run correspond to the minimum. Fig. 10 confirms the
observations of the previous section that KMCG arrives at satisfactory
solutions faster than baseline, if matrix-vector multiplication is not an
issue.

63

10 × 10 1000 × 1000100 × 100 × 10030 × 30 × 30 × 30

10−2

10−1

100

101

102

ε
f

10−2

10−1

100

101

102

ε v
ar

CG
KMCG
VFE
FITC

10−2

10−1

100

101

102

ε e
v

20 40 60 80

10−2

10−1

100

101

102

20 40 60 80 20 40 60 80 20 40 60 80

CG-steps P CG-steps P CG-steps P CG-steps P

Figure 9: comparison of baseline and
KMCG on grid-structured datasets us-
ing the squared exponential kernel
(Eq. (43)). The shaded area visualizes
minimum and maximum over all base-
line runs.

64

10−2

10−1

100

101

102

SOUND
N = 59309, D = 1

SM
SE

20 40 60 80

10−2

10−1

100

101

102
CG
KMCG
VFE
FITC

0 5 10 15 20

SOUND
N = 59309, D = 1

CG-steps P time in s

Figure 10: comparison of KMCG and
CG on the SOUND dataset using the
squared exponential kernel (Eq. (43))
with the hyper-parameters from Dong,
Eriksson, Nickisch, Bindel, and Wil-
son (2017). The shaded area visual-
izes minimum and maximum over all
baseline runs.

65

14
Discussion

14.1 Summary

This part presented a new approximate inference method for kernel
machines that showed how linear solvers can be used in combination
with low-rank kernel approximations. The approach is based on a
probabilistic numerics viewpoint: the kernel k is treated as a latent
quantity and conjugate gradients is used for collecting observations of
k. By design, the resulting approximate kernel is of low rank and is
plugged into the nonparametric least-squares problem. The approach is
not restricted to least-squares problems but applicable in any scenario
where the bottleneck is the inversion of a large kernel matrix.

Kernel machine conjugate gradients (KMCG) consistently outper-
forms plain conjugate gradients in numerical experiments. This does
not change the fact that standard dense kernel least-squares problems
are often more efficiently solved by inducing point methods. However,
as demonstrated in Section 13.2, in the settings which allow fast multi-
plication with the kernel matrix, the new algorithm can improve upon
the state of the art.

14.2 Future Directions

A hope associated with KMCG was that the probabilistic approach
would allow to reason about the approximation error. However, this
endeavor turned out to be more challenging than anticipated. For
example, for an uncertainty over the approximate posterior mean,
Eq. (1), this requires propagating the uncertainty over the kernel
matrix through a matrix inverse operation. However, even if x is
only univariate Gaussian, only the 0-th moment for 1/x exists. Hence,
to derive a meaningful uncertainty, requires the additional step of
formalizing another ground-truth. If there exist a lower bound or an
upper bound on x which guarantee that x is necessarily larger or smaller
than 0, one can use a truncated Gaussian. In that case higher moments
of x−1 exist. Generalizing this approach to the multivariate case is
more challenging.

Putting aside the issue of defining p(K−1), evaluating this expression
will likely require approximation. Given a belief over K, one direction

67

could be to use a consequence of the Cayley–Hamilton theorem: the
inverse of an invertible d × d matrix A can be written as

A−1 =
d−1

∑
j=0

cj Aj,

where the coefficients cj also depend on A. Using above expansion for
K and K̂, results in the following expression for the inverse:

K−1 = K̂−1
+

N−1

∑
j=0

(cjK j − ĉjK̂).

Under the assumption that second order and higher polynomials con-
tribute little, one can use the approximation

K−1 ≈ K̂−1
+ (c0 − ĉ0)I + c1K − ĉ1K̂.

Treating c0, c1 as constant, above expression contains only K as latent
variable, and one obtains:

EK−1 ≈ K̂−1
+ (c0 − ĉ0)I + (c1 − ĉ1)K̂ and

VK−1 ≈ c2
1VK.

To examine the usefulness of this idea, next steps would be to test
the assumption if second order and above polynomials can be ignored,
to find means of estimating c0 − ĉ0, c1 − ĉ1 and c2

1 with reasonable
effort, and to examine the relationship to a first-order Taylor expansion.

68

Part V

Probabilistic Kernel-Matrix Determinant
Estimation

“This is just what you need, old pal. Me and you on a bender with a
few beautiful ladies. I’m going over there.” “No.” “Oh, yes. I may
be tiny, but I’ve got a certain je ne sais quoi.” “A certain what?”
“I don’t know what,” admitted Zaphod, “But that’s never stopped
me before.”

—Eoin Colfer, And Another Thing...

15
Preliminaries

15.1 Introduction

Whereas the previous parts have been concerned with the questions how
new numerical approximation algorithms can be derived from a statisti-
cal perspective, this part deals with exploiting statistical properties of
the numerical problem. The particular problem under consideration is
the estimation of log-determinants of kernel matrices, a vital component
of inference with models like determinantal point processes or Gaussian
processes (c.f. Chapter 4). Given a set of x1, ..., xN ∈ X inputs and a
kernel function k, the task is to compute

ln |KN |

where

KN :=


k(x1, x1) k(x1, x2) . . . k(x1, xN)

k(x2, x1) k(x2, x2)
...

...
. . .

k(xN , x1) . . . k(xN , xN)

 .

Fig. 11 shows the progression of ln |Kn + 0.001I| with increasing n
for different benchmark datasets and the squared-exponential kernel
(Eq. (43)). The figure demonstrates that there exist cases in which a
linear extrapolation from some ln |Kn|, n < N, is sufficient to estimate
ln |KN |. The success of such a strategy depends two factors: the kernel
and the inputs x1, ..., xN.

The goal of this part is to develop a stopping strategy that recognizes
such “easy” cases while computing the log-determinant and terminates
the calculation if possible. Early stopping would be helpful during
hyper-parameter tuning for Gaussian processes. For example, consider
the case of a kernel matrix generated from an ARD squared-exponential
kernel (Eq. (43)) with lengthscales far too long for the dataset. In
that case, a subset is sufficient to make accurate predictions and the
progression of the determinant is easy to predict. An algorithm capable
of early stopping, allows to try these kernel parameters “cheaply”.
Contrarily, not early stopping can be a sign that the amount of data is
not sufficient with respect to the flexibility of the model.

71

AILERONS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

−4,000

−2,000

0

n

ln
|K

n
|

CT_SLICES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

−800
−600
−400
−200

0

n

ln
|K

n
|

ELEVATORS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

−1
−0.8
−0.6
−0.4
−0.2

0 ·104

n

ln
|K

n
|

POLETELECOMM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

−2

−1

0 ·104

n

ln
|K

n
|

Figure 11: evolution of the log de-
terminant ln |Kn + 0.001I| for com-
mon benchmark problems using the
squared-exponential kernel Eq. (43).
The datasets have been centered and
standardized but are otherwise unpro-
cessed. Note the different magnitudes
of the y-axis. The figure demonstrates
that depending on the kernel and the
distribution of the dataset, there are
cases in which a linear extrapolation
from some ln |Kn| is sufficient to esti-
mate ln |KN | with high relative preci-
sion. More details about the datasets
can be found in Appendix A.

72

15.2 The Cholesky Decomposition

To evaluate ln |KN | one usually computes the Cholesky decomposi-
tion C which is a triangular matrix satisfying CCᵀ = KN. Given
the Cholesky, one obtains the log-determinant by using ln |KN | =

2 ∑N
j=1 ln C jj (Lemma 49, p. 130). In the following, we will focus on an

implementation of the Cholesky decomposition that proceeds column-
wise over the elements of KN , Algorithm 5. The motivation being, that
a blocked version (Golub and Van Loan 2013, p. 170) of this algorithm
is used in OpenBLAS (Wang, Zhang, Zhang, and Yi 2013). Presumably,
closed source libraries, such as Intel MKL, use the same implementation.
Observe that the costs per step j scale as O(j + (N − j) · j), i.e. the
costs increase until j = N/2 and then decrease again. Hence, the saved
time when stopping “late” could be insignificant. However, in the
algorithm as proposed by Cholesky (Benoit 1924), the effort per step
scales as O(j2), s.t. even when stopping only in one of the last steps,
the saved effort is considerable.

Note that computing C jj requires access only to the first x1, ..., xj

datapoints. Under the assumption that the x1, ..., xN are independent
and identically distributed, one can show that the C jj decrease in
expectation, i.e. E[C j+1,j+1] ≤ E[C jj] (see Lemma 32, p. 91). This
allows to design a stopping condition that interrupts the calculation of
the Cholesky decomposition and returns an estimate that is correct up
to a relative error with high probability. In the following Chapter 16,
we will consider a more general problem.

Algorithm 5: Cholesky decomposition
according to Meister (2015, p. 48).
The letters of the indices have been
adapted to fit with the notation here.
A blocked version of the algorithm
can be found in Golub and Van Loan
(2013, p. 170).

1 procedure Cholesky(A)
2 for j = 1, . . . , N do
3 for k = 1, . . . , j − 1 do
4 Ajj ^ Ajj − Ajk Ajk

5 end for
6 Ajj ^

√
Ajj

7 for ` = j + 1, . . . , N do
8 for k = 1, . . . , j − 1 do
9 A`j ^ A`j − Aik Ajk

10 end for
11 A`j ^ A`j/Ajj

12 end for
13 end for
14 end procedure

73

15.3 Martingales and Stopping Times

The following elaborations require some notation and terminology. For
a more thorough introduction, these terms are discussed by Grimmett
and Stirzaker (2001), and Davidson (1994).

For a monotonically increasing function f : R 7→ R and δ ∈ R,
define f−1(δ) := arg supε∈R{ f (ε) ≤ δ}. The following definitions can
be more general, but for our purposes, discrete and positive indices in
N will be sufficient. A filtration is a sequence (Fj)j∈N of increasing σ- filtration
algebras, i.e. Fj ⊆ Fj+1 for all j ∈ N. For random variables X1, ..., XN

denote by σ(X1, ..., XN) the generated σ-Algebra. A sequence of random
variables (Xj)j∈N is called adapted to a filtration, if Xj is Fj-measurable adapted
for all j ∈ N. Let (Xj)j∈N be a sequence of random variables adapted
to a filtration Fj∈N. A sequence (Xj,Fj)j∈N is called a martingale if martingale

E|Xj| < ∞, and

E[Xj+1 | Fj] = Xj almost surely,

for all j ∈ N. A sequence (Xj,Fj)j∈N is called a martingale difference, martingale difference
if

E|Xj| < ∞, and

E[Xj | Fj−1] = 0 almost surely,

for all j ∈ N. A random variable τ is called a stopping time (w.r.t. a stopping time
filtration), if it takes values in N and {τ = j} ∈ Fj for all j ∈ N.

74

16
A Probably Approximately Correct Bound

16.1 Problem Definition

Let (Ω,F , P) be a probability space and (Fj)j∈{1,...,N} be a filtration.
Furthermore, let (f j)j∈N ∈ [C−, C+] be a sequence of Fj-measurable
random variables that decrease conditionally in expectation,

E[f j+1 | Fj] ≤ E[f j | Fj−1] (∗)

for j ∈ {1, ..., N − 1}, where F0 := {∅, R}, and define

DN :=
N

∑
j=1

f j. (45)

Given a desired precision r ∈ (0, 1) and failure chance δ ∈ (0, 1), the
problem is to device a strategy that, being presented sequentially with
the f1, f2, ..., decides in each step whether to continue or to stop, and if
stopping, provides an estimator D̂τ, s.t. its relative error is less than r
with probability 1 − δ. Formally, the goal is to device a stopping time
τ and an estimator D̂τ, s.t.

P
(

abs
(

DN − D̂τ

DN

)
> r
)
≤ δ. (46)

Remark 24. A trivial solution is to define τ := N and D̂τ := DN.

In absence of related work (c.f. Section 16.4), formal evaluation
criteria for τ and D̂τ will not be developed. The goal will be to design
a strategy that satisfies Eq. (46), and for at least one scenario: τ < N.

16.2 Stopping Condition

The design of the stopping conditions are based on the following lemma.

Lemma 25 (Bound on Relative Error). Let D, D̂ ∈ [L,U], and assume
sign(L) = sign(U) 6= 0. Then the relative error of the estimator D̂
can be bounded as

abs(D − D̂)

abs(D)
≤ max(U − D̂, D̂ −L)

min(abs(L), abs(U)) .

Proof. The proof is part of Appendix F.

75

Remark 26. The bound is minimized for the choice D̂ := 1/2(L+ U).
In that case

abs(D − D̂)

abs(D)
≤ U −L

2 min(abs(L), abs(U) .

In the following, we will device lower bounds Ln and upper bounds
Un to DN, respectively, for n = 1, ..., N. The lower bounds Ln will be
deterministic, whereas DN ≤ Un only with a certain probability. The
stopping time τ will monitor these bounds and stop if they are large in
magnitude (away from zero) and close enough that the relative error
can not exceed the desired precision r.

Describing stopping strategy and estimator formally, will necessitate
a number of definitions. The reader can quickly access all of them in
Table 2 on p. 82. Define C := C+ − C− and lj := f j − C−. Observe
that lj is bounded from above by C and from below by 0. The latter
property is the reason for introducing this definition.

Set

Ln := NC− +
n

∑
j=1

lj

and define an empirical mean of the “last” m elements, ending in n:

µ̂n :=
1
m

n

∑
j=n−m+1

,

where m ∈ {1, ..., N − 1} is a user defined nuisance parameter. Our
estimator will be

D̂n := 1/2(Ln + Un). (47)

To construct Un, define the function

HN(x) := H(x, N) = 1{x≤N}

√(
N

N + x

)N+x (N
N − x

)N−x

where H(x, N) is defined in Theorem 29 (p. 84). The function HN(x)
will be used to bound the probability that the upper bound Un fails.
Fig. 12 visualizes this function for different N. Define the error tolerance
for the mean µ̂n as εµ := C/mHm(

δ
2|S|), where S ⊆ {m + 1, ..., N − 1} is

another nuisance parameter. The set S defines possible stopping points.
It is an artifact from the proof of Theorem 27 which may become
obsolete (see Section 19.2). Define the error tolerance for the upper
bound εn := (N − n)εµ + CH−1

N (δ/2), and the upper bound

Un := Ln + min((N − n)µ̂n + εn, (N − n)C).

76

Ln + (N − n)C is a deterministic upper bound to DN and taking the
minimum ensures that Un is never worse than that. At last, define the
stopping time

τ := min

{
n ∈ S

∣∣∣∣∣ sign(Un) = sign(Ln) 6= 0, and (C1)

Un −Ln

2 min(abs(Un), abs(Ln))
≤ r

}
∪ {N}. (C2)

Note that the quantities in the stopping conditions are Fn-measurable,
i.e. τ defines indeed a stopping time.

0 100 200 300 400 500 600 700 800 900 1,000
10−2

10−1

100

δ/2

δ/2|S|

ε

H
N
(ε
)

N = 40000
N = 1000
N = 100

Figure 12: the function HN(x) for dif-
ferent N. Increasing N requires a
larger ε for HN(ε) to fall below a cer-
tain threshold. However, in relation
to N the increase is small. The thresh-
olds δ/2 and δ/2|S| become relevant for
Fig. 14.

Theorem 27. Let (Ω,F , P) be a probability space and (Fj)j∈{1,...,N}
be a filtration. Furthermore, let (f j)j∈N ∈ [C−, C+] be a sequence of Fj-
measurable random variables that decrease conditionally in expectation,

E[f j+1 | Fj] ≤ E[f j | Fj−1] (∗)

for j ∈ {1, ..., N − 1}, where F0 := {∅, R}, and define

DN :=
N

∑
j=1

f j.

For r, δ ∈ (0, 1), the probability that the relative error of the estimator
D̂τ defined by Eqs. (47),(C1) and (C2) is larger than r is less than δ.

P
(

abs
(

DN − D̂τ

DN

)
> r
)
≤ δ (48)

The proof will be presented in Chapter 17.

Theorem 28. Assume x1, . . . , xN ∈ X are independent and identi-
cally distributed. Denote with P the law of the x1, .., xN and with
C the Cholesky decomposition of KN + σ2 I, where σ2 > 0. Define

77

the probability space (X, σ(x1, ..., xN), P) and the canonical filtration
Fj := σ(x1, . . . , xj) for j = 1, ..., N. Further, define

f j := 2 ln |C jj|, with

C− := ln σ2 and

C+ := max
j=1,...,N

ln(k(xj, xj) + σ2).

Then, using the definitions of Theorem 27,

P
(

abs(|KN + σ2 I| − D̂τ)

abs(|KN + σ2 I|) > r
)
≤ δ.

The proof will be presented in Chapter 18.

16.3 Discussion

For Theorem 28 the quantities required for the stopping time are
inexpensive to compute compared to the elements of the Cholesky. I
modified the OpenBLAS (Wang, Zhang, Zhang, and Yi 2013) Cholesky
decomposition to accommodate the stopping rule. Fig. 13 shows the
relative overhead when computing the log-determinant of identity
matrices of different size. The identity matrix is a special case, where
early stopping is impossible—since ln |I| = 0, there exists no δ < 1 for
which a finite relative error could be guaranteed. One can see that with
increasing dataset size the overhead becomes less than one percent on
average. In that sense, Theorem 28 offers an “almost-free lunch”.

1 2 3 4
0

20

40

60

matrix size · 4096

se
co

nd
s modification

default Cholesky

1 2 3 4
0.9

1

1.1
1.01

matrix size · 4096

re
la

tiv
e

ov
er

he
ad Figure 13: relative overhead of the

OpenBLAS Cholesky decomposition
with early stopping against with-
out. Both algorithms compute the
Cholesky decomposition of identity
matrices. The nuisance parameters
were set to m := 256 and S :=
mb{m, ..., N − 1}/mc. The parameters
r and δ are in this case irrelevant for
the performance, since early stopping
is impossible by design. With increas-
ing matrix size, the measurement noise
is decreasing and more runs remain
below the one percent overhead mark.
The experiments were executed on an
Intel i7 CPU with 32 Gigabytes of
RAM running Ubuntu 18.04.

Theorem 27 requires the user to define two nuisance parameters
m and S. Fig. 14 demonstrates their influence on the bound Un and
whether the stopping conditions can be met. The parameter m sets the
number of elements lj preceding the current step, used in the empirical
mean µ̂n to build the upper bound Un. When setting the parameter
too small, the target probability δ could be unattainable. On the other
hand, for larger m, it is more likely that the upper bound Un is more
conservative, hence delaying termination.

Furthermore, the user needs to select a subset S ⊆ {m, ..., N − 1} of
possible stopping points. This is due to a union bound in the proof of

78

−1

−0.5

·105

n

ln
|K

n
|

2

3

4

5

µ̂
n

m = 1000
m = 100

−2

−1

·105

ln |KN | Ln

U n

deterministic
m = 1000
m = 100

0.5 1 1.5 2 2.5 3 3.5 4

·104

10−2

10−1

100

101

102

r

τ ∈ S τ ∈ S

n

LH
S

of
Eq

.(
C

2)

Figure 14: visualization of the quan-
tities of Theorem 28 for one random
shuffling of the SARCOS dataset (N =
40000), the squared-exponential ker-
nel (Eq. (43)) and σ2 := 0.001. The
parameters have been set to r :=
0.1, δ := 0.25, m := 100, 1000 and S :=
{0.75N, 0.9N}. The deterministic up-
per bound is Un := Ln + (N − n)C+.
It may seem surprising that the up-
per bound for m = 100 is higher than
for m = 1000. However, recall that εµ

has a term C/m. In the last picture,
both stopping conditions are fulfilled
for τ = 0.9N, for both m. This fig-
ure demonstrates that Theorem 28 is
not trivial. Arguably, it is desirable
to achieve early stopping for less con-
servative parameters than |S| = 2 and
r = 0.1. Section 19.2 discusses possi-
bilities how to obtain more practical
versions of Theorem 27.

79

Theorem 27 (Eq. (54)). If |S| is too large, it may not be possible to
stay below the desired probability δ. On the other hand, choosing fewer
stopping points implies fewer opportunities to terminate. Section 19.2
discusses options how the union-bound could be avoided.

Fig. 14 demonstrates that Theorem 28 is not trivial: there exist
computationally easy settings, it is possible to recognize these settings
during runtime, and to guarantee a desired precision. However, the
parameter configurations used in the experiments for Fig. 14 are patho-
logical. The reader will agree that a relative precision of 0.1 and a
failure chance of 25% can hardly be considered practically relevant
values. In that sense, Theorem 27 should rather be taken as an en-
couraging feasibility study. Section 19.2 discusses possibilities how to
obtain more practical versions.

16.4 Related Work

I assume that the problem described in
Section 16.1 has been approached by
someone else before. However, I was
unable to find literature that makes
the same or less restrictive assump-
tions, as in the case described here. It
appears as if the bandit and reinforce-
ment learning community has not yet
considered this scenario. A literature
search on optimal stopping, empirical
stopping, adaptive stopping, sequen-
tial analysis and racing, did not yield
any further leads. An indicator why
this problem may not have been con-
sidered yet is that the main tool for
the proof of Theorem 27, Theorem 29
by Fan, Grama, and Liu (2012), has
been published fairly recently.

Most closely related is the work by Mnih, Szepesvári, and Audibert
(2008) and references therein. They propose an algorithm called EBStop
that returns an estimate of the mean of a sum of i.i.d. random variables.
Similar to Theorem 27, they are able to guarantee a relative precision
with high probability. However, Mnih, Szepesvári, and Audibert (2008)
assume that the addends are independent and identically distributed,
whereas Theorem 27 is more general and assumes only a (non-strict)
decrease in expectation (Eq. (∗)). Their approach is in a sense more
sophisticated as they also monitor the empirical variance of the addends
(c.f. remarks on future directions in Section 19.2). Bardenet, Doucet,
and Holmes (2014) propose a related approach to stop Metropolis-
Hastings sampling, but the algorithm is not applicable for the problem
described in Section 16.1. Zhao, Zhou, Sabharwal, and Ermon (2016)
present concentration inequalities for arbitrary stopping times, yet
they also assume that the addends are independent and identically
distributed.

The problem of estimating determinants has been studied exten-
sively especially for symmetric and positive definite matrices (Skilling
1989; Dorn and Enßlin 2015; Fitzsimons, Granziol, Cutajar, Osborne,
Filippone, and Roberts 2017; Fitzsimons, Cutajar, Osborne, Roberts,
and Filippone 2017; Saibaba, Alexanderian, and Ipsen 2017; Boutsidis,
Drineas, Kambadur, Kontopoulou, and Zouzias 2017). Yet, none of
the aforementioned work considers kernel matrices in particular. In
comparison, Theorem 28 offers an “almost-free lunch”. If early stopping
is not possible, the algorithm returns the exact solution with negligible
overhead. To my knowledge, Theorem 28 is the first distribution-free
and deterministic approach to quantify uncertainty over approximate
determinant estimation for kernel matrices.

80

17
Proof of Theorem 27

Theorem 27 from page 77 is restated here for the readers convenience.
Recall that all definitions introduced in Section 16.2 are summarized
in Table 2 on page 82.

Theorem 27. Let (Ω,F , P) be a probability space and (Fj)j∈{1,...,N}
be a filtration. Furthermore, let (f j)j∈N ∈ [C−, C+] be a sequence of Fj-
measurable random variables that decrease conditionally in expectation,

E[f j+1 | Fj] ≤ E[f j | Fj−1] (∗)

for j ∈ {1, ..., N − 1}, where F0 := {∅, R}, and define

DN :=
N

∑
j=1

f j.

For r, δ ∈ (0, 1), the probability that the relative error of the estimator
D̂τ defined by Eqs. (47),(C1) and (C2) is larger than r is less than δ.

P
(

abs
(

DN − D̂τ

DN

)
> r
)
≤ δ (48)

proof outline The steps to bound the left hand side of Eq. (48)
can be split into three parts. Section 17.1 contains the first part, where
Eq. (48) is split into two cases. In the first case, DN is smaller than
the probabilistic upper bound Uτ such that by the conditions of the
stopping time τ, the probability of failure is zero. The second case is
the main proof, which is to show that the probability P(Uτ < DN) is
small. Part two, in Section 17.2, shows that P(Uτ < DN) is bound
from above by two terms. The first term is essentially the probability
that DN is “much larger” than its expected value and we will show that
this probability is below δ/2. Section 17.3, the last part, is concerned
with the second term which is the probability that the upper bound
Uτ is less than the expected value of DN. There we will make use of
Eq. (∗) to show that this probability is also less than δ/2.

Proof. As a preliminary observation note that

DN =
N

∑
j=1

f j

� by definition

= NC− +
N

∑
j=1

lj

81

Symbol Definition Intuition

lj f j − C− the (positive) random elements

µ̂n
1
m ∑n

j=n−m+1 lj mean estimate

Ln NC− + ∑n
j=1 lj lower bound on DN (deterministic)

C C+ − C− upper bound on lj

HN(x) 1{x≤N}

√(
N

N+x

)N+x (N
N−x

)N−x bounding function for failure probability
(definition of H(x, N) in Theorem 29, p. 84)

εµ C/mH−1
m

(
δ

2|S|

)
errror tolerance for the mean

εn (N − n)εµ + CH−1
N (δ/2) error tolerance for the upper bound

Un Ln + min((N − n)µ̂n + εn, (N − n)C) upper bound on DN (probabilistic)

D̂n 1/2(Ln + Un) estimate for DN

Eq. (C1) sign(Un) = sign(Ln) 6= 0 first condition for τ

Eq. (C2) Un−Ln
2 min(abs(Un),abs(Ln))

≤ r second condition for τ

Table 2: compact overview of all the definitions of Part v.

82

� using the definition of lj

= Ln +
N

∑
j=n+1

lj for all n = 0, ..., N (49)

� using the definition of Ln

and hence, for all n = 0, ..., N, Ln is a (deterministic) lower bound to
DN, since lj ≥ 0 by definition.

17.1 Using the Stopping Conditions

This section is the first part of the proof in which we split Eq. (48) into
two cases and resolve the first case. We will make use of Lemma 25
(p. 75).

P
(

abs
(

DN − D̂τ

DN

)
> r
)

= P

(
abs

(
DN − D̂τ

)
abs (DN)

> r, DN ≤ Uτ

)

+ P

(
abs

(
DN − D̂τ

)
abs (DN)

> r, DN > Uτ

)
� sum rule

≤ P

(
abs

(
DN − D̂τ

)
abs (DN)

> r, DN ≤ Uτ

)
+ P (DN > Uτ) (50)

� upper-bounding joint by marginal

Consider the first term. Recall that D̂τ ∈ [Lτ ,Uτ].

P

(
abs

(
DN − D̂τ

)
abs (DN)

> r, DN ≤ Uτ

)

≤ P

(
abs

(
DN − D̂τ

)
abs (DN)

> r, DN ≤ Uτ , sign(Lτ) = sign(Uτ) 6= 0

)
+ P (sign(Uτ 6= Lτ))

� sum rule and upper bounding joint by marginal

= P

(
abs

(
DN − D̂τ

)
abs (DN)

> r, DN ≤ Uτ , sign(Lτ) = sign(Uτ) 6= 0

)
� using the first stopping condition of τ, Eq. (C1)

= P

(
abs

(
DN − D̂τ

)
abs (DN)

> r,Lτ ≤ DN ≤ Uτ , sign(Lτ) = sign(Uτ) 6= 0

)
� since Lτ is a deterministic lower bound to DN, Eq. (49)

≤ P

(
max

(
Uτ − D̂τ , D̂τ −Lτ

)
min(abs(Lτ), abs(Uτ))

> r,Lτ ≤ DN ≤ Uτ , sign(Lτ) = sign(Uτ) 6= 0

)
� by Lemma 25

83

= P
(

Uτ −Lτ

2 min(abs(Lτ), abs(Uτ))
> r,Lτ ≤ DN ≤ Uτ , sign(Lτ) = sign(Uτ) 6= 0

)
� plugging in definition of D̂τ

= 0

� by the second condition of τ, Eq. (C2)

17.2 DN is probably close to its Expected Value

In this section we will consider the remaining term from Eq. (50). Again,
this term will be split into two cases, where this section resolves the
first and the second is taken care of in the next section. The following
parts of the proof rely on a recent theorem presented by Fan, Grama,
and Liu (2012).

Theorem 29 (Hoeffding’s inequality for supermartingales (Fan, Grama,
and Liu 2012)). Assume that (ξ j,Fj)j=1,...,N are supermartingale differ-
ences satisfying ξ j ≤ 1. Then, for any x ≥ 0 and v > 0,

P

(
n

∑
j=1

ξ j ≥ x and
n

∑
j=1

V[ξ j | Fj−1] ≤ v for some n ∈ [1, N]

)
≤ HN(x, v),

where

HN(x, v) := 1{x≤N}

{(
v

v + x

)v+x (N
N − x

)N−x
} N

N+v

.

To apply Theorem 29 define Z′
j := lj − E[lj | Fj−1] and Zj := Z′

τ+j.
Since (Z′

j,Fj)j∈{1,N} is a martingale difference,(
Zmin(j,N),Fmin(τ+j,N)

)
j∈N0

,

is a martingale difference as well (Corollary 48 in Appendix F).1 The 1 This follows from a result that
is sometimes referred to as Doob’s
Optional Sampling Theorem (Theo-
rem 46 in Appendix F).

random variables Zj/C are bounded from below by −1 and from above
by 1. Now consider the second, remaining term in Eq. (50) from page
83.

P (DN > Uτ)

=P

(
Lτ +

N

∑
j=τ+1

lj > Lτ + min((N − τ)µ̂τ + ετ , (N − τ)C)

)
� using Eq. (49) and definition of Uτ

=P

(
N

∑
j=τ+1

lj > min((N − τ)µ̂τ + ετ , (N − τ)C)

)
� simplifying

=P

(
N

∑
j=τ+1

lj > (N − τ)µ̂τ + ετ or
N

∑
j=τ+1

lj > (N − τ)C

)

84

� exchanging min for logical or

=P

(
N

∑
j=τ+1

lj > (N − τ)µ̂τ + ετ

)
� since lj ≤ C

=P

(
N−τ

∑
j=1

[
Zj + E[lτ+j | Fτ+j−1]

]
> (N − τ)µ̂τ + ετ

)
� definition of Zj

≤P

(
N−τ

∑
j=1

Zj +
N

∑
j=τ+1

E[lj | Fj−1] > (N − τ)µ̂τ + ετ , (51)

N

∑
j=τ+1

E[lj | Fj−1] ≤ (N − τ)(µ̂τ + εµ)

)

+ P

(
N

∑
j=τ+1

E[lj | Fj−1] > (N − τ)(µ̂τ + εµ)

)
� sum rule and upper-bounding joint by marginal

Consider the first term in Eq. (51). We want to apply Theorem 29.

P

(
N−τ

∑
j=1

Zj +
N

∑
j=τ+1

E[lj | Fj−1] > (N − τ)µ̂τ + ετ ,

N

∑
j=τ+1

E[lj | Fj−1] ≤ (N − τ)(µ̂τ + εµ)

)

≤ P

(
N−τ

∑
j=1

Zj + (N − τ)(µ̂τ + εµ) > (N − τ)µ̂τ + ετ

)
� combining the two events

= P

(
N−τ

∑
j=1

Zj > ετ − (N − τ)εµ

)
� simplifying

= P

(
N−τ

∑
j=1

Zj

C
> H−1

N (δ/2)

)
� definition of ετ and dividing by C

≤ P

(
n

∑
j=1

Zj

C
> H−1

N (δ/2) for some n ∈ {1, ..., N}
)

(52)

� enlargening the event

= P

(
n

∑
j=1

Zj

C
> H−1

N (δ/2),
n

∑
j=1

V[Zj/C | Fj−1] ≤ N for some n ∈ {1, ..., N}
)

� by Popoviciu’s inequality (Theorem 44 on p. 129): V[Zj/C | Fj−1] ≤ 1.

≤ H(H−1
N (δ/2), N) (53)

� by Theorem 29, where H is defined in that theorem

= HN(H−1
N (δ/2)) ≤ δ/2.

85

� definition of HN

17.3 Uτ is probably large enough

This part takes care of the second term in Eq. (51). In essence, we will
show that Uτ is large enough with high probability. Now we will make
use of the assumption that the lj decrease in expectation: Eq. (∗). We
will again apply Theorem 29.

P

(
N

∑
j=τ+1

E[lj | Fj−1] > (N − τ)(µ̂τ + εµ)

)
≤ P

(
E[lτ+1 | Fτ]− µ̂τ > εµ

)
� using Eq. (∗)

= P

(
E[lτ+1 | Fτ]−

1
m

τ

∑
j=τ−m+1

lj > εµ

)
� definition of µ̂τ

= P

(
τ

∑
j=τ−m+1

(E[lτ+1 | Fτ]− lj) > mεµ

)
� multiplication by m and moving the conditional expectation into the sum

≤ P

(
τ

∑
j=τ−m+1

(E[lj | Fj−1]− lj) > mεµ

)
� using again Eq. (∗)

= ∑
s∈S

P

(
τ

∑
j=τ−m+1

(E[lj | Fj−1]− lj) > mεµ, τ = s

)
� sum rule

= ∑
s∈S

P

(
s

∑
j=s−m+1

(E[lj | Fj−1]− lj) > CH−1
m

(
δ

2|S|

))
(54)

� definition of εµ

= ∑
s∈S

P

(
s

∑
j=s−m+1

−
Z′

j

C
> H−1

m

(
δ

2|S|

))
� definition of Z′

j

≤ ∑
s∈S

P

(
m′

∑
j=1

−
Z′

s−m+j

C
> H−1

m

(
δ

2|S|

)
for some m′ ∈ {1, ..., m}

)
� enlargening the event

Changing the sign does not change the martingale difference property
and hence, (−Z′

j,Fj)j∈{s−m+1,...,s} is a martingale difference for all
s ∈ S. We can apply the same argument as in Eq. (53).

∑
s∈S

P

(
m′

∑
j=1

−
Z′

s−m+j

C
> H−1

m

(
δ

2|S|

)
for some m′ ∈ {1, ..., m}

)

86

≤ ∑
s∈S

H
(

H−1
m

(
δ

2|S|

)
, m
)

� using the same argument as in Eq. (53)

≤ ∑
s∈S

δ

2|S| =
δ

2

To see that this completes the proof, we recall below the proof
outline from page 81. In Section 17.1 we showed that in order to proof

P
(

abs
(

DN − D̂τ

DN

)
> r
)
≤ δ,

using the definition of the stopping time τ, it is sufficient to show
P (DN > Uτ) ≤ δ. In Section 17.2, more specifically in Eq. (51), the
term P (DN > Uτ) was split into a sum of two terms. The remainder
of Section 17.2 showed that the first term is less than δ/2. This section
showed above that the second term is less than δ/2. Hence, the proof is
complete.

87

18
Application to Kernel Matrix Determinant
Estimation

This chapter shows that the stopping time proposed in Theorem 27
can be used to terminate the computation of kernel matrix determi-
nants. We will make the mild assumption that x1, ..., xn, ..., xN ∈ X are
independent and identically distributed. This assumption is not always
fulfilled, e.g. when the inputs are sorted. By shuffling the dataset, the
assumption can be established.

In the following, we will consider the problem of evaluating ln |KN +

σ2 IN | for σ2 > 0. This is a common expression required for example in
Gaussian process regression where σ2 represents the observational noise
(see e.g. Rasmussen and Williams (2006, p. 13ff.)). In case σ2 = 0 one
needs another, strictly positive, lower bound on the smallest eigenvalue
of KN.

Theorem 28. Assume x1, . . . , xN ∈ X are independent and identi-
cally distributed. Denote with P the law of the x1, .., xN and with
C the Cholesky decomposition of KN + σ2 I, where σ2 > 0. Define
the probability space (X, σ(x1, ..., xN), P) and the canonical filtration
Fj := σ(x1, . . . , xj) for j = 1, ..., N. Further, define

f j := 2 ln |C jj|, with

C− := ln σ2 and

C+ := max
j=1,...,N

ln(k(xj, xj) + σ2).

Then, using the definitions of Theorem 27,

P
(

abs(|KN + σ2 I| − D̂τ)

abs(|KN + σ2 I|) > r
)
≤ δ.

Proof. The proof follows from Theorem 27. To apply the theorem we
need to show that for all j = 1, ...N, the C jj are functions of x1, ..., xj

(Lemma 30, p. 89), that f j ∈ [C−, C+] (Lemma 31, p. 90), and that
E[f j+1 | Fj] ≤ E[f j | Fj−1] (Lemma 32, p. 91).

To proof the three lemmata referenced above, define

kj(x) := [k(x, x1), ..., k(x, xj)]
ᵀ ∈ Rj and

kj+1 := kj(xj) ∈ Rj.

89

Lemma 30. Denote with CN the Cholesky decomposition of KN +σ2 IN.
The n-th diagonal element of CN, squared, is the posterior variance of
a GP conditioned on the previous data-points:

[CN]
2
nn = k(xn, xn) + σ2 − kᵀ

n (Kn−1 + σ2 In−1)
−1kn.

Proof. With abuse of notation, define C1 :=
√

k(x1, x1) and

CN :=

 CN−1 0

kᵀ
NC−ᵀ

N−1

√
k(xN , xN) + σ2 − kᵀ

N(Kn−1 + σ2 In−1)−1kN

 .

We will show that the lower triangular matrix CN satisfies CNCᵀ
N =

KN + σ2 IN. Since the Cholesky decomposition is unique (Golub and
Van Loan 2013, Theorem 4.2.7), CN must be the Cholesky decompo-
sition of KN + σ2 IN. Furthermore, by definition of CN, [CN]

2
NN =

k(xN , xN)+ σ2 − kᵀ
N(Kn−1 + σ2 In−1)

−1kN . The statement then follows
by induction.

To remain within the text margins, define

x := kᵀ
NC−ᵀ

N−1C−1
N−1kN + k(xN , xN) + σ2 − kᵀ

N(Kn−1 + σ2 In−1)
−1kN .

We want to show that CNCᵀ
N = KN + σ2 IN.

CNCᵀ
N =

 CN−1 0

kᵀ
NC−ᵀ

N−1

√
k(xN , xN) + σ2 − kᵀ

N(Kn−1 + σ2 In−1)−1kN


·

Cᵀ
N−1 C−1

N−1kN

0ᵀ
√

k(xN , xN) + σ2 − kᵀ
N(Kn−1 + σ2 In−1)−1kN


=

 CN−1Cᵀ
N−1 CN−1C−1

N−1kN

kᵀ
NC−ᵀ

N−1Cᵀ
N−1 x


=

KN−1 + σ2 IN−1 kN

kᵀ
N x


Also x can be simplified further.

x = kᵀ
NC−ᵀ

N−1C−1
N−1kN + k(xN , xN) + σ2 − kᵀ

N(Kn−1 + σ2 In−1)
−1kN

= kᵀ
N(Kn−1 + σ2 In−1)

−1kN + k(xN , xN) + σ2 − kᵀ
N(Kn−1 + σ2 In−1)

−1kN

= k(xN , xN) + σ2.

Lemma 31. The f j := 2 ln C jj are bounded between C− := ln σ2 and
C+ := maxj=1,...,N ln

(
k(xj, xj) + σ2).

Proof. By Lemma 30, C2
jj = k(xj, xj) + σ2 − kᵀ

j (K j−1 + σ2 I j−1)
−1kj

which is the posterior variance of a Gaussian process. The third term

90

in the posterior variance is always positive since (K j−1 + σ2 I j−1)
−1 is

an s.p.d. matrix. Hence, k(xj, xj) + σ2 is an upper bound to C jj. On
the other hand, since k is a kernel, k(xj, xj)− kᵀ

j (K j−1 + σ2 I j−1)
−1kj

can not be negative and σ2 is a therefore a lower bound to C2
jj. Since

both values are positive and the logarithm is an increasing function on
the positive real axis, the proof is complete.

Lemma 32. The f j := 2 ln C jj decrease in expectation:

E[f j+1 | σ(x1, ..., xj)] ≤ E[f j | σ(x1, ..., xj−1)].

Proof. By Lemma 30, C2
jj = k(xj, xj) + σ2 − kᵀ

n (Kn−1 + σ2 In−1)
−1kn

which is the posterior variance of a Gaussian process. Since a vari-
ance is always positive and the logarithm is an increasing function
on the positive real axis it is sufficient to show that the C2

jj de-
crease in expectation. Define the two shorthands pj := C2

jj and
qj(x) := kj(x)ᵀ(K j + σ2 I j)

−1kj(x). We will show below, in Eq. (56),
that qj(x) = qj−1(x) + rj−1(x) where rj−1(x) ≥ 0.

E[pj+1 | σ(x1, ..., xj)]

=
∫

k(x, x) + σ2 − kj(x)ᵀ(K j + σ2 I)−1kj(x) P(dx | x1, ..., xj)

� property of conditional expectation

=
∫

k(x, x) + σ2 − qj(x) P(dx | x1, ..., xj)

� definition of qj(x)

=
∫

k(x, x) + σ2 − qj−1(x)− rj−1(x) P(dx | x1, ..., xj)

� using Eq. (55)

=
∫

k(x, x) + σ2 − qj−1(x) P(dx | x1, ..., xj)−
∫

rj−1(x) P(dx | x1, ..., xj)

� splitting the integral

≤
∫

k(x, x) + σ2 − qj−1(x) P(dx | x1, ..., xj)

� using Eq. (56)

=
∫

k(x, x) + σ2 − qj−1(x) P(dx | x1, ..., xj−1)

� with Fubini’s theorem

= E[pj | σ(x1, ..., xj−1)]

� property of conditional expectation

91

It remains to show qj(x) = qj−1(x)+ rj−1(x) where rj−1(x) ≥ 0. Define
vx := (K j−1 + σ2 I)−1kj−1(x). First note, that using block-matrix
inversion we can write

(K j + σ2 I)−1 =

(K j−1 + σ2 I)−1 + vx p−1
j vᵀ

x −vx p−1
j

−vᵀ
x p−1

j p−1
j

 .

Using above observation, we can transform qj(x).

qj(x) =
[
kj−1(x)ᵀ k(x, xj)

]
·

(K j−1 + σ2 I)−1 + vx p−1
j vᵀ

x −vx p−1
j

−vᵀ
x p−1

j p−1
j

kj−1(x)

k(x, xj)


=
[
kj−1(x)ᵀ k(x, xj)

]
·

(K j−1 + σ2 I)−1kj−1(x) + vx p−1
j vᵀ

x kj−1(x)− vx p−1
j k(x, xj)

−vᵀ
x kj−1(x)p−1

j + p−1
j k(x, xj)


= kj−1(x)ᵀ(K j−1 + σ2 I)kj−1(x) + p−1

j (vᵀ
x kj−1(x))2

− 2vᵀ
x kj−1(x)p−1

j k(x, xj) + p−1
j k(x, xj)

2

= kj−1(x)ᵀ(K j−1 + σ2 I)kj−1(x) + p−1
j (k(x, xj)

2 − vᵀ
x kj−1(x))2

= qj−1(x) + p−1
j (k(x, xj)

2 − vᵀ
x kj−1(x))2

= qj−1(x) + p−1
j (k(x, xj)

2 − qj−1(x))2

This shows that

qj(x) = qj−1(x) + rj−1(x) , where (55)

rj−1(x) := p−1
j (k(x, xj)

2 − qj−1(x))2 ≥ 0. (56)

92

19
Discussion

19.1 Summary

This part presented a stopping strategy for the Cholesky decomposition
that provides probably approximately correct kernel matrix determi-
nants, under the assumptions that the dataset inputs are independent
and identically distributed. Fig. 14 demonstrated that Theorem 27,
though not trivial, needs further improvement. Nevertheless, Fig. 13
demonstrated that the practical realization of this stopping strategy is
feasible and promising. And, though, behind expectations, using the
stopping strategy is an “almost free lunch.”

19.2 Future Directions

19.2.1 Improving the Proof

The need to select a subset S ⊆ {m, ..., N − 1} of possible stopping
points, is due to the union bound in Eq. (54). The proof of Theorem 29
by Fan, Grama, and Liu (2012) avoids a union bound with a technique
they call the conjugate probability measure. It should be possible to
apply the same technique.

The union bound may be unnecessary, altogether. Theorem 29
is a generalization of Hoeffding’s inequality (Fan, Grama, and Liu
2012). Schölkopf and Smola (2002, p. 181f.) proof with Hoeffding’s
inequality that a subsample from a larger sum of i.i.d. random variables
can be used to estimate the latter. Their proof does not require to
measure separately how much estimate and remaining terms deviate
from their expectation (c.f. Eq. (51)). Yet, in the case described here
the summands are neither identically distributed nor independent, and
there comes additional difficulty from the stopping condition.

Boucheron, Lugosi, and Massart (2013) describe a number of con-
centration inequalities for functions of random variables that are called
self-bounding. It turns out, that the log-determinant of a kernel matrix
falls into this category (Lemma 33, below). Self-bounding functions
have the property that their variance is bounded by their expected
value. Theorem 29 provides stronger guarantees when providing better
bounds on the variance. Originally, my plan was to monitor the empiri-
cal variance as well, to obtain a Bernstein-like bound. For the examples
from Figure 11 in Section 15.1 the empirical variance of the lj/C is

93

lower than the bound by Popoviciu’s inequality (c.f. Eq. (52)). One
can expect a stopping rule that takes the variance into account to be
more efficient than one which does not. Furthermore, the concentration
inequalities for self-bounding functions often allow to reason about the
probability of the function falling below its expectation. In the proof,
the lower-bound for the determinant is deterministic. An estimated,
probabilistic lower-bound could be less conservative.

Another direction to obtain sharper bounds is to stipulate further
assumptions in Theorem 27. Properties of the kernel, such as Lipschitz-
ness and differentiability could be bequeathed to the f j.

Lemma 33. Denote with C the Cholesky decomposition of KN. Assume
that there exist constants C−, C+ ∈ R, s.t. 2 ln C jj ∈ [C−, C+] for all
j ∈ {1, . . . , N} (cf. Lemma 31). Then the function

f (x1, ..., xN) :=
ln |KN | − NC−

C+ − C−

is self-bounding (definition in proof).

Proof. For the definition of self-bounding (Boucheron, Lugosi, and
Massart 2013, p. 60) we have to show that there exist functions
fi(x1, ..., xi−1, xi+1, ..., xN) s.t. for all x1, ..., xN:

0 ≤ f (x1, ..., xN)− fi(x1, ..., xi−1, xi+1, ..., xN) ≤ 1, (57)

and

N

∑
i=1

(f (x1, ..., xN)− fi(x1, ..., xi−1, xi+1, ..., xN)) ≤ f (x1, ..., xN). (58)

Choose

fi(x1, ..., xi−1, xi+1, ..., xN) :=
ln |KN\i| − (N − 1)C−

C+ − C−

where KN\i is obtained from KN by deleting the i-th row and column.
Note that, the order of the inputs does not matter. Swapping two rows
or columns changes the sign of the determinant. Swapping the order
of the datapoints i and j corresponds to a swap of the corresponding
columns and rows, and the sign change cancels. Denote with Ki

N the
resulting kernel matrix when moving the i-th datapoint to the end of
the dataset, and denote with Ci the Cholesky decomposition. This
allows to write rewrite Eq. (57) as follows:

f (x1, ..., xN)− fi(x1, ..., xi−1, xi+1, ..., xN)

=
ln |KN | − ln |KN\i| − C−

C+ − C−

� definition of f and fi

94

=
ln |Ki

N | − ln |Ki
N−1| − C−

C+ − C−

� using the determinant’s invariance

=
2 ln Ci

NN − C−

C+ − C−

� by Lemma 49 (p. 130)

By assumption on C, which carries over to Ci, the last expression is
bounded from below by 0 and from above by 1. This shows Eq. (57).
Extending above argument, we obtain for Eq. (58):

N

∑
i=1

(f (x1, ..., xN)− fi(x1, ..., xi−1, xi+1, ..., xN))

=
1

C+ − C−

N

∑
i=1

(2 ln Ci
NN − C−)

≤ 1
C+ − C−

N

∑
i=1

(2 ln Cii − C−)

� using Lemma 30, see below

=
ln |KN | − NC−

C+ − C−

� by Lemma 49 (p. 130)

= f (x1, ..., xN)

� definition of f

Recall that Lemma 30 relates the diagonal elements of a Cholesky
decomposition, to the posterior variance of a Gaussian process: (Ci

NN)
2

is the posterior variance in xi given x1, ..., xi−1, xi+1, ..., xN , whereas C2
ii

is the posterior variance in xi given only x1, ..., xi−1. The posterior
variance of a GP can never increase with more datapoints and therefore
Ci

NN ≤ Cii.

19.2.2 Beyond Determinant Estimation

Often (e.g. for GP regression) it is necessary to evaluate a quadratic
form yᵀ(KN + σ2 I)y and the determinant |KN | at the same time. The
analysis for the quadratic form is similar and it would be possible to
compute both terms in parallel, stopping prematurely if one or both
can be sufficiently approximated. In a conversation, Carl Rasmussen
pointed out that a combination of above ideas with variational approx-
imation methods for GPs would be interesting. For example to decide
the number of necessary inducing inputs.

95

Part VI

Epilogue

Ich klage mich an, bekenne mich ohne Einschränkung schuldig, und
vielleicht senken sich jetzt die schon zu verzweifeltem Ringen erhobe-
nen Hände, glätten sich die gerunzelten Stirnen wieder und wischt
sich der eine oder andere den Schaum aus den Mundwinkeln. Ich
verspreche hiermit feierlich, daß ich am Schluß dieses Erzählwerks
ein umfassendes Geständnis ablegen, eine fix und fertige Moral
liefern werde, auch eine Interpretation, die allen Interpreten vom
Obertertianer bis zum Meisterinterpreten im Oberseminar Seufzen
und Nachdenken ersparen wird. Sie wird so abgefaßt sein, daß auch
der einfache, der unbefangene Leser sie “mit nach Hause nehmen
kann”, weit weniger kompliziert als die Anleitung zur Ausfüllung
des Antrags auf Lohnsteuerjahresausgleich. Geduld, Geduld, wir
sind noch nicht am Ende.

—Heinrich Böll, Entfernung von der Truppe

20
Conclusions

This thesis contains three main parts, each concerned with a different
aspect of probabilistic numerics. Part iii examined the connection
between probabilistic numerical methods and classic linear solvers.
Part iv asked the question how probabilistic numerics can be used
to develop novel methods. Part v showed how structure induced by
probability can be exploited in classic numerical algorithms. This
chapter summarizes the discussions and future directions that have
been presented in Chapters 9, 14 and 19 for each part, respectively.

20.1 Discussion

Part iii showed that solution-based inference (SBI) proposed by Cock-
ayne, Oates, Ipsen, and Girolami (2018) always constitutes a projection
method (Proposition 6) and that for a given projection method there
exist different SBI interpretations. Furthermore, SBI was shown to
be subsumed in the matrix-based inference perspective, motivating a
classification of probabilistic perspectives into left-multiplied and right-
multiplied information. Hence, when reasoning about linear solvers, the
unification allows to switch between perspectives as appropriate or con-
venient. The probabilistic perspective on preconditioning, though not
unique, is the first and justifiably intuitive: when using left-multiplied
information, right preconditioning corresponds to a change in prior,
whereas left preconditioning corresponds to a change in information.
When using right-multiplied information, the converse holds. The prob-
abilistic interpretations of GMRES and FOM are currently a rather
theoretical contribution as posterior variances are not available in
practice.

Equipped with the insights from Part iii, Part iv presented a prob-
abilistic numerical method to solve kernel least-squares problems. In
essence, the approach is based on a finite-rank inducing Gaussian pro-
cess prior over kernel functions and using conjugate gradients matrix-
vector products with the kernel matrix to collect observations. The
kernel machine conjugate gradients (KMCG) approximation consis-
tently outperforms plain conjugate gradients in numerical experiments.
This improvement does not change the fact, that standard dense kernel
least-squares problems are often more efficiently solved by inducing
point methods. Nevertheless, one contribution is a principled procedure
to use linear solvers in the context of kernel least-squares problems.

99

Part v presented a new approach to the approximation of kernel
matrix determinants. More generally, Part v posed the problem of
approximating the sum of a sequence of N elements that decrease in ex-
pectation from a subsequence of eligible length, s.t. a certain precision is
reached with a desired probability. Section 16.2 presented a non-trivial
solution and the proof of Theorem 27 showed that the combination of
proposed stopping strategy and estimator provide a prediction that has
indeed the relative precision with the desired probability. Theorem 28
showed that Theorem 27 can be used to terminate the Cholesky decom-
position to approximate log-determinants of kernel matrices. When
the stopping condition is not triggered, the implementation delivers
the exact solution with negligible overhead. In that sense, the stopping
strategy is an “almost free lunch.” Arguably, the stopping conditions
are more conservative than necessary, s.t. the scenarios in which a ter-
mination could occur, are rare in practice. Nevertheless, this is the first
contribution regarding a distribution-free and deterministic approach
to approximate determinants of kernel matrices. To the best of my
knowledge, there is no literature that focuses on the approximation of
specifically kernel-matrix determinants—usually the more general case
of symmetric and positive definite matrices is considered.

20.2 Future Work

This thesis left the question how to interpret and evaluate posterior
uncertainty provided by probabilistic linear solvers unanswered. The χ2

statistic proposed by Cockayne, Oates, Ipsen, and Girolami (2018) is a
first step but is restricted to Gaussian linear solvers and not applicable
for the probabilistic interpretation of Jacobi-iteration from Section 9.2.

A hope associated with KMCG from Part iv was that the prob-
abilistic approach would allow to reason about the approximation
error. Propagating probability measures through inverse operations
remains an open challenge. First, this requires defining rigorously a
ground-truth that can be aimed for. Then the question remains how to
approximate the inversion operation. The Cayley–Hamilton theorem
might provide an answer.

The work presented in Part v can be extended in different directions.
Besides improving the bound in Theorem 27 with other mathematical
tools, another option is to change the assumptions. Often Lipschitzness
and differentiability of the kernel are known properties and using these
could give less conservative bounds. The analysis could be extended to
other operations associated with the Cholesky decomposition, e.g. esti-
mation of the quadratic form yᵀK−1y. In a more distant future, the
stopping strategy could be a starting point for a modified Cholesky
decomposition that constructs a low-rank approximations to KN with

100

probabilistic guarantees. When treating inducing input variational in-
ference methods (c.f. Titsias (2009)) as such low-rank approximations,
the considerations in Part v might be useful to decide the number of
necessary inducing inputs, as Carl Rasmussen pointed out in a personal
conversation.

R. Munroe (2019). Error Bars. url: https://xkcd.com/2110/.
License: Creative Commons 2.5 BY-NC-SA

101

https://xkcd.com/2110/

Part VII

Appendix

“You know,” said Arthur, “it’s at times like this, when I’m trapped in a Vogon airlock with
a man from Betelgeuse, and about to die of asphyxiation in deep space that I really wish
I’d listened to what my mother told me when I was young.” “Why, what did she tell you?”
“I don’t know, I didn’t listen.” “Oh.” Ford carried on humming.

—Douglas Adams, The Hitchhiker’s Guide to the Galaxy

A
Benchmark Datasets

Table 3 describes purpose and origin of standard benchmark datasets used for Gaussian
process regression. More information on PRECIPITATION can be found at http://
www.image.ucar.edu/Data/US.monthly.met/. It appears that the datasets AILERONS,
ELEVATORS and POLETELECOMM are no longer available under the link https:
//www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html.

105

http://www.image.ucar.edu/Data/US.monthly.met/
http://www.image.ucar.edu/Data/US.monthly.met/
https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html

name reference url description

ABALONE Nash, Sell-
ers, Talbot,
Cawthorn, and
Ford (1994),
Waugh (1995),
and Dua and
Graff (2019)

https://archive.ics.uci.
edu/ml/datasets/Abalone

age prediction of abalone from physical
measurements

AILERONS Camachol
(1998)

n/a control action prediction on the
ailerons of an F16 aircraft

CT_SLICES Graf, Kriegel,
Schubert, Pöl-
sterl, and
Cavallaro (2011)
and Dua and
Graff (2019)

https://archive.ics.uci.
edu/ml/datasets/Relative+
location+of+CT+slices+on+
axial+axis

prediction of relative location of a com-
puter tomographic image in the human
body in polar coordinates

ELEVA-
TORS

Camachol
(1998)

n/a control action prediction on the eleva-
tors of an F16 aircraft

MPG Quinlan (1993)
and Dua and
Graff (2019)

https://archive.ics.uci.
edu/ml/datasets/auto+mpg

fuel consumption prediction in miles
per gallon for different attributes of
cars

POLET-
ELECOMM

Weiss and In-
durkhya (1995)

n/a commercial telecommunication
application–no further information

PRECIPI-
TATION

Vanhatalo and
Vehtari (2008)

github.com/gpstuff-dev/
gpstuff/blob/master/gp/
demo_regression_ppcs.m

US annual precipitation prediction for
the year 1995

PUMA-
DYN

Snelson and
Ghahramani
(2006)

ftp://ftp.cs.toronto.edu/
pub/neuron/delve/data/
tarfiles/pumadyn-family/
pumadyn-32nm.tar.gz

acceleration prediction one of the arm
links given angles, positions and ve-
locities of other links of a Puma560
robot

SARCOS Vijayakumar
and Schaal
(2000)

http://www.gaussianprocess.
org/gpml/data/

torque prediction for the seven degrees-
of-freedom SARCOS anthropomorphic
robot arm

SOUND Turner (2010)
and Wilson and
Nickisch (2015)

https://github.com/kd383/
GPML_SLD/blob/master/demo/
sound/audio_data.mat

sound intensity prediction of a signal
recorded over time for missing regions

TOY Bartels and Hen-
nig (2019)

n/a targets are a draw from a zero-mean
Gaussian process with squared expo-
nential kernel (Eq. (43) with Λ =

0.25 and θ f = 2), inputs stem in
equal parts from a Gaussian mixture
(N (0, 1)+N (1, 0.1)+N (−0.5, 0.05))
and the uniform distribution over [0, 1]

Table 3: descriptions and sources for all datasets considered in this work.

106

https://archive.ics.uci.edu/ml/datasets/Abalone
https://archive.ics.uci.edu/ml/datasets/Abalone
https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis
https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis
https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis
https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis
https://archive.ics.uci.edu/ml/datasets/auto+mpg
https://archive.ics.uci.edu/ml/datasets/auto+mpg
github.com/gpstuff-dev/gpstuff/blob/master/gp/demo_regression_ppcs.m
github.com/gpstuff-dev/gpstuff/blob/master/gp/demo_regression_ppcs.m
github.com/gpstuff-dev/gpstuff/blob/master/gp/demo_regression_ppcs.m
ftp://ftp.cs.toronto.edu/pub/neuron/delve/data/tarfiles/pumadyn-family/pumadyn-32nm.tar.gz
ftp://ftp.cs.toronto.edu/pub/neuron/delve/data/tarfiles/pumadyn-family/pumadyn-32nm.tar.gz
ftp://ftp.cs.toronto.edu/pub/neuron/delve/data/tarfiles/pumadyn-family/pumadyn-32nm.tar.gz
ftp://ftp.cs.toronto.edu/pub/neuron/delve/data/tarfiles/pumadyn-family/pumadyn-32nm.tar.gz
http://www.gaussianprocess.org/gpml/data/
http://www.gaussianprocess.org/gpml/data/
https://github.com/kd383/GPML_SLD/blob/master/demo/sound/audio_data.mat
https://github.com/kd383/GPML_SLD/blob/master/demo/sound/audio_data.mat
https://github.com/kd383/GPML_SLD/blob/master/demo/sound/audio_data.mat

B
Gaussian Processes

The density of an l-dimensional standard normal random vector z is defined as

p(z) :=
1

|2π|l/2
exp

(
−1

2
zᵀz

)
.

A real d-dimensional random vector x is said to be distributed Gaussian z ∼ N (µ, Σ) iff
there exist l ∈ N and A ∈ Rd×l s.t. x = Az + µ, where z is distributed standard normal
(Gut 2009, p. 454). These parameters also define mean and covariance of x with Ex = µ

and cov x = Σ. Gaussian random variables exhibit convenient properties as described in
the two lemmata below.

Lemma 34. Let x ∈ Rd be Gaussian distributed with density p(x) = N (x; x0, Σ) for
x0 ∈ Rd and Σ ∈ Rd×d a positive semi-definite matrix. Let M ∈ Rn×d and z ∈ Rn. Then
v = Mx + z is also Gaussian, with

p(v) = N (v; Mx0 + z, MΣMᵀ).

Lemma 35. Let x ∈ Rd be distributed as in Lemma 34, and let observations y ∈ Rn be
generated from the conditional density

p(y | x) = N (y; Mx + z, Λ)

with M ∈ Rn×d, z ∈ Rn, and Λ ∈ Rn×n again positive-semidefinite. Then the associated
conditional distribution on x after observing y is again Gaussian, with

p(x | y) = N (x; x̄, Σ̄) where

x̄ = x0 + ΣMᵀ(MΣMᵀ + Λ)−1(y − Mx0 − z)

Σ̄ = Σ − ΣMᵀ(MΣMᵀ + Λ)−1MΣ).

This formula also applies if Λ = 0, i.e. observations are made without noise, with the caveat
that if MΣMᵀ is singular, the inverse should be interpreted as a pseudo-inverse.

The following definition of a Gaussian process follows Rasmussen and Williams (2006,
p. 13). A Gaussian process is a collection of random variables, any finite number of which
have a joint Gaussian distribution. It is completely specified by a mean function µ : RD → R

and a covariance function k : RD × RD → R. Hence, mean vector and covariance matrix
remain implicit. The indices of the variables change from natural numbers to input locations
of the function.

107

C
Additional Material for Part ii

Proposition 2. Let V , W ∈ RN×N be square matrices and Aᵀ, B ∈ RN×M be rectangular.

W⊗	W = ΓN(W ⊗ W) (SK1)

ΓM(A ⊗ A) = (A ⊗ A)ΓN (SK2)

V⊗	W = W⊗	V (SK3)

(A ⊗ A)(W⊗	W)(B ⊗ B) = (AW B)⊗	(AW B) (SK4)

W⊗	W − V⊗	V = (W + V)⊗	(W − V) (SK5)

(W⊗	W)−1 = (W−1⊗	W−1). (SK6)

The interpretation of Eq. (SK6) requires some care: symmetric Kronecker product matrices
are rank deficient. Eq. (SK6) is to be read in the sense that for symmetric Y ∈ RN×N,
i.e. Y = Yᵀ, X := mat

(
(W−1⊗	W−1) vec (Y)

)
satisfies vec (Y) = (W⊗	W) vec (X) and X

is the unique symmetric solution.

Proof. The proofs for Eqs. (SK1) and (SK2) can be found in Magnus and Neudecker
1999[p. 46-50]. In the notation of Magnus and Neudecker 1999 Γ = Nn = DnD+

n and
K = 2Γ − 2I. Eq. (SK1) is Theorem 13 (a). Eq. (SK2) follows from Theorem 9 (a).

To show (W⊗	V) = (V⊗	W), let X ∈ RN×N be an arbitrary matrix.

(V⊗	W) vec (X) = Γ(V ⊗ W)Γ vec (X)

=
1
2

Γ(V ⊗ W) vec (X + Xᵀ)

=
1
2

Γ vec (V(X + Xᵀ)Wᵀ)

=
1
4

vec (V(X + Xᵀ)Wᵀ + W(X + Xᵀ)Vᵀ)

=
1
2

Γ vec (W(X + Xᵀ)Vᵀ)

=
1
2

Γ(W ⊗ V) vec (X + Xᵀ)

= Γ(W ⊗ V)Γ vec (X)

= (W⊗	V) vec (X)

To show Eq. (SK4), use (SK2).

(A ⊗ A)(W⊗	W)(B ⊗ B) = (A ⊗ A)ΓN(W ⊗ W)ΓN(B ⊗ B)

= ΓM(A ⊗ A)(W ⊗ W)(B ⊗ B)ΓM

= ΓM(AW B ⊗ AW B)ΓM

= AW B⊗	AW B

109

The proof of Eq. (SK5) uses (SK3).

(A + B)⊗	(A − B) = Γ(A + B)⊗ (A − B)Γ

= Γ(A ⊗ A − A ⊗ B + B ⊗ A − B ⊗ B)Γ

= A⊗	A − A⊗	B + B⊗	A − B⊗	B

= A⊗	A − B⊗	A + B⊗	A − B⊗	B

= A⊗	A − B⊗	B

It remains to prove Eq. (SK6). Assume Z satisfies (W⊗	W) vec (Z) = vec (Y) and
Z = Zᵀ. Then,

vec (Y) = (W⊗	W) vec (Z)

= (W ⊗ W)ΓN vec (Z)

� using Eq. (SK1) and Eq. (SK2)

= (W ⊗ W) vec (Z)

� since Z = Zᵀ

and hence, vec (Z) = (W ⊗ W)−1 vec (Y). Using Eq. (K3) and again Eq. (SK1),

Z = (W−1 ⊗ W−1) vec (Y)

� by Eq. (K3)

= (W−1 ⊗ W−1)ΓN vec (Y)

� since Y = Yᵀ

= (W−1⊗	W−1) vec (Y)

� by Eq. (SK2) and Eq. (SK1)

which is the definition of X.

110

D
Additional Material for Part iii

D.1 Proof of Proposition 5

Proposition 5. Consider a Gaussian MBI prior

p(A−1) = N (A−1; vec
(

A−1
0

)
, Σ0 ⊗ W0),

conditioned on the left-multiplied information of Eq. (L). The associated marginal on x
(Eq. (MBI)) is identical to the SBI posterior on x arising in Lemma 3 from p(x) =

N (x; x0, Σ0), under the conditions

A−1
0 b = x0 and bᵀW0b = 1.

Proof of Proposition 5. The proof is analogous to the proof of Lemma 2.1 in Hennig (2015).
Let H := A−1 and let H0 := A−1

0 . First note that by right-multiplying the information in
Eq. (L) by H:

Yᵀ
m H = Sᵀ

m

� Eq. (L)

=⇒ vec (Yᵀ
m H) = vec (Sᵀ

m)

� applying vec () on both sides

=⇒ (Ym ⊗ I) vec (H) = vec (Sᵀ
m)

� from Eq. (K1)

Let Ω0 = Σ0 ⊗ W0 and let P = Yᵀ
m ⊗ I. Now the implied posterior on vec (H) can be

computed using the standard laws of Gaussian conditioning (Lemma 35): p(H | Sm, Ym) =

N (vec (H) , vec (Hm) , Ωm) where

vec (Hm) = vec (H0) + [PΩ0]
ᵀ[PΩ0Pᵀ]−1(vec (Sᵀ

m)− vec (Yᵀ
m H0))

Ωm = Ω0 − [PΩ0]
ᵀ[PΩ0Pᵀ]−1(PΩ0)

Using Eq. (K2), PΩ0 = (Yᵀ
m ⊗ I)(Σ0 ⊗ W) = (Yᵀ

mΣ0) ⊗ W which implies (PΩ0)
ᵀ =

(Σ0Ym)⊗ W by Eq. (K4). Thus

PΩ0Pᵀ = (Yᵀ
m ⊗ I)(Σ0 ⊗ W0)(Y

ᵀ
m ⊗ I)ᵀ

� definitions of P and Ω0

= (Yᵀ
mΣ0Ym)⊗ W0

� using Eqs. (K2) and (K4)

=⇒ (PΩ0Pᵀ)−1 = (Yᵀ
mΣ0Ym)

−1 ⊗ W−1
0

� using Eq. (K3)

111

which allows us to conclude that

(PΩ0)
ᵀ(PΩ0Pᵀ)−1

= [(Σ0Ym)⊗ W][(Yᵀ
mΣ0Ym)

−1 ⊗ W−1]

= (Σ0Ym(Y
ᵀ
mΣ0Ym)

−1)⊗ I

=⇒ (PΩ0)
ᵀ(PΩ0Pᵀ)−1(PΩ0)

= (Σ0Ym(Y
ᵀ
mΣ0Ym)

−1Yᵀ
mΣ0)⊗ W0.

From these expressions one can simplify the expressions for vec (Hm):

vec (Hm) = vec (H0) + (Σ0Ym(Y
ᵀ
mΣ0Ym)

−1 ⊗ I)(vec (Sᵀ
m)− vec (Yᵀ

m H0))

= vec
(

H0 + Σ0Ym(Y
ᵀ
mΣ0Ym)

−1(Sᵀ
m − Yᵀ

mH0)
)

� by Eq. (K1).

Analogously, for Ωm:

Ωm = Σ0 ⊗ W − (Σ0Ym(Y
ᵀ
mΣ0Ym)

−1Yᵀ
mΣ0)⊗ W0

= (Σ0 − Σ0Ym(Y
ᵀ
mΣ0Ym)

−1Yᵀ
mΣ0)⊗ W0

� by Eq. (K5)

It remains to project the posterior into Rd by performing the matrix-vector product
Hb = x = (I ⊗ bᵀ)H using Eq. (K1). Thus, the implied posterior is x ∼ N (x̄m, Σ̄m), with

x̄m = (I ⊗ bᵀ)vec
(

H0 + Σ0Ym(Y
ᵀ
mΣ0Ym)

−1(Sᵀ
m − Yᵀ

mH0)
)

= vec
(

H0b + Σ0Ym(Y
ᵀ
mΣ0Ym)

−1(Sᵀ
mb − Yᵀ

mH0b)
)

= x0 + Σ0 AᵀSm(S
ᵀ
m AΣ0 AᵀSm)

−1Sᵀ
m(b − Ax0).

� since H0b = x0 and Ym = AᵀSm

Furthermore

Σ̄m = (I ⊗ bᵀ) ·
[
(Σ0 − Σ0Ym(Y

ᵀ
mΣ0Ym)

−1Yᵀ
mΣ0)⊗ W0

]
· (I ⊗ bᵀ)ᵀ

= (Σ0 − Σ0Ym(Y
ᵀ
mΣ0Ym)

−1Yᵀ
mΣ0)× bᵀW0b

� using Eq. (K2) and that bᵀW0b is scalar

= Σ0 − Σ0 AᵀSm(S
ᵀ
m AΣ0 AᵀSm)

−1Sᵀ
m AΣ0

� since bᵀW0b = 1 and Ym = AᵀSm

Now note that xm = x̄m and Σm = Σ̄m, as in Lemma 3. Thus, the proof is complete.

D.2 Proof of Theorem 15

Theorem 36 (Theorem 2.3 in Hennig (2015)). Let W ∈ Rd×d be symmetric and positive
definite. Assume a Gaussian prior of symmetric mean A−1

0 and covariance W⊗	W on the
elements of a symmetric matrix A−1. After m linearly independent noise-free observations

112

of the form S = A−1Y, Y ∈ Rd×m, rk(Y) = m, the posterior belief over A−1 is a Gaussian
with mean

A−1
m = A−1

0 + (S − A−1
0 Y)GYᵀW

+ WYG(S − A−1
0 Y)ᵀ

+ WYGYᵀ(S − A−1
0 Y)GYᵀW (59)

and posterior covariance

V m =(W − WYGYᵀW)⊗	(W − WYGYᵀW)

where G := (YᵀWY)−1.

The following proofs are due to Philipp Hennig. My contribution are simplifications that
reduce the length by approximately one page.

Proof of Theorem 15 by Philipp Hennig. Denote by xCG
i the conjugate gradient estimate

in iteration i and with pi the search direction in that iteration. From one iteration to the
next, the update to the solution can be written as (Nocedal and Wright 1999, p. 108)

xCG
i+1 = xCG

i +
rᵀi pi

pᵀ
i Api

pi.

Comparing this update to lines 7 to 10 in Algorithm 3 it is sufficient to show that di ∝ pi
which follows from Lemma 37.

Lemma 37. Assume that CG does not terminate before d iterations. Using the prior of
Theorem 15 in Algorithm 3, the directions di are scaled conjugate gradients search directions,
i.e.

di = γi pCG
i

where pCG
i is the CG search direction in iteration i and γi ∈ R \ {0}.

Proof. The proof proceeds by induction. Throughout we will suppress the superscript CG
on the CG search directions, i.e. pCG

i = pi. For i = 1, A−1
i−1 = αI by assumption and

therefore di = αr0 which is the first CG search direction scaled by γ1 = α 6= 0.
For the inductive step, suppose that the search directions s1, ..., si−1 are scaled CG

directions and that the vectors x1, . . . , xi−1 are the same as the first i − 1 solution estimates
produced by CG. We will prove that si is the ith CG search direction, and that xi is the ith

solution estimate from CG. Lemma 39 states that di can be written as

di = A−1
i−1ri−1 = ∑

j<i
νjsj + νiri−1.

where νj ∈ R, j = 1, . . . , i. Under the prior, the posterior mean A−1
i is always symmetric.

This allows application of Lemma 38, so that {s1, . . . , si−1, di} is an A-conjugate set. Thus
we have, for ` < i:

0 = sᵀ` Adi = ν`s
ᵀ
` As` + νis

ᵀ
` Ari−1

113

= ν`s
ᵀ
` As` + νiy

ᵀ
` ri−1. (60)

Now note that

yᵀ
` ri−1 = (r` − r`−1)

ᵀri−1.

This follows from Line 10 of Algorithm 3, from which it is clear that y` = r` − r`−1. Recall
that the CG residuals r j are orthogonal Nocedal and Wright 1999, p. 109, and that from
the inductive assumption, Algorithm 3 is equivalent to CG up to iteration i − 1). Thus, for
` < i − 1 we have that

yᵀ
` ri−1 = 0

=⇒ s`Adi = ν`s
ᵀ
` As` = 0 ∀ ` < i − 1

where the second line is from application of the first line in Eq. (60). However, A is positive
definite and by assumption the algorithm has not converged, so d` 6= 0. Furthermore clearly
sᵀ` As` 6= 0. Hence we must have that

ν` = 0 ∀ j < i − 1.

Equation (D.2) thus simplifies to

di = νi−1si−1 + νiri−1 = νi−1αi−1di−1 + νiri−1.

Now, again by Lemma 38, di must be conjugate to si−1 which implies νi 6= 0. Pre-multiplying
Eq. (D.2) by sᵀi−1 A gives

0 = νi−1αi−1sᵀi−1 Adi−1 + νis
ᵀ
i−1 Ari−1

=⇒ νi−1αi−1 = −νi
sᵀi−1 Ari−1

sᵀi−1 Adi−1
.

Thus, di can be written as

di = νi

(
ri−1 −

sᵀi−1 Ari−1

sᵀi−1 Adi−1
di−1

)

= νi

(
ri−1 −

pᵀ
i−1 Ari−1

pᵀ
i−1 Api−1

pi−1

)
(61)

where the second line again applies the inductive assumption, that di−1 and si−1 are
proportional to the CG search direction pi−1, noting that the proportionality constants on
numerator and denominator cancel. The term inside the brackets is precisely the ith CG
search direction. This completes the result.

Lemma 38. If the belief over A−1
m is symmetric for all m = 0, . . . , d and A is symmetric

and positive definite, then Algorithm 3 produces A-conjugate directions.

Proof. The proof is by induction. Note that the case i = 1 is irrelevant since a set consisting
of one element is trivially A-conjugate. On many occasions the proof relies on the consistency

114

of the MBI belief, i.e. A−1
i zk = dk for k ≤ i and by symmetry zᵀk A−1

i = dᵀ
k . Thus, for the

base case i = 2 we have:

dᵀ
1 Ad2 = −dᵀ

1 A(A−1
1 r1)

= −dᵀ
1 A(A−1

1 (y1 + r0))

= −dᵀ
1 A(s1 + A−1

1 r0)

where the second line is by Line 10 of Algorithm 3. Now recall that α1 = −dᵀ
1 r0/dᵀ

1 Ad1 to
give:

dᵀ
1 Ad2 = −α1dᵀ

1 Ad1 − dᵀ
1 AA−1

1 r0

= dᵀ
1 r0 − dᵀ

1 AA−1
1 r0

= dᵀ
1 r0 − zᵀ1 A−1

1 r0

= dᵀ
1 r0 − dᵀ

1 r0 (62)

= 0.

Here, the symmetry of the estimator A−1
i is used in Eq. (62). For the inductive step, assume

{d0, . . . , di−1} are pairwise A-conjugate. For any k < i we have:

dᵀ
k Adi = −dᵀ

k A(A−1
i ri)

= −dᵀ
k AA−1

i

(
∑
j≤i

yj + r0

)

where the second line follows from the fact that ri = ri−1 + yi. Thus, we have:

dᵀ
k Adi = −dᵀ

k A

(
∑
j≤i

sj + A−1
i r0

)

= −dᵀ
k A

(
∑
j≤i

αjdj + A−1
i r0

)
.

Now, applying the conjugacy from the inductive assumption:

dᵀ
k Adi = −αkdᵀ

k Adk − dᵀ
k A(A−1

i r0)

= dᵀ
k rk−1 − dᵀ

k r0

= dᵀ
k

(
∑
j<k

yj + r0

)
− dᵀ

k r0 = 0

= ∑
j<k

αjd
ᵀ
k Adj = 0.

where the second line rearranges line 6 of the algorithm to obtain αid
ᵀ
i zi = −dᵀ

i ri−1.
The third line again uses that ri = ri−1 + yi, while the fourth line is from the assumed
conjugacy.

Lemma 39. Under the prior in Theorem 15 and given scaled CG search directions p1, ..., pi,
it holds that A−1

i ri ∈ span{p1, ..., pi, ri}.

115

Proof. Recall first that under the prior in Theorem 15, A−1
0 = αI. Then by inspection of

Eq. (59) we have A−1
i ri ∈ S where

S = span{ri, p1, ..., pi, y1, ..., yi, Wy1, ..., Wyi}

By choice of W = βI + γA−1, S = span{ri, p1, ..., pi, y1, ..., yi}. From line 10 of Algorithm
3 yi = ri − ri−1 and therefore S = span{r1, ..., ri, p1, ..., pi}. By Theorem 5.3 in Nocedal
and Wright 1999, p. 109 the span of the conjugate gradients residuals and search directions
are equivalent. Therefore S ⊆ {ri, p1, ..., pi}.

116

E
Additional Material for Part iv

E.1 Sampling from a Gaussian with Symmetric Kronecker Covariance

To sample matrices from the KMCG posterior (Eq. 34) the following proposition will be
useful.

Proposition 40. Let W , W M ∈ RN×N be symmetric and positive semi-definite ma-
trices s.t. W − W M is symmetric positive-semidefinite as well. Further let vec (Y) ∼
N (0, W⊗	W −W M⊗	W M), denote with L+ the Cholesky of W +W M, with L− the Cholesky
of W − W M and let vec (X) ∼ N (0, IN2), then Γ(L1 ⊗ L2) vec (X) and vec (Y) have the
same distribution and Y = Yᵀ.

Proof. As vec (X) is standard normal, Γ(L+ ⊗ L−) vec (X) is distributed Gaussian with
mean 0 and covariance matrix Γ(L+ ⊗ L−)(Γ(L+ ⊗ L−))ᵀ.

Γ(L+ ⊗ L−) [Γ(L+ ⊗ L−)]
ᵀ = Γ(L+ ⊗ L−)(Lᵀ

+ ⊗ Lᵀ
−)Γ

= (L+Lᵀ
+)⊗	(L−Lᵀ

−)

= (W + W M)⊗	(W − W M)

According to Equation (SK5): (W + W M)⊗	(W − W M) = W⊗	W − W M⊗	W M. Y is
symmetric due to the application of the Γ-operator.

E.2 Proofs

This section contains the proof of Proposition 20:

Proposition 20 (Subset of Regressors). Consider the prior of Eq. (30) with k0 := 0 and
w := k and the likelihood defined in Eq. (33) with sij = δij. Then the posterior mean kM is
equivalent to that of SoR:

kM(x, z) = kSoR = k(x, XU)k(XU , XU)
−1k(XU , z)

where XU are inducing inputs, not necessarily part of X.

The mentioned prior is p(k) := N (0, ψ) where ψ(k(a, b), k(c, d)) := 1
2 k(a, c)k(b, d) +

1
2 k(a, d)k(b, c). Denote with Y the noise-free observations of k, Y = mat

(
T pk

)
where

T p : k 7→ vec

([∫∫
k(x, z)pi(x)pj(z) dx dz

]
ij

)
(32)

pi(x) =
M

∑
j=1

sijδ(x − xuj) (33)

117

which implies the likelihood p(Y | T p, k) = δ(Y − T pk). Proposition 20 follows from the
more general Proposition 41.

Proposition 41. Consider the prior of Eq. (30) (without the restriction w = k) and the
likelihood defined in Eq. (33). The posterior over k is p(k | Y = T pk) = N (k; kM, ψM) with
posterior mean

kM(a, b) = k0(a, b) + w(a, XU)S(SᵀWMS)−1SᵀKMS(SᵀWMS)−1Sᵀw(XU , b) (63)

− w(a, XU)S(SᵀWMS)−1Sᵀk0(XU , XU)S(SᵀWMS)−1Sᵀw(XU , b)

and posterior variance

ψM(k(a,b), k(c, d)) =
1
2

w(a, c)w(b, d) +
1
2

w(a, d)w(b, c) (64)

− 1
2

w(a, XU)S(SᵀWMS)−1Sᵀw(XU , c)w(b, XU)S(SᵀWMS)−1Sᵀw(XU , d)

− 1
2

w(a, XU)S(SᵀWMS)−1Sᵀw(XU , d)w(b, XU)S(SᵀWMS)−1Sᵀw(XU , c)

where WM = w(XU , XU).

Proof. Proofing the proposition is tedious linear Algebra which is what follows now. If
prior and likelihood are Gaussian, so is the posterior with mean and variance:

kM(a, b) = k0(a, b)− (T pψ(k(a, b), ·))ᵀ(T p(T pw)ᵀ)−1 vec (Y − Sᵀk0(XU , XU)S) ,

ψM(k(a, b), k(c, d)) = ψ((a, b), (c, d))− (T pψ((a, b), (·, ·)))ᵀ(T p(T pψ)ᵀ)−1T pψ(c, d), (·, ·))

Lemma 42 allows to write

(T pψ(k(a, b), ·))ᵀ(T p(T pw)ᵀ)−1

=
1
2

vec (Sᵀw(XU , a)w(b, XU) + w(XU , b)w(a, XU))S)
ᵀ
(
(SᵀWMS)−1⊗	(SᵀWMS)−1

)
=

1
2

vec
(
(SᵀWMS)−1Sᵀw(XU , a)w(b, XU) + w(XU , b)w(a, XU))S(SᵀWMS)−1

)ᵀ
and thus for Eq. (63)

kM(a, b) = k0(a, b)

+
1
2

tr (SᵀWMS)−1Sᵀw(XU , a)w(b, XU)S(SᵀWMS)−1(Y − k0(XU , XU))

+
1
2

tr (SᵀWMS)−1Sᵀw(XU , b)w(a, XU)S(SᵀWMS)−1(Y − k0(XU , XU))

= k0(a, b) + w(a, XU)S(SᵀWMS)−1SᵀKMS(SᵀWMS)−1Sᵀw(XU , b)

− w(a, XU)S(SᵀWMS)−1Sᵀk0(XU , XU)S(SᵀWMS)−1Sᵀw(XU , b)

The derivation for Eq. (64) follows analogously.

Lemma 42. Let T p be as in Eq. (36).

T pw(k(a, b), ·) = 1
2

vec (Sᵀ (w(XU , a)w(b, XU) + w(XU , b)w(a, XU)) S) (65)

T p(T pw(·, ·))ᵀ = (SᵀWMS)⊗	(SᵀWMS) (66)

118

Proof. Denote with mat () the complement of the vectorization operator, i.e. mat (vec (A)) =

A. Define the matrix S ∈ RN×M as Sij = sij and denote with Sl the l-th column of S. Also
recall that by Eq. (31) ψ(k(a, b), k(x, z)) = 1

2 (w(a, x)w(b, z) + w(a, z)w(b, x)).

[mat
(
T p[ψ(k(a, b), k(·, ·))]

)
]ij

=
∫∫

ψ(k(a, b), k(x, z))

(
M

∑
l=1

silδ(x − ul)

)(
M

∑
l=1

sjlδ(z − ul)

)
dx dz

=
∫∫ 1

2
(w(a, x)w(b, z) + w(a, z)w(b, x))

(
M

∑
l=1

silδ(x − ul)

)(
M

∑
l=1

sjlδ(z − ul)

)
dx dz

=
1
2

M

∑
m=1

M

∑
l=1

SimSjl(w(a, um)w(b, ul) + w(a, ul)w(b, um))

=
1
2
[Sᵀw(XU , a)w(b, XU)S + Sᵀw(XU , b)w(a, XU)S]ij

=
1
2
[Sᵀ(w(XU , a)w(b, XU) + w(XU , b)w(a, XU))S]ij

which shows Eq. (65)

= [mat ((Sᵀ ⊗ Sᵀ)Γ vec (w(XU , a)w(b, XU)))]ij

= [mat ((Sᵀ ⊗ Sᵀ)Γ(w(XU , a)⊗ w(XU , b)))]ij

Repeating above derivations shows the second statement:

T p(T pψ)ᵀ = (Sᵀ ⊗ Sᵀ)Γ(w(XU , XU)⊗ w(XU , XU))Γ(S ⊗ S)

= (S ⊗ S)ᵀ(w(XU , XU)⊗	w(XU , XU))(S ⊗ S)

= (SᵀWMS)⊗	(SᵀWMS)

� Eq. (SK4)

E.2.1 Positive Semi-definiteness of the Approximate Kernel

This section shows that the KMCG kernel (Eq. 34) is always positive semi-definite.

Proposition 43. If k0 = 0, S has rank M and k and w are positive definite kernel functions
then the posterior mean in Equation (63) is symmetric and positive semi-definite.

Proof. With k0 = 0 the expression for kM simplifies to

kM(x, z) =w(x, XU)S(SᵀWMS)−1SᵀKMS(SᵀWMS)−1Sᵀw(XU , z)

The function kM is symmetric since k is symmetric. The bivariate function kM is said to be
positive (semi-)definite iff for all n ∈ N and for all Z ∈ X, kM(Z, Z) is a positive (semi-
)definite matrix. Since k(XU , XU) is an s.p.d. matrix, so is Sᵀk(XU , XU)S for arbitrary
S. The same argument holds for SᵀWMS. Since S is rank M, (SᵀWMS)−1 exists and the
inverse of an s.p.d. matrix is s.p.d. as well. Therefore S(SᵀWMS)−1SᵀKMS(SᵀWMS)−1S is
symmetric and positive semi-definite. This completes the proof.

119

E.3 Additional Experiments and Results

This section consists of figures showing the results of the experiments-section (Section 13)
for the Matérn kernel, real-time experiments and experiments with the textbook version of
conjugate gradients. All figures have been trimmed to the slowest baseline method.

E.3.1 Real-time Results

This section shows the same results as in Section 13 but over training-time instead of
CG-steps. Figure 15 shows how the relative error ε f develops over time for the squared
exponential kernel and Figure 16 shows the same for experiments over grid-structured
datasets from Section 13.2. For the x-axis values we took the median of all measurements
and fitted a quadratic function to these.

E.3.2 Matérn Kernel Results

The figures in this section show the results for the Matérn 5/2 kernel (Eq. (44)) for the
experiment setup described Section 13. Figure 17 shows the results for the relative error ε f ,
Figure 18 and Figure 19 the results for εvar and εev, respectively. Figure 20 displays the
relative error over time.

E.3.3 Instability of Textbook Conjugate Gradients

The experiments in Section 13, where carried out by running conjugate gradients with full
reorthogonalization. Figure 21 demonstrates that for the problems under consideration, the
textbook version of conjugate gradients is not sufficiently numerically stable. With vanilla
conjugate gradients in the background, KMCG can run only for a couple of steps before
the necessary Cholesky decompositions fail to be computable.

120

0.1 0.2

10−2

10−1

100

101

ABALONE
N = 2088, D = 8

ε
f

0.2 0.4 0.6 0.8 1

PRECIPITATION
N = 2888, D = 2

5 · 10−2 0.1 0.15

PUMADYN
N = 4096, D = 32

0.2 0.4 0.6 0.8 1

·10−3

10−2

10−1

100

101

MPG
N = 196, D = 7

ε
f

CG
KMCG
VFE
FITC

0.5 1 1.5

POLETELECOMM
N = 7499, D = 26

2 4 6

·10−2

10−2

10−1

100

101

ELEVATORS
N = 8299, D = 17

ε
f

0.2 0.4 0.6 0.8 1

AILERONS
N = 6874, D = 39

2 3 4 5

·10−4

TOY
N = 200, D = 1

Figure 15: progression of the relative error ε f over training time for different datasets using the squared-exponential kernel
(Eq. 43). The shaded area visualizes minimum and maximum over all baseline runs. A cross denotes the end of a crashed
run.

121

10 × 10 1000 × 1000 100 × 100 × 100 30 × 30 × 30 × 30

10−2

10−1

100

101

102

ε
f

10−2

10−1

100

101

102

ε v
ar

CG
KMCG
VFE
FITC

2 4 6

·10−4

10−2

10−1

100

101

102

ε e
v

2 4 6 8 10 10 20 30 2 4 6 8

time in s time in s time in s time in s

Figure 16: comparison of baseline and KMCG on grid-structured datasets using the squared exponential kernel (Eq. 43). The
shaded area visualizes minimum and maximum over all baseline runs. A cross denotes the end of a crashed run. It may seem
surprising that the runs on the 100 × 100 × 100 dataset take more than twice as long. By chance the dataset contains more
extreme values in the kernel matrix, i.e. smaller than 1e−50. Multiplication with these elements takes more time.

122

M = 289 354 409

10−2

10−1

100

101

ABALONE
N = 2088, D = 8

ε
f

M = 340 417 481
PRECIPITATION

N = 2888, D = 2

M = 405 496 573
PUMADYN

N = 4096, D = 32

M = 89 109 126

10−2

10−1

100

101

MPG
N = 196, D = 7

ε
f

CG
KMCG
VFE
FITC

M = 548 671 775
POLETELECOMM

N = 7499, D = 26

M = 577 706 815

10−2

10−1

100

101

ELEVATORS
N = 8299, D = 17

ε
f

20 40 60 80

10−2

10−1

100

101

M = 525 643 742
AILERONS

N = 6874, D = 39

20 40 60 80

M = 90 110 127
TOY

N = 200, D = 1

20 40 60 80

CG-steps P CG-steps P CG-steps P

Figure 17: progression of the relative error ε f as a function of the number of iterations of CG and KMCG for different datasets
using the Matérn kernel (Eq. 44). The shaded area visualizes minimum and maximum over all baseline runs. A cross denotes
the end of a crashed run.

123

M = 289 354 409

10−2

10−1

100

101

ABALONE
N = 2088, D = 8

ε v
ar

M = 340 417 481
PRECIPITATION

N = 2888, D = 2

M = 405 496 573
PUMADYN

N = 4096, D = 32

M = 89 109 126

10−2

10−1

100

101

MPG
N = 196, D = 7

ε v
ar

FITC
VFE
KMCG

M = 548 671 775
POLETELECOMM

N = 7499, D = 26

M = 577 706 815

10−2

10−1

100

101

ELEVATORS
N = 8299, D = 17

ε v
ar

20 40 60 80

10−2

10−1

100

101

M = 525 643 742
AILERONS

N = 6874, D = 39

20 40 60 80

M = 90 110 127
TOY

N = 200, D = 1

20 40 60 80

CG-steps P CG-steps P CG-steps P

Figure 18: progression of the relative error of the variance as a function of the number of iterations of KMCG and baseline for
different datasets using the Matérn kernel (Eq. 44). The shaded area visualizes minimum and maximum over all baseline runs.
A cross denotes the end of a crashed run.

124

M = 289 354 409

10−2

10−1

100

101

ABALONE
N = 2088, D = 8

ε e
v

M = 340 417 481
PRECIPITATION

N = 2888, D = 2

M = 405 496 573
PUMADYN

N = 4096, D = 32

M = 89 109 126

10−2

10−1

100

101

MPG
N = 196, D = 7

ε e
v

FITC
VFE
KMCG

M = 548 671 775
POLETELECOMM

N = 7499, D = 26

M = 577 706 815

10−2

10−1

100

101

ELEVATORS
N = 8299, D = 17

ε e
v

20 40 60 80

10−2

10−1

100

101

M = 525 643 742
AILERONS

N = 6874, D = 39

20 40 60 80

M = 90 110 127
TOY

N = 200, D = 1

20 40 60 80

CG-steps P CG-steps P CG-steps P

Figure 19: progression of the relative error of the evidence as a function of the number of iterations of baseline and KMCG
for different datasets using the Matérn kernel (Eq. 44). The shaded area visualizes minimum and maximum over all baseline
runs. A cross denotes the end of a crashed run.

125

0.1 0.2

10−2

10−1

100

101

ABALONE
N = 2088, D = 8

ε
f

0.2 0.4

PRECIPITATION
N = 2888, D = 2

0.5 1

PUMADYN
N = 4096, D = 32

0.2 0.4 0.6 0.8 1

·10−3

10−2

10−1

100

101

MPG
N = 196, D = 7

ε
f

CG
KMCG
VFE
FITC

0.5 1 1.5

POLETELECOMM
N = 7499, D = 26

0.5 1 1.5 2

10−2

10−1

100

101

ELEVATORS
N = 8299, D = 17

ε
f

5 · 10−2 0.1 0.15

AILERONS
N = 6874, D = 39

2 4 6 8

·10−4

TOY
N = 200, D = 1

Figure 20: progression of the relative error ε f over training time for different datasets using the Matérn 5/2 kernel (Eq. 44).
The shaded area visualizes minimum and maximum over all baseline runs. A cross denotes the end of a crashed run.

126

10−2

10−1

100

101

ABALONE
N = 2088, D = 8

ε
f

PRECIPITATION
N = 2888, D = 2

PUMADYN
N = 4096, D = 32

10−2

10−1

100

101

MPG
N = 196, D = 7

ε
f

KMCG(CG)
CG
FOM
KMCG(FOM)

POLETELECOMM
N = 7499, D = 26

10−2

10−1

100

101

ELEVATORS
N = 8299, D = 17

ε
f

20 40 60 80

10−2

10−1

100

101

AILERONS
N = 6874, D = 39

20 40 60 80

TOY
N = 200, D = 1

20 40 60 80

CG-steps P CG-steps P CG-steps P

Figure 21: progression of the relative error ε f over 100 CG-steps for different datasets using the squared exponential kernel
(Eq. 43), comparing CG and FOM. The shaded area visualizes minimum and maximum over all baseline runs. A cross denotes
the end of a crashed run.

127

F
Additional Material for Part v

Theorem 44 (Popoviciu (1935) and Sharma, Gupta, and Kapoor (2010)). For a sequence
of real numbers x1, ..., xn ∈ [m, M], define µ := 1

n ∑n
j=1 xj and σ2 := 1

n ∑N
j=1(xj − µ)2, then

σ2 ≤ 1/4(M − m)2.

Remark 45. Above theorem can be used for a bound on the (conditional) variance as well.
Let x1, ..., xn ∼ P(· | F) be independent. Then,

V[X | F] = E[(X − E[X | F])2 | F]

=
n

n − 1
E[σ2 | F]

� using Bessel’s correction

≤ n
4(n − 1)

(M − m)2

which holds for all n ∈ N. Hence, V[X | F] ≤ 1/4(M − m)2.

Theorem 46 (Doob’s Optional Sampling Theorem (Grimmett and Stirzaker 2001, p. 489)).
Let (Xj,Fj)j∈N be a submartingale and τ1 ≤ τ2 ≤ ... be a sequence of stopping times
s.t. P(τj ≤ nj) = 1 for some deterministic real sequence nj, then the stopped process
(Xτj ,Fτj)j∈N is also a submartingale.

Remark 47. By exchanging Xj for −Xj the theorem can be shown to hold for supermartin-
gales as well.

Corollary 48. Let (ξ j,Fj)j∈N be a submartingale-difference and let τ be a stopping time,
then the stopped process (ξmin(j,τ),Fmin(j,τ))j∈N is also a submartingale-difference.

Proof. Define Xl := ∑l
j=1 ξ j and observe that this defines a submartingale. By Theorem 46

(Xmin(j,τ),Fmin(j,τ))j∈N is a submartingale. Then Xmin(j,τ) − Xmin(j,τ)−1 = ξmin(j,τ) is again
a submartingale-difference.

The following lemma appaers as well in Mnih (2008). It was relieving to see that other
researchers have the same ideas and I took this as a sign to be on the right track.

Lemma 25 (Bound on Relative Error). Let D, D̂ ∈ [L,U], and assume sign(L) =

sign(U) 6= 0. Then the relative error of the estimator D̂ can be bounded as

abs(D − D̂)

abs(D)
≤ max(U − D̂, D̂ −L)

min(abs(L), abs(U)) .

Proof. First observe that if DN > D̂ then abs(DN − D̂) = DN − D̂ ≤ U − D̂. If not, then
abs(DN − D̂) = D̂ − DN ≤ D̂ −L. Hence,

abs(DN − D̂) ≤ max(U − D̂, D̂ −L).

129

Case L > 0: This implies abs(DN) = DN.

abs(DN − D̂)

abs(DN)
≤ abs(DN − D̂)

L

Case U < 0: In that case abs(L) ≥ abs(DN) ≥ abs(U).

abs(DN − D̂)

abs(DN)
≤ abs(DN − D̂)

abs(U)

Since we assumed sign(L) = sign(U) these were all cases that required consideration. Note
that, in the first case 1/L ≥ 1/abs(U), and in the second case, the 1/L ≤ 1/abs(U), since L < 0.
Combining all observations gives

abs(DN − D̂)

abs(DN)
≤ max(U − D̂, D̂ −L)max

(
1

abs(U) ,
1
L

)
If L > 0, max(1

abs(U) , 1
L) = min(abs(U),L) = min(abs(U), abs(L)). In the other case,

U < 0, we can write

max
(

1
abs(U) ,

1
L

)
= max

(
1

abs(U) ,
1

abs(L)

)
= min(abs(U), abs(L)).

Lemma 49. Denote with C the Cholesky decomposition of a symmetric and positive definite
matrix K. The log-determinant of K equals two times the sum over the logarithm of the
diagonal elements of the Cholesky decomposition C:

ln |K| = 2
N

∑
j=1

ln C jj.

Proof.

ln |K| = ln |CCᵀ|
� using K = CCᵀ

= ln(|C| · |Cᵀ|)
� property of the determinant

= ln(|C|2)
� transposition does not affect the determinant

= ln(
N

∏
j=1

C jj)
2

� property of triangular matrices

= 2
N

∑
j=1

ln C jj

� property of the logarithm

130

Bibliography

Arras, P., J. Knollmüller, H. Junklewitz, and T. A. Enßlin (2018). “Radio Imaging with Infor-
mation Field Theory.” In: 2018 26th European Signal Processing Conference (EUSIPCO),
pp. 2683–2687.

Bardenet, R., A. Doucet, and C. Holmes (2014). “Towards scaling up Markov chain Monte
Carlo: an adaptive subsampling approach.” In: Proceedings of the 31st International
Conference on Machine Learning. Ed. by E. P. Xing and T. Jebara. Vol. 32. Proceedings
of Machine Learning Research 1, pp. 405–413.

Bartels, S., J. Cockayne, I. C. F. Ipsen, and P. Hennig (2019). “Probabilistic Linear Solvers:
A Unifying View.” In: Statistics and Computing 29.6, pp. 1249–1263.

Bartels, S. and P. Hennig (2016). “Probabilistic Approximate Least-Squares.” In: Proceedings
of Artificial Intelligence and Statistics (AISTATS).

– (2019). “Conjugate Gradients for Kernel Machines.” In: ArXiv e-prints 1911.06048.
arXiv:1911.06048.

Benoit (1924). “Note sûre une méthode de résolution des équations normales provenant de
l’application de la méthode des moindres carrés a un système d’équations linéaires en
nombre inférieure a celui des inconnues. Application de la méthode a la résolution d’un
système défini d’équations linéaires. (Procédé du Commandant Cholesky).” In: Bulletin
Geodesique 7.1, pp. 67–77.

Bishop, C. (2006). Pattern Recognition and Machine Learning. Springer.
Boucheron, S., G. Lugosi, and P. Massart (2013). Concentration Inequalities: A Nonasymp-

totic Theory of Independence. 1st. Oxford University Press.
Boutsidis, C., P. Drineas, P. Kambadur, E.-M. Kontopoulou, and A. Zouzias (2017). “A

randomized algorithm for approximating the log determinant of a symmetric positive
definite matrix.” In: Linear Algebra and its Applications 533, pp. 95 –117.

Camachol, R. (1998). “Inducing models of human control skills.” In: Machine Learning:
ECML-98. Ed. by C. Nédellec and C. Rouveirol, pp. 107–118.

Chalupka, K., C. K. I. Williams, and I. Murray (2013). “A Framework for Evaluating
Approximation Methods for Gaussian Process Regression.” In: Journal of Machine
Learning Research 14.1, pp. 333–350.

Cockayne, J., C. Oates, I. C. F. Ipsen, and M. Girolami (2018). “A Bayesian Conjugate
Gradient Method.” In: ArXiv e-prints 1801.05242. arXiv:1801.05242.

Cockayne, J., C. Oates, T. J. Sullivan, and M. Girolami (2016). “Probabilistic Numerical
Methods for Partial Differential Equations and Bayesian Inverse Problems.” In: ArXiv
e-prints 1605.07811. arXiv:1605.07811.

– (2017). “Bayesian Probabilistic Numerical Methods.” In: ArXiv e-prints 1702.03673.
arXiv:1702.03673.

Csató, L. and M. Opper (2002). “Sparse On-line Gaussian Processes.” In: Neural Computation
14.3, pp. 641–668.

Davidson, J. (1994). Stochastic Limit Theory: An Introduction for Econometricians. Oxford
University Press.

133

http://arxiv.org/abs/1911.06048
http://arxiv.org/abs/1801.05242
http://arxiv.org/abs/1605.07811
http://arxiv.org/abs/1702.03673

Davies, A. (2015). “Effective implementation of Gaussian process regression for machine
learning.” PhD thesis. University of Cambridge.

DeGroot, M. H. and M. J. Schervish (2012). Probability and Statistics. 4th. Pearson.
Diaconis, P. and M. Shahshahani (1987). “The Subgroup Algorithm for Generating Uniform

Random Variables.” In: Probability in the Engineering and Informational Sciences 1.01,
p. 15. doi: 10.1017/s0269964800000255.

Dong, K., D. Eriksson, H. Nickisch, D. Bindel, and A. G. Wilson (2017). “Scalable Log
Determinants for Gaussian Process Kernel Learning.” In: Advances in Neural Information
Processing Systems, pp. 6330–6340.

Dorn, S. and T. A. Enßlin (2015). “Stochastic determination of matrix determinants.” In:
Physical Review E 92 (1), p. 013302.

Dua, D. and C. Graff (2019). UCI Machine Learning Repository. url: http://archive.
ics.uci.edu/ml.

Fan, X., I. Grama, and Q. Liu (2012). “Hoeffding’s inequality for supermartingales.” In:
Stochastic Processes and their Applications 122.10, pp. 3545–3559.

Filippone, M. and R. Engler (2015). “Enabling scalable stochastic gradient-based inference
for Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE).” In:
Proceedings of the 32nd International Conference on Machine Learning. Lille, France,
pp. 1015–1024.

Fitzsimons, J., K. Cutajar, M. Osborne, S. Roberts, and M. Filippone (2017). “Bayesian
Inference of Log Determinants.” In: Thirty-Third Conference on Uncertainty in Artificial
Intelligence, UAI 2017, August 11-15, 2017, Sydney, Australia. Ed. by G. Elidan, K.
Kersting, and A. T. Ihler.

Fitzsimons, J., D. Granziol, K. Cutajar, M. Osborne, M. Filippone, and S. Roberts (2017).
“Entropic Trace Estimates for Log Determinants.” In: Machine Learning and Knowledge
Discovery in Databases. Ed. by M. Ceci, J. Hollmén, L. Todorovski, C. Vens, and S.
Džeroski, pp. 323–338.

Geman, S. and D. Geman (1984). “Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images.” In: IEEE Transactions on Pattern Analysis and Machine
Intelligence PAMI-6.6, pp. 721–741.

Golub, G. and C. Van Loan (2013). Matrix computations. 4th ed. Johns Hopkins Univ Pr.
Graf, F., H.-P. Kriegel, M. Schubert, S. Pölsterl, and A. Cavallaro (2011). “2D Image

Registration in CT Images Using Radial Image Descriptors.” In: Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2011. Ed. by G. Fichtinger, A. Martel,
and T. Peters, pp. 607–614.

Grimmett, G. and D. Stirzaker (2001). Probability and Random Processes. 3rd. Oxford
University Press.

Gut, A. (2009). An Intermediate Course in Probability. 2nd. Springer.
Hennig, P. (2015). “Probabilistic Interpretation of Linear Solvers.” In: SIAM J on Opti-

mization 25.1, pp. 210–233.
Hennig, P. and M. Kiefel (2012). “Quasi-Newton methods – a new direction.” In: International

Conference on Machine Learning (ICML).
– (2013). “Quasi-Newton Methods – a new direction.” In: Journal of Machine Learning

Research 14, pp. 834–865.

134

https://doi.org/10.1017/s0269964800000255
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Hennig, P., M. Osborne, and M. Girolami (2015). “Probabilistic numerics and uncertainty in
computations.” In: Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences 471.2179.

Hensman, J., N. Durrande, and A. Solin (2018). “Variational Fourier Features for Gaussian
Processes.” In: Journal of Machine Learning Research 18.151, pp. 1–52.

Hestenes, M. and E. Stiefel (1952). “Methods of conjugate gradients for solving linear
systems.” In: Journal of Research of the National Bureau of Standards 49.6, pp. 409–436.

Hoerl, A. E. and R. W. Kennard (1970). “Ridge regression: Biased estimation for nonorthog-
onal problems.” In: Technometrics 12.1, pp. 55–67.

Karvonen, T. and S. Sarkka (2017). “Classical quadrature rules via Gaussian processes.”
In: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing
(MLSP). IEEE.

Kersting, H., T. J. Sullivan, and P. Hennig (2018). “Convergence Rates of Gaussian ODE
Filters.” In: ArXiv e-prints 1807.09737. arXiv:1807.09737.

Kimeldorf, G. S. and G. Wahba (1970). “A correspondence between Bayesian estimation on
stochastic processes and smoothing by splines.” In: The Annals of Mathematical Statistics,
pp. 495–502.

Lázaro-Gredilla, M., J. Quiñonero-Candela, C. E. Rasmussen, and A. R. Figueiras-Vidal
(2010). “Sparse Spectrum Gaussian Process Regression.” In: Journal of Machine Learning
Research 11, pp. 1865–1881.

Le, Q., T. Sarlos, and A. Smola (2013). “Fastfood - Computing Hilbert Space Expansions
in loglinear time.” In: Proceedings of the 28th International Conference on Machine
Learning, pp. 244–252.

Loan, C. F. V. (2000). “The ubiquitous Kronecker product.” In: Journal of Computational
and Applied Mathematics 123.1. Numerical Analysis 2000. Vol. III: Linear Algebra, pp. 85
–100.

Magnus, J. R. and H. Neudecker (1980). “The Elimination Matrix: Some Lemmas and
Applications.” In: SIAM Journal on Algebraic Discrete Methods 1.4, pp. 422–449. doi:
10.1137/0601049.

Magnus, J. R. and H. Neudecker (1999). Matrix Differential Calculus with Applications in
Statistics and Econometrics. Second. John Wiley.

Matheron, G. (1973). “The intrinsic random functions and their applications.” In: Advances
in applied probability, pp. 439–468.

Meister, A. (2015). Numerik Linearer Gleichungssysteme. 5th. Springer Fachmedien Wies-
baden.

Mnih, V. (2008). “Efficient stopping rules.” MA thesis. University of Alberta, Canada.
Mnih, V., C. Szepesvári, and J. Audibert (2008). “Empirical Bernstein stopping.” In: ed. by

A. McCallum and S. Roweis, pp. 672–679.
Munroe, R. (2019). Error Bars. url: https://xkcd.com/2110/. License: Creative Com-

mons 2.5 BY-NC-SA.
Nash, W. J., T. L. Sellers, S. R. Talbot, A. J. Cawthorn, and W. B. Ford (1994). The

Population biology of abalone (Haliotis species) in Tasmania. 1, Blacklip abalone (H. rubra)
from the north coast and the islands of Bass Strait. Tech. rep. 48. Sea Fisheries Division,
Marine Research Laboratories - Taroona, Department of Primary Industry and Fisheries,
Tasmania. url: https://trove.nla.gov.au/work/11326142.

135

http://arxiv.org/abs/1807.09737
https://doi.org/10.1137/0601049
https://xkcd.com/2110/
https://trove.nla.gov.au/work/11326142

Nille, D., U. von Toussaint, B. Sieglin, and M. Faitsch (2018). “Probabilistic Inference
of Surface Heat Flux Densities from Infrared Thermography.” In: Bayesian Inference
and Maximum Entropy Methods in Science and Engineering. Ed. by A. Polpo, J. Stern,
F. Louzada, R. Izbicki, and H. Takada, pp. 55–64.

Nocedal, J. and S. Wright (1999). Numerical Optimization. Springer Verlag.
Pleiss, G., J. Gardner, K. Weinberger, and A. G. Wilson (2018). “Constant-Time Predictive

Distributions for Gaussian Processes.” In: Proceedings of the 35th International Conference
on Machine Learning, pp. 4114–4123.

Popoviciu, T. (1935). “Sur les equations algebriques ayanttoutes leurs racines reelles.” In:
Mathematica (Cluj) 9, pp. 129–145.

Quinlan, J. R. (1993). “Combining Instance-based and Model-based Learning.” In: Pro-
ceedings of the Tenth International Conference on International Conference on Machine
Learning. ICML’93, pp. 236–243.

Quiñonero-Candela, J. and C. E. Rasmussen (2005). “A unifying view of sparse approximate
Gaussian process regression.” In: Journal of Machine Learning Research 6, pp. 1939–1959.

Rahimi, A. and B. Recht (2008). “Random Features for Large-Scale Kernel Machines.” In:
Advances in Neural Information Processing Systems 20. Ed. by J. C. Platt, D. Koller,
Y. Singer, and S. T. Roweis, pp. 1177–1184.

– (2009). “Weighted Sums of Random Kitchen Sinks: Replacing minimization with ran-
domization in learning.” In: Advances in Neural Information Processing Systems 23,
pp. 1313–1320.

Rasmussen, C. E. and H. Nickisch (2010). “Gaussian Processes for Machine Learning
(GPML) Toolbox.” In: Journal of Machine Learning Research 11, pp. 3011–3015.

Rasmussen, C. and C. Williams (2006). Gaussian Processes for Machine Learning. MIT.
Roeckner, E., G. Bäuml, L. Bonaventura, R. Brokopf, M. Esch, and M. Giorgetta (2003).

The atmospheric general circulation model ECHAM 5. part I: Model description. Tech. rep.
MPI für Meteorologie.

Saad, Y. and M. H. Schultz (1986). “GMRES: A Generalized Minimal Residual Algorithm
for Solving Nonsymmetric Linear Systems.” In: SIAM Journal on Scientific and Statistical
Computing 7.3, pp. 856–869.

Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. 2nd. Society for Industrial
and Applied Mathematics.

Saibaba, A. K., A. Alexanderian, and I. C. F. Ipsen (2017). “Randomized matrix-free trace
and log-determinant estimators.” In: Numerische Mathematik 137.2, pp. 353–395.

Schober, M., D. Duvenaud, and P. Hennig (2014). “Probabilistic ODE Solvers with Runge-
Kutta Means.” In: Advances in Neural Information Processing Systems 27, pp. 739–
747.

Schober, M., S. Särkkä, and P. Hennig (2018). “A probabilistic model for the numerical
solution of initial value problems.” In: Statistics and Computing.

Schölkopf, B. and A. Smola (2002). Learning with Kernels. MIT Press.
Sharma, R., M. Gupta, and G Kapoor (2010). “Some better bounds on the variance with

applications.” In: Journal of Mathematical Inequalities 4, pp. 355–363.
Skilling, J. (1989). “The Eigenvalues of Mega-dimensional Matrices.” In: Maximum Entropy

and Bayesian Methods: Cambridge, England, 1988. Ed. by J. Skilling, pp. 455–466.

136

– (1993). “Bayesian Numerical Analysis.” In: Physics and Probability: Essays in Honor of
Edwin T. Jaynes. Ed. by J. W. T. Grandy and P. W. Milonni, pp. 207–222.

Snelson, E. and Z. Ghahramani (2006). “Sparse Gaussian Processes using Pseudo-inputs.”
In: Advances in Neural Information Processing Systems 18. Ed. by Y. Weiss, B. Schölkopf,
and J. C. Platt, pp. 1257–1264.

– (2007). “Local and global sparse Gaussian process approximations.” In: Proceedings of the
Eleventh International Conference on Artificial Intelligence and Statistics, pp. 524–531.

Solin, A. and S. Särkkä (2014). “Hilbert Space Methods for Reduced-Rank Gaussian Process
Regression.” In: ArXiv e-prints 1401.5508. arXiv:1401.5508.

Soodhalter, K. M., D. B. Szyld, and F. Xue (2014). “Krylov subspace recycling for sequences
of shifted linear systems.” In: Applied Numerical Mathematics 81, pp. 105–118. doi:
10.1016/j.apnum.2014.02.006. url: https://doi.org/10.1016/j.apnum.2014.02.
006.

Stark, P. B. and D. A. Freedman (2003). “What is the chance of an earthquake?” In:
Earthquake Science and Seismic Risk Reduction, pp. 201–216.

Titsias, M. (2009). “Variational Learning of Inducing Variables in Sparse Gaussian Pro-
cesses.” In: Artificial Intelligence and Statistics (AISTATS), JMLR W&CP 5.

Trecate, G. F., C. K. I. Williams, and M. Opper (1999). “Finite-dimensional Approximation
of Gaussian Processes.” In: Advances in Neural Information Processing Systems 2, pp. 218–
224.

Tronarp, F., H. Kersting, S. Särkkä, and P. Hennig (2019). “Probabilistic solutions to
ordinary differential equations as nonlinear Bayesian filtering: a new perspective.” In:
Statistics and Computing 29.6, pp. 1297–1315.

Turner, R. E. (2010). “Statistical Models for Natural Sounds.” PhD thesis. University
College London.

Vanhatalo, J. and A. Vehtari (2008). “Modelling local and global phenomena with sparse
Gaussian processes.” In: UAI 2008, Twenty-Fourth Conference on Uncertainty in Artificial
Intelligence, Helsinki, Finland, July 9-12, 2008. Ed. by D. McAllester and P. Myllymäki.

Vijayakumar, S. and S. Schaal (2000). “Locally Weighted Projection Regression: An O(n)
Algorithm for Incremental Real Time Learning in High Dimensional Space.” In: Proceed-
ings of the Seventeenth International Conference on Machine Learning (ICML 2000),
pp. 1079–1086.

Wahba, G. (1990). Spline models for observational data. CBMS-NSF Regional Conferences
series in applied mathematics 59. SIAM.

Walder, C., K. I. Kim, and B. Schölkopf (2008). “Sparse Multiscale Gaussian Process
Regression.” In: Proceedings of the 25th International Conference on Machine Learning,
pp. 1112–1119.

Wang, Q., X. Zhang, Y. Zhang, and Q. Yi (2013). “AUGEM: Automatically Generate
High Performance Dense Linear Algebra Kernels on x86 CPUs.” In: Proceedings of the
International Conference on High Performance Computing, Networking, Storage and
Analysis. SC ’13, 25:1–25:12.

Waugh, S. (1995). “Extending and benchmarking Cascade-Correlation.” PhD thesis. Uni-
versity of Tasmania.

Weiss, S. M. and N. Indurkhya (1995). “Rule-based Machine Learning Methods for Functional
Prediction.” In: Journal of Artificial Intelligence Research 3.1, pp. 383–403.

137

http://arxiv.org/abs/1401.5508
https://doi.org/10.1016/j.apnum.2014.02.006
https://doi.org/10.1016/j.apnum.2014.02.006
https://doi.org/10.1016/j.apnum.2014.02.006

Welling, M. and Y. W. Teh (2011). “Bayesian Learning via Stochastic Gradient Langevin Dy-
namics.” In: Proceedings of the 28th International Conference on International Conference
on Machine Learning, pp. 681–688.

Williams, C. and M. Seeger (2001). “Using the Nyström Method to Speed Up Kernel
Machines.” In: Advances in Neural Information Processing Systems 13.

Wilson, A. and H. Nickisch (2015). “Kernel Interpolation for Scalable Structured Gaussian
Processes (KISS-GP).” In: Proceedings of the 32nd International Conference on Machine
Learning. Ed. by F. Bach and D. Blei. Vol. 37. Proceedings of Machine Learning Research,
pp. 1775–1784.

Wilson, A. G., E. Gilboa, A. Nehorai, and J. P. Cunningham (2014). “Fast Kernel Learn-
ing for Multidimensional Pattern Extrapolation.” In: Advances in Neural Information
Processing Systems 27, pp. 3626–3634.

Yan, F. and Y. Qi (2010). “Sparse Gaussian Process Regression via l1 Penalization.” In:
Proceedings of the 27th International Conference on Machine Learning, pp. 1183–1190.

Zhao, S., E. Zhou, A. Sabharwal, and S. Ermon (2016). “Adaptive Concentration Inequalities
for Sequential Decision Problems.” In: Advances in Neural Information Processing Systems
29. Ed. by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, pp. 1343–
1351.

Zhu, H., C. K. I. Williams, R. J. Rohwer, and M. Morciniec (1998). “Gaussian regression and
optimal finite dimensional linear models.” In: Neural Networks and Machine Learning.

138

	i Prologue
	1 Introduction
	2 Publications

	ii Preliminaries
	3 Introduction
	4 Gaussian Process Regression and Regularized Least-Squares
	5 Classic Linear Solvers
	5.1 Arnoldi's Procedure
	5.2 Conjugate Gradients
	5.3 Generalized Minimal Residual

	6 Kronecker Calculus

	iii Probabilistic Linear Solvers
	7 Preliminaries
	7.1 Introduction
	7.2 Projection Methods
	7.3 Constructing Probabilistic Linear Solvers

	8 Probabilistic Interpretation of Projection Methods
	8.1 Matrix-based Inference and Solution-based Inference
	8.2 Left-information Views
	8.3 Right-information Views
	8.4 Preconditioning

	9 Discussion
	9.1 Summary
	9.2 Future Directions

	iv Probabilistic Solvers for Kernel Least-Squares Problems
	10 Preliminaries
	10.1 Introduction
	10.2 Finite-rank Kernel

	11 Model
	11.1 Prior
	11.2 Likelihood
	11.3 Posterior

	12 Conjugate Gradients for Kernel Machines
	12.1 Properties
	12.2 Related Work

	13 Empirical Comparison of CG and KMCG
	13.1 Common Regression Datasets
	13.2 Grid-structured Datasets

	14 Discussion
	14.1 Summary
	14.2 Future Directions

	v Probabilistic Kernel-Matrix Determinant Estimation
	15 Preliminaries
	15.1 Introduction
	15.2 The Cholesky Decomposition
	15.3 Martingales and Stopping Times

	16 A Probably Approximately Correct Bound
	16.1 Problem Definition
	16.2 Stopping Condition
	16.3 Discussion
	16.4 Related Work

	17 Proof of thm:determinantstopping
	17.1 Using the Stopping Conditions
	17.2 DN is probably close to its Expected Value
	17.3 U is probably large enough

	18 Application to Kernel Matrix Determinant Estimation
	19 Discussion
	19.1 Summary
	19.2 Future Directions

	vi Epilogue
	20 Conclusions
	20.1 Discussion
	20.2 Future Work

	vii Appendix
	A Benchmark Datasets
	B Gaussian Processes
	C Additional Material for part:prelim
	D Additional Material for part:solvers
	D.1 Proof of Proposition 5
	D.2 Proof of Theorem 15

	E Additional Material for part:projections
	E.1 Sampling from a Gaussian with Symmetric Kronecker Covariance
	E.2 Proofs
	E.3 Additional Experiments and Results

	F Additional Material for part:determinants
	Bibliography

