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Introduction

We work over an algebraically closed field K of characteristic zero. By
a K∗-surface we mean a normal irreducible surface X endowed with an
effective morphical action K∗×X → X of the multiplicative group K∗. The
geometry of K∗-surfaces has been intensely studied by many authors; see
for instance [18–20,41–44]. We consider the automorphism group Aut(X)
of a rational projective K∗-surface X. This is an affine algebraic group and
our first aim is to give a detailed explicit description of the unit component
of Aut(X) in terms of basic data of the action.

We will apply the results to the study of almost homogeneous K∗-surfaces
in general and, more concretely, develop classifications in the almost homo-
geneous log del Pezzo case.

In order to formulate our main result of Chapter 1, let us recall the basic
geometric features of K∗-surfaces. One calls a fixed point elliptic (hyperbolic,
parabolic) if it lies in the closure of infinitely many (precisely two, precisely
one) non-trivial K∗-orbit(s). Elliptic and hyperbolic fixed points are isolated,
whereas the parabolic fixed points form a closed smooth curve with at most
two connected components. Every projective normal K∗-surface X has a
source and a sink, that means irreducible components F+, F− ⊆ X of the
fixed point set admitting open K∗-invariant neighborhoods U+, U− ⊆ X
such that

lim
t→0

t · x ∈ F+ for all x ∈ U+, lim
t→∞

t · x ∈ F− for all x ∈ U−,

where these limits are the respective values at the points 0 and ∞ of the
unique morphism P1 → X extending the orbit map t 7→ t · x. The source,
and as well the sink, consists either of a single elliptic fixed point or it is a
smooth irreducible curve of parabolic fixed points; we write x+ and x− in the
elliptic case and D+ and D− in the parabolic case. Apart from the source
and the sink, we find at most hyperbolic fixed points. The raw geometric
picture of a rational projective K∗-surface X is as follows:

F+

F−

D01

D0n0

Dr1

Drnr

A0 Ar

The general orbit K∗ · x ⊆ X has trivial isotropy group K∗x and its closure
connects the source and the sink in the sense that it contains one fixed point
from F+ and one from F−. Besides the general orbits, we have the special
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2 INTRODUCTION

non-trivial orbits. Their closures are rational curves Dij ⊆ X forming the
arms Ai = Di1∪. . .∪Dini of X, where i = 0, . . . , r, the intersections F+∩Di1
and Dini ∩ F− consist each of a fixed point and any two subsequent Dij ,
Dij+1 intersect in a hyperbolic fixed point. To every such rational curve Dij

we associate an integer, namely the order lij of the K∗-isotropy group of the
general point of Dij .

Every K∗-surface X admits a minimal equivariant resolution π : X̃ → X
of singularities. If there is a parabolic fixed point curve D+ ⊆ X, then we
consider the points xi ∈ X lying in D+∩Di1. If xi is singular, then the fibre
π−1(xi) of the minimal resolution is a connected part Ei1 ∪ . . . ∪ Eiqi of an
arm of X̃, where the curve Ei1 intersects the proper transform of D+. We
define

ci(D+) :=

 −E2
i1 −

1

−E2
i2 −

1
. . .− E2

iqi


−1

if xi is singular and ci(D+) = 0 else. We call an elliptic fixed point x ∈ X
simple, if π−1(x) is contained in an arm of X̃. If X admits a simple elliptic
fixed point, then we may assume that this is x−. The fibre π−1(x−) =
E1 ∪ . . . ∪Eq is a connected part of an arm of X̃ and Eq contains a smooth
elliptic fixed point of X̃. In this situation, we define

c(x−) :=

 −E2
q −

1

−E2
q−1 −

1
. . .− E2

1


−1

if x− is singular and c(x−) := 0 else. Finally, a point x ∈ X is called
quasismooth if it is a toric surface singularity; see Definition 6.7 and Corol-
lary 6.12 for more background. In case of a quasismooth simple elliptic fixed
point x− ∈ X, we can always assume the numeration of the arms A0, . . . ,Ar
to be normalized in the sense that l0n0 ≥ . . . ≥ lrnr and lini = ljnj implies
D2
ini
≤ D2

jnj
whenever i < j and ni, nj ≥ 2. In this situation, the excep-

tional curves E1, . . . , Eq ⊆ X̃ belong to the arm Ã0 ⊆ X̃ mapping onto
the arm A0 ⊆ X; see Proposition 9.12. We denote by l̃0ñ0 the order of the
isotropy group of the general point of Eq = D̃0ñ0 ⊆ Ã0. We are ready to
state the first result of this thesis.

Theorem 0.1. Let X be a non-toric rational projective K∗-surface.
Then the unit component of the automorphism group Aut(X) of X is given
as a semidirect product

Aut(X)0 = (Kρ oϕ Kζ) oψ K∗, ρ ∈ Z≥0, ζ ∈ {0, 1}.
If X has neither a non-negative fixed point curve nor a quasismooth simple
elliptic fixed point, then ρ = ζ = 0 holds. Otherwise, precisely one of the
following holds.

(i) There is a non-negative fixed point curve. Then we can assume
that this curve is D+ ⊆ X. In this situation, we have ζ = 0 and

ρ = max
(
0, (D+)2 + 1−

r∑
i=0

ci(D+)
)
.
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The group homomorphism ψ : K∗ → Aut(Kρ) fixing the semidirect
product structure is given by t 7→ t−1E%.

(ii) There is exactly one quasismooth simple elliptic fixed point. We
can assume that this is x− and the numeration of the arms is
normalized. Then

ρ = max
(

0,
⌊
l−1
1n1 min

i 6=0
(liniD2

ini + (lini − l1n1)DiniD1n1)− c(x−)
⌋
+1
)

holds. Moreover, we have ζ = 1 if and only if for all i 6= 1 the
following inequalities are satisfied

liniD
2
ini ≥ (l0n0 − lini)DiniD0n0 .

The semidirect product structure on Aut(X) is determined by the
following. For ζ = 1, the homomorphism ϕ : K → Aut(Kρ) is
given by

s 7→ A = (aµα), where aµα =
{(α−1

µ−1
)
sα−µ, α ≥ µ,

0 α < µ.

Moreover, the group homomorphism ψ : K∗ → Aut(Kρ oϕ Kζ) is
given by

t 7→

diag
(
tl̃0ñ0 , . . . , tl̃0ñ0−(ρ−1)l1n1

)
, ζ = 0,

diag(tl0n0 , . . . , tl0n0−(ρ−1)l1n1 , tl1n1 ), ζ = 1.

Automorphism groups of rational surfaces have also been considered by
several other authors. For instance, Sakamaki [46] studied the case of cubic
surfaces without parameters. More generally, Cheltsov and Prokhorov [10]
and, independently, also Martin and Stadlmayr [37] determined the Goren-
stein log del Pezzo surfaces with infinite automorphism groups. It turns out
that 50 out of the 53 listed surfaces of [10,37] are in fact K∗-surfaces and the
descriptions of the automorphism groups obtained there are in accordance
with Theorem 0.1. Note that Theorem 0.1 does not make any assumptions
on the singularities or the canonical divisor and thus goes far beyond the
Gorenstein log del Pezzo case. Of course, one may ask why Theorem 0.1
excludes the toric surfaces. For the sake of completeness, we treat them in
Proposition 4.9.

Let us take a closer look at the action of the automorphism group. We
discuss the question when a non-toric rational K∗-surface X admits an al-
most transitive action, that means a morphical action of an algebraic group
G having an open orbit. In this case, X is an equivariant compactification
of a G-homogeneous space and it is natural to ask when it is even an equi-
variant compactification of an algebraic group. Theorem 0.1 allows us to
give answers in terms of isotropy group orders and intersection numbers.

Theorem 0.2. Consider a non-toric rational projective K∗-surface X.
Then the following statements are equivalent.

(i) The surface X admits an almost transitive action of a two-
dimensional algebraic group G.

(ii) The surface X is almost homogeneous in the sense that the action
of the automorphism group Aut(X) on X is almost transitive.



4 INTRODUCTION

(iii) There is a quasismooth simple elliptic fixed point, say x− ∈ X,
and, assuming the numeration of the arms to be normalized, one
of the following two series of inequalities is valid:
liniD

2
ini + (lini − l1n1)DiniD1n1 ≥ l1n1c(x−), i = 1, . . . , r,

liniD
2
ini ≥ (l0n0 − lini)DiniD0n0 , i = 0, 2, . . . , r.

Assume that one of the above statements holds and let G be a two-
dimensional algebraic group acting effectively and almost transitively on X.

(iv) If only one of the series of inequalities of (iii) is valid, then G is
a non-abelian semidirect product Koϕ K∗. Moreover:
(a) If the first series of inequalities holds, then ϕ(t)(s) = tl1n1s

and for general x ∈ X, the isotropy group Gx is cyclic of
order l0n0. Thus, X is an equivariant G-compactification if
and only if l0n0 = 1.

(b) If the second series of inequalities holds, then ϕ(t)(s) = tl0n0s
and for general x ∈ X, the isotropy group Gx is cyclic of
order l1n1. Thus, X is an equivariant G-compactification if
and only if l1n1 = 1.

(v) If the series of inequalities of (iii) both are valid, then the groups
G from (iv) (a) and (iv) (b) both act, and, moreover, X is an
equivariant compactification of the vector group G = K2.

The case of almost homogeneous Gorenstein del Pezzo surfaces has
been investigated in [15, 16]. Theorem 0.2 is in accordance with the re-
sults obtained there and it delivers in addition the general isotropy groups.
Note that there exist normal surfaces X which equivariantly compactify
the abelian group K × K∗. But any such X is a toric surface according
to [4, Theorem 2]. More explicit statements on the almost homogenoeus
case are given in Section 13. For instance Proposition 13.12 specifies up to
conjugation all the semidirect products K ×ψ K∗ ⊆ Aut(X) acting almost
transitively. Moreover, the almost transitive K2-actions on X from Theo-
rem 0.2 (v) are so-called additive actions on X in the sense of [5, 17]. In
Proposition 13.17, we determine up to conjugation by elements from K∗ all
the additive actions on X.

Using our result on the combinatorics of rational projective K∗-surfaces
with non-trivial automorphism group we proceed with a classification result
for almost homogeneous log del Pezzo K∗-surfaces, i.e. log del Pezzo surfaces
whose automorphism group acts with an open oprbit.

A del Pezzo surface is a normal projective surface X with ample anti-
canonical divisor −KX . For a resolution of singularities ϕ : Y → X consider
the ramification formula

KY = ϕ∗KX +
∑

aiEi,

where the Ei are the prime components of the exceptional divisor and ai are
called the discrepancies of the resolution. The surface X is called

(i) log terminal, if ai > −1 for all i.
(ii) ε-log terminal, if ai > −1 + ε for all i for a given 0 < ε < 1.
(iii) canonical, if ai ≥ 0 for all i.
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(iv) terminal, if ai > 0 for all i.
A log terminal del Pezzo surface is called, in short, log del Pezzo. Those
surfaces have been studied intensely beginning in the late 19th century with
the smooth case.

In [6] Alexeev contributed to the study of these surfaces showing that
for each ε there are only finitely many families of ε-log terminal del Pezzo
surfaces. Subsequently, concrete classification work was mostly based on
using an important invariant of X, its Gorenstein index. This is the smallest
positive integer ιX such that ιXKX is Cartier. Restricting to ι(X) ≤ 2, all
log del Pezzo surfaces have been classified in [7] by giving the corresponding
intersection graphs of a certain resolution of singularities. The theory of K3
surfaces played a substantial role in their work. In a completely different
manner, log del Pezzo surfaces with ι(X) = 2 were classified in [39]. This
approach was adopted in [22] extending his ideas to cover the case that
ι(X) = 3. Additionally, the applied method can be used to perform the
classification for arbitrary Gorenstein index.

The classification process boils down to a completely combinatorial prob-
lem when restricting to surfaces that allow an effective action of a non-trvial
torus. We achieve concrete algorithms that can be implemented to a com-
puter algebra system, Maple for instance, and the results can be analyzed
more thoroughly. If the acting torus has dimension 2, the surface is toric and
can be described by its associated Fano polygon, i.e. a lattice polygon such
that the origin is contained in its relative interior. The following one-to-one
correspondence provides the combinatoric picture:

{Fano polygons} ←→ {Fano toric surfaces}
For a survey of classification results for Fano toric surface see [34]. Moreover
the Graded Ring Database (see [9]) lists the polygons of toric log del Pezzo
surfaces with Gorensteinindex up to 17.

For a one-dimensional torus action we arrive at the study of K∗-surfaces.
Different approaches have been used to classify parts of this broader class
of surfaces, for example the use of polyhedral divisors. This way, results for
the case of Picard number 1 and ι(X) ≤ 3 were obtained in [47].

Our approach relies on the anticanonical complex, a combinatorial ob-
ject that generalizes Fano polytopes to a wider class of varieties. It has been
introduced in [8, 31] and has shown to be a very useful tool for classifica-
tions of Fano varieties with torus actions: Results for threefolds with a two
torus action using the anticanonical complex have been obtained in [8,40],
Furthermore there have been works on generalizations of this tool in [1] for
non-complete and non-Q-Gorenstein, [31] for higher complexity and [38] for
non-degenerate toric complete intersections.

Anticanonical complex.
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In the surface case we introduce the notion of LDP complex, a com-
binatorial object that uniquely describes a log del Pezzo K∗-surface. It is
a polyhedral complex of two-dimensional polygons in a higher dimensional
ambient rational vector space and for every K∗-surface it coincides with its
anticanonical complex. Adding two arithmetic condition, this object yields
the following correspondence, analagous to the well known correspondece
for toric Fano varieties:

Theorem 0.3. There is a one-to-one correspondence between LDP com-
plexes and log del Pezzo K∗-surfaces.

{LDP complexes} ←→ {log del Pezzo K∗-surfaces}

As in the case of Fano polytopes, the LDP complex fixes the described
K∗-surface up to isomorphism and there is a combinatorial description for
ε-log canonicity and almost homogeneity. Moreover, we achieve that, under
certain arithmetic conditions, removing vertices of an LDP complex is the
same as contracting divisors of the corresponding log del Pezzo surface.

In Chapter 2, we focus on the classification of almost homogeneous LDP
complexes and present work obtained in cooperation with Daniel Hättig. In
[3] a first classification of almost homogeneous log del Pezzo K∗-surfaces has
been given for Picard number one and varieties with at worst one singularity.
Furthermore as mentioned before, classification results for del Pezzo surfaces
with infinite automorphism groups have been recently achieved in [10] and in
[37]. Moreover equivariant compactifications of two-dimensional algebraic
groups have been studied in [15, 16]. The authors restricted to du Val
singularities.

We develope a concrete algorithm to classify almost homogeneos 1/k-
log canonical K∗-surfaces after finitely many steps, therefore settling the
question of classifying all log del Pezzo K∗-surfaces with at worst 1/k-log
canonical singularities. This algorithm has been implemented in Maple, pro-
viding a classification of all nontoric 1/k-log canonical almost homogeneous
del Pezzo K∗-surfaces for any given k ∈ Z≥1. In particular, for increasing k
all log terminal almost homogeneous del Pezzo K∗-surfaces can be obtained
using this algorithm.

We shortly describe the main ingredients of the actual classification pro-
cess. The algorithmic classification follows three steps:

(i) Find all almost k-hollow polygons.
(ii) Find all combinatorially minimal almost homogeneous, almost k-

hollow LDP complexes.
(iii) Build all almost homogeneous, almost k-hollow LDP complexes.

The key observation is that removing certain vertices shrinks the LDP
complex, hence the LDP complex obtained remains almost k-hollow. There-
fore, it suffices to find all almost k-hollow LDP complexes that do not admit
any further removal of vertices and build complexes starting with these com-
binatorially minimal ones by reversing the removal process.

Observe that this also shows that for K∗-surfaces contraction preserves
the property to be log del Pezzo and there are at worst 1/k-log canonical
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singularities, see Theorem 7.7. Furthermore the first step requires the clas-
sification of almost k-hollow polygons. For the case k = 3 we achieved the
following result:

Theorem 0.4. The following statements hold:
(i) There are exactly 47902 toric 1/3-log canonical del Pezzo surfaces.
(ii) There are exactly 91 non-toric 1/3-log canonical combinatorially

minimal almost homogeneous del Pezzo K∗-surfaces.
(iii) There are exactly 21968 non-toric 1/3-log canonical almost homo-

geneous del Pezzo K∗-surfaces.

In particular, we showed that the unit component of the automorphism
group of a non-toric 1/3-log canonical almost homogeneous del Pezzo K∗-
surfaces is of dimension at most 7.
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CHAPTER 1

The unit component of the automorphism group

1. Outline of the chapter

Let us give an outline of this chapter, showing its basic ingredients and
some main ideas. Our working environment is the Cox ring based approach
of [25,29] to rational T -varieties X of complexity one, that means that X
is normal, rational and comes with an effective torus action T × X → X
such that the general T -orbit is of codimension one in X. One of the basic
features of this approach is that it provides a natural T -equivariant closed
embedding X ⊆ Z into a toric variety Z. In Section 2, we present a brief
general reminder.

We will also make use of the description of the automorphism group
of a toric variety via the Demazure roots of its defining fan; see [11, 14]
and Section 3 for a quick summary. First applications are the tools pro-
vided in Section 4 and the explicit description of the automorphism goups
of toric surfaces given there. The understanding of Aut(X) for a complete
rational T -variety X of complexity one is not yet as developed as in the
toric case. However, the main results of [3] show that Aut(X)0 is gener-
ated by T and the additive one-parameter groups, also called root groups,
arising from Demazure P -roots; see also Section 3. In Theorem 5.4 we pro-
vide a presentation of the automorphisms arising from Demazure P -roots as
restrictions of automorphisms of the ambient toric variety Z which are ex-
plicitly given in Cox coordinates. The explicit nature of the result is crucial
for our purposes. The general question to which extent a variety inherits
its automorphisms from a suitable ambient variety is interesting as well.
For Mori dream spaces X, a positive result concerning Aut(X)0 is given
in [28, Thm. 4.4]; see also [45] for further results in the case of quasismooth
Fano weighted complete intersections.

From Section 6 on, we focus on rational projective K∗-surfaces. We first
recall basics on their geometry and relate defining data to self intersection
numbers, see Sections 6 and 7. In Theorem 8.4 we figure out geometric
implications of the existence of a quasismooth simple elliptic fixed point: a
non-toric rational projective K∗-surface X can have at most one such fixed
point and if there is one, then any parabolic fixed point curve is contractible
or its intersection with any arm of X is a singularity of X. In Section 9, we
introduce horizontal and vertical P -roots, which basically means adapting
the more involved notion of a Demazure P -root to the surface case. To-
gether with K∗, the root groups arising from the P -roots generate Aut(X)0.
We link existence of P -roots to the geometry of X. From [3] we infer that
Aut(X) acts with an open orbit if and only if there is a horizontal P -root.

11



12 1. THE UNIT COMPONENT OF THE AUTOMORPHISM GROUP

Proposition 9.6 shows that the presence of a horizontal P -root forces a qua-
sismooth simple elliptic fixed point. By Proposition 9.17, existence of verti-
cal P -roots exclude quasismooth simple elliptic fixed points. Consequently,
Aut(X) does not act almost transitively if we have vertical P -roots. Each
vertical root is uniquely associated with a parabolic fixed point curve in the
sense that the corresponding root group moves that curve. Proposition 9.18
shows that if there are vertical roots, then they are all associated with the
same fixed point curve.

Starting with Section 10, we study the structure of the unit component
of Aut(X). The first task is to figure out relations among the root groups
arising from the P -roots. A sufficiently detailed study allows us to figure
out minimal generating systems of P -roots. Proposition 10.2 does this for
the case that Aut(X) acts with an open orbit and Proposition 10.3 settles
the remaining case. In Section 11, we show in terms of the combinatorics of
defining data that for the minimal resolution of singularities X̃ → X of a
rational projective K∗-surface, the groups Aut(X̃)0 and Aut(X)0 coincide.
Whereas the latter can as well be deduced from the general existence of a
functorial resolution in characteristic zero, our investigation is more specific
and allows us to relate the root groups of X with those of X̃ in an explicit
manner. In Section 12, we prove Theorem 0.1. The basic idea is to gain
the desired information on Aut(X)0 and its action on X via morphisms
X ← X̃ → X ′, where X̃ → X is the minimal resolution and X̃ → X ′ a
suitable birational contraction to a certain toric surface that allows to keep
track on the relevant root groups. Finally, in Section 13 we study almost
transitive actions on X, specify the acting two-dimensional groups and prove
Theorem 0.2.

The last two Sections show useful examples and that our results are in
accordance with recent classification results of [10] and [15,16]. The results
of this chapter are published in [27].

2. T -varieties of low complexity

Here we provide the necessary background on toric varieties and ratio-
nal varieties with torus action of complexity one. Throughout the whole
thesis, the ground field K is algebraically closed and of characteristic zero.
We simply write K for the additive group of the ground field, K∗ for the
multiplicative one and Tn for the n-fold direct product (K∗)n.

By a torus we mean an algebraic group T isomorphic to some Tn. A
quasitorus is a direct product of a torus and a finite abelian group. By
a T -variety X we mean a normal, irreducible variety X with an effective
action of a torus T given by a morphism T ×X → X. The complexity of a
T -variety X is the difference dim(X)− dim(T ).

We turn to toric varieties, which by definition are the T -varieties of com-
plexity zero. The basic feature of toric varieties is that they are completely
described via lattice fans. We assume the reader to be familiar with the
foundations of this theory as explained for instance in [12,13,23].

We will intensely use the Cox ring and Cox’s quotient construction for
toric varieties [11]. Recall that for any normal variety X with only constant
global invertible functions and finitely generated divisor class group Cl(X),
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one associates a Cox sheaf

R =
⊕

D∈Cl(X)
OX(D),

see [2, Chap. 1] for details. The Cox ring R(X) is the Cl(X)-graded algebra
of global sections of the Cox sheaf. If the Cox ring is finitely generated, we
can establish the following picture

SpecX R X̂ ⊆

//H

��

X̄ SpecX R(X)

X

where X̄ is the total coordinate space coming with an action of the charac-
teristic quasitorus H = SpecK[Cl(X)] and the characteristic space X̂ which
is an open H-invariant subset of X̄ and has X as a good quotient for the in-
duced H-action. In the case of toric varieties, this picture can be established
in terms of defining lattice fans as follows.

Construction 2.1. Let Z be the toric variety defined by a fan Σ in
a lattice N such that the primitive generators v1, . . . , vr (of the rays) of Σ
span the rational vector space NQ = N ⊗Z Q. We have mutually dual exact
sequences

0 // L // Zr P // N

0 oo K oo
Q

Zr oo
P ∗

M oo 0

where P : Zr → N sends the i-th canonical basis vector ei ∈ Zr to the
i-th primitive generator vi ∈ N ; we also speak of the generator matrix
P = [v1, . . . , vr] of Σ. The lower sequence gives rise to an exact sequence

1 // H // Tr P // TZ // 1

involving the quasitorus H = SpecK[K] and the acting torus TZ =
SpecK[M ] of Z. Moreover, the divisor class group and the Cox ring of
Z are given as

Cl(Z) = K, R(Z) = K[T1, . . . , Tr],

where the Cl(Z)-grading of R(Z) is given by deg(Ti) = Q(ei). Finally,
we obtain a fan Σ̂ in Zr consisting of certain faces of the positive orthant,
namely

Σ̂ := {δ0 � Qr
≥0; P (δ0) ⊆ σ for some σ ∈ Σ}.

The toric variety Ẑ associated with Σ̂ is the characteristic space of Z, sitting
as an open toric subset in the total coordinate space Z̄ := Kr. As P is a
map of the fans Σ̂ and Σ, it defines a toric morphism p : Ẑ → Z, the good
quotient for the action of the quasitorus H = ker(p) ⊆ Tr on Ẑ.

Remark 2.2. Construction 2.1 allows to put hands on the points of a
toric variety: every x ∈ Z can be written as x = p(z), where z ∈ Ẑ is a point
with closed H-orbit in Ẑ. Such a presentation is unique up to multiplication
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by elements of H and we call z = (z1, . . . , zr) Cox coordinates for the point
x ∈ Z.

We will use the Cox ring based approach to torus actions as developed
for the case of rational T -varieties of complexity one in [25,29], and, more
recently, in widest possible generality in [26]. Let us first have a look at an
example, showing some of the main ideas.

Example 2.3. Consider the surface X in the weighted projective space
P2,7,1,13 given as the zero set of a weighted homogeneous trinomial equation:

X = V (T 7
01 + T 2

12 + T21T22) ⊆ P2,7,1,13,

where each of the variables appears in exactly one monomial as indicated
by the double-indexing Tij . Then X comes with a K∗-action, given by

t · [z] = [z01, z11, t
−1z21, tz22].

The ambient space P2,7,1,13 is a toric variety. Its defining fan Σ lives in Z3

and its rays are generated by the columns v01, v11, v21 and v22 of the matrix

P =

 −7 2 0 0
−7 0 1 1
−4 1 1 0

 .
This setting reflects the key features of the K∗-action on our surface X. For
instance, setting Dij := X ∩ V (Tij), we obtain the arms of X as

A0 = D01, A1 = D11, A2 = D21 ∪D22.

Moreover, the order lij of the isotropy group of the general point in Dij

shows up in the upper two rows of the matrix P , as we have

l01 = 7, l11 = 2, l21 = 1, l22 = 1.

Finally, X inherits many geometric properties from its ambient space Z :=
P2,7,1,13. Most significantly, the Cox ring of X is the factor algebra

R(X) = R(Z)/〈g〉 = K[T01, T11, T21, T22]/〈T 7
01 + T 2

12 + T21T22〉,

where the grading of the Cox rings R(X) and R(Z) by the divisor class
group Cl(X) = Cl(Z) = Z are given by

deg(T01) = 2, deg(T02) = 7, deg(T11) = 1, deg(T21) = 13.

This picture extends as follows. The arbitrary rational projective K∗-
surface X comes embedded into a certain toric variety, is given by specific
trinomial equations as above and the key features of the K∗-action as well
as the geometry of X can be extracted from the defining data. Here comes
the construction provided in [25,29]; see also [2, Sec. 3.4].

Construction 2.4. Fix r ∈ Z≥1, a sequence n0, . . . , nr ∈ Z≥1, set
n := n0 + . . . + nr, and fix integers m ∈ Z≥0 and 0 < s < n + m − r. The
input data are matrices

A = [a0, . . . , ar] ∈ Mat(2, r+1;K), P =
[
L 0
d d′

]
∈ Mat(r+s, n+m;Z),
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where A has pairwise linearly independent columns and P is built from an
(s× n)-block d, an (s×m)-block d′ and an (r × n)-block L of the form

L =

 −l0 l1 . . . 0
...

... . . . ...
−l0 0 . . . lr

 , li = (li1, . . . , lini) ∈ Zni≥1

such that the columns vij , vk of P are pairwise different primitive vectors
generating Qr+s as a cone. Consider the polynomial algebra

K[Tij , Sk] := K[Tij , Sk; 0 ≤ i ≤ r, 1 ≤ j ≤ ni, 1 ≤ k ≤ m].
Denote by I the set of all triples I = (i1, i2, i3) with 0 ≤ i1 < i2 < i3 ≤ r
and define for any I ∈ I a trinomial

gI := gi1,i2,i3 := det
[
T
li1
i1

T
li2
i2

T
li3
i3

ai1 ai2 ai3

]
, T lii := T li1i1 · · ·T

lini
ini

.

Consider the factor group K := Zn+m/im(P∗) and the projection
Q : Zn+m → K. We define a K-grading on K[Tij , Sk] by setting

deg(Tij) := wij := Q(eij), deg(Sk) := wk := Q(ek).
Then the trinomials gI just introduced are K-homogeneous, all of the same
degree. In particular, we obtain a K-graded factor algebra

R(A,P ) := K[Tij , Sk] / 〈gI ; I ∈ I〉.

The ring R(A,P ) just constructed is a normal complete intersection
ring and its ideal of relations is, for example, generated by gi,i+1,i+2, where
i = 0, . . . , r − 2. The varieties X with torus action of complexity one are
constructed as quotients of SpecR(A,P ) by the quasitorus H = SpecK[K].
Each of them comes embedded into a toric variety.

Construction 2.5. Situation in Construction 2.4. Consider the com-
mon zero set of the defining relations of R(A,P ):

X̄ := V (gI ; I ∈ I) ⊆ Z̄ := Kn+m

Let Σ be any fan in the lattice N = Zr+s having the columns of P as the
primitive generators of its rays. Construction 2.1 leads to a commutative
diagram

X̄ ⊆

⊆

Z̄

⊆

X̂ //

//H p
��

Ẑ

//Hp
��

X // Z

with a variety X = X(A,P,Σ) embedded into the toric variety Z associated
with Σ. Dimension, divisor class group and Cox ring of X are given by

dim(X) = s+ 1, Cl(X) ∼= K, R(X) ∼= R(A,P ).
The subtorus T ⊆ Tr+s of the acting torus of Z associated with the sublattice
Zs ⊆ Zr+s leaves X invariant and the induced T -action on X is of complexity
one.
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Remark 2.6. In Construction 2.5, the group H ∼= SpecK[Cl(X)] is the
characteristic quasitorus and X̄ ∼= SpecR(X) is the total coordinate space
of X. Moreover, p : X̂ → X is the characteristic space over X.

Remark 2.7. As in the toric case, Construction 2.5 yields Cox coordi-
nates for the points of X = X(A,P,Σ). Every x ∈ X ⊆ Z can be written
as x = p(z), where z ∈ X̂ ⊆ Ẑ is a point with closed H-orbit in X̂ and this
presentation is unique up to multiplication by elements of H.

Remark 2.8. We say that the matrix P from Construction 2.4 is irre-
dundant if we have li1ni ≥ 2 for i = 0, . . . , r. In Construction 2.5, we may
assume without loss of generality that P is irredundant. An X(A,P,Σ) with
irredundant P is a toric variety if and only if r = 1 holds.

The results of [2,25,29] tell us in particular the following; see also [26]
for a generalization to higher complexity.

Theorem 2.9. Every normal rational projective variety with a torus
action of complexity one is equivariantly isomorphic to some X(A,P,Σ).

3. Demazure roots and automorphisms

Here we present the necessary general background and facts on auto-
morphisms of toric varieties and rational varieties with a torus action of
complexity one.

The approach to automorphisms via Demazure roots involves locally
nilpotent derivations. Let us briefly recall some basics from [21]. A deriva-
tion on an integral affine K-algebra R is a K-linear map δ : R→ R satisfying
the Leibniz rule

δ(fg) = δ(f)g + fδ(g).
A derivation δ : R → R is locally nilpotent if every f ∈ R admits an n ∈
N with δn(f) = 0. Any locally nilpotent derivation δ : R → R defines a
representation

λ̄?δ : K→ Aut(R), λ̄?δ(s)(f) := exp(sδ)(f) :=
∞∑
k=0

sk

k! δ
k(f).

In fact this yields a bijection between the locally nilpotent derivations of R
and the rational representations of K by automorphisms of R. Consequently,

λ̄δ : K → Aut(SpecR), s 7→ Spec(λ̄?δ(s))

is a group homomorphism and, by construction, each of the automorphisms
λ̄δ(s) of Spec(R) has λ̄δ(s)∗ = λ̄?δ(s) as its comorphism.

As for any complete rational variety, the automorphism group of a toric
variety is an affine algebraic group. Its structure has been studied by De-
mazure [14] and Cox [11]. The following is a key concept.

Definition 3.1. Notation as in 2.1. A Demazure root at the primitive
generator vi ∈ N of Σ is an integral linear form u ∈ M satisfying the
conditions

〈u, vi〉 = −1, 〈u, vj〉 ≥ 0 for all j 6= i.
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Construction 3.2. Notation as in 2.1. Let u ∈M be a Demazure root
at the primitive generator vi ∈ N of Σ. The associated locally nilpotent
derivation δu on K[T1, . . . , Tr] is defined by its values on the variables:

δu(Tj) :=
{
TiT

P ∗(u), j = i,

0, j 6= i,
where TP

∗(u) = T
〈u,v1〉
1 · · ·T 〈u,vr〉r .

Observe that δ2
u = 0 holds. Moreover, we have Q(P ∗(u)) = 0 and thus

δu preserves the K-grading of K[T1, . . . , Tr]. The corresponding rational
representation of K on K[T1, . . . , Tn] is given by

λ̄?u(s)(Tj) =
{
Ti + sTiT

P ∗(u), j = i,

Tj , j 6= i,

Now, if λ̄u : K → Aut(Z̄) leaves Ẑ invariant, for instance, if Z is complete,
then λ̄u descends to a homomorphism λu : K → Aut(Z), the root group
associated with the Demazure root u. In Cox coordinates, we have

λu(s)(z) = z + sziz
P ∗(u)ei.

Theorem 3.3. See [11, Cor. 4.7]. Let Z be a complete toric variety
arising from a fan Σ in a lattice N . Then Aut(Z)0 is generated as group by
the acting torus TZ of Z and the images λu(K), where u runs through the
Demazure roots of Σ.

The concept of Demazure roots was extended in [3] to the case of normal
rational varieties X with an effective torus action T ×X → X of complexity
one. Let us recall the basic notions and facts.

Definition 3.4. See [3, Def. 5.2]. Let P be a matrix as in Construc-
tion 2.4. Consider the columns vij , vk ∈ N = Zr+s of P and the dual lattice
M of N .

(i) A vertical Demazure P -root is a tuple (u, k0) with a linear form
u ∈M and an index 1 ≤ k0 ≤ m satisfying

〈u, vij〉 ≥ 0 for all i, j,
〈u, vk〉 ≥ 0 for all k 6= k0,

〈u, vk0〉 = −1.

(ii) A horizontal Demazure P -root is a tuple (u, i0, i1, C), where u ∈M
is a linear form, i0 6= i1 are indices with 0 ≤ i0, i1 ≤ r, and
C = (c0, . . . , cr) is a sequence with 1 ≤ ci ≤ ni such that

lici = 1 for all i 6= i0, i1,

〈u, vici〉 =
{

0, i 6= i0, i1,

−1, i = i1,

〈u, vij〉 ≥


lij , i 6= i0, i1, j 6= ci,

0, i = i0, i1, j 6= ci,

0, i = i0, j = ci,

〈u, vk〉 ≥ 0 for all k.



18 1. THE UNIT COMPONENT OF THE AUTOMORPHISM GROUP

Example 3.5. Consider the defining matrix P of the K∗-surface dis-
cussed before in Example 2.3, that means

P =

 −7 2 0 0
−7 0 1 1
−4 1 1 0

 .
As m = 0, there are no vertical Demazure P -roots, but we have a horizontal
Demazure P -root (u, i0, i1, C) given by

u = (−1, 0, 1), i0 = 0, i1 = 1, C = (1, 1, 2).

Construction 3.6. See [3, Constr. 3.4 and 5.7]. Let A and P be as
in Construction 2.4. Given i0 6= i1 with 0 ≤ i0, i1 ≤ r and C = (c0, . . . , cr)
with 1 ≤ ci ≤ ni we define ζ = ζ(i0, i1, C) = (ζij , ζk) ∈ Zn+m by

ζij :=


lij , i 6= i0, i1, j 6= ci,

−1, i = i1, j = ci1 ,

0 else,
ζk := 0, k = 1, . . . ,m.

Moreover, to u ∈ M and the lattice vectors ζ ∈ Zn+m just introduced we
assign the following monomials

hu =
∏
i,j

T
〈u,vij〉
ij

∏
k

S
〈u,vk〉
k , hζ :=

∏
i,j

T
ζij
ij

∏
k

Sζkk .

Every Demazure P -root κ defines a locally nilpotent derivation δκ on
K[Tij , Sk]. If κ = (u, k0) is vertical, then one sets

δκ(Tij) := 0 for all i, j, δκ(Sk) :=
{
huSk0 , k = k0,

0, k 6= k0.

If κ = (u, i0, i1, C) is horizontal, then there is a unique vector β = β(A, i0, i1)
in the row space of A with βi0 = 0, βi1 = 1 and one sets

δκ(Tij) :=

βi h
u

hζ
∏
k 6=i,i0

∂T
lk
k

∂Tkck
, j = ci,

0, j 6= ci,
δκ(Sk) := 0, k = 1, . . . ,m.

In both cases, the derivation δκ repects the K-grading. Moreover, δκ leaves
the ideal of defining relations of R(A,P ) invariant and thus induces a locally
nilpotent derivation on R(A,P ). This gives us

λ̄κ := λ̄δκ : K → Aut(X̄),

where λ̄κ is the additive one-parameter group associated with the locally
nilpotent derivation δκ of R(A,P ). If X̂ is invariant under λ̄κ, for example,
if X is complete, then the root group associated with κ is

λκ := λδκ : K → Aut(X).

Example 3.7. We continue the discussion started in 2.3 and 3.5. Recall
that the K∗-surface X comes embedded into a weighted projective space Z
via

X = V (T 7
01 + T 2

11 + T21T22) ⊆ P2,7,1,13 = Z.
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We determine the root group λκ : K → Aut(X) arising from the horizontal
Demazure-P root κ = (u, i0, i1, C) given by

u = (−1, 0, 1), i0 = 0, i1 = 1, C = (1, 1, 2).
First we have to write down the monomials hu and hζ and the vector β from
Construction 3.6. These are

hu = T 3
01T
−1
11 T21, hζ = T−1

11 T21,
hu

hζ
= T 3

01, β = (0, 1,−1).

Next we describe the derivation δκ : R(A,P ) → R(A,P ). It is determined
by its values on the variables Tij , which in turn are given as

δκ(T01) = 0, δκ(T11) = T 3
01
∂T l22
∂T22

= T 3
01T21,

δκ(T21) = 0, δκ(T22) = −T 3
01
∂T l11
∂T11

= −2T 3
01T11.

For computing the exponential map, we have to evaluate the powers of δκ
on the variables. For T11 and T22 this needs further computation:

δ2
κ(T11) = δκ(T 3

01T21) = T 3
01δκ(T21) = 0,

δ2
κ(T22) = δκ(−T 3

01T11) = −2T 3
01δκ(T11) = −2T 6

01T21,

δ3
κ(T22) = δκ(−2T 6

01T21) = −2T 6
01δκ(T21) = 0.

Using this, we directly obtain the comorphism λ̄κ(s)∗ = exp(sδκ). On the
variables Tij it is given by

T01 7→ T01,

T11 7→ T11 + sT 3
01T21,

T21 7→ T21,

T22 7→ T22 − 2sT 3
01T11 − s2T 6

01T21.

Consequently, we can represent each automorphism λκ(s) : X → X, where
s ∈ K, explicitly in Cox coordinates as

[z01, z11, z21, z22] 7→ [z01, z11 + sz3
01z21, z21, z22 − 2sz3

01z11 − s2z6
01z21].

One of the central ingredients of the first chapter is the following result
on automorphisms of varieties with a torus action of complecity one.

Theorem 3.8. See [3, Thm. 5.5 and Cor. 5.11]. Let X = X(A,P,Σ) be a
complete variety arising from Construction 2.5. Then Aut(X)0 is generated
as a group by the acting torus TX of X and the root groups associated with
the Demazure-P roots.

Every Demazure P -root in the sense of Definition 3.4 also hosts a De-
mazure root in the sense of Definition 3.1. We spend a few words on the
relations among the associated automorphisms.

Remark 3.9. Consider a complete variety X = X(A,P,Σ) and its am-
bient toric variety Z as in Construction 2.5.

(i) Let κ = (u, k0) be a vertical Demazure P -root. Then u is a De-
mazure root at vk0 , each λu(s) ∈ Aut(Z) leaves X ⊆ Z invariant
and the restriction of λu(s) to X equals λκ(s) ∈ Aut(X).
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(ii) Let κ = (u, i0, i1, C) be a horizontal Demazure P -root. Then
u is a Demazure root at vi1ci1 . In general, the automorphism
λu(s) ∈ Aut(Z) does not leave X ⊆ Z invariant.

Example 3.10. Consider once more the K∗-surface X ⊆ Z = P2,7,1,13
from 2.3. As seen in 3.5, we have the horizontal Demazure-P root κ =
(u, i0, i1, C), where

u = (−1, 0, 1), i0 = 0, i1 = 1, C = (1, 1, 2).
In Example 3.7, we computed the associated root group. In Cox coordinates
the automorphisms λκ(s) are given by

[z01, z11, z21, z22] 7→ [z01, z11 + sz3
01z21, z21, z22 − 2sz3

01z11 − s2z6
01z21].

The linear form u also defines a Demazure root at v11 for Z in the sense of
Definition 3.1. By Construction 3.2 the corresponding automorphisms are
λu(s) : Z → Z, [z01, z11, z21, z22] 7→ [z01, z11 + sT 3

01T21, z21, z22]
Observe that these ambient automorphisms do not leave the surface X ⊆ Z
invariant. For instance, we have

x = [1, 0,−1, 1] ∈ X, λu(1)(x) = [1, 1,−1, 1] 6∈ X.

The toric variety Z = P2,7,1,13 admits two further Demazure roots, each at
the primitive ray generator v22, namely

u′ := (0,−1, 1), u′′ := (−1,−1, 2).
The corresponding derivations vanish at all variables Tij except for T22, and
on T22 the evaluations are given as

δu′(T22) = T 3
01T11, δu′′(T22) = T 6

01T21.

With the associated automorphisms of Z, we can represent λκ(s) on X as a
composition of ambient automorphisms

λκ(s) = λu(s) ◦ λu′(−2s) ◦ λu′′(−s2)|X

4. Automorphisms of complete toric surfaces

We consider the toric variety arising from a complete fan and investigate
groups of automorphisms generated by the acting torus and root groups
arising from Demazure roots at one or two generators. The results are given
in Propositions 4.2 and 4.4. As an independent application we present in
Proposition 4.9 the automorphism groups of the projective toric surfaces.

Reminder 4.1. Let G,H be groups and ϕ : H → Aut(G) a homomor-
phism. The semidirect product is the set G × H together with the group
law

(g, h) · (g′, h′) := (gϕ(h)(g′), hh′).
The notation for the semidirect product is GoϕH and we call ϕ the twisting
homomorphism. Observe thatG = G×{eH} is a normal subgroup inGoϕH.

Proposition 4.2. Let Σ be a complete fan in Zn, denote by P =
[v1, . . . , vr] the generator matrix and let Z be the associated toric variety.
Moreover, fix 0 ≤ i0 ≤ r and let u1, . . . , uρ be pairwise distinct Demazure
roots at vi0.
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(i) Let 1 ≤ j ≤ k ≤ ρ. Then δujδuk = δukδuj = 0 holds. In particular,
for any two sj , sk ∈ K, we have

λ̄uj (sj)∗λ̄uk(sk)∗ = λ̄uk(sk)∗λ̄uj (sj)∗

(ii) Let U ⊆ Aut(Z) be the subgroup generated by the root groups
λu1 , . . . , λuρ. Then we have an isomorphism of algebraic groups

Θ: Kρ → U, (s1, . . . , sρ) 7→ λu1(s1) · · ·λuρ(sρ).

(iii) The acting torus Tn ⊆ Aut(Z) normalizes U ⊆ Aut(Z) and we
have an isomorphism of algebraic groups

Ψ: Kρ oψ Tn → UTn, (s, t) 7→ Θ(s)t,

where the twisting homomorphism ψ : Tn → Aut(Kρ) sends t ∈ Tn
to the diagonal matrix diag(χu1(t), . . . , χu%(t)).

In the proof and also later, we will make use of the following fact; see
for instance [17, Lemma 1].

Lemma 4.3. Consider a complete fan Σ in Zn, the associated toric va-
riety Z and a Demazure root u of Σ. Then, for all t ∈ Tn and s ∈ K, the
root group λu associated with u satisfies t−1λu(s)t = λu(χu(t)s).

Proof of Proposition 4.2. We prove (i). Due to the definition of
δuj and δuk given in Construction 3.2, we have δuk(Ti) = δuj (Ti) = 0 for all
i 6= i0. We conclude

δujδuk(Ti) = 0 = δukδuj (Ti),

whenever i 6= i0. Moreover, using the Leibniz rule, we compare the evalua-
tions at Ti0 and obtain

δujδuk(Ti0) = δuj
∏
i 6=i0

T
〈uk,vi〉
i = 0 = δuk

∏
i 6=i0

T
〈uj ,vi〉
i = δukδuj (Ti0).

As δj and δk commute, we can apply the homomorphism property of the
exponential map which yields

λ̄uj (sj)∗λ̄uk(sk)∗ = exp(sjδuj+skδuk) = exp(skδuk+sjδuj ) = λ̄uk(sk)∗λ̄uj (sj)∗.

This proves (i). As a consequence, λuj and λuk commute. Thus, the map Θ
from (ii) is a homomorphism. Let us see why Θ is injective. Assume

Θ(s1, . . . , sρ) = λu1(s1) · · ·λuρ(sρ) = idZ .

The task is to show s1 = . . . = sρ = 0. In Cox coordinates, the automor-
phism ϑ := Θ(s1, . . . , sρ) of Z is given by

ϑ̄ : z 7→ z̃, z̃i =
{
zi0 + s1z

P ∗u1zi0 + . . .+ sρz
P ∗uρzi0 , i = i0,

zi i 6= i0.

Consider the set Ẑ0 ⊆ Ẑ obtained by removing all V (Ti, Tj) from Z̄ = Kr,
where i 6= j. Then ϑ = idZ implies that there is a morphism h : Ẑ0 → H =
ker(p) with

ϑ̄(z) = h(z) · z for all z ∈ Ẑ0.
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As H is a quasitorus, h must be constant. Since H acts freely on V (Ti0)∩Ẑ0,
we obtain h(z) = eH for all z ∈ Ẑ0. Consequently,

s1z
P ∗u1 + . . .+ sρz

P ∗uρ = 0 for all z ∈ Tr.

Since v1, . . . , vr generate Qn as a vector space, the dual map P ∗ is injective.
Thus, as u1, . . . , uρ are pairwise distinct, we can conclude

s1 = . . . = sρ = 0.

We verify (iii). Using (ii) and Lemma 4.3, we see that Tn normalizes U . In
particular, UTn ⊆ Aut(Z) is a closed subgroup. By the definition of Θ and
applying again Lemma 4.3, we obtain

Θ(s)Θ(ϕ(t)(s′)) = Θ(s)Θ(χu1(t)s′1, . . . , χu%(t)s′%) = Θ(s)t−1Θ(s′)t.

We conclude that Ψ is a group homomorphism. Since U is unipotent and
every t ∈ T is semisimple, we have U ∩ Tn = {idZ}. Thus, Ψ injective.
Using (ii) again, we see that Ψ is surjective. �

Proposition 4.4. Let Σ be a complete fan with primitive generators
v1, . . . , vr and Z the associated toric variety. For i0 6= i1 and ε ≥ 0, let
u, uε be Demazure roots at vi0, vi1 respectively, such that 〈u, vi1〉 = 0 and
〈uε, vi0〉 = ε.

(i) For µ = 0, . . . , ε, set uµ := uε + (ε − µ)u. Then each uµ is a
Demazure root at vi1 with 〈uµ, vi0〉 = µ and for every 0 ≤ α ≤ ε
we have

λuα(s)λu(q) = λu(q)
α∏
µ=0

λuµ

(
s

(
α

µ

)
qα−µ

)
.

(ii) Let U, V ⊆ Aut(Z) be the subgroups generated by λu0 , . . . , λuε and
by λu, respectively. Then V normalizes U and

Φ: Kε+1oϕK → UV, (s0, . . . , sε, q) 7→ λu0(s0) · · ·λuε(sε)λu(q)

is an isomorphism of algebraic groups, where the twisting homo-
morphism ϕ : K→ Aut(Kε+1) is given by the matrix valued map

q 7→ A(q) = (aµα(q)), where aµα(q) =
{(α−1

µ−1
)
qα−µ, α ≥ µ,

0, α < µ.

(iii) The acting torus Tn ⊆ Aut(Z) normalizes UV ⊆ Aut(Z) and we
have an isomorphism of algebraic groups

Ψ: (Kε+1 oϕ K) oψ Tn → UV Tn, (s, q, t) 7→ Φ(s, q)t,

where the twisting homomorphism ψ : Tn → Aut(Kε+1oϕK) sends
t ∈ Tn to the diagonal matrix diag(χu0(t), . . . , χuε(t), χu(t)).

Proof. We show (i). The fact that each uµ is a Demazure root as
claimed is directly verified. Now, write P = [v1, . . . , vr]. Then we compute
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in Cox coordinates:

λu(q)(z)P ∗(uα) =
(
z + qzi0z

P ∗(u)ei0

)P ∗(uα)

=
(
zi0 + qzi0

r∏
i=0

z
〈u,vi〉
i

)α ∏
i 6=i0

z
〈uα,vi〉
i

=

 α∑
µ=0

(
α

µ

)
qα−µzαi0

r∏
i=0

z
(α−µ)〈u,vi〉
i

 ∏
i 6=i0

z
〈uα,vi〉
i

=
α∑
µ=0

(
α

µ

)
qα−µ

r∏
i=0

z
〈uα+(α−µ)u,vi〉
i

=
α∑
µ=0

(
α

µ

)
qα−µzP

∗(uµ).

Next, using 〈u, vi1〉 = 0, we see that the monomial zP ∗(u) does not depend
on zi1 and thus, for any a ∈ K, obtain

λu(q)(z + aei1) = z + aei1 + q(z + aei1)P ∗(u)

= z + qzP
∗(u) + aei1

= λu(q)(z) + aei1 .

Set for short tµ := s
(α
µ

)
qα−µ. Then, applying the two computations just

performed, we can verify the displayed formula as follows:
λuα(s)λu(q)(z) = λu(q)(z) + szi1λu(q)(z)P ∗(uα)ei1

= λu(q)(z) +
α∑
µ=0

tµzi1z
P ∗(uµ)ei1

= λu(q)(λu0(t0)(z)) +
α∑
µ=1

tµzi1z
P ∗(uµ)ei1

...
= λu(q)λuα(tα) · · ·λu0(t0)(z),

where we used that all the uµ are Demazure roots at vi1 and hence for every
µ = 0, . . . , α− 1 we have

zi1z
P ∗(uµ+1) = λ(tµ)(z)i1λ(tµ)(z)P ∗(uµ).

We turn to (ii). First note that V normalizes U , since by the identity
of (i) it normalizes each λuα(K), where α = 0, . . . , ε. In particular, UV is a
closed subgroup of Aut(Z). Now, for s ∈ Kε+1 and q ∈ K, set

Ψ(s) := Ψ(s, 0) Ψ(r) := Ψ(0, q).
By the nature of Ψ, we then have Ψ(s, q) = Ψ(s)Ψ(q). Moreover, showing
that Ψ respects the multiplication of (s, q) and (s′, q′) means to verify

Ψ(q)Ψ(s′) = Ψ(ϕ(q)(s′))Ψ(q).
For this, write s′ = s′0e0 + . . . + s′εeε with the canonical basis vectors ei ∈
Kε+1. Then for each s′iei, the above equality is a direct consequence of the
definition of ϕ and the identity provided by (i). Thus, Ψ is a homomorphism.
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Proposition 4.2 tells us that Ψ maps Kε+1 isomorphically onto U and
K isomorphically onto V . In particular, Ψ is surjective. Now consider
an element (s, q) ∈ ker(Ψ) with s 6= 0 and q 6= 0. As in the proof of
Proposition 4.2, we work in Cox coordinates. The element (s, q) restricted
to the identity on V (Ti0 , Ti1) ⊆ Z̄. By our assumptions, vi0 and vi1 form
part of a lattice basis of Zn and thus H acts freely on V (Ti0 , Ti1); see [2,
Prop. 2.1.4.2]. We conclude s = 0 and q = 0.

Finally we note that the verification of Assertion (iii) runs exactly as for
the corresponding statement of Proposition 4.2. �

We enter the surface case. The first step towards our description of
the automorphism groups is combinatorial: we specify the fans admitting
Demazure roots at two or more primitive generators.

Proposition 4.5. Let N and M be mutually dual two-dimensional lat-
tices. Consider distinct primitive vectors v, v′, w, w′ ∈ N and u, u′ ∈M such
that

〈u, v〉 = −1, ξ := 〈u, v′〉 ≥ 0, 〈u,w〉 ≥ 0, 〈u,w′〉 ≥ 0,

〈u′, v′〉 = −1, ξ′ := 〈u′, v〉 ≥ 0, 〈u′, w〉 ≥ 0. 〈u′, w′〉 ≥ 0.
Assume ξ = 0 or ξ′ = 0. Then we have w ∈ cone(−v,−v′) and, choosing
suitable Z-linear coordinates on N , we achieve

v = (1, 0) v′ = (0, 1), u = (−1, ξ), u′ = (ξ′,−1).
Assume ξ, ξ′ > 0, w 6∈ cone(v, v′) and w′ 6= w. Then each of u, u′ annihili-
ates w and w′. Choosing suitable Z-linear coordinates on N and b ∈ Z≥1,
we have

v = (1, 0), u = (−1, 1), w = (−1,−1),

v′ = (b− 1, b), u′ = (1,−1), w′ = (1, 1).

Proof. By assumption v and v′ generate NQ as a vector space and w
is not a multiple of one of v, v′. Thus, we can write w = −ηv − η′v′ with
η, η′ ∈ Q. Evaluating the linear forms u and u′ yields

η − ξη′ = 〈u,w〉 ≥ 0, η′ − ξ′η = 〈u′, w〉 ≥ 0.
Assume ξξ′ = 0. Then η, η′ ≥ 0, hence w ∈ cone(−v,−v′). Moreover, (v, v′)
is a basis of N as it is sent via (u, u′) to a basis of Z2. Clearly, (v, v′) provides
the desired coordinates. Now assume ξ, ξ′ > 0 and w 6∈ cone(v1, v2). Then

η ≥ ξη′ ≥ ξξ′η > 0, η′ ≥ ξ′η ≥ ξ′ξη′ > 0.
We conclude ξ = ξ′ = 1 and η = η′. This implies u′ = −u. Consequently,
each of the linear forms u and u′ annihilates w and w′. With respect to
suitable Z-linear coordinates on N , we have

v = (1, 0), v′ = (a, b), where 0 ≤ a < b.

Then 〈u, v〉 = −1 implies u = (−1, x) with x ∈ Z. Moreover, 〈u, v′〉 = 1
gives us bx = a + 1. Because of b > a, we must have x = 1. Consequently,
b = a+ 1 ≥ 1 holds. We conclude

u = (−1, 1), u′ = (1,−1), w = (−1,−1), w′ = (1, 1).
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�

Corollary 4.6. Let Σ be a complete fan in Z2 and P = [v1, . . . , vr] the
generator matrix of Σ. Let Demazure roots m1 at v1 and m2 at v2 be given.

(i) Assume that 〈m1, v2〉 = 0 or 〈m2, v1〉 = 0 holds. Then, with respect
to suitable Z-linear coordinates, we have
v1 = (1, 0), v2 = (0, 1), vi ∈ cone(−v1,−v2), i = 3, . . . , r
and, denoting by ξ(Σ) the minimum of the slopes of the lines
Qv3, . . . ,Qvr, the Demazure roots of Σ at v1 and v2 are given as

u = (−1, 0), uξ = (ξ,−1), 0 ≤ ξ ≤ ξ(Σ).
Assume in addition that some vi with i ≥ 3 admits a Demazure root
u′. Then, according to the value of ξ(Σ) and suitably renumbering,
we have
ξ(Σ) = 0 : v3 = (−1, 0), u′ = (1, 0), v4 = (0,−1), u′′ = (0, 1),

ξ(Σ) > 0 : v3 = (−1,−ξ(Σ)), u′ = (1, 0), v4 = (0,−1)
as the lists of the remaining primitive generators and the remaining
Demazure roots of the fan Σ, where v4 is optional in the second
case.

(ii) Assume that 〈m1, v2〉 > 0 and 〈m2, v1〉 > 0 hold. Then r = 3 or
r = 4 and with respect to suitable Z-linear coordinates, we have

v1 = (1, 0), v2 = (b− 1, b), v3 = (−1,−1), v4 = (1, 1),
where b ≥ 1. The possible Demazure roots of Σ are u = (−1, 1)
at v1, next u′ = (1,−1) at v2 and, uξ = (ξ, 1 − ξ) at v3, where
0 ≤ ξ ≤ b.

Proof. We show (i). We may assume 〈m1, v2〉 = 0. In this setting, the
first part of Proposition 4.5 shows vi ∈ cone(−v1,−v2) for i = 3, . . . , r and
provides us with the desired coordinates. Moreover, 0 ≤ ξ ≤ ξ(Σ) holds
because 〈uξ〉 evaluates non-negatively on vi for i ≥ 3. Now, let vi with i ≥ 3
admit a Demazure root u′. We may assume i = 3 and then have

v3 = (−a,−b), a, b ∈ Z≥0, u′ = (c, d), c, d ∈ Z≥0.

So, 〈u′, v3〉 = −1 means −ac − bd = −1. Consequently, ac = 0 or bd = 0.
Consider the case bd = 0. Then a = c = 1. According to b = 0 and d = 0,
we arrive at

u′ = (1, 0), v3 = (−1, 0), u′ = (1, 0), v3 = (−1,−b).
Observe b = ξ(Σ) and that we must add v4 = (0,−1) if b = 0 and may add
it if b > 0. The case ac = 0 delivers nothing new. We turn to (ii). Here,
we may assume v3 6∈ cone(v1, v2). Then the second part of Proposition 4.5
brings us to the setting of (ii) and, similarly as above, the statement on the
Demazure roots is obtained via straightforward calculation. �

Remark 4.7. The toric surfaces behind the fans of Corollary 4.6 pro-
vided we have at least three primitive allowing a Demazure root are the
following. In (i), we have P1 × P1 if ξ(Σ) = 0 and for ξ(Σ) > 0 we obtain
the weighted projective plane P1,1,b for r = 3 and the Hirzebruch surfaces
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Zb, where b ∈ Z≥1, for r = 4. The latter two are also the ones showing up
in (ii).

Now we begin to invesigate of the structure of the automorphism group
in the surface case.

Proposition 4.8. Situation as in Corollary 4.6 (ii). Then for r = 3
and r = 4 the following holds. For 0 ≤ ξ ≤ b, the root subgroups given by u,
u′ and uξ satisfy

λuξ(r)λu(s)λu′(s′) = λu(s)λu′(s′)
b∏

ν=0
λuν

r min(ν,ξ)∑
µ=0

(
ξ

µ

)(
b− µ
b− ν

)
sξ−µ(s′)ν−µ

 .
Let U ⊆ Aut(X) be the subgroup generated by λu0 , . . . , λub , λu and λu′. Then
we have an isomorphism of algebraic groups

Ψ2 : Kb+1 oϕ2 K2, → U,

(r0, . . . , rb, s, s
′) 7→ λu(s) ◦ λu′(s′)λu0(r0) · · ·λub(rb),

Here, the twisting homomorphism ϕ2 : K2 → Aut(Kb+1) is given by the ma-
trix valued map (s, s′) 7→ B(s, s′) = (bji(s, s′)), where bji(s, s′) = 0 for
i < j and

bji(s, s′) =
min(j−1,i−1)∑

µ=0

(
i− 1
µ

)(
b− µ

b− j + 1

)
si−1−µ(s′)j−1−µ for i ≥ j.

Proof. First recall that both u and u′ evaluate to zero on v3. Further-
more, one directly computes
〈uξ, v1〉 = ξ, uξ+(ξ−µ)u = uµ, 〈uµ, v2〉 = b−µ, uµ+(b−µ−ν)u′ = ub−ν .

Thus, applying Proposition 4.4 to the pairs roots u, uξ and u′, uξ, we can
verify the first assertion:

λuξ(r)λu(s)λu′(s′) = λu(s)
ξ∏

µ=0
λuµ

(
r

(
ξ

µ

)
sξ−µ

)
λu′(s′)

= λu(s)λu′(s′)
ξ∏

µ=0

b−µ∏
ν=0

λb−ν

(
r

(
ξ

µ

)
sξ−µ

(
b− µ
ν

)
(s′)b−µ−ν

)

= λu(s)λu′(s′)
b∏

ν=0

min(ν,ξ)∏
µ=0

λuν

(
r

(
ξ

µ

)
sξ−µ

(
b− µ
b− ν

)
(s′)ν−µ

)

= λu(s)λu′(s′)
b∏

ν=0
λuν

r min(ν,ξ)∑
µ=0

(
ξ

µ

)(
b− µ
b− ν

)
sξ−µ(s′)ν−µ


For second assertion, we proceed similarly as in the proof of Proposition 4.4.
The property that Ψ2 is a group homomorphism reduces to the following,
whih is a consequnece of the first assertion.

Ψ2(r)Ψ2(s, s′) = Ψ2(ϕ2(s, s′))Ψ2(r).
By definition, Ψ2 is surjective. To see injectivity, take (s, s′, r) ∈ ker(Ψ2).
Then, working Cox coordinates, we find an h ∈ H with Ψ2(s, s′, r)(z) = h·z.
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we conclude s = 0, s′ = 0 and r = 0, using the fact that the H-action is
explicitly known in our situation. �

Proposition 4.9. Let Σ be a complete fan in Z2, denote by `(Σ) the
number of primitive ray generators admitting a Demazure root and by ρ(Σ)
the total number of Demazure roots of Σ. Then the unit component of the
automorphism group of the toric surface Z defined by Σ is given as follows:

Z `(Σ) Aut0(Z) ρ(Σ)
− 0 T2 0
− 1 Kρ oψ1 T2 ρ
− 2 (Kρ oϕ K) oψ2 T2 ρ+ 1

P1,1,b, b ≥ 2 3 (Kb+1 oϕ′ K2) oψ3 T2 b+ 3
Zb, b ≥ 1 3 (Kb+1 oϕ′ K2) oψ3 T2 b+ 3

P2 3 PGL3(K) 6
P1 × P1 4 PGL2(K)× PGL2(K) 4

The twisting homomorphisms ϕ and ϕ′ are given by upper triangular ma-
trices ϕ(s) = A = (aji) and ϕ′(s, s′) = B = (bji), where for i ≥ j we
have

aji =
(
i− 1
j − 1

)
si−j , bji =

min(j−1,i−1)∑
µ=0

(
i− 1
µ

)(
b− µ

b− j + 1

)
si−1−µ(s′)j−1−µ.

Furthermore the twisting homomorphism for the toric factors are given by
the following diagonal matrices:

ψ1(t1, t2) = diag(t−1
1 , . . . , t−1

1 )
ψ2(t1, t2) = diag(t−1

2 , t1t
−1
2 , . . . , tρ−1

1 t−1
2 , t−1

1 ),
ψ3(t1, t2) = diag(t2, t1, t21t−1

2 , . . . , tρ1t
1−ρ
2 , t1t

−1
2 , t−1

1 t2).

Proof. The cases of P2 and P1 × P1 are well known. So, let Z arise
from a complete fan admitting Demazure roots and denote by U ⊆ Z the
subgroup generated generated by all the root groups. If only one primitive
generator of Σ allows Demazure roots, then Proposition 4.2 yields U ∼= Kρ.
If there are roots at exactly two primitive ray generators, Proposition 4.4
shows that U ∼= Kρ oϕ K is as claimed. In the cases Z = P1,1,b or Z = Zb,
Proposition 4.8 tells us that U ∼= Kρ oϕ′ K2 is as in the assertion. Finally,
using Lemma 4.3 we see that also the twisting homomorphisms ψ1, ψ2 and
ψ3 are the right ones. �

5. Representation via toric ambient automorphisms

The main result of this section, Theorem 5.4, is an important ingredient
for the explicit handling of automorphisms in the subsequent sections; it
represents automorphisms of a variety with torus action of complexity one
as restrictions of explicitly accessible automorphisms of its ambient toric
variety.

Construction 5.1. Situation as in Construction 2.4. Let κ =
(u, i0, i1, C) be a horizontal Demazure P -root. Define linear forms

uν,ι := νu+ e′i1 − e
′
ι ∈ M, ν = 1, . . . , li1ci1 , ι 6= i0, i1,
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where e′0 := 0 and e′1, . . . , e′r ∈M are the first r canonical basis vectors. So,
the values of uν,ι on the columns vij and vk of P are given by

〈uν,ι, vij〉 =


ν〈u, vij〉+ lij , i = i1,

ν〈u, vij〉 − lij i = ι,

ν〈u, vij〉 i 6= i1, ι,

〈uν,ι, vk〉 = ν〈u, vk〉, k = 1, . . . ,m.

Lemma 5.2. Let δ and δ′ be derivations on the polynomial ring
K[T1, . . . , Tn].

(i) We have δ(a) = 0 for every a ∈ K.
(ii) If δ(Ti) = δ(0) holds for i = 1, . . . , n, then δ = 0 holds.
(iii) If δ′(Ti) = δ(Ti) holds for i = 1, . . . , n, then δ′ = δ holds.
(iv) If δ′δ(Ti) = 0 holds for i = 1, . . . , n, then δ′δ = 0 holds.
(v) If δ′δ(Ti) = δδ′(Ti) holds for i = 1, . . . , n, then δ′δ = δδ′ holds.

Proof. The statements are directly verified by using the defining prop-
erties of derivations and fact that K[T1, . . . , Tn] is generated as a K-algebra
by the variables T1, . . . , Tn. �

Lemma 5.3. Consider linear forms uν,ι and uν′,ι′ as in Construction 5.1
and the associated derivations δuν,ι and δuν′,ι′ on K[Tij , Sk] as provided by
Construction 3.2.

(i) The linear form uν,ι ∈ M is a Demazure root at vιcι ∈ N in the
sense of Definition 3.1.

(ii) The derivation δuν,ι annihilates all variables Tij and Sk except Tιcι,
where we have

δuν,ι(Tιcι) = fu,ν,ιT
li1ci1−ν

i1ci1

with a monomial fu,ν,ι in the variables Tij, Sk but not depending
on any Tici with i 6= i0.

(iii) We have δuν′,ι′ δuν,ι = δuν,ιδuν′,ι′ = 0. In particular, the derivations
δuν,ι and δuν′,ι′ commute.

(iv) For any two s, s′ ∈ K, the automorphisms λ̄uν,ι(s)∗ and λ̄uν′,ι′ (s
′)∗

of K[T1, . . . , Tn] satisfy
λ̄uν′,ι′ (s

′)∗ ◦ λ̄uν,ι(s)∗ = exp(s′δuν′,ι′ + sδuν,ι).

In particular, λ̄uν,ι(s)∗ and λ̄uν′,ι′ (s
′)∗ as well as the associated

automorphisms λ̄uν,ι(s) and λ̄uν′,ι′ (s
′) of Z̄ commute.

Proof. For (i), we need that uν,ι evaluates to −1 on vιcι and is non-
negative on all other columns of P . By Definition 3.4, the latter is clear for
all vk and vij with (i, j) 6= (i1, ci1) or i 6= ι. For the open cases, we compute

〈uν,ι, vi1ci1 〉 = ν〈u, vi1ci1 〉+ li1ci1 = li1ci1 − ν,

〈uν,ι, vιj〉 = ν〈u, vιj〉 − lιj

{
≥ (ν − 1)lιj , j 6= cι,

= −1, j = cι.

We turn to (ii). We infer directly from Construction 3.2 that δuν,ι anni-
hilates all variables Tij , Sk except Tιcι and satisfies

δuν,ι(Tιcι) = Tιcι
∏

T
〈uν,ι,vij〉
ij

∏
S
〈uν,ι,vk〉
k = fu,ν,ιT

li1ci1−ν

i1ci1
,
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where by the compution proving (i) the monomial fu,ν,ι depends neither on
Ti1,ci1 nor on Tι,cι and the Tici with i 6= i0, i1, ι have by Definition 3.4 the
exponent

〈uν,ι, vici〉 = ν〈u, vici〉 = 0.
We show (iii). From (ii) we infer that δuν′,ι′ δuν,ι as well as δuν,ιδuν′,ι′ an-
nihilate all variables Tij and Sk; use Lemma 5.2 (ii) and (iii). Thus,
Lemma 5.2 (v) gives

δuν′,ι′ δuν,ι = δuν,ιδuν′,ι′ = 0.

To obtain (iv), first note that due to (iii), the linear endomorphisms sδuν,ι
and s′δuν′,ι′ of K[T1, . . . , Tn] commute. Thus, the assertion follows from
the definition λ̄δ(s)∗ := exp(sδ) and the homomorphism property of the
exponential series. �

Theorem 5.4. Let X = X(A,P,Σ) be as in Construction 2.4 with Σ
complete and κ = (u, i0, i1, C) a horizontal Demazure P -root. For s ∈ K set

α(s, ν, ι) := βι

(
li1ci1
ν

)
sν , ι = 0, . . . , r, ι 6= i0, i1, ν = 1, . . . , li1ci1 ,

where β is the unique vector in the row space of A with βi0 = 0 and βi1 = 1.
Consider the linear forms uν,ι from Construction 5.1 and the automorphisms

ϕu(s) :=
∏

ι6=i0,i1

li1ci1∏
ν=1

λuν,ι(α(s, ν, ι)) ∈ Aut(Z).

Then the automorphism λκ(s) of X can be presented as the restriction of an
automorphism of Z as follows:

λκ(s) = λu(s) ◦ ϕu(s)|X .
More explicitly, the comorphism satisfies λ̄κ(s)∗(Sk) = Sk and λ̄κ(s)∗(Tij) =
Tij, whenever i = i0 or j 6= ci and in the remaining cases

λ̄κ(s)∗(Ti1ci1 ) = Ti1ci1 + sδu(Ti1ci1 ),

λ̄κ(s)∗(Tιcι) = Tιcι +
li1ci1∑
ν=1

α(s, ν, ι)δuν,ι(Tιcι).

Proof. By definition, the comorphism of λ̄κ(s) equals exp(sδκ). In a
first step, we compute the powers δνκ occuring in the exponential series. We
will make repeated use of the fact

δuν,ι(Tιcι) = Tιcιh
νuT

li1
i1

T lιι
= fu,ν,ιT

li1ci1−ν

i1ci1
,

where hνu is as in Construction 3.6 and fu,ν,ι is a monomial in the
variables Tij and Sk but not depending on any Tici with i 6= i0; see
Lemma 5.3 (ii). Now, recall from Construction 3.6 that, apart from the
Tici , all variables Tij and Sk are annihilated by δκ. Moreover, we have

δκ(Ti0ci0 ) = βi0 = 0, δκ(Ti1ci1 ) = βi1
hu

hζ

∏
i 6=i0,i1

∂T lii
∂Tici

= Ti1ci1h
u = δu(Ti1ci1 ).
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Since δu(Ti1ci1 ) does not depend on any Tici with i 6= i0, we conclude
δ2
κ(Ti1ci1 ) = 0. Finally, for ι 6= i0, i1, Construction 3.6 and the above formula

for ν = 1 give us

δκ(Tιcι) = βι
hu

hζ

∏
i 6=i0,ι

∂T lii
∂Tici

= βιli1ci1Tιcιh
uT

li1
i1

T lιι
= βιli1ci1 δu1,ι(Tιcι).

To evaluate higher powers of δκ, we use the representation δuν,ι(Tιcι) =

fνT
li1ci1

−ν
i1ci1

given above. Applying the Leibniz rule yields

δκ(δuν,ι(Tιcι)) = (li1ci1 − ν)δuν+1,ι(Tιcι).

Putting things together, we arrive at

δνκ(Tιcι) = βι
li1ci1 !

(li1ci1 − ν)!δuν,ι(Tι,cι).

In the next step, we compute the values of λ̄κ(s)∗ = exp(sδκ) on the gener-
ators Tij and Sk. From above, we infer λ̄κ(s)∗(Tij) = Tij , whenever i = i0
or j 6= ci. Moreover, we have

λ̄∗κ(s)(Ti1ci1 ) = Ti1ci1 + sδu(Ti1ci1).

Finally, for ι 6= i0, i1, plugging the above representations of the δνκ(Tιcι) into
the exponentional series gives the remaining statements on comorphisms:

λ̄∗κ(s)(Tιcι) = Tιcι+
li1ci1∑
ν=1

βι

(
li1ci1
ν

)
sνδuν,ι(Tιcι) = Tιcι+

li1ci1∑
ν=1

α(s, ν, ι)δuν,ι(Tιcι).

We turn to λκ(s) = λu(s) ◦ ϕu(s)|X . We verify the corresponding iden-
tity on λ̄κ and λ̄u ◦ ϕ̄u by comparing the comorphisms. First recall from
Construction 3.2 that we have

λ̄∗u(s) = id + sδu,

where δu annihilates all variables Tij and Sk except Ti1ci1 . Next note that
ϕu(s) doesn’t depend on the order of composition due to Lemma 5.2 (v).
Moreover, Lemma 5.2 (iv) allows to compute

ϕ̄u(s)∗ =
∏

ι6=i0,i1

li1ci1∏
ν=1

λ̄uν,ι(α(s, ν, ι))∗ = id +
∑

ι6=i0,i1

li1ci1∑
ν=1

α(s, ν, ι)δuν,ι .

Now, we explicitly evaluate ϕ̄u(s)∗ ◦ λ̄u(s)∗ on the generators Tij and Sk of
the polynomial ring K[Tij , Sk]. Obviously, we have

ϕ̄u(s)∗ ◦ λ̄u(s)∗(Sk) = ϕ̄u(s)∗(Sk) = Sk, k = 1, . . . ,m,

ϕ̄u(s)∗ ◦ λ̄u(s)∗(Tij) = ϕ̄u(s)∗(Tij) = Tij , i = i0 or j 6= ci.

Using δu(Ti1ci1 ) = huTi1ci1 , where the latter monomial doesn’t depend on
any Tici with i 6= i0, we compute

ϕ̄u(s)∗◦λ̄u(s)∗(Ti1ci1 ) = ϕ̄u(s)∗(Ti1ci1 )+ϕ̄u(s)∗(huTi1ci1 ) = Ti1ci1+δu(Ti1ci1 ).



6. RATIONAL PROJECTIVE K∗-SURFACES 31

Finally, for any ι 6= i0, i1, we obtain

ϕ̄u(s)∗ ◦ λ̄u(s)∗(Tιcι) = ϕ̄u(s)∗(Tιcι) = Tιcι +
li1ci1∑
ν=1

α(s, ν, ι)δuν,ι(Tιcι).

Thus, comparing with the previously obtained values of λ̄κ(s)∗ on the gen-
erators, we arrive at the identity λ̄κ(s)∗ = ϕ̄u(s)∗ ◦ λ̄u(s)∗ of comorphisms,
which in turn induces the desired equation λκ(s) = λu(s) ◦ ϕu(s) on Z and
hence X. �

6. Rational projective K∗-surfaces

We will use the approach provided by Constructions 2.4 and 4.1 produc-
ing all rational projective varieties with torus action of complexity one as
X = X(A,P,Σ). Recall that the defining (r + s)× (n+m) block matrix P
is of the form

P =
[
L 0
d d′

]
= [v01, . . . , v0n0 , . . . , vr1, . . . , vrnr , v1, . . . , vm],

where the columns vij and vk are pairwise distinct primitive integral vectors
generating Qr+s as a vector space. In the case of a K∗-surface X, several
aspects simplify. First, we have s = 1. Thus, the lower part [d, d′] of P is
just one row and m ≤ 2 holds. Observe

v0j = (−l0j , . . . ,−l0j , d0j), vij = (0, . . . , 0, lij , 0 . . . , 0, dij), i = 1, . . . , r,

where lij sits at the i-th place for i = 1, . . . , r and we always have
gcd(lij , dij) = 1. Moreover, we arrange P to be slope ordered, that means
that for each 0 ≤ i ≤ r, we order the block vi1, . . . , vini of columns in such
a way that

mi1 > . . . > mini, where mij := dij
lij
.

Finally, in the surface case the defining fan Σ of the ambient toric variety Z
is basically unique and needs no extra specification. More precisely, the rays
of Σ are the cones over the columns of P and we always have the maximal
cones

τij := cone(vij , vij+1) ∈ Σ, i = 0, . . . , r, j = 1, . . . , ni − 1.

Writing v+ := v1 = (0, . . . , 0, 1) and v− := v2 = (0, . . . , 0,−1) for the
columns of P that arise for m = 1, 2, the collection of maximal cones of Σ
is complemented depending on the value of m as follows
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m = 2 : (p-p) τ+
i := cone(v+, vi1)
τ−i := cone(vini , v−)

m = 1 : (p-e) τ+
i := cone(v+, vi1)
σ− := cone(v0n0 , . . . , vrnr)

(e-p) σ+ := cone(v01, . . . , vr1)
τ−i := cone(vini , v−)

m = 0 : (e-e) σ+ := cone(v01, . . . , vr1)
σ− := cone(v0n0 , . . . , vrnr)

In particular, the K∗-surfaces delivered by Construction 2.5 only depend on
the matrices A and P , which allows us to denote them as X = X(A,P ). The
K∗-action on X is given on the torus Tr+1 ⊆ Z by t · z = (z1, . . . , zr, tzr+1).

Remark 6.1. Let X = X(A,P ) be a K∗-surface as above. Then the fan
Σ of the ambient toric variety Z of X reflects the geometry of the K∗-action
on X, as outlined in the introduction, in the following way.

(i) If P has a column v+ or v−, then the toric prime divisor on Z
corresponding to %+ = cone(v+), or %− = cone(v−), cuts out a
parabolic fixed point curve forming source or sink:

D+ = (B+ ∩X) ∪ {x+
0 } ∪ . . . ∪ {x

+
r },

D− = (B− ∩X) ∪ {x−0 } ∪ . . . ∪ {x−r }.
Here B+, B− ⊆ Z denote the toric orbits corresponding to
%+, %− ∈ Σ and x+

i ∈ B+
i ∩ X, x−i ∈ B−i ∩ X are the unique

points in the intersections with the toric orbits B+
i , B

−
i ⊆ Z cor-

responding to τ+
i , τ

−
i ∈ Σ.

(ii) If we have a cone σ+, resp. σ−, in Σ, then the associated toric fixed
point x+, resp. x−, of Z is an elliptic fixed point of the K∗-action
on X forming the source, resp. the sink.

(iii) The toric prime divisor of Z corresponding to the ray %ij =
cone(vij) of Σ cuts out the closure Dij ⊆ X of an orbit K∗·xij ⊆ X.
If P is irredundant, then the arms of X are precisely

Ai = Di1 ∪ . . . ∪Dini , i = 0, . . . , r.
The order of the isotropy group K∗xij equals lij . The hyperbolic
fixed point forming Dij ∩Dij+1 is the point cut out from X by the
toric orbit of Z corresponding to the cone τij ∈ Σ.

Definition 6.2. For any rational projective K∗-surface X = X(A,P ),
we define the numbers

l+ := l01 · · · lr1, m+ := m01 + . . .+mr1,

l− := l0n0 · · · lrnr , m− := m0n0 + . . .+mrnr .

Remark 6.3. Let X = X(A,P ). We have l+m+ ∈ Z and if there is an
elliptic fixed point x+ ∈ X, then

det(σ+) := det(v01, . . . , vr1) = l+m+ > 0.
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Similarly, l−m− ∈ Z holds and if there is an elliptic fixed point x− ∈ X,
then we obtain

det(σ−) := det(v0n0 , . . . , vrnr) = l−m− < 0.

Rational projective K∗-surfaces turn out to be always Q-factorial. That
means in particular that intersection numbers are well defined. Let us re-
call [2, Cor. 5.4.4.2].

Remark 6.4. For X = X(A,P ), the self intersection numbers of the
orbit closures Dij ⊆ X and possible parabolic fixed point curves D+, D− ⊆
X are given by

D2
i1 =



1
l2i1

( 1
m+ − 1

m−
)
, (e-e),

0 (p-p),
1

l2i1m
+ , (e-p),

−1
l2i1m

− , (p-e),

for ni = 1,

D2
ij =



1
l2ij

( 1
m+ − 1

mij−mij+1

)
, j = 1 and (e-e) or (e-p),

−1
l2ij(mij−mij+1) , j = 1 and (p-p) or (p-e),

−(mij−1−mij+1)
l2ij(mij−1−mij)(mij−mij+1) , 1 < j < ni,

−1
l2ij(mij−1−mij)

, j = ni and (p-p) or (e-p),
1
l2ij

(
− 1
m− + 1

mij−mij−1

)
, j = ni and (e-e) or (p-e),

for ni > 1,

(D+)2 = −m+,

(D−)2 = m−.

Recall that an irreducible curve D on a normal projective surface X is
called contractible if there is a morphism π : X → X ′ onto a normal surface
X ′ mapping D to a point x′ ∈ X ′ and inducing an isomorphism from X \D
onto X ′ \ {x′}.

Remark 6.5. Consider X = X(A,P ). Then, provided that they are
present, the vectors v+ and v− satisfy the identities

l−1
01 v01 + . . .+ l−1

r1 vr1 = m+v+, l−1
0n0v0n0 + . . .+ l−1

rnrvrnr = −m−v−.

Combining this with Remark 6.4, we rediscover that D+ and D− are con-
tractible if and only if they are of negative self intersection.

More generally, contractibility of invariant curves on rational normal
projective K∗-surfaces is characterized as follows.

Remark 6.6. Consider X = X(A,P ). Given a column v of P , let
D ⊆ X be the corresponding curve and P ′ the matix obtained from P by
removing v. Then the following statements are equivalent.

(i) The curve D ⊆ X is contractible.
(ii) The matrices A and P ′ define a K∗-surface X ′ = X(A,P ′).
(iii) We have D2 < 0 for the self intersection number.
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If one of these statements holds, then D is contracted by the K∗-equivariant
morphism X → X ′ induced by the map of fans Σ→ Σ′ and there is a unique
cone σ′ ∈ Σ′ containing v in its relative interior.

We turn to singularities of K∗-surfaces X = X(A,P ). Note that due to
normality of the surfaces, every singularity is a fixed point.

Definition 6.7. Let X be a rational projective K∗-surface and p : X̂ →
X its characteristic space. A point x ∈ X is quasismooth if x = p(z) holds
for a smooth point z ∈ X̂.

We characterize quasismoothness and smoothness of parabolic, hy-
perpbolic and elliptic fixed points in terms of the defining matrix P of
X = X(A,P ). All the statements are direct consequences of the general
(quasi-)smoothness criterion [26, Cor. 7.16].

Proposition 6.8. Consider X = X(A,P ). Then we have the following
statements on (quasi-)smoothness of possible parabolic fixed points.

(i) All points of B+ ⊆ D+ are smooth and all points x+
i ∈ D+ are

quasismooth. Moreover, x+
i ∈ D+ is smooth if and only if li1 = 1

holds.
(ii) All points of B− ⊆ D− are smooth and all points x−i ∈ D− are

quasismooth. Moreover, x−i ∈ D− is smooth if and only if lini = 1
holds.

Proposition 6.9. Consider X = X(A,P ). Then every hyperbolic fixed
point of X is quasismooth. Moreover, the hyperbolic fixed point correspond-
ing to τij ∈ Σ is smooth if and only if lij+1dij − lijdij+1 = 1 holds.

Proposition 6.10. Assume that the K∗-surface X = X(A,P ) has an
elliptic fixed point x ∈ X.

(i) If x = x+, then x is quasismooth if and only if there are 0 ≤
ι0, ι1 ≤ r with li1 = 1 for every i 6= ι0, ι1.

(ii) If x = x+, then x is smooth if and only if there are 0 ≤ ι0, ι1 ≤ r
with li1 = 1 for every i 6= ι0, ι1 and

det(σ+) = l+m+ = lι01dι11 + lι11dι01 = 1.

(iii) If x = x−, then x is quasismooth if and only if there are 0 ≤
ι0, ι1 ≤ r with lini = 1 for every i 6= ι0, ι1.

(iv) If x = x−, then x is smooth if and only if there are 0 ≤ ι0, ι1 ≤ r
with lini = 1 for every i 6= ι0, ι1 and

det(σ−) = l−m− = lι0nι0dι1nι1 + lι1nι1dι0nι0 = −1.

Definition 6.11. Given an elliptic fixed point x ∈ X = X(A,P ), we
call the numbers 0 ≤ ι0, ι1 ≤ r from Proposition 6.10 leading indices for x.

As a consequence of Proposition 6.10, we obtain the following charac-
terization of quasismoothness of K∗-surface X. We say that a singularity
x ∈ X is a toric surface singularity if there is a K∗-invariant open neigh-
bourhood x ∈ U ⊆ X such that U is a toric surface. Recall from [12] that
toric surface singularities are quotients of K2 by finite cyclic groups.
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Corollary 6.12. A rational projective K∗-surface is quasismooth if and
only if it has at most toric surface singularities.

Proof. We may assume that our K∗-surface is given as X = X(A,P ).
By normality, any singular point of X is a K∗-fixed point. The parabolic and
hyperbolic fixed point are toric surfaces singularities due to [2, Prop. 3.4.4.6].

Thus, we are left with discussing quasismooth elliptic fixed points. It
suffices to consider x− ∈ X. Let 0 ≤ ι0, ι1 ≤ r be leading indices for x−.
The cone σ− ∈ Σ defines affine open subsets

Z− ⊆ Z, X− := X ∩ Z− ⊆ X.

Recall that x− is the toric fixed point of Z−. Then X− is the affine K∗-
surface given by the data A and P− = [v0n0 , . . . , vrnr ] in the sense of [30,
Constr. 1.6 and Cor. 1.9]. Consider the defining relations

gi1,i2,i3 := det

 T
li1ni1
i1ni1

T
li2ni2
i2ni2

T
li3ni3
i3ni3

ai1 ai2 ai3


of the Cox ring R(X−) of X−. By Proposition 6.10 the point x− is quasi-
smooth if and only if lini = 1 for all i 6= ι0, ι1. The latter is equivalent to
the fact that R(X−) is a polynomial ring. This in turn holds if and only if
X− is an affine toric surface. �

Remark 6.13. Consider X = X(A,P ). The canonical resolution of
singularities X ′′ → X from [2, Constr. 5.4.3.2] is obtained by the following
two step procedure.

(i) Enlarge P to a matrix P ′ by adding er+1 and −er+1, if not already
present. Then the surface X ′ := X(A,P ′) is quasismooth and
there is a canonical morphism X ′ → X.

(ii) Let P ′′ be the slope ordered matrix having the primitive generators
of the regular subdivision of Σ(P ′) as its columns. Then X ′′ :=
X(A,P ′′) is smooth and there is a canonical morphism X ′′ → X ′.

Contracting all (−1)-curves inside the smooth locus that lie over singularities
of X gives X ′′ → X̃ → X, where X̃ = X(A, P̃ ) is the minimial resolution
of X.

7. Self intersection numbers and continued fractions

This section presents some variations on [43, Thm. 2.5] (iii) and (iv) on
continued fractions over the numbers −D2

i1, . . . ,−D2
ni given by an arm of a

smooth K∗-surface with two parabolic fixed point curves. Proposition 7.5
shows how to express the entries lij and dij of P for smooth X(A,P ) of
types (p-p), (p-e) and (e-e) via continued fractions over partial arms. For
convenience, we present the full proofs.

Definition 7.1. Consider the defining matrix P of a smooth rational
projective K∗-surface X(A,P ). By our assumptions, P is irredundant and
slope ordered.

(i) We call P adapted to the source if it satisfies
(a) −li1 < di1 ≤ 0 for i = 1, . . . , r,
(b) l01, l11 ≥ l21 ≥ . . . ≥ lr1.
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(ii) We call P adapted to the sink if it satisfies
(a) 0 ≤ dini < lini for i = 1, . . . , r,
(b) l01, l11 ≥ l21 ≥ . . . ≥ lrnr .

Definition 7.2. Consider a smooth rational projective K∗-surface X =
X(A,P ) and the entries lij and dij of the defining matrix P .

(i) Assume that X has a parabolic fixed point curve D+ and let P be
adapted to the source. Set

for i = 0, . . . , r : li0 := 0, di0 := 1, D2
i0 := (D+)2,

for i = 0 : li(−1) := −l11, di(−1) := d11,

for i = 1, . . . , r : li(−1) := −l01, di(−1) := d01.

(ii) Assume that X has an elliptic fixed point x− and let P be adapted
to the sink. Set

for i = 0 : l0n0+1 := −l1n1 , d0n0+1 := d1n1 ,

for i = 1 : l1n1+1 := −l0n0 , d1n1+1 := d0n0 ,

for i = 2, . . . , r : lini+1 := −l0n0 l1n1 , dini+1 := −1.
Lemma 7.3. Consider a smooth rational projective K∗-surface X =

X(A,P ) and the curves Dij in the arms of X.
(i) Assume that X has a parabolic fixed point curve D+ and let P be

adapted to the source. Then, for all i = 0, . . . , r and j = 0, . . . , ni−
1, we have
−lijD2

ij = lij−1 + lij+1, −dijD2
ij = dij−1 + dij+1.

(ii) Assume that X has an elliptic fixed point curve x− and let P be
adapted to the sink. Then, for all i = 0, . . . , r and j = 2, . . . , ni,
we have
−lijD2

ij = lij−1 + lij+1, −dijD2
ij = dij−1 + dij+1.

Proof. The statements follow directly from the computation of self
intersection numbers of X = X(A,P ) in terms of the entries of P given in
Remark 6.4. �

Reminder 7.4. Given any finite sequence a1, . . . , ak of rational numbers,
consider the process

CF1(a1) = a1, CF2(a1, a2) = a1−
1
a2
, CF3(a1, a2, a3) = a1−

1
a2 − 1

a3

. . .

Provided there is no division by zero, these numbers are called continued
fractions. The formal definition runs inductively:

CF1(a1) := a1, CFk(a1, . . . , ak) := a1 −
1

CFk−1(a2, . . . , ak)
.

Proposition 7.5. Consider a smooth rational projective K∗-surface
X = X(A,P ) and the curves Dij in the arms of X.

(i) Assume that X has a parabolic fixed point curve D+ and P is
adapted to the source. Fix 0 ≤ i ≤ r and 1 ≤ j ≤ ni and for
k = 1, . . . , j − 1 set

fijk := CFk(−D2
ij−k, . . . ,−D2

ij−1).
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Then the entries lij and dij of the matrix P can be expressed in
terms of the above continued fractions fijk as

lij =
j−1∏
k=1

fijk, dij =


−
(
(D+)2f0jj−1 + 1

) j−2∏
k=1

f0jk i = 0,

−
j−2∏
k=1

fijk, i 6= 0.

(ii) Assume that X has an elliptic fixed point x− and P is adapted to
the sink. Fix 0 ≤ i ≤ r and 1 ≤ j ≤ ni and for k = 1, . . . , j− 1 set

hijk := CFk(−D2
ini−j+k, . . . ,−D

2
ini).

Then the entries lini−j and dini−j of the matrix P can be expressed
in terms of the above continued fractions as

lni−j =

 j∏
k=1

hijk

 lini −
j−1∏
k=1

hijk

 lini+1,

dni−j =

 j∏
k=1

hijk

 dini −
j−1∏
k=1

hijk

 dini+1.

Proof. For both assertions, the proof relies on partially solving tridig-
onal systems of linear equations of the following form:

a1 −1 0
−1 a2 −1

. . .
−1 an−1 −1

0 −1 an

 ·


x1
x2
...

xn−1
xn

 =


b1
0
...
0
bn


In [35, Thm. 15], the solutions are explicitly computed via continued frac-
tions in the entries. In particular, with fk := CFk(ak, . . . , a1), it gives
us

b1 =
(

n∏
k=1

fk

)
xn −

(
n−1∏
k=1

fk

)
bn.

We verify (i). Due to smoothness, Proposition 6.8 (i) yields li1 = 1. Now,
the relations among the lij provided by Lemma 7.3 (i) can be written as
follows

−D2
ij−1 −1 0
−1 −D2

ij−2 −1
. . .
−1 −D2

i2 −1
0 −1 −D2

i1

 ·

lij−1
lij−2

...
li2
li1

 =


lij
0
...
0
li0


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Thus, the above formula for b1 gives the desired presentation of lij . With
the dij , we proceed analogously. In order to verify (ii), look at
−D2

ini−j+1 −1 0
−1 −D2

ini−j+2 −1
. . .
−1 −D2

ini−1 −1
0 −1 −D2

ini

·

lini−j+1
lini−j+2

...
lini−1
lini

 =


lini−j

0
...
0

lini+1


encoding the relations among the lij from Lemma 7.3 (ii) and apply the
above presentation of b1. Again the dij are settled analogously. �

Corollary 7.6. Consider a smooth rational projective K∗-surface X =
X(A,P ).

(i) Assume that there is a fixed point curve D+ ⊆ X and that P is
adapted to the source. Fix any choice of indices 1 ≤ ji ≤ ni, where
i = 0, . . . , r. Then we have

(D+)2 = −
r∑
i=0

miji −
r∑
i=0

CFji−1(−D2
i1, . . . ,−D2

iji−1)−1.

(ii) Assume that there is a fixed point x− ∈ X and that P is
adapted to the sink. Fix 0 ≤ j ≤ n0 − 1 and set σ̄− :=
cone(v0n0−j , v1n1 , . . . , vrnr). Then we have:

l0n0−j
det(σ̄−) = CFj(−D2

ini , . . . ,−D
2
ini−j+1)−1l1n1 .

Proof. We prove (i). Proposition 7.5 (i) allows us to express the slopes
miji in the following way:

m0j0 = −(D+)2 − f−1
0j0j0−1, miji = −f−1

ijiji−1, i = 1, . . . , r.
By the definition of the fijk, this directly leads to the desired representation
of the self intersection number:

(D+)2 = −m0j0 − f−1
0j0j0−1 = −

r∑
i=0

miji −
r∑
i=0

f−1
ijiji−1.

We turn to (i). Since X is smooth, Proposition 6.10 (iv) tells us det(σ−) =
−1. Thus, setting h0 := h0j1 · · ·h0jj , we have

−1 = det(σ−)
= l0n0d1n1 + l1n1d0n0

= (h−1
0 d0n0−j + h−1

0jjd1n1)l1n1 + d1n1(h−1
0 l0n0−j − h−1

0jjl1n1)
= h−1

0 (d0n0−jl1n1 + d1n1 l0n0−j)
= h−1

0 det(σ̄−),
as is seen by a direct computation. Using the representation of l0n0 provided
by Proposition 7.5 (ii), we obtain

l0n0−j
det(σ̄−) − l0n0 = −h−1

0 l0n0−j − l0n0 = h−1
0jjl1n1 .

�
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8. Quasismooth simple elliptic fixed points

The aim of this section is to establish Theorem 8.4 which specifies ob-
structions to the existence of quasismooth simple elliptic fixed points. This
is a first step towards the proof of Theorem 0.1, but also has some general
applications to the geometry of rational projective K∗-surfaces, see Corol-
laries 8.6 to 8.8. Let us recall our definition of a simple elliptic fixed point.

Definition 8.1. We say that an elliptic fixed point x of a rational
projective K∗-surface X is simple if for the minimal resolution π : X̃ → X
of singularities, the fiber π−1(x) is contained in an arm of X̃.

Note that a simple elliptic fixed point has in particular no parabolic
fixed point curve in its fiber of the minimal resolution of singularities. We
discuss two examples of simple elliptic fixed points, making use of the res-
olution of singularities provided by Remark 6.13 and the formulae for the
self intersection numbers given in Remark 6.4.

Example 8.2. The following matrices P and P̃ define the minimal res-
olutions X̃ → X of non-toric K∗-surfaces X, each of them with a simple
elliptic fixed point x− ∈ X.

(i) Here x− is quasismooth but singular and the fiber over x− equals
the curve D̃04 ⊆ X̃ in the 0-th arm:

P =

 −1 −2 −3 1 1 0 0 0
−1 −2 −3 0 0 1 1 0

0 −1 −2 1 0 1 0 1

 ,

P̃ =

 −1 −2 −3 −1 1 1 0 0 0
−1 −2 −3 −1 0 0 1 1 0

0 −1 −2 −1 1 0 1 0 1

 .
The curve D̃04 is isomorphic to a projective line and has self in-
tersection number equal to −2. In other words, x− ∈ X is an
A2-singularity.

(ii) Here x− is not quasismooth and the fiber over x− equals the curve
D̃08 ⊆ X̃ in the 0-th arm:

P =

 −1 −2 −3 −4 −5 −6 −7 1 2 3 0 0 0
−1 −2 −3 −4 −5 −6 −7 0 0 0 1 2 0

0 −1 −2 −3 −4 −5 −6 1 1 1 1 1 1

 ,

P̃ =

 −1 −2 −3 −4 −5 −6 −7 −1 1 2 3 0 0 0
−1 −2 −3 −4 −5 −6 −7 −1 0 0 0 1 2 0

0 −1 −2 −3 −4 −5 −6 −1 1 1 1 1 1 1

 .
The curve D̃08 is of intersection number −1 and has a cusp sin-
gularity. The singularity x− ∈ X is isomorphic to the Brieskorn-
Pham singularity

0 ∈ V (T 7
1 + T 3

2 + T 2
3 ) ⊆ K3,

where we gain this presentation by looking at X ∩ Zσ− for the
(smooth) affine toric chart Zσ− ⊆ Z; compare also [36, No. 2.5 on
p. 72].
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Definition 8.3. We say that a parabolic fixed point curve D ⊆ X is of a
rational projective K∗-surface is gentle if there is an arm Ai = Di1∪. . .∪Dini

such that the (unique) point x ∈ D ∩ Ai is a smooth point of X.
Theorem 8.4. Let X be a non-toric rational projective K∗-surface X

with a quasismooth simple elliptic fixed point x ∈ X.
(i) There is no gentle non-negative parabolic fixed point curve in X.
(ii) There is no other quasismooth simple elliptic fixed point in X.

Remark 8.5. The assumption that X is non-toric is essential in The-
orem 8.4. A cheap smooth toric counterexample is given by the projective
plane P2: Consider the two K∗-actions given by

t · [z] = [z0, z1, tz2], t · [z] = [z0, tz1, t
2z2].

For the first one, [0, 0, 1] is an elliptic fixed point and V (T2) a parabolic fixed
point curve of self intersection one. The second one has [1, 0, 0] and [0, 0, 1]
as elliptic fixed points.

Corollary 8.6. Every rational projective K∗-surface with two quasi-
smooth simple elliptic fixed points is a toric surface.

Corollary 8.7. Every quasismooth non-toric rational projective K∗-
surface with a simple elliptic fixed point has a fixed point curve.

The latter says that, when considering quasismooth non-toric rational
projective K∗-surfaces X, we always may assume that there is a curve D+ ⊆
X. For smooth X = X(A,P ), this allows us to complement [43, Thm. 2.5]
by showing that the defining matrix P is basically determined by the self
intersection numbers of invariant curves. More precisely, we obtain the
following.

Corollary 8.8. Let X = X(A,P ) be smooth, non-toric with P adapted
to D+ ⊆ X. Then all entries lij and dij of P can be expressed via self
intersection numbers according to Corollary 7.5.

Definition 8.9. Let X = X(A,P ) have a simple elliptic fixed point
x ∈ X. We call 0 ≤ i ≤ r an exceptional index of x if π−1(x) is contained in
the i-th arm of X̃ = X(A, P̃ ), where π : X̃ → X is the minimal resolution
of singularities.

Note that for any singular simple elliptic fixed point the exceptional in-
dex is unique. The following characterization of simple quasismooth elliptic
fixed points is an important ingredient for the proof of Theorem 8.4.

Proposition 8.10. Let x ∈ X = X(A,P ) be a quasismooth elliptic fixed
point with leading indices ι0, ι1.

(i) Assume x = x+. Then x is simple with exceptional index ι0 if and
only if there exists a vector u ∈ Zr × Z<0 such that
〈u, vι11〉 = −1, 〈u, vi1〉 = 0, i 6= ι0, ι1, 〈u, vij〉 ≥ 0, i 6= ι1.

We have li1 = 1 whenever i 6= ι0, ι1. Moreover, if u ∈ Zr × Z<0 is
a vector as above, then the following holds:

0 < m+ ≤ −ur+1m
+ ≤ 1

lι11
.
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(ii) Assume x = x−. Then x is simple with exceptional index ι0 if and
only if there exists a vector u ∈ Zr × Z<0 such that
〈u, vι1nι1 〉 = −1, 〈u, vini〉 = 0, i 6= ι0, ι1, 〈u, vij〉 ≥ 0, i 6= ι1.

We have lini = 1 whenever i 6= ι0, ι1. Moreover, if u ∈ Zr × Z>0
is a vector as above, then the following holds:

0 > m− ≥ ur+1m
− ≥ − 1

lι1nι1
.

Lemma 8.11. Consider a sequence of vectors v0, . . . , vk ∈ Q2 such that
there are c1, . . . , ck−1 ∈ Z≥2 with

vj+1 = cjvj − vj−1, j = 1, . . . , k − 1.
Then, for k ≥ 2, the difference vk − vk−1 lies in τ := cone(v1, v1 − v0) and
the vector vk lies in the shifted cone τ + v1.

Proof. Clearly, v1 ∈ τ + v1 and v1 − v0 ∈ τ . We proceed inductively.
For j ≥ 1, assume vj ∈ τ + v1 and vj − vj−1 ∈ τ . Write vj = v′j + v1 with
v′j ∈ τ . Then, using cj ≥ 2 we see

vj+1 = cjvj − vj−1 = (cj − 1)v′j + (cj − 2)v1 + (vj − vj−1) + v1 ∈ τ + v1.

�

Lemma 8.12. Consider H := {(x, y) ∈ Q2; x−y ≥ 1}. Given v0 = (a, b)
and v1 = (c, d) in H with a < 0 and c > 0, there is no u ∈ Z×Z>0 satisfying
(i) 〈u, v0〉 = u1a+ u2b ≥ 0, (ii) 〈u, v1〉 = u1c+ u2d = −1.

Proof. Since b < a < 0 and u2 > 0 hold, we infer u1 ≤ −2 from (i).
Then (ii) tells us d > 0. Now, plugging u1 = −(u2d+ 1)/c into (i) leads to
a contradiction:

u2 ≤
a

bc− ad
≤ b+ 1

bc− ad
≤ b+ 1

bc
≤ 1 + 1

bc
< 1.

�

Lemma 8.13. Consider four vectors ξ1, ξ2 and η1, η2 in Z2 satisfying the
following conditions:

det(ξ2, ξ1) = det(ξ1, η1) = det(η1, η2) = 1, det(ξ2, η2) ≥ 1.
Then ξ1 = aη1 − η2 and ξ2 = bη1 − cη2, where a, b, c > 0 and c = ab− 1. In
particular,

a = 1 ⇒ det(ξ2, η2) = 1, a ≥ 2 ⇒ c− b ≥ 1.

Proof. In suitable linear coordinates, we have η1 = (0,−1) and η2 =
(1, 0) and moreover ξ1, ξ2 ∈ Z2

<0. In this situation, the assertion can be
directly verified. �

Proof of Proposition 8.10. First observe that multiplying the last
row of P by −1 interchanges source and sink and thus it suffices to prove
Assertion (ii). For this we may assume that P is adapted to the sink. Con-
sider the minimal resolution π : X̃ → X, where X̃ = X(A, P̃ ), as provided
by Remark 6.13. Then, for every i = 0, . . . , r, the columns vi1, . . . , vini of
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P occur among the columns ṽi1, . . . , ṽiñi of P̃ . Moreover, Proposition 6.10
yields

l̃iñi = lini = 1, d̃iñi = dini = 0 for i = 2, . . . , r.

First suppose that x− ∈ X is simple. We may assume that the excep-
tional index of x− is 0 that means that the divisors inside π−(x) are located
in the 0-th arm of X̃. Then l̃1ñ1 = l1n1 and d̃1ñ1 = d1n1 hold. Define
u ∈ Zr+1 by u1 := d̃0ñ0 and ui := 0 for i = 1, . . . , r and ur+1 := l̃0ñ0 . Then
Proposition 6.10 yields

〈u, v1n1〉 = d̃0n0 l1n1 + l̃0ñ0d1n1 = l̃0ñ0 d̃1ñ1 + l̃1ñ1 d̃0ñ0 = −1.

According to the definition of u, we have 〈u, vini〉 = 0 for i = 2, . . . , r.
Moreover, for j = 0, . . . , ñ0, we use slope orderedness of P̃ to see

〈u, ṽ0j〉 = −d̃0ñ0 l̃0j + l̃0ñ0 d̃0j = l̃0ñ0 l̃0j

(
d̃0j

l̃0j
− d̃0ñ0

l̃0ñ0

)
≥ 0.

This means in particular 〈u, v0j〉 ≥ 0 for j = 1, . . . , n0. Moreover, since P
is slope ordered and adapted to the sink, we have dij ≥ 0 for all i ≥ 1 and
thus

〈u, vij〉 = l̃0ñ0dij ≥ 0, i = 2, . . . , r, j = 1, . . . , ni.

Let us care about the estimate for the slope sum m−. Evaluating u at the
vectors v0n0 and v1n1 gives us

−u1l0n0 + ur+1d0n0 ≥ 0, u1l1n1 + ur+1d1n1 = −1.

Solving the second condition for u1 and plugging the result into the first
one, gives us the estimate

ur+1(l0n0d1n1 + l1n1d0n0) ≥ −l0n0 .

The expression l0n0d1n1 + l1n1d0n0 equals l0n0 l1n1m
− and is negative due to

Proposition 6.10. We conclude

1 ≤ ur+1 ≤ −
1

l1n1m
− .

This directly yields the desired lower bound for ur+1m
−. The upper bound

0 > m− is guaranteed by Remark 6.3.
Now suppose that there is a vector u ∈ Zr × Z>0 as in the proposition.

Suitably arranging P and adapting u, we achieve ι0 = 0 and ι1 = 1. Note
that for each i = 2, . . . , r, we have ui = 0 due to dini = 0. We assume that
x− is not simple and show that this leads to a contradiction. For this, it
suffices to verify

(−l0n0 , d0n0), (l1n1 , d1n1) ∈ H := {(x, y) ∈ Q2; x− y ≥ 1},

because then Lemma 8.12 implies that u cannot evaluate non-negatively on
v0n0 and to −1 on v1n1 . Since P is slope ordered, (l1n1 , d1n1) lies in H. In
order to see that also (−l0n0 , d0n0) belongs to H, we use the assumption that
x− is not simple and thus we are in one of the following two cases.
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Case 1: The fiber π−1(x) ⊆ X̃ contains a parabolic fixed point curve D̃−.
Consider the sequence of divisors D̃−, D̃0ñ0 , . . . , D̃0ñ0−k connecting D̃− with
the proper transform D̃0ñ0−k of D0n0 ⊆ X. This give us a sequence of pairs

(0,−1), (−1, d̃0ñ0), . . . , (−l̃0ñ0−k, d̃0ñ0−k) = (−l0n0 , d0n0),

where l̃0ñ0 = 1 due to Proposition 6.8. Since X̃ → X is the minimal res-
olution, we have (D̃−)2 ≤ −2 and D̃2

0j ≤ −2 whenever j > ñ0 − k. Thus,
Remark 6.4 shows d̃0ñ0 ≤ −2. According to Lemma 7.3, the above sequence
of pairs satisfies the assumptions of Lemma 8.11. Applying the latter yields
(−l0n0 , d0n0) ∈ H.

Case 2: The fiber π−1(x) ⊆ X̃ contains an elliptic fixed point x̃− and curves
from the arms 0 and 1 of X̃. The curves in π−1(x) are D̃iñi , . . . , D̃iñi−ki
where i = 0, 1 and D̃iñi−ki−1 is the proper transform of D0n0 ⊆ X. Consider
the associated sequences of pairs

(l̃0ñ0 , d̃0ñ0), . . . , (−l̃0ñ0−k0 , d̃0ñ0−k0) = (−l0n0 , d0n0),

(l̃1ñ1 , d̃1ñ1), . . . , (l̃1ñ1−k1 , d̃1ñ1−k1) = (l1n1 , d1n1).
By slope orderedness of P̃ , all members of the second sequence lie in H.
Now, write ξ1, ξ2 for the first two pairs of the first sequence and η1, η2 for
the first two pairs of the second one. Then Lemma 8.13 provides us with
integers a, b, c > 1, where c = ab− 1 such that

ξ1 = aη1 − η2, ξ2 = bη1 − cη2.

Here a ≥ 2 holds as otherwise Proposition 6.10 shows that D̃0ñ0 and D̃1ñ1
contract smoothly which contradicts to minimality of the resolution. Thus,
ξ1, ξ2 ∈ H. Again by minimality of the resolution, all D̃0j ⊆ π−1(x) are
of self intersection at most −2. Using Lemmas 7.3 and 8.11, we arrive at
(l1n1 , d1n1) ∈ H. �

Lemma 8.14. Consider the defining matrix P of a rational projective
K∗-surface X(A,P ).

(i) If mij = 0 holds for 0 ≤ i ≤ r and 1 ≤ j ≤ ni, then dij = 0 and
lij = 1.

(ii) If P is adapted to the sink, then 0 ≤ mini < mini + l−1
ini
≤ 1 for

i = 1, . . . , r.
(iii) If P is irredundant and adapted to the sink, then mi1 > 0 for

i = 1, . . . , r.

Proof. We verify (i). If mij = 0 holds, then we must have dij = 0
and thus primitivity of the column vij yields lij = 1. We turn to (ii). As
P is adapted to the sink, we have 0 ≤ dini < lini whenever i ≥ 1 and the
desired estimate follows. We prove (iii). By slope orderedness of P and (ii),
we have mi1 ≥ min1 ≥ 0. We exclude mi1 = 0. Otherwise, mini = 0 holds.
Thus, di1 = dini = 0 and (i) yields li1 = lini = 1 and ni = 1. This is a
contradiction to irredundance of P . �

Proof of Theorem 8.4. We may assume X = X(A,P ) and that the
quasismooth simple elliptic fixed point is x− ∈ X. Moreover, we may assume
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that P is irredundant, adapted to the sink and that the two leading indices
from Proposition 8.10 are 0 and 1. Then we have

m01 ≥ m0n0 , m11 ≥ m1n1 ≥ 0, mi1 > mini = 0, i = 2, . . . , r,

by slope orderedness, Proposition 6.10 and Lemma 8.14. In particular, m−
equals m0n0 + mn1 . Using the estimate on m− from Proposition 8.10 and
Lemma 8.14 (ii), we see

0 ≥ −m1n1 > m0n0 ≥ −m1n1 −
1
l1n1

≥ −1.

We prove (i). Let D+ ⊆ X be a non-negative parabolic fixed point curve.
We have to show that D+ is not gentle. According to Proposition 6.8, this
means to verify li1 ≥ 2 for i = 0, . . . , r. Remark 6.4 yields

0 ≥ m+ = m01 +m11 +m21 + . . .+mr1,

where m11, . . . ,mr1 > 0 and r ≥ 2, hence 0 > m01. Moreover, m01 ≥
m0n0 ≥ −1 yields 0 < mi1 < 1 for i = 1, . . . , r. This implies li1 ≥ 2 for
i = 1, . . . , r. We show l01 ≥ 2. Otherwise, l01 = 1 and thus m01 = −1. Then
m0n0 = −1. Consequently n0 = 1 and l01 = −d01 = 1 by primitivity of v01.
This is a contradiction to irredundance of P .

We prove (ii). Suppose that there is also a quasismooth simple elliptic
fixed point x+ ∈ X. Let 0 ≤ ι0, ι1 ≤ r be the leading indices as in Propo-
sition 8.10 (i). Then li1 = 1 holds whenever i 6= ι0, ι1. This allows us to
assume ι0, ι1 ≤ 3. The estimates from Proposition 8.10 yield

m+−m− = m01−m0n0+m11−m1n1+m21+m31+
r∑
i=4

di1 ≤
1
l1n1

+ 1
lι11

≤ 2.

Case ι0 ≤ 1 and ι1 ≤ 1. Then we have 1 ≤ d21 = m21. From the above
estimate, we infer

0 ≤ m+ −m− − 1 ≤ 1
l1n1

+ 1
lι11
− 1 = l1n1 + lι11 − l1n1 lι11

l1n1 lι11
.

This leaves us with the following possibilities: first l1n1 = lι11 = 2, second
l1n1 = 1 and third lι11 = 1. We go through these cases.

Let l1n1 = lι11 = 2. Then m01 = m0n0 and m11 = m1n1 as well as d21 = 1
hold. Thus, n0 = n1 = 1. Moreover, l11 = 2 implies d11 = 1. Proposi-
tion 8.10 tells us

−2
(
m01 + 1

2

)
= −l1n1m

− ≤ 1, 2
(
m01 + 1

2 + 1
)
≤ lι11m

+ ≤ 1.

Thus m01 ≥ −1 and m01 ≤ −1. As v01 is primitive, we arrive at l01 =
−d01 = 1, which is a contradiction to the irredundance of P .

Let l1n1 = 1. As P is adapted to the sink, d1n1 = 0 holds. Irredundance
yields n1 ≥ 2 and d11 > 0. As noted before, m01 ≥ m0n0 ≥ −1. If ι1 = 1,
then

0 ≤ d11 + l11(m01 + 1) = l11(m01 +m11 + 1) ≤ l11m
+ ≤ 1
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due to Proposition 8.10. This implies d11 = 1 and m01 = m0n0 = −1. Thus,
n0 = 1 and −d01 = l01 = 1 holds; a contradiction. If ι1 = 0, then we have

0 ≤ d01 + l01 < l01(m01 +m11 + 1) ≤ l01m
+ ≤ 1.

We conclude −d01 = l01 = 1, using primitivity of v01. Then m01 ≥ m0n0 ≥
−1 implies n01 = 1. A contradiction to irredundance of P .
Let lι11 = 1. This case transforms into the preceding one by switching source
and sink via multiplying the last row of P by −1 and adapting to the new
sink.
Case ι0 ≤ 1 and ι1 ≥ 2. Then we may assume ι1 = 2. If ι0 = 0, then we have
l11 = 1. Thus, n1 ≥ 2 and d11 > 0. Proposition 8.10 and Lemma 8.14 (ii)
show

d11 + d21
l21

= m11 +m21 ≤ m1n1 +m+ −m− ≤ m1n1 + 1
l1n1

+ 1
l21
≤ 2.

Now, d11 = 2 yields m21 = 0 = m2n2 , which is impossible by irredundance
of P . Thus, d11 = 1. The above inequality gives d21 = 1 and d1n1 = l1n1−1.
Hence,

m01 ≤ m+ −m11 −m21 ≤
1
l21
− 1− 1

l21
= −1.

So, m01 ≥ m0n0 ≥ −1 yields m0n0 = m01 = −1. Thus, n0 = 1 and l01 = 1;
a contradiction. If ι0 = 1, then l01 = 1. Hence m01 ∈ Z and n0 ≥ 2. Now

−1 ≤ m0n0 < m01 ≤ m+ −m21 −m11 ≤
1
l21
− d11
l11
− d21
l21

and d21 > 0 imply d11 = 0. Then 0 = m11 ≥ m1n1 ≥ 0 yields n1 = 1 and
l11 = 1. A contradiction to irredundance of P .
Case ι0 ≥ 2 and ι1 ≤ 1. We may assume ι0 = 2. If ι1 = 1, then l01 = 1.
Hence m01 ∈ Z and n0 ≥ 2. We derive m1n1 = m11 = d11 = 0 and thus
l11 = 1 from

−1 ≤ m0n0 < m01 ≤ m+ −m11 −m21 ≤
1
l11
− d11
l11
− d21
l21

.

A contradiction to irredundance of P . The case ι1 = 0 transforms to the
case ι0 = 1 and ι2 = 1 settled before by switching sink and source.
Case ι0 ≥ 2 and ι1 ≥ 2. We may assume ι0 = 2 and ι1 = 3. Then
l01 = l11 = 1 and n0, n1 ≥ 2 hold. In particular, d01 = m01 > m0n0 ≥ −1.
Moreover, d11, d21 and d31 are all strictly positive. This contradicts to the
estimate

d01 + d11 + d21
l21

+ d31
l31
≤ m+ ≤ 1

l31
.

�

Example 8.15. We present K∗-surfaces X = X(A,P ) with a smooth
elliptic fixed point x− and a positive parabolic fixed point curve D+. Con-
sider

P =

 −l01 l11 0 0 0
−l01 0 l22 1 0
d01 d11 1 0 1

 .
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Now choose the entries lij and dij in such a way that P is adapted to the
sink and we have

l01d11 + l11d01 = −1, l21 > l01l11

Then x− is smooth and D+ has self intersection number l21 − l01l11. For
example we can take

P =

 −2 3 0 0 0
−2 0 7 1 0
−1 1 1 0 1

 .
Then x− is smooth and we have m+ = −1/42. Consequently, D+ has self
intersection number −m+ = 1/42. Observe that D+ is not gentle.

9. Horizontal and vertical P -roots

In section, we introduce horizontal and vertical P -roots as adapted ver-
sions of the general Demazure P -roots to the special case of rational pro-
jective K∗-surfaces X = X(A,P ). This allows a less technical treatment.
The main results of this section are Propositions 9.6, 9.17 and 9.18 showing
geometric constraints to the existence of P -roots and Propositions 9.11, 9.15
which identify the P -roots in terms of the defining matrix P .

Definition 9.1. Consider a rational projective K∗-surface X = X(A,P )
and assume that P is irredundant.

(i) Let x+ ∈ X be an elliptic fixed point and 0 ≤ i0, i1 ≤ r. A
horizontal P -root at (x+, i0, i1) is a vector u ∈ Zr ×Z<0 such that
〈u, vi11〉 = −1, 〈u, vi1〉 = 0, i 6= i0, i1, li1 = 1, i 6= i0, i1,

〈u, vi01〉 ≥ 0, 〈u, vi12〉 ≥ 0, ni1 > 1, 〈u, vi2〉 ≥ li2, i 6= i0, i1.

(ii) Let x− ∈ X be an elliptic fixed point and 0 ≤ i0, i1 ≤ r. A
horizontal P -root at (x−, i0, i1) is a vector u ∈ Zr ×Z>0 such that
〈u, vi1ni1 〉 = −1, 〈u, vini〉 = 0, i 6= i0, i1, lini = 1, i 6= i0, i1,

〈u, vi0ni0 〉 ≥ 0, 〈u, vi1ni1−1〉 ≥ 0, ni1 > 1, 〈u, vini−1〉 ≥ lini−1, i 6= i0, i1.

We say that an elliptic fixed point x ∈ X admits a horizontal P -root if there
is a vector u as in (i) if x = x+, respectively a vector u as in (ii) if x = x−.

Remark 9.2. Given u = (u1, . . . , ur+1) ∈ Qr+1, set u0 := −u1− . . .−ur.
For i = 0, . . . , r, the linear form u evaluates at the colums vij of a defining
matrix P as

〈u, vij〉 = uilij + ur+1dij .

This allows a unified treatment of the cases i = 0 and i 6= 0 and will be used
frequently in the sequel.

The subsequent Propositions 9.3 and 9.4 together with Remark 9.5 give
the precise relations between the horizontal P -roots just defined and the
horizontal Demazure P -roots recalled in Definition 3.4.

Proposition 9.3. Let X = X(A,P ) be non-toric, P irredundant and
(u, i0, i1, C) a horizontal Demazure P -root. Then precisely one of the fol-
lowing statements holds:
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(i) We have ur+1 < 0, there is an elliptic fixed point x+ ∈ X, the
vector u is a horizontal P -root at (x+, i0, i1) and ci = 1 holds for
all i 6= i0.

(ii) We have ur+1 > 0, there is an elliptic fixed point x− ∈ X, the
vector u is a horizontal P -root at (x−, i0, i1) and ci = ni holds for
all i 6= i0.

Proof. We show ur+1 6= 0. Otherwise, as X is non-toric, we find
0 ≤ i ≤ r different from i0, i1. Then 〈u, vici〉 = 0 implies ui = 0. Since P is
irredundant and lici = 1 holds, there is a 1 ≤ j ≤ ni different from ci and
we have 〈u, vij〉 ≥ lij > 0. This is impossible due to ui = ur+1 = 0.

Next we claim ur+1mici ≤ ur+1mij holds for every 0 ≤ i ≤ r with i 6= i0
and every 1 ≤ j ≤ ni. Indeed, we infer

ui =

−ur+1mici , i 6= i1,

− 1
lici
− ur+1mici , i = i1,

uilici + ur+1dici ≤ uilij + ur+1dij

from the conditions on 〈u, vij〉 for i 6= i0 stated in Definition 3.4. Eliminat-
ing ui in the above inequalities then directly yields the claim.

We show that for ur+1 < 0, we arrive at (i). First, P has no column
v+ by Definition 3.4 and ur+1 < 0. Thus, there is an elliptic fixed point
x+ ∈ X. We have mici ≥ mij for i 6= i0. Hence, slope orderedness of P
forces ci = 1 for all i 6= i0. Clearly, u fulfills the conditions of a horizontal
P -root at (x+, i0, i1). Similarly, we see that ur+1 > 0 leads to (ii). �

Proposition 9.4. Consider X = X(A,P ) and assume that P is irre-
dundant. Define (r + 1)-tuples C+ := (1, . . . , 1) and C− := (n0, . . . , nr).

(i) Let x+ ∈ X be an elliptic fixed point and u a horizontal P -root at
(x+, i0, i1). Then (u, i0, i1, C+) is a Demazure P -root.

(ii) Let x− ∈ X be an elliptic fixed point and u a horizontal P -root at
(x−, i0, i1). Then (u, i0, i1, C−) is a Demazure P -root.

Proof. We exemplarily prove (i). Recall that here we have ur+1 < 0.
Using the inequalities from Definition 9.1 (i) and slope orderedness of P , we
obtain

ui0
ur+1

≥ mi01 ≥ mi0j , j = 1, . . . , ni01,

− ui1
ur+1

≥ mi12 ≥ mi1j , j = 2, . . . , ni11,

− ui
ur+1

≥ mi2 −
1

ur+1
≥ mij −

1
ur+1

, i 6= i0, i1, j = 2, . . . , ni.

Together with the two equations of Definition 9.1 (i), this directly leads to
the conditions of a Demazure P -root for (u, i0, i1, C+). �

Remark 9.5. Let X = X(A,P ) be non-toric and P irredundant. By
Propositions 9.3 and 9.4, the horizontal Demazure P -roots map surjectively
to the horizontal P -roots. Here κ and κ′ have the same image if and only
if κ = (u, i0, i1, C) and κ′ = (u, i0, i1, C ′), where C and C ′ differ at most in
the i0-th entry. In this case, the locally nilpotent derivations δκ and δκ′ on
R(X) = R(A,P ) coincide.
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Proposition 9.6. Consider a rational projective K∗-surface X =
X(A,P ), assume P to be irredundant and let 0 ≤ i0, i1 ≤ r.

(i) Let X have an elliptic fixed point x+. If there is a horizontal P -
root u at (x+, i0, i1), then x+ is simple, quasismooth with leading
indices i0, i1 and

0 < m+ ≤ −ur+1m
+ ≤ 1

li11
.

Additionally, the presence of a horizontal P -root u at (x+, i0, i1)
forces D2

i1 ≥ 0 for all i = 0, . . . , r with i 6= i0.
(ii) Let X have an elliptic fixed point x−. If there is a horizontal P -

root at (x−, i0, i1), then x− is simple, quasismooth with leading
indices i0, i1 and

0 > m− ≥ ur+1m
− ≥ − 1

li1ni1
.

Additionally, the presence of a horizontal P -root u at (x−, i0, i1)
forces D2

ini
≥ 0 for all i = 0, . . . , r with i 6= i0.

Moreover, there exists at most one elliptic fixed point in X admitting a
horizontal P -root.

Proof. The estimates can be treated at once, writing x = x+, x−.
Proposition 6.10 tells us that x is quasismooth with leading indices i0, i1.
Moreover, according to Proposition 9.4, the horizontal P -root u satisfies the
assumptions of Proposition 8.10. Thus, x is simple and we obtain the desired
estimates. For the self intersection numbers, we exemplarily look at x−. For
ni = 1, the claim directly follows from Remark 6.4. For ni > 1, assume
D2
ini

< 0. Then we infer from Remark 6.6 that vini is a positive combina-
tion over vini−1 and the vknk with k 6= i. This contradicts to the definition
of a horizontal P -root u at (x−, i0, i1). The supplement is a consequence of
Theorem 8.4. �

Our next step is to identify the horizontal P -roots as certain integers
contained in intervals ∆(ι, κ) ⊆ Q≥0, which in turn are extracted in the
following way from the defining matrix P .

Construction 9.7. Consider the defining matrix P of X(A,P ). For
0 ≤ i, k ≤ r, define rational numbers

ηk := − 1
lknkm

− , ξi :=

0, ni = 1,
1

lini (mini−1−mini )
, ni ≥ 2.

Then all ξi and ηk are non-negative. Moreover, for 0 ≤ i, k ≤ r with i 6= k,
consider the sets

[ξi, ηk] = {t ∈ Q; ξi ≤ t ≤ ηk} ⊆ Q≥0.

Note that [ξi, ηk] may be empty. Finally, for any two 0 ≤ ι, κ ≤ r, we have
the intersections

∆(ι, κ) =
⋂
i 6=ι

[ξi, ηκ] ⊆ Q≥0.
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Remark 9.8. Using Remark 6.4, we can express the length of the inter-
vals [ξi, ηk] from Construction 9.7 via intersection numbers:

ηk − ξi = liniD
2
ini + (lini − lknk)DiniDknk .

Moreover, for any two 0 ≤ ι, κ ≤ r, the (possibly empty) set ∆(ι, κ) is
explicitly given as

∆(ι, κ) =
[
max

(
0, 1

lini(mini−1 −mini)
, where i 6= ι, ni ≥ 2

)
, − 1

lκnκm
−

]
.

Definition 9.9. Consider the defining matrix P of X(A,P ) and let
0 ≤ i0, i1 ≤ r. Set e′0 := 0 ∈ Zr+1 and e′i := ei ∈ Zr+1 for i = 1, . . . , r + 1.
Given γ ∈ Q, define

u(i0, i1, γ) := γe′r+1 −
1

li1ni1
(e′i1 − e

′
i0)− γ

∑
i 6=i0,r+1

mini(e′i − e′i0) ∈ Qr+1.

Lemma 9.10. Let u := u(i0, i1, γ) be as in Definition 9.9. Then the
evaluation of u at a column vij of the matrix P is given by

〈u, vi0j〉 = li0j

γmi0j + 1
li1ni1

+ γ
∑
i 6=i0

mini

 ,
〈u, vi1j〉 = li1j

(
γmi1j −

1
li1ni1

− γmi1ni1

)
,

〈u, vij〉 = lij (γmij − γmini) , i 6= i0, i1.

Proof. Set e0 := −e1 − . . . − er ∈ Zr+1. Then the evaluations of
e′0 = 0 ∈ Zr+1 and e′i = ei ∈ Zr+1, where i = 0, . . . , r + 1, at e0, e1, . . . , er+1
are

〈e′i, ek〉 =


0, i = 0,
−1, 1 ≤ i ≤ r, k = 0,
1, 1 ≤ i ≤ r, k = i,

0, 1 ≤ i ≤ r, k 6= i,

〈e′r+1, ek〉 = δr+1 k.

Here, as usual, we define δik := 1 if i = k and δik := 0 if i 6= k. Consequently,
for all 0 ≤ i, k ≤ r with i 6= i0 and 0 ≤ i, k ≤ r + 1 we obtain

〈e′i − e′i0 , ek〉 =
{
δik, k 6= i0,

−1, k = i0.

This enables us to verify the assertion by explicitly evaluating u = u(i0, i1, γ)
at the vectors vij = lijei + dijer+1. �

Proposition 9.11. Assume that X = X(A,P ) has an elliptic fixed point
x− ∈ X and let 0 ≤ i0, i1 ≤ r. Then we have mutually inverse bijections:{

horizontal P -roots
u at (x−, i0, i1)

}
←→

{
integers γ ∈ ∆(i0, i1) such
that γdi1ni1 ≡ −1 mod li1ni1

}
u 7→ ur+1

u(i0, i1, γ) ←[ γ
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Proof. Given a horizontal P -root u at (x−, i0, i1), we use Lemma 9.10
to see u = u(i0, i1, γ) for γ := ur+1 by comparing the values of u and
u(i0, i1, γ) at the vectors vini for i 6= i0. Now consider 0 ≤ i0, i1 ≤ r and any
vector u ∈ Zr × Z>0. Then we have

〈u, vi0ni0 〉 ≥ 0 ⇔ ur+1 ≤ ηi0 .

Moreover, if ni1 > 1, then
〈u, vi1ni1−1〉 ≥ 0 ⇔ ur+1 ≥ ξi1 .

Finally, if i 6= i0, i1, then
〈u, vini−1〉 ≥ lini−1 ⇔ ur+1 ≥ ξi.

So, the inequalities of Definition 9.1 (ii) are satisfied if and only if ur+1 ∈
∆(i0, i1) holds. Thus, if u is a horizontal P -root u at (x−, i0, i1), then
ur+1 ∈ ∆(i0, i1) and ur+1di1ni1 ≡ −1 mod li1ni1 holds due to

−1 = 〈u, vi1ni1 〉 = ui1 li1ni1 + ur+1di1ni1 .

Conversely, given any γ ∈ ∆(i0, i1) with γdi1ni1 ≡ −1 mod li1ni1 , we directly
verify that the vector u(i0, i1, γ) is a horizontal P -root at (x−, i0, i1) having
γ as its last coordinate. �

Proposition 9.12. Let X = X(A,P ) have an elliptic fixed point
x− ∈ X and let u be a horizontal P -root at (x−, i0, i1). Then x− ∈ X
is quasismooth simple with leading indices i0, i1.

(i) If li0ni0 ≤ li1ni1 holds, then x− is smooth, we have 〈u, vi0ni0 〉 = 0
and u is the only horizontal P -root at (x−, i0, i1).

(ii) If the point x− ∈ X is singular, then li0ni0 > li1ni1 holds and i0 is
the exceptional index of x− ∈ X.

Proof. Proposition 9.6 tells us that x− ∈ X is quasismooth simple
with leading indices i0, i1. Moreover, the second assertion is an immediate
consequence of the first one and Proposition 8.10. Thus, we only have to
prove the first assertion.

Suppose that there are two distinct horizontal P -roots at (x−, i0, i1).
Then, by Proposition 9.11 they are given as u(i0, i1, γ) and u(i0, i1, γ′) with
positive integers γ, γ′ ∈ ∆(i0, i1) differing by a non-zero integral mutiple of
li1ni1 . We conclude

ηi1 = − 1
li1ni1m

− > li1ni1 ≥ li0ni0 .

This implies l−m− = li1ni1 li0ni0m
− > −1 which contradicts to Remark 6.3.

Thus, there exists only one horizontal P -root u = u(i0, i1, γ) at (x−, i0, i1).
We show 〈u, vi0ni0 〉 = 0. Otherwise Lemma 9.10 yields

〈u, vi0ni0 〉 = li0ni0

(
γm− + 1

li1ni1

)
≥ 1.

This implies
γm− ≥ 1

li0ni0
− 1
li1ni1

≥ 0.
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Again we arrive at a contradiction to Remark 6.3, telling us m− < 0. Thus
〈u, vi0ni0 〉 = 0 holds. According to Lemma 9.10 this forces

γ = − 1
li1ni1m

− = −
li0ni0
l−m−

.

In particular, as γ is an integer, l−m− divides li0ni0 . Moreover, making use
of γdi1ni1 ≡ −1 mod li1ni1 , we obtain an integer

a := 1
li1ni1

+ γmi1ni1
=

m− −mi1ni1

li1ni1m
− =

di0ni0
l−m−

+
li0ni0
l−m−

 ∑
i 6=i0,i1

dini

 .
Thus, l−m− also divides di0ni0 . Since li0ni0 and di0ni0 are coprime, we arrive
at l−m− = −1. Proposition 6.10 yields that x− is smooth. �

Corollary 9.13. Consider X = X(A,P ) with a smooth elliptic fixed
point x− ∈ X and fix 0 ≤ i0, i1 ≤ r such that lini = 1 for all i 6= i0, i1. Let
ε ∈ Z be maximal with

li0ni0 − εli1ni1 ≥
1

lini(mini−1 −mini)
whenever i 6= i0 and ni ≥ 2.

For every integer µ with 0 ≤ µ ≤ ε, set uµ := u(i0, i1, li0ni0 − µli1ni1 )
according to Definition 9.9. Then the following holds.

(i) For every 0 ≤ µ ≤ ε the linear form uµ is a horizontal P -root at
(x−, i0, i1) and we have 〈uµ, vi0〉 = µ.

(ii) There exist horizontal P -roots at (x−, i0, i1) if and only if ε ≥
0 holds. Moreover, u0, . . . , uε are the only horizontal P -roots at
(x−, i0, i1).

(iii) If u is a horizontal P -root at (x−, i0, i1) then, for any two 0 ≤ µ ≤
α ≤ ε, we have uµ = uα − (α− µ)u.

Proof. We check that γ := li0ni0 − µli1ni1 is as in Proposition 9.11 By
the definition of ε, we have γ ≥ ξi for all i 6= i0. Moreover, li0ni0 li1ni1m

− =
−1 by smoothness of x− ∈ X and Proposition 6.10 (iv). Thus,

γ = li0ni0 − µli1ni1 ≤ li0ni0 ≤ −
1

li1ni1m
− = ηi1 .

Consequently, γ ∈ ∆(i0, i1). Finally, also li0ni0di1ni1 ≡ −1 mod li1ni1 holds
due to Proposition 6.10 (iv). So, Proposition 9.11 shows that uµ is a hor-
izontal P -root at (x−, i0, i1) and, in addition yields (ii). Lemma 9.10 gives
us

〈uµ, vi0ni0 〉 = li0ni0

(
(li0ni0 − µli1ni1 )

r∑
i=0

mini + 1
li1ni1

)

= li0ni0

(
(li0ni0 − µli1ni1 ) −1

li0ni0 li1ni1
+ 1
li1ni1

)
= µ.

Concerning (iii), there is only something to show for ε ≥ 1. Then li0ni0 ≥
li1ni1 holds and Proposition 9.12 shows that u is only horizontal P -root at



52 1. THE UNIT COMPONENT OF THE AUTOMORPHISM GROUP

(x−, i1, i0). Assertions (i) and (ii) just verified yield u = u(i1, i0, li1ni1 ). Now
the desired identity is directly checked via Definition 9.9:

uµ − uα = u(i0, i1, li0ni0 − µli1ni1 )− u(i0, i1, li0ni0 − αli1ni1 )

= (α− µ)li1ni1e
′
r+1 − (α− µ)li1ni1

∑
i 6=i0,r+1

mini(e′i − e′i0)

= (α− µ)

li1ni1e′r+1 + li1ni1

∑
i 6=r+1

mini(e′i − e′i0)


= (α− µ)u.

�

Definition 9.14. Consider a rational projective K∗-surface X =
X(A,P ) where P is irredundant.

(i) Assume that there is a parabolic fixed point curve D+ ⊆ X. A
vertical P -root at D+ is a vector u ∈ Zr × Z<0 such that

〈u, v+〉 = −1, 〈u, vi1〉 ≥ 0, i = 0, . . . , r.

(ii) Assume that there is a parabolic fixed point curve D− ⊆ X. A
vertical P -root at D− is a vector u ∈ Zr × Z>0 such that

〈u, v−〉 = −1, 〈u, vini〉 ≥ 0, i = 0, . . . , r.

Proposition 9.15. Consider a rational projective K∗-surface X(A,P ),
assume P to be irredundant and let u ∈ Zr+1.

(i) If there is a curve D+ ⊆ X, then the following statements are
equivalent:
(a) u is is a vertical P -root at D+,
(b) ur+1 = −1 and ui ≥ mi1 for all i = 0, . . . , r,
(c) ur+1 = −1 and ui ≥ mij for all i = 0, . . . , r, j = 1, . . . , ni.

If one of the statements (a), (b) or (c) holds, then we have
(D+)2 ≥ 0.

(ii) If there is a curve D− ⊆ X, then the following statements are
equivalent:
(a) u is is a vertical P -root at D−,
(b) ur+1 = 1 and ui ≤ mini for all i = 0, . . . , r,
(c) ur+1 = 1 and ui ≤ mij for all i = 0, . . . r, j = 1, . . . , ni.

If one of the statements (a), (b) or (c) holds, then we have
(D−)2 ≥ 0.

In particular, (u, k) 7→ u defines a one-to-one correspondence between the
vertical Demazure P -roots and the vertical P -roots.

Proof. In each of the items, the equivalence of (a) and (b) is clear by
Remark 9.2 and the equivalence of (b) and (c) holds due to slope orderedness.
The assertions on the self intersection numbers are clear by the definition of
vertical P -roots and Remarks 6.4 and 6.5. �

Corollary 9.16. Let X(A,P ) be a K∗-surface, assume P to be irre-
dundant, let u ∈ Zr+1 and fix 0 ≤ i0 ≤ r.
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(i) Assume that there is a curve D+ ⊆ X. Then u is a vertical P -root
at D+ if and only if

ui ≥ mi1 for all i 6= i0, r + 1,
∑

i 6=i0,r+1
ui ≤ −mi01.

(ii) Assume that there is a curve D− ⊆ X. Then u is a vertical P -root
at D− if and only if

ui ≥ −mini for all i 6= i0, r + 1,
∑

i 6=i0,r+1
ui ≤ mi0ni0

.

Proposition 9.17. Let X = X(A,P ) be non-toric and P irredundant.
If there is a quasismooth simple elliptic fixed point x ∈ X, then there are no
vertical P -roots.

Proof. We may assume x = x− having leading indices 0, 1, exceptional
index 0 and that P is adapted to the sink. Suppose that D+ ⊆ X admits a
vertical P -root u ∈ Zr+1. Then Proposition 9.15 yields

ui ≥ mi1 for 1 ≤ i ≤ r, −u0 = u1 + . . .+ ur ≤ −m01.

For i = 2, . . . , r, we have lini = 1 and thus mini = 0, as P is adapted to the
sink. Irredundance of P implies mi1 > 0 and hence ui ≥ 1 for i = 2, . . . , r.
Using Proposition 8.10 (ii) for the inequality, we obtain

m11 + (r − 1) ≤ u1 + . . .+ ur ≤ −m01 ≤ −m0n0 ≤ m1n1 + 1
l1n1

.

We claim r ≤ 1. For l1n1 ≥ 2 this follows from m11 ≥ m1n1 . If l1n1 = 1,
then m1n1 = 0, hence m11 > 0 by irredundance and the claim follows. Now,
r ≤ 1 means that X is toric, which contradicts to our assumptions. �

Proposition 9.18. Let X = X(A,P ) with P irredundant and assume
that X has fixed point curves D+ and D−. If D+ admits a vertical P -root,
then there is no vertical P -root at D−.

Proof. We may assume that P is adapted to the source. Let u+ ∈ Zr+1

be a vertical root at D+. Proposition 9.15 yields

u+
i ≥ mi1 > −1 for 1 ≤ i ≤ r, u+

0 = −u+
1 − . . .− u

+
r ≥ m01.

We conclude u+
i ≥ 0 for i = 1, . . . , r and hence m01 ≤ 0. Now suppose that

there is a vertical P -root u− at D−. Then

u−i ≥ −mini ≥ −mi1 ≥ 0 for 1 ≤ i ≤ r, 0 ≤ −u−0 ≤ m0n0 ≤ m01 ≤ 0.

Consequently m01 = m0n0 = 0, which in turn implies n0 = 1 and l01 = 1.
This contradicts to the assumption that P is irredundant. �

10. Generating root groups

In this section, we provide suitable generators for the unipotent part of
the automorphism group of a non-toric rational projective K∗-surface.

Definition 10.1. Consider X = X(A,P ). We denote by U(X) ⊆
Aut(X) the subgroup generated by all root groups of X.
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Note that U(X) ⊆ Aut(X)0 holds. We have two cases. The first one
is that U(X) is generated by the root groups stemming from horizontal
P -roots. In this situation, we prove the following.

Proposition 10.2. Let X = X(A,P ) be non-toric with horizontal P -
roots. Then there are a quasismooth simple elliptic fixed point x ∈ X and
0 ≤ i0, i1 ≤ r such that U(X) is generated by the root groups arising from
horizontal P -roots at (x, i0, i1) or (x, i1, i0).

According to Proposition 9.17, the remaining case is that U(X) is gen-
erated by the root groups given by the vertical roots. Here we obtain the
following.

Proposition 10.3. Let X = X(A,P ) be non-toric with vertical P -roots
at D+ and let 0 ≤ i0, i1 ≤ r. Then U(X) is generated by the root groups
arising from vertical P -roots u at D+ with 0 ≤ 〈u, vi1〉 < li1 for all 0 ≤ i ≤ r
different from i0, i1.

We begin with discussing the horizontal case. First, we summarize the
necessary background. By Proposition 9.11, all horizontal P -roots at x− are
of the form u(i0, i1, γ). According to Proposition 9.4, each such u(i0, i1, γ)
defines a Demazure P -root in the sense of Definition 3.4:

τ(i0, i1, γ) := (u, i0, i1, C−), u := u(i0, i1, γ), C− := (n0, . . . , nr).

Construction 3.6 associates with τ(i0, i1, γ) a locally nilpotent derivation on
R(A,P ) which in turn gives rise to a root group

λτ(i0,i1,γ) : K → Aut(X).

Our statement involves the unique vectors β = β(A, i0, i1) in the row space of
the defining matrix A having i0-th coordinate zero and i1-th coordinate one
as introduced in Construction 3.6. Moreover, the following will be frequently
used.

Definition 10.4. For the defining matrix P of X(A,P ), we denote by
I(P ) ⊆ {0, . . . , r} the set of all indices i with lini = 1.

Proposition 10.5. Let X = X(A,P ) be non-toric with an elliptic fixed
point x− ∈ X. Then we obtain the following relations among the root sub-
groups associated with horizontal P -roots at x−.

(i) Let i1, ι1 ∈ I(P ) and 0 ≤ i0 ≤ r. If there are horizontal P -roots
u(i0, i1, γ) and u(i0, ι1, γ), then, for every s ∈ K, we have

λτ(i0,i1,γ)(s) = λτ(i0,ι1,γ)(β(A, i0, ι1)−1
i1
s).

(ii) Let i0, ι0 ∈ I(P ) and 0 ≤ i1 ≤ r. If there are horizontal P -roots
u(i0, i1, 1), u(ι0, i1, 1) and u(i1, ι0, ν), ν = 1, . . . , li1ni1 , then, for
every s ∈ K, we have

λτ(i0,i1,1)(s) = λτ(ι0,i1,1)(s)
li1ni1∏
ν=1

λτ(i1,ι0,ν)

(
β(A, i0, i1)ι0

(
li1ni1
ν

)
sν
)
.
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Lemma 10.6. Consider the defining matrix A of X = X(A,P ). Then
the vectors β ∈ Kr+1 introduced in Construction 3.6 satisfy

β(A, i0, i1) = β(A, i0, i1)−1
i1
β(A, i0, ι1),

β(A, i1, ι0) = β(A, i0, i1)−1
ι0 (β(A, i0, i1)− β(A, ι0, i1)) .

Proof. The identities follow from the fact that β(A, i0, i1) is the unique
vector in the row space of A having i0-th coordinate zero and i1-th coordinate
one. �

Lemma 10.7. Consider the defining matrix P of X(A,P ) and the linear
forms u(i0, i1, γ) from Definition 9.9. Define

u(i0, i1, γ)ν,ι := νu+ e′i1 − e
′
ι ∈ Zr+1, ν = 1, . . . , li1ni1 , ι 6= i0, i1,

as we did in Construction 5.1 in the case of Demazure P -roots. Then, for
any two indices i1, ι1 ∈ I(P ), we have

u(i0, i1, γ)1,ι1 = u(i0, ι1, γ).

Moreover, if l−m− = −1 and there is an i1 with ι ∈ I(P ) for all ι 6= i1,
then, for any two i0, ι1 ∈ I(P ), we have

u(i0, i1, 1)ν,ι1 = u(i1, ι1, ν).

Proof. For the first identity, observe that we have ν = 1. Now, using
the definition of u(i0, i1, γ) and li1ni1 = lι1nι1 = 1, we compute

u(i0, i1, γ)1,ι1 = γe′r+1 − (e′i1 − e
′
i0)−

∑
i 6=i0

γmini(e′i − e′i0) + e′i1 − e
′
ι1

= γe′r+1 − (e′ι1 − e
′
i0)−

∑
i 6=i0

γmini(e′i − e′i0)

= u(i0, ι1, γ).

We prove the second identity. Due to the assumptions, we have l−1
i1ni1

=
−m−. Consequently, we obtain

u(i0, i1, 1)ν,ι1 = ν

e′r+1 +m−(e′i1 − e
′
i0)−

∑
i 6=i0

mini(e′i − e′i0)

+ ei1 − eι1

= νe′r+1 − (e′ι1 − e
′
i1)−

∑
i 6=i1

νmini(e′i − e′i1)

= u(i1, ι1, ν).

�

Lemma 10.8. Consider the defining matrix P of X(A,P ), let 1 ≤
i0, i1, ι1 ≤ r with i1, ι1 ∈ I(P ) and set C− := (n0, . . . , nr). Then the mono-
mials hu and hζ from Construction 3.6 satisfy

hu(i0,i1,γ)

hζ(i0,i1,C−) = hu(i0,ι1,γ)

hζ(i0,ι1,C−) .
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Proof. By Lemma 10.7, the linear form u(i0, i1, γ) equals u(i0, ι1, γ)1,ι1 .
From Construction 5.1 we infer how the latter evaluates and conclude

hu(i0,i1,γ)

hu(i0,ι1,γ) = T
lι1
ι1

T
li1
i1

=
∏
ι6=i0,i1,ι1 T

lι
ι

∏
i 6=i0 T

−1
ini
T
lι1
ι1∏

ι6=i0,i1,ι1 T
lι
ι
∏
i 6=i0 T

−1
ini
T
li1
i1

= hζ(i0,i1,C
−)

hζ(i0,ι1,C−) .

�

Proof of Proposition 10.5. We prove (i). It suffices to verify the
corresponding relation for the locally nilpotent derivations associated with
τ(i0, i1, γ) and τ(i0, ι1, γ); see Construction 3.6. Lemmas 10.6 and 10.8 yield

β(A, i0, ι1)i1δτ(i0,i1,γ) = δτ(i0,ι1,γ).

We turn to (ii). First consider the map ϕu(i0,i1,1)(s) as given in Theorem 5.4.
For the α(s, ν, ι) defined there, we write

αi0,i1,ι := αi0,i1,ι(ν, s) := β(A, i0, i1)ι

(
li1ni1
ν

)
sν ,

which allows to specify in the case of varying i0 and i1. Now, using
Lemma 10.7 and ι, i1 ∈ I(P ), we obtain

ϕu(i0,i1,1)(s) =
∏

ι6=i0,i1

li1ni1∏
ν=1

λu(i0,i1,1)ν,ι(αi0,i1,ι)

=
li1ni1∏
ν=1

∏
ι6=i0,i1

λu(i1,ι,ν)(αi0,i1,ι),

ϕu(ι0,i1,1)(s)−1 =
li1ni1∏
ν=1

∏
ι6=ι0,i1

λu(i1,ι,ν)(−αι0,i1,ι),

where for the last equation, we used ϕu(1,ι0,i1)(s)−1 = ϕu(1,ι0,i1)(−s). Next
we observe

αi0,i1,i0 = 0, αi0,i1,ι − αι0,i1,ι = β(A, i1, ι0)ιβ(A, i0, i1)ι0

(
li1ni1
ν

)
sν ,
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where the second identity follows from Lemma 10.6. With the aid of these
considerations, we compute

ψ := ϕu(ι0,i1,1)(s)−1ϕu(i0,i1,1)(s)

=
li1ni1∏
ν=1

λu(i1,ι0,ν)(αi0,i1,ι0)λu(i1,i0,ν)(−αι0,i1,i0)∏
ι6=i0,ι0,i1

λu(i1,ι,ν)(αi0,i1,ι − αι0,i1,ι)

=
li1ni1∏
ν=1

λu(i1,ι0,ν)(αi0,i1,ι0)∏
ι6=ι0,i1

λu(i1,ι,ν)(αi0,i1,ι − αι0,i1,ι)

=
li1ni1∏
ν=1

λu(i1,ι0,ν)

(
β(A, i0, i1)ι0

(
li1ni1
ν

)
sν
)

∏
ι6=ι0,i1

λu(i1,ι0,ν)1,ι

(
β(A, i1, ι0)ιβ(A, i0, i1)ι0

(
li1ni1
ν

)
sν
)

=
li1ni1∏
ν=1

λu(i1,ι0,ν)

(
β(A, i0, i1)ι0

(
li1ni1
ν

)
sν
)

∏
ι6=ι0,i1

λu(i1,ι0,ν)1,ι

(
α

(
β(A, i1, ι0)ι

(
li1ni1
ν

)
sν , 1, ι

))

=
li1ni1∏
ν=1

λτ(i1,ι0,ν)

(
β(A, i0, i1)ι0

(
li1ni1
ν

)
sν
)
.

Note that we used Theorem 5.4 for the last equality. Thus, the right hand
side of our equation is given as λτ(ι0,i1,1)(s)◦ψ. Using Theorem 5.4 we obtain

λτ(i0,i1,1)(s) = λu(ι0,i1,1)(s)ϕu(i0,i1,1)(s)
= λu(ι0,i1,1)(s)ϕu(ι0,i1,1)(s)ψ
= λτ(ι0,i1,1)(s)ψ.

�

Definition 10.9. Provided that the defining matrix P of X = X(A,P )
is adapted to the sink in the sense of Definition 7.1 (ii), we say that P
is normalized if l0n0 ≥ . . . ≥ lrnr and for all i < j with lini = ljnj and
ni, nj ≥ 2, we have

mini−1 −mini ≤ mjnj−1 −mjnj .

Remark 10.10. The above definition of normalized coincides with the
one given in the introduction as Remark 6.4 ensures

mini−1 −mini ≤ mjnj−1 −mjnj ⇔ D2
ini ≤ D

2
jnj .
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Lemma 10.11. Let the defining matrix P of X = X(A,P ) be adapted
to the sink and normalized. Consider the intervals [ξi, ηk] and ∆(ι, κ) from
Construction 9.7.

(i) If i, ι ∈ I(P ) satisfy i ≤ ι, then we have
[ξi, ηk] ⊆ [ξι, ηk], ∆(ι, k) ⊆ ∆(i, k).

(ii) For any two k, κ ∈ I(P ) and every i = 0, . . . , r, we have
[ξi, ηk] = [ξi, ηκ], ∆(i, k) = ∆(i, κ).

(iii) Assume l−m− = −1. Let i with ι ∈ I(P ) for all ι 6= i and k ≥ 2.
Then

1 ∈ ∆(k, i) ⇒ ∆(i, k) ∩ Z = [1, lini ] ∩ Z.

Proof. Irredundance of P implies ni ≥ 2 for all i ∈ I(P ). Consider
ι, i, k ∈ I(P ) with i ≤ ι. Then Construction 9.7 and the fact that P is
normalized yield

ξι = 1
mιnι−1 −mιnι

≤ 1
mini−1 −minι

= ξi, ηk = − 1
lknkm

− .

This gives the first assertion. The second one is obvious. For the third one,
observe l1n1 = . . . = lrnr = 1. Thus l− = l0n0 and l0n0m

− = −1. We
conclude

ηκ = − 1
lιnκm

− = l0n0

lκnκ
=
{
l0n0 , κ ≥ 1,
1, κ = 0.

Now, let 1 ∈ ∆(k, i). Then, by the definition of ∆(k, i), we have ξι ≤ 1 for
all ι 6= k. Moreover, there is a κ ∈ {0, 1} ∩ I(P ) with κ 6= i. We claim

∆(i, k) ∩ Z = ∆(i, κ) ∩ Z =
⋂
ι6=i

[ξι, ηκ] ∩ Z = [1, ηκ] ∩ Z = [1, lini ] ∩ Z.

The first equality is due to (ii). The second one holds by definition. For the
third one, use k ≥ 2 to see ξk ≤ ξκ ≤ 1. For the last equality, use lini = 1
for κ = 0 and

κ = 1, i = 0 ⇒ lini = l0n0 , κ = 1, i ≥ 2 ⇒ lini = 1 = l0n0 .

�

Proof of Proposition 10.2. Proposition 9.6 tells us that there is a
unique elliptic fixed point x ∈ X admitting horizontal P -roots. We may
assume that x = x− holds and that P is adapted to the sink and normalized.
We claim that then i0 = 0 and i1 = 1 are as wanted. So, given any horizontal
P -root u(ι0, ι1, γ) at (x, ι0, ι1), the task is to show that the associated root
group maps into the subgroup generated by all the root subgroups arising
from horizontal P -roots at (x, 0, 1) and (x, 1, 0).
Let ι0, ι1 6= 0. Then we have l0n0 = . . . = lrnr = 1. Proposition 9.12 (i)
says that x− is smooth and 〈u, vι0nι0 〉 = 0 holds. Thus, Proposition 6.10
yields m− = −1 and Lemma 9.10 shows γ = 1. By Lemma 10.11 (ii) we
have 1 ∈ ∆(ι0, ι1) = ∆(ι0, 0). Hence, there is a horizontal P -root u(ι0, 0, 1).
Proposition 10.5 (i) implies

λτ(ι0,ι1,1)(K) = λτ(ι0,0,1)(K).
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Let ι0 = 0 and ι1 6= 1. Then we have l1n1 = lι1nι1 = 1. Moreover, using
Lemma 10.11 (i), we see γ ∈ ∆(0, ι1) = ∆(0, 1). Thus, Proposition 10.5 (i)
applies and we obtain

λτ(0,ι1,γ)(K) = λτ(0,1,γ)(K).

Let ι1 = 0 and ι0 6= 1. Then we have l1n1 = 1. Proposition 9.12 (i) says that
x− is smooth and that 〈u, vι0nι0 〉 = 0 holds. According to Lemma 9.10, the
latter means

0 = γm− + 1
lι1nι1

= γm− + 1
l0n0

= − γ

l0n0
+ 1
l0n0

.

where the last equality is due to Proposition 6.10, showing l0n0m
− =

l−m− = −1. We conclude γ = 1. Proposition 9.11 gives 1 ∈ ∆(ι0, 0).
Now, Lemma 10.11 (i) shows that 1 ∈ ∆(ι0, 0) = ∆(1, 0), hence there is a
horizontal P -root u(1, 0, 1). Furthermore, Lemma 10.11 (iii) shows

∆(0, 1) ∩ Z = [1, l0n0 ] ∩ Z.

Consequently, there is a a horizontal P -root u(0, 1, ν) for every 1 ≤ ν ≤ l0n0 .
Now Proposition 10.5 tells us

λτ(ι0,0,1)(K) ⊆ λτ(1,0,1)(K)
l0n0∏
ν=1

λτ(0,1,ν)(K).

�

We enter the vertical case. According to Proposition 9.15, every vertical
P -root u corresponds to a vertical Demazure P -root κ = (u, i) and via the
associated locally nilpotent derivation of R(A,P ) we obtain the root group

λκ = λu : K → Aut(X).

Lemma 10.12. Let A ∈ Mat(2, r + 1;K) and gi1,i2,i3 be as in Construc-
tion 2.4 and β(i1, i2, A), β(i2, i1, A) as in Construction 3.6. Then there is a
bi1,i2,i3 ∈ K∗ with

bi1,i2,i3gi1,i2,i3 = T
li3
i3
− β(i1, i2, A)i3T

li1
i1
− β(i2, i1, A)i3T

li2
i2
.

Proof. Consider A′ = [ai1 , ai2 , ai3 ] ∈ Mat(2, 3,K). As a direct compu-
tation shows, we have

B ·A′ =
[

1 0 β(A, i2, i1)i3
0 1 β(A, i1, i2)i3

]
with a unique matrix B ∈ GL(2,K). Setting bi1,i2,i3 := det(B)−1, we infer
the assertion from

gi1,i2,i3 = bi1,i2,i3 det

 T
li1
i1

T
li2
i2

T
li2
i2

1 0 β(A, i2, i1)i3
0 1 β(A, i1, i2)i3

 .
�
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Lemma 10.13. Consider an X = X(A,P ) with a curve D+ ⊆ X. Fix
u ∈ Zr+1 and 0 ≤ ι ≤ r. For any 0 ≤ i0 ≤ r with i0 6= ι set

uι,i0 := u+ e′i0 − e
′
ι, e′0 := 0, e′i := ei, i = 0, . . . , r.

Now assume that u is a vertical P -root at D+ with 〈u, vι1〉 ≥ lι1 and let
0 ≤ i0, i1 ≤ r with i0 6= i1. Then uι,i0 and uι,i1 are vertical P -roots at D+

and we have
λu(s) = λuι,i0 (β(A, i1, i0)ιs)λuι,i1 (β(A, i0, i1)ιs).

Proof. First let us see how uι,i0 evaluates on the vectors vij , v+ and
v−, if present. We have

〈uι,i0 , vij〉 =


〈u, vij〉, i 6= ι, i0,

〈u, vιj〉 − lιj , i = ι,

〈u, vi0j〉+ li0j , i = i0,

〈uι,i0 , v±〉 = ∓1.

In particular, we see that uι,i0 is a vertical P -root at D+: using Remark 9.2
and slope-orderedness of P , we infer 〈uι,i0 , vιj〉 ≥ 0 for any j = 1, . . . , nι
from

〈u, vι1〉 ≥ lι1 ⇒ uι ≥ 1 +mι1 ⇒ uι ≥ 1 +mιj ⇒ 〈u, vιj〉 ≥ lιj .
Moreover, we observe that the locally nilpotent derivation δu provided by
Construction 3.6 gives us a polynomial

f := δu(S1)T−lιι = S1T
−lι
ι

∏
i,j

T
〈u,vij〉
ij ∈ K[Tij , Sk].

Next we claim that the locally nilpotent derivation δu on R(A,P ) coincides
with β(A, i1, i0)ιδuι,i0 + β(A, i0, i1)ιδuι,i1 . Indeed, we compute

δu(S1)− fbi0,i1,ιgi0,i1,ι = δu(S1)− f
(
T lιι − β(A, i1, i0)ιT

li0
i0
− β(A, i0, i1)ιT

li1
i1

)
= β(A, i1, i0)ιfT

li0
i0

+ β(A, i0, i1)ιfT
li1
i1

= β(A, i1, i0)ιδuι,i0 (S1) + β(A, i0, i1)ιδuι,i1 (S1),
using Lemma 10.12. Computing the associated root groups according
to Proposition 4.2 (i) gives the assertion. �

Proof of Proposition 10.3. According to Propositions 9.17
and 9.18, the group U(X) is generated by the rout groups arising from
vertical P -roots at D+. Given a vertical P -root u with 〈u, vι1〉 ≥ lι1, take
any two distinct 0 ≤ i0, i1 ≤ r differing from ι. Then Lemma 10.13 tells us

λu(K) ⊆ λuι,i0 (K)λuι,i1 (K).
Recall that the evaluations of the linear forms uι,i0 and uι,i1 at the vectors
vij are given by

〈uι,i0 , vij〉 =


〈u, vij〉, i 6= ι, i0,

〈u, vιj〉 − lιj , i = ι,

〈u, vi0j〉+ li0j , i = i0,

〈uι,i1 , vij〉 =


〈u, vij〉, i 6= ι, i1,

〈u, vιj〉 − lιj , i = ι,

〈u, vi1j〉+ li0j , i = i1.

Thus, the automorphism λu(s) can be expressed as a composition of auto-
morphisms stemming from vertical P -roots evaluating strictly smaller at vι1
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and equal to u at all other vi1 with i 6= i0, i1. Suitably iterating this process,
we arrive at the assertion. �

Definition 10.14. Consider the defining matrix P of X(A,P ) and let
0 ≤ i0, i1 ≤ r. Define an interval

Γ(i0, i1) :=
[
mi11, −mi01 −

∑
i 6=i0,i1

dmi1e
]
⊆ Q.

Moreover, denote e′0 := 0 ∈ Zr+1 and e′i := ei ∈ Zr+1 for i = 1, . . . , r + 1.
Given α ∈ Q, define

u(i0, i1, α) := −e′r+1 + α(e′i1 − e
′
i0) +

∑
i 6=i0,i1,r+1

dmi1e(e′i − e′i0) ∈ Qr+1.

Proposition 10.15. Assume that X = X(A,P ) has a parabolic fixed
point curve D+ ⊆ X. Then we have mutually inverse bijections{

vertical P -roots u at D+ such that
0 ≤ 〈u, vi1〉 < li1 for all i 6= i0, i1

}
←→ Γ(i0, i1) ∩ Z

u 7→ ui1
u(i0, i1, α) ←[ α

Proof. First we consider any vertical P -root u at D+. Let u0 = −u1−
. . .− ur as in Remark 9.2 and set εi := ui−mi1. Using Proposition 9.15 we
obtain

mi1 ≤ 〈u, vi1〉 = uili1 − di1 = εili1.

Now let u stem from the left hand side set above. Then we must have
0 ≤ εi < 1 and hence ui = dmi1e for all i 6= i0, i1. Corollary 9.16 yields

mi11 ≤ ui1 ≤ −mi01 −
∑

i 6=i0,i1
ui = −mi01 −

∑
i 6=i0,i1

dmi1e.

One directly checks that any α ∈ Γ(i0, i1) ∩ Z delivers an u(i0, i1α) in the
left hand side set and the assignments are inverse to each other. �

11. Root groups and resolution of singularities

In this section, we show how to lift the root groups arising from the
horizontal or vertical P -roots of X = X(A,P ) with respect to the minimal
resolution of singularities π : X̃ → X. The following theorem gathers the
essential results; observe that items (iii) and (iv) are as well direct conse-
quences of the general existence of a functorial resolution in characteristic
zero, whereas (i) and (ii), used later, are more specific.

Theorem 11.1. Consider X = X(A,P ) and its minimal resolution
π : X̃ → X, where X̃ = X(A, P̃ ).

(i) There is a natural bijection λ 7→ λ̃ between the root groups of
X and those of X̃, made concrete in terms of defining data in
Propositions 11.5 and 11.7.
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(ii) For every root group λ : K → Aut(X) and every s ∈ K we have a
commutative diagram

X̃
λ̃(s) //

π
��

X̃

π
��

X
λ(s)
// X

(iii) The isomorphism π : π−1(Xreg) → Xreg gives rise to a canonical
isomorphism of groups Aut(X)0 ∼= Aut(X̃)0.

(iv) Every action G×X → X of a connected algebraic group G lifts to
an action G× X̃ → X̃.

The proof of Theorem 11.1 essentially relies on the preceding results
showing that we either have only horizontal roots at a common simple qua-
sismooth elliptic fixed point or there are only vertical roots at a common
parabolic fixed point curve. This allows us to relate the resolution of singu-
larities closely to resolving toric surface singularities. We begin the preparing
discussion with a brief reminder on Hilbert bases of two-dimensional cones
and then enter the horizontal case.

Remark 11.2. Consider two primitive vectors v0 and v1 in Z2. Assume
det(v0, v1) to be positive. Set v′0 := v0 and let v′1 ∈ Z2 be the unique vector
with

v′1 ∈ cone(v′0, v1), det(v′0, v′1) = 1, 0 ≤ det(v′1, v1) < det(v′0, v1).

Iterating gives us a finite sequence v0 = v′0, v
′
1, . . . , v

′
q, v
′
q+1 = v2, the Hilbert

basis H(σ) of σ = cone(v0, v1) in Z2. We have

det(v′i, v′i+1) = 1, v′i−1 + v′i+1 = civ
′
i

with unique integers c1, . . . , cq ∈ Z≥2. Subdividing σ along the Hilbert basis
gives us the fan of the minimal resolution of the affine toric surface Zσ.

Construction 11.3. Assume that X = X(A,P ) has a quasismooth
elliptic fixed point x− ∈ X with leading indices i0, i1. Consider

v0 := (−li0n0 , di0n0), v1 := (li1ni1 , di1ni1 ), σ := cone(v0, v1).

As earlier, let e0 = −e1 − . . . − er, where ei ∈ Zr+1 are the canonical basis
vectors. Then, with every v′ = (l′, d′) ∈ H(σ), we associate ṽ ∈ Zr+1 by

ṽ :=


−l′ei0ni0 + d′er+1, l′ < 0,
l′ei1ni1 + d′er+1, l′ > 0,
−er+1, l′ = 0.

Inserting the columns ṽ, where v0, v1 6= v′ ∈ H(σ), at suitable places of P
produces a slope ordered defining matrix P ′.

Proposition 11.4. Let A,P and P ′ be as in 11.3. Consider X ′ :=
X(A,P ′) and the natural morphism π′ : X ′ → X. Then π′ is an isomorphism
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over X \ {x−}, each x′ ∈ X ′ over x− ∈ X is smooth and the minimal
resolution X̃ → X factors as

X̃ //

π   

X ′

π′~~
X

Proof. We may assume that P ′ is adapted to the sink. Remark 6.3
ensures det(v0, v1) > 0. Let v′0, . . . , v′q+1 be the members ofH(σ), constucted
as in Remark 11.2. Write v′i = (l′i, d′i). There are unique integers 1 ≤ k− <
k+ ≤ q with

l′i < 0 for i = 0, . . . , k−, l′i > 0 for i = k+, . . . , q + 1,

where k+ = k−+1 if all l′i differ from zero and otherwise we have k+ = k−+2
and l′k0 = 0 for k0 = k− + 1. The curve of X ′ corresponding to a column ṽi
of P ′ lies in Ai0 if l′i < 0, in Ai1 if l′i > 0 and equals D− if i = k0.

We verify smoothness of the points x′ ∈ X ′ lying over x− ∈ X. First
consider the case that x′ ∈ X ′ is a parabolic or a hyperbolic fixed point.
According to Remark 11.2 we have

det(v′i, v′i+1) = 1.

This gives us precisely the smoothness conditions from Propositions 6.8 (ii)
and 6.9. If x′ ∈ X ′ is an elliptic fixed point, then we can apply Proposi-
tion 6.10 to obtain smoothness of x′ in terms of P ′:

l̃−m̃− = l̃i0ñi0 d̃i1ñi1+l̃i1ñi1 d̃i0ñi0 = −l′k−d
′
k++l′k+d′k− = −det(vk− , vk+) = −1.

We show minimality of X ′ → X. The conditions v′i−1 + v′i+1 = civ
′
i

from Remark 11.2 translate to the equations Lemma 7.3 for the exceptional
curves Ei of X ′ → X corresponding to v′i. We conclude E2

i ≤ −2. �

Proposition 11.5. Consider the minimal resolution π : X̃ → X of K∗-
surfaces defined by (A,P ) and (A, P̃ ). Assume that there is a quasismooth
simple elliptic fixed point x− ∈ X and let x̃− ∈ π−1(x−) be the correspond-
ing elliptic fixed point. Given 0 ≤ i0, i1 ≤ r and u ∈ Zr+1, the following
statements are equivalent.

(i) The linear form u ∈ Zr+1 is a horizontal P -root at (x−, i0, i1).
(ii) The linear form u ∈ Zr+1 is a horizontal P̃ -root at (x̃−, i0, i1).

Proof. As x− ∈ X is a simple elliptic fixed point with exceptional
index i0, we have ṽiñi = vini for all i 6= i0. The fiber of π : X̃ → X over
x− ∈ X is of the form

π−1(x−) = D̃i0ñi0−q−1 ∪ . . . ∪ D̃i0ñi0

By Proposition 11.4, the corresponding columns ṽi0ñi0−q−1, . . . , ṽi0ñi0 of P̃
are obtained by running Construction 11.3 with the initial data

v0 := (−li0ni0 , di0ni0 ), v1 := (li1ni1 , di1ni1 ).

In the notation of Remark 11.2, the vector ṽi0ñi0 stems from the penultimate
Hilbert basis member v′q ∈ H(σ) of σ = cone(v0, v1) which is determined by
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the conditions
det(v′q, v1) = 1, 0 ≤ det(v0, v

′
q) < det(v0, v1).

In terms of P̃ , we have v′q = (−l̃i0ñi0 , d̃i0ñi0 ). Together with the definitions
of v0 and v1 this gives us

l̃i0ñi0di1ni1 ≡ −1 mod li1ni1 , − 1
li0ni0m

−−li1ni1 < l̃i0ñi0 ≤ −
1

li0ni0m
− ,

where the estimate is obtained by resolving the first characterizing condition
of v′q for d̃i0ñi0 and plugging the result into the second one. Next look at

v0 := (lini , dini), v1 := (lini−1, dini−1)
in case ni ≥ 1. Then, according to Remark 11.2, the Hilbert basis member
v′1 ∈ H(σ) of σ = cone(v0, v1) is characterized by the conditions

det(v0, v
′
1) = 1, 0 ≤ det(v′1, v1) < det(v0, v1).

Similarly as before, we have v′1 = (l̃ñi−1, d̃ñi−1) and making the above con-
ditions explicit, we arrive at

l̃ñi−1dini ≡ −1 mod lini ,
1

lini(mni−1 −mni)
≤ l̃ñi−1 <

1
lini(mni−1 −mni)

+lini .

Now consider a horizontal P -root u ∈ Zr+1 at (i0, i1, x−). Proposition 9.11
yields u = u(i0, i1, γ) with a non-negative integer γ satisfying γdi1ni1 ≡
−1 mod li1ni1 and

1
lini(mni−1 −mni)

= ξi ≤ γ ≤ ηi0ni0 = − 1
li0ni0m

− ,

for all i = 0, . . . , r with i 6= i0 and ni > 1. We compare γ with l̃i0ñi0 and
l̃ñi−1. First, using the modular identities, we observe

(l̃i0ñi0 − γ)di1ni1 ∈ li1ni1Z, (γ − l̃i1ñi1−1)di1ni1 ∈ li1ni1Z.

As li1ni1 and di1ni1 are coprime, l̃i0ñi0 −γ as well as γ− l̃i1ñi1−1 are multiples
of li1ni1 . Thus, the previous estimates and lini = 1 for i 6= i0, i1 give us

l̃ñi−1 ≤ γ ≤ l̃i0ñi0 , i = 0, . . . , r, i 6= i0, ni > 1.

Now we can directly check the defining conditions of a horizontal P̃ -root
at (x̃, i0, i1) for u = u(i0, i1, γ): Lemma 9.10 together with Propositions 6.9
and 6.10 yields

〈u, ṽi0ñi0 〉 =
l̃i0ñi0

−γ
l̃i1ñi1

≥ 0,

〈u, ṽi1ñi1−1〉 =
γ−l̃i1ñi1−1

l̃i1ñi1−1
≥ 0,

〈u, viñi−1〉 = γ ≥ liñi−1,

where i 6= i0, i1 with ni > 1 in the last case. This, verifies “(i)⇒(ii)”. The
reverse implication is a direct consequence of Proposition 9.4. �

Remark 11.6. From the proof of Proposition 11.5 we infer that γ =
l̃i0ñi0 is the maximal integer such that u(i0, i1, γ) is a horizontal P -root x−.
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Proposition 11.7. Consider the minimal resolution π : X̃ → X of K∗-
surfaces defined by (A,P ) and (A, P̃ ). Assume that there is a parabolic fixed
point curve D+ ⊆ X and let D̃+ ⊆ X̃ be the proper transform. Given
u ∈ Zr+1, the following statements are equivalent.

(i) The linear form u ∈ Zr+1 is a vertical P -root at D+.
(ii) The linear form u ∈ Zr+1 is a vertical P̃ -root at D̃+.

Proof. The implication “(ii)⇒(i)” is clear due to Proposition 9.15. We
care about “(i)⇒(ii)”. By Remark 6.13, the columns ṽi1, . . . , ṽqi = vi1 of P̃ ,
where i = 0, . . . , r, arise from subdividing cone(vi1, v+) along the Hilbert
basis. Consider

v0 := (0,−1), v1 := (l1,−di1),
where i = 0, . . . , r. In the setting of Remark 11.2, we have v′1 = (l̃i1,−d̃i1).
Moreover, the conditions on the determinants lead to
1 = det(v0, v

′
1) = l̃i1, li1d̃i1− di1 = det(v′1, v1) < det(v0, v1) = li1.

Using also slope orderedness of P̃ , we see mi1 ≤ d̃i1 < mi1 + 1. Now, let
u ∈ Zr+1 be a vertical P -root at D+. Proposition 9.15 ensures ui ≥ mi1.
This implies ui ≥ d̃i1. Using Proposition 9.15 again, we obtain that u is a
vertical P̃ -root at D̃+. �

Remark 11.8. From the proof of Proposition 11.7 we infer that mi1 ≤
d̃i1 < mi1 + 1 holds for i = 0, . . . , r. In particular, if P is adpated to the
source, then also P̃ is adapted to the source.

Proposition 11.9. Consider X̃ = X(A, P̃ ) and X = X(A,P ), where
each column of P also occurs as a column of P̃ .

(i) There is a proper birational morphism π : X̃ → X contracting pre-
cisely the curves D̃ij and D̃±, where ṽij and ṽ± is not a column
of P .

(ii) If there is an elliptic fixed point x̃− ∈ X̃ and u is a horizontal
P -root at (x̃−, i0, i1). Then x− = π(x̃−) ∈ X̃ is an elliptic fixed
point forming the sink and u is a horizontal P -root at (x−, i0, i1).

(iii) If we have a parabolic source D̃+ ⊆ X̃ and u is a vertical P̃ -root
at D̃+, then D+ = π(D̃+) ⊆ X is a curve forming the source and
u is a vertical P -root at D+.

Moreover, the root groups λ̃ : K → Aut(X̃) and λ : K → Aut(X) arising
from a common root u fit for every s ∈ K into the commutative diagram

X̃
λ̃(s) //

π
��

X̃

π
��

X
λ(s)
// X

Proof. For (i) observe that each cone of the fan Σ̃ of the ambient toric
variety Z̃ of X̃ is contained in a cone of the fan Σ of the ambient toric
variety Z of X. The corresponding toric morphism Z̃ → Z restricts to the
morphism π : X̃ → X. Assertion (ii) is clear by Proposition 9.4 and (iii)
follows from Proposition 9.15.
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We prove the supplement. Consider the Cox rings R(A,P ) of X and
R(A, P̃ ) of X̃. Recall that these are given as factor algebras

R(A,P ) = K[Tij , S±]/〈gI ; I ∈ I〉, R(A, P̃ ) = K[T̃ij , S̃±]/〈g̃I ; I ∈ Ĩ〉,

where R(A,P ) is graded by K = Cl(X) and R(A, P̃ ) by K̃ = Cl(X̃) see
Construction 2.4 for the details. Define a homomorphism of the graded
polynomial algebras

Ψ: K[T̃ij , S̃±] → K[Tij , S±]

by sending T̃ij and S̃± to the variables of K[Tij , S±] corresponding to π(D̃ij)
and π(D̃±) in case these divisors are not exceptional and to 1 ∈ K[Tij , S±]
otherwise. Then Ψ descends to a homomorphism

ψ : R(A, P̃ ) → R(A,P ).

Now note that any Demazure root δu on the fan Σ̃ having P̃ as generator
matrix is as well a Demazure root on the fan Σ having P as generator matrix.
Moreover, we have a commutative diagram

K[T̃ij , S̃±] δu //

Ψ
��

K[T̃ij , S̃±]
Ψ
��

K[Tij , S±]
δu
// K[Tij , S±]

Next, given a horizontal or vertical P -root and its corresponding P̃ -root, we
look at the associated Demazure P -root κ and Demazure P̃ -root κ̃. Pre-
senting λ̄κ(s)∗ and λ̄κ̃(s)∗ as in Theorem 5.4 and using commutativity of the
previous diagram we see that the following diagram commutes as well:

R(A, P̃ )
λ̄κ̃(s) //

ψ
��

R(A, P̃ )
ψ
��

R(A,P )
λ̄κ(s)

// R(A,P )

Cover π−1(Xreg) by affine open subsets of the form X̃[D̃],f̃ , where D̃ is a
Weil divisor of X̃ having f̃ ∈ R(A, P̃ ) as a section and X̃[D̃],f̃ is obtained by
removing the support of D̃ + div(f̃) from X̃. Set D = π∗D̃ and f = ψ(f̃).
Then we have commutative diagrams

R(A, P̃ )f̃
ψ //

OO
R(A,P )fOO

Γ(X̃[D̃],f̃ ,OX̃) R(A, P̃ )(f̃)
oo ψ0

π∗
// R(A,P )(f) Γ(X[D],f ,OX)

where the lower row represents the degree zero part of the upper one. The
homomorphisms ψ0 and π∗ in the lower row are directly seen to be inverse
to each other; see [2, Prop. 1.5.2.4]. Passing to the spectra and gluing gives
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us a commutative diagram

p−1(Xreg) ϕ //

p
��

p̃−1(π−1(Xreg))
p̃
��

Xreg oo π

ϕ0 // π−1(Xreg)

where p and p̃ denote the quotients of characteristic spaces of X and X̃
by the respective characteristic quasitori; use again [2, Prop. 1.5.2.4]. By
construction, the morphisms ϕ arising from ψ and ϕ0 arising from ψ0 satisfy

ϕ ◦ λ̄κ(s) = λ̄κ̃(s) ◦ ϕ, ϕ0 ◦ λκ(s) = λκ̃(s) ◦ ϕ0.

�

Proof of Theorem 11.1. Propositions 11.5 and 11.7 provide us with
a bijection between the P -roots and the P̃ -roots. Applyying Proposi-
tion 11.9, we obtain proves the second assertion of the Theorem. Asser-
tions (iii) and (iv) are then direct consequences. �

12. Structure of the automorphism group

Here we prove Theorem 0.1. In a first step, we express the number of
necessary P -roots to generate the unipotent part of the automorphism group
of a K∗-surface X = X(A,P ) in terms of intersection numbers of invariant
curves of X. We make use of the numbers defined in the introduction:
ci(D+) = CFqi(−E2

i1, . . . ,−E2
iqi)
−1, c(x−) = CFq(−E2

q , . . . ,−E−1
1 )−1,

where the Eij ⊆ X̃ are the exceptional curves lying over D+ ⊆ X in and the
Ei ⊆ X̃ over x− ∈ X with respect to the minimal resolution of singularities
X̃ → X.

Definition 12.1. Let X = X(A,P ) be non-toric with a fixed point
curve D+ ⊆ X. Given 0 ≤ i0, i1 ≤ r, we call a vertical P -root u at D+

essential with respect to i0, i1, if 0 ≤ 〈u, vi1〉 < li1 for all i 6= i0, i1.

Proposition 12.2. Consider a non-toric K∗-surface X = X(A,P ).
(i) Assume that there is a curve D+ ⊆ X and let 0 ≤ i0, i1 ≤ r. Then

the number of vertical P -roots at D+ essential to i0, i1 is given by

max
(
0, (D+)2 + 1−

r∑
i=0

ci(D+)
)
.

(ii) Assume that there is a quasismooth simple x− ∈ X and that P is
normalized. Then the number of horizontal P -roots at (x−, 0, 1) is
given by

max
(

0,
⌊
l−1
1n1 min

i 6=0
(liniD2

ini + (lini − l1n1)DiniD1n1)− c(x−)
⌋

+ 1
)
.

(iii) Assume that there is a quasismooth simple x− ∈ X and that P is
normalized. Then there is a horizontal P -root at (x−, 1, 0) if and
only if

liniD
2
ini ≥ (l0n0 − lini)DiniD0n0 , for all i 6= 1.
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Moreover, if these conditions hold, then x− ∈ X is smooth and
there exists precisely one horizontal P -root at (x−, 1, 0).

Proof. Let X̃ = X(A, P̃ ) be the minimal resolution. We verify (i). By
Proposition 11.7, the numbers ρ of vertical P -roots and ρ̃ of vertical P̃ -roots
essential to i0, i1 coincide. By Proposition 10.15, the number ρ̃ equals the
number of integers in the interval

Γ̃(i0, i1) =
[
m̃i11, −m̃i01 −

∑
i 6=i0,i1

dm̃i1e
]
.

Since X̃ is smooth, the slopes m̃i0, . . . , m̃ir are all integral numbers; see
Proposition 6.8. Thus, we see that ρ = ρ̃ equals the maximum of zero and
the number

−m̃i01 − m̃i11 −
∑

i 6=i0,i1
m̃i1 + 1 = −m̃+ + 1 = (D̃+)2 + 1,

where the last equality holds by Remark 6.4. We have D̃ij = Ei for
j = 1, . . . , qi. Moreover, D̃iqi+1 = Di1 and m̃iqi+1 = mi1. Thus, apply-
ing Corollary 7.6 (i) with ji = qi+1, we see that ρ = ρ̃ equals the maximum
of zero and

(D̃+)2 + 1 = (D+)2 −
r∑
i=0

ci(D+) + 1.

We verify (ii). According to Proposition 9.11, the number ρ of horizontal
P -roots at (x−, 0, 1) equals the number of integers γ satisfying

γ ∈ ∆(0, 1) =
⋂
i 6=0

[ξi, η1], γd1n1 ≡ −1 mod l1n1 ,

see Construction 9.7 for the notation. By Remark 11.6, the maximal inte-
ger γ satisfying these conditions is l̃0ñ0 . Thus, we can replace [ξi, η1] with
[ξi, l̃0ñ0 ]. So, the number of integers γ in [ξi, l̃0ñ0 ] with γd1n1 ≡ −1 mod l1n1
is the maximum of zero and the round down ϑ(i) ∈ Z of

l̃0ñ0 − ξi
l1n1

+ 1 = (η1 − ξi)− (η1 − l̃0ñ0)
l1n1

+ 1

= l−1
1n1

(
liniD

2
ini + (lini − l1n1)DiniD1n1 − c(x−)

)
+ 1.

Here, the second equality needs explanation. First, we express η1 − ξi in
terms of intersections numbers according to Remark 9.8. Moreover, the
definition of η1, Remark 6.3, quasismoothness of x− and Proposition 6.10
yield

η1 = 1
l1n1m

− , l−m− = det(σ−), l− = l0n0 l1n1 .

Proposition 9.12 (ii) says that 0 is the exceptional index of xi ∈ X and thus
Ej = D̃0n0−q+j holds for j = 1, . . . , q. Using Corollary 7.6 (ii), we obtain

η1 − l̃0ñ0 = l0n0

det(σ−) − l̃0ñ0 = c(x−).

Since ∆(0, 1) is the intersection over the intervals [ξ, η1], where i 6= i0, we
see that the number of all the wanted γ we have to take the minimum of
the above round downs ϑ(i) as an upper bound.
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We care about (iii). By Proposition 9.11, there exists a horizontal P -
root at (x−, 1, 0) if and only if ∆(1, 0) is non-empty. The latter precisely
means η0 − ξi ≥ 0 for all i 6= 1. This in turn is equivalent to

liniD
2
ini ≥ (l0n0 − lini)DiniD0n0 , for all i 6= 1,

see Remark 9.8. Now, if there is a horizontal P -root at (x−, 1, 0), then
Proposition 9.12 (i) yields that there is no further one and that x− ∈ X is
smooth. �

The final puzzle piece for the proof of Theorem 0.1 is the following
controled contraction X̃ → X ′ of the minimal resolution X̃ of X onto a
toric surface that allows to keep track of the relevant roots.

Proposition 12.3. Consider a minimal resolution X̃ → X, where X =
X(A,P ) is non-toric and X̃ = X(A, P̃ ).

(i) Let x− ∈ X be a quasismooth simple elliptic fixed point and let P
be adapted to the sink. Then there is a K∗-equivariant morphism
π : X̃ → X ′ onto the toric smooth projective K∗-surface X ′ defined
the matrix

P ′ =
[
−l̃01 . . . −l̃0ñ0 l̃11 . . . l̃1ñ1 0
d̃01 . . . d̃0ñ0 d̃11 . . . d̃1ñ1 1

]
.

The horizontal P̃ -roots at (x̃−, 0, 1) map injectively to the horizon-
tal P ′-roots at (π(x̃−), 0, 1) via

Zr+1 3 u(0, 1, γ) 7→ u(0, 1, γ) ∈ Z2.

Similarly, the horizontal P̃ -roots at (x̃−, 1, 0) map injectively to
the horizontal P ′-roots at (π(x̃−), 1, 0) via

Zr+1 3 u(1, 0, γ) 7→ u(1, 0, γ) ∈ Z2.

(ii) Assume that we have a curve D+ ⊆ X admitting vertical P -
roots and let P be adapted to the source. Then we obtain a
K∗-equivariant morphism π : X̃ → X ′ onto the smooth toric K∗-
surface X ′ defined by the matrix

P ′ =
[
−l̃01 . . . −l̃0ñ0 l̃11 . . . l̃1ñ1 0 0
d̃01 . . . d̃0n0 d̃11 . . . d̃1ñ1 1 −1

]
.

The image π(D̃+) ⊆ X ′ is a curve forming the source and the
vertical P̃ -roots at D̃+ essential with respect to 0, 1 map injectively
to the vertical P ′-roots at π(D̃+) essential with respect to 0, 1 given
by

Zr+1 3 u(0, 1, α) 7→ u(0, 1, α) ∈ Z2.

Moreover, the root groups λ̃ : K → Aut(X̃) and λ′ : K → Aut(X ′) arising
from a common root u fit for every s ∈ K into the commutative diagram

X̃
λ̃(s) //

π
��

X̃

π
��

X ′
λ′(s)

// X ′



70 1. THE UNIT COMPONENT OF THE AUTOMORPHISM GROUP

Finally, each Demazure P ′-root is also a Demazure root on the complete fan
Σ′ with generator matrix P ′ and the respective root groups in the sense of
Constructions 3.6 and 3.2 coincide.

Proof. First we convince ourselves that in setting (i) we have l̃iñi = 1
as well as d̃iñi = 0 for all i ≥ 2 and, moreover, that there is a curve D̃+ ⊆ X̃.
Note that x− ∈ X has exceptional index 0 or 1 by Propositions 8.10 and 11.9.
Thus, for any i ≥ 2, Proposition 6.10 yields l̃iñi = lini = 1 and the fact that
P is adapted to the sink ensures d̃iñi = dini = 0. The existence of D̃+ ⊆ X̃
is guaranteed by Corollary 8.7. In the situation of (ii), the existence of
D̃+ ⊆ X̃ is clear. We ensure l̃i1 = 1 and d̃i1 = 0 for all i ≥ 1. Moreover, by
Proposition 9.17, there must be a curve D̃− ⊆ X̃. Now, as P is adapted to
the source, Remark 11.8 yields that also P̃ is adapted to the source. Thus,
we have l̃i1 = 1 and d̃i1 = 0 for i = 1, . . . , r. From now, we treat Settings (i)
and (ii) together. Consider the data

n′′0 = n0, v
′′
0j = v0j , n′′1 = n1, v

′′
1j = v1j , n′′i = 1, v′′i1 = vini , i ≥ 2.

These, together with v+ in the setting of (i) and v+, v− in the setting of (ii)
are the columns of a matrix P ′′. It defines a K∗-surface X ′′ = X(A,P ′′)
which is smooth due to Propositions 6.8 and 6.10. Proposition 11.9 gives
us a morphism X̃ → X ′′ having the desired properties concerning the roots
and the associated root groups.

Now, the matrix P ′′ is highly redundant. Removing all these redundan-
cies, that means erasing the column vini and the i-th rows for i = 2, . . . , r
turns P ′′ into P ′. The K∗-surface X ′′ is isomorphic to the toric K∗-surface
X ′ = X(A′, P ′), where A′ is the 2× 2 unit matrix. Using l̃iñi = 1 as well as
d̃iñi = 0 in (i) as well as l̃i1 = 1 and d̃i1 = 0 in (ii) as seen before, one checks
that the P ′′-roots turn into P ′-roots as claimed. The supplement is directly
verified. �

Proof of Theorem 0.1. LetX := X(A,P ) be a non-toric K∗-surface.
Theorem 3.8 on the automorphism group of a rational projective variety with
torus action of complexity one says that Aut(X)0 is generated by the acting
torus and the additive one-parameter groups associated with the Demazure
P -roots. In the surface case, the latter ones are given by horizontal and
vertical P -roots; see Propositions 9.11 and 9.15. Thus, Aut(X)0 = K∗ if and
only if there are neither horizontal nor vertical P -roots. Horizontal P -roots
only exist if X admits a quasismooth simple elliptic fixed point, and in this
case there is no other such fixed point; see Proposition 9.6 and Theorem 8.4.
This setting is Case (ii) of Theorem 0.1. Moreover, existence of vertical
P -roots requires a non-negative parabolic fixed point curve and excludes
quasismooth simple elliptic fixed points; see Propositions 9.15 and 9.17. This
setting restitutes Case (i) of Theorem 0.1. Recall that U(X) ⊆ Aut(X)0

denotes the subgroup generated by all root subgroups.
We determine Aut(X)0 in Case (i) of Theorem 0.1. Thus, we have to

deal with a non-negative parabolic fixed point curve hosting vertical P -
roots, if present, and which we may assume to be D+ ⊆ X. Moreover, we
may assume that the defining matrix P̃ of the minimal resolution X̃ of X is
adapted to the source. Proposition 9.18 yields thatD+ is the only fixed point
curve admitting vertical roots. Fix any two distinct 0 ≤ i0, i1 ≤ r. Then



13. ALMOST HOMOGENEOUS K∗-SURFACES 71

Proposition 10.3 says that U(X) is generated by all root groups arising from
vertical P -roots being essential at i0, i1. Proposition 12.2 (i) shows that ρ
from Theorem 0.1 (i) equals the number the number of vertical P -roots
essential to i0, i1. Theorem 11.1 and Proposition 12.3 realize U(X) as the
subgroup generated by Demazure roots at a common primitive ray generator
of the automorphism group of a suitable toric surface X ′. Moreover the
original K∗-action of X is given on X ′ by the one parameter group K∗ → T2

sending t to (1, t). Applying Proposition 4.2 yields the desired isomorphism
Kρ oψ K∗ ∼= Aut(X)0.

We enter Case (ii) of Theorem 0.1. The pattern of arguments is similar
to that of the preceding case. Now we have a unique quasismooth sim-
ple elliptic fixed point which we can assume to be x− ∈ X. Moreover,
we can assume P to be normalized. By Proposition 10.2, the group U(X)
is generated by the root groups stemming from the horizontal P -roots at
(i0, i1, x−) and (i1, i0, x−). Due to Proposition 9.12, we may assume i0 = 0
and i1 = 1, and, moreover, that i0 = 0 is the exceptional index of x− ∈ X.
Proposition 12.2 (ii) shows that ρ and ζ from Theorem 0.1 (ii) equal the
numbers of horizontal P -roots at (0, 1, x−) and (1, 0, x−), respectively. The-
orem 11.1 and Proposition 12.3 realize U(X) as the subgroup generated by
Demazure roots at two common primitive ray generators of the automor-
phism group of a suitable toric surface X ′. Here, using Proposition 9.12 (i)
and Corollary 9.13, we see that the Demazure roots of X ′ corresponding to
horizontal P -roots at (0, 1, x−) and (1, 0, x−) are as in the setting of Propo-
sition 4.4. Moreover, K∗ acts X ′ via the one parameter group K∗ → T2

sending t to (1, t). Thus, Proposition 4.4, yields the desired isomorphism
(Kρ oϕ K) oψ K∗ ∼= Aut(X)0. �

13. Almost homogeneous K∗-surfaces

Here, we investigate almost transitive algebraic group actions on rational
projective K∗-surfaces X = X(A,P ). Our considerations fit together to
the proof of Theorem 0.2, given at the end of the section. Moreover, in
Propositions 13.12 and 13.17 we specify the two-dimensional subgroups of
Aut(X)0 that act almost transitively on X. The first observation of the
section says in particular that almost transitive actions can only exist in the
presence of horizontal P -roots.

Proposition 13.1. Consider a non-toric K∗-surface X = X(A,P ).
(i) If λ : K → Aut(X) is a root group defined by a vertical P -root,

then each orbit of λ(K) is contained in the closure of a K∗-orbit.
(ii) If X admits vertical P -roots, then Aut(X) acts with orbits of di-

mension at most one.

Proof. The first statement is a consequence of [3, Cor. 5.11 (ii)]. Al-
ternatively, it directly follows from Remark 3.9, Construction 3.2 and the
definition of the K∗-action on X = X(A,P ). For the second statement,
recall from Proposition 9.17 that the presence of a vertical P -roots excludes
quasismooth simple elliptic fixed points and hence also excludes horizontal
P -roots. �
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From now on, we assume presence of horizontal P -roots and we work in
the setting of Theorem 0.1 (ii).

Construction 13.2. Let X = X(A,P ) be non-toric with x− ∈ X and
P normalized. Consider the unit component of its automorphism group

Aut(X)0 =
(
Kρ oϕ Kζ

)
oψ K∗,

where the numbers ρ and ζ as well as the twisting homomorphisms ϕ and
ψ are specified in Theorem 0.1. Moreover, define lines in Kρ+ζ by

Uk := Kek, k = 1, . . . , ρ+ ζ.

Then each of the following semidirect products Gk is a two-dimensional
subgroup of Aut(X)0 containing K∗:

Gk = Uk oψk K
∗, ψk(t)(s) =

{
tl̃0ñ0−(k−1)l1n1s, k = 1, . . . , ρ,
tl1n1s, ζ = 1, k = ρ+ 1.

Remark 13.3. Let X = X(A,P ) be as in Construction 13.2. Then each
of the lines U1, . . . , Uρ+ζ is a root group. More precisely, the following holds.

(i) For k = 1, . . . , ρ, the lines Uk ⊆ Aut(X)0 are precisely the
root groups defined by the horizontal P -roots u(0, 1, γk) with
γk = l̃0ñ0 − (k − 1)l1n1 .

(ii) For ζ = 1 and k = ρ + ζ, the line Uk ⊆ Aut(X)0 is precisely
the root group defined by the horizontal P -root u(1, 0, γk) with
γk = l1n1 .

By a K∗-general point of a rational projective K∗-surface X = X(A,P ),
we mean an x ∈ X which is not a fixed point and not contained in any arm
of X. Observe that a point x ∈ X is K∗-general if and only if each of its
Cox coordinates is non-zero.

Lemma 13.4. Let X = X(A,P ) admit a horizontal P -root u at
(x−, i0, i1). Then, for every K∗-general x ∈ X, the root group λ : K →
Aut(X) given by u satisfies
Dini ∩ λ(K) · x 6= ∅, i 6= i0, Dij ∩ λ(K) · x = ∅, i = i0 or j 6= ni.

Moreover, if there is a fixed point curve D+ ⊆ X, then we have λ(K) · x ∩
D+ = ∅. Finally, we have λ(K) ·Di0ni0

= Di0ni0
.

Proof. Theorem 5.4 yields λ̄(s)∗(S+) = S+ in the case that there is a
fixed point curve D+ ⊆ X. Moreover it shows

i = i0 : λ̄(s)∗(Ti0ni0 ) = Ti0ni0 ,

i = i1 : λ̄(s)∗(Ti1ni1 ) = Ti1ni1 + sδu(Ti1ni1 ),

i 6= i0, i1 : λ̄(s)∗(Tini) = Tini +
∑li1ni1
ν=1 α(s, ν, i)δuν,i(Tini),

j 6= ni : λ̄(s)∗(Tij) = Tij .

Thus, λ(K) · x ∩D+ = ∅ and Dij ∩ λ(K) · x = ∅ provided i = i0 or j 6= ni.
For i 6= i0, a suitable choice of s yields λ̄(s)∗(Tini) = 0 and hence λ(s) · x ∈
Dini . �
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Proposition 13.5. Let X = X(A,P ) be as in Construction 13.2.
Then we have the following statements on the actions of the subgroups
G1, . . . , Gρ+ζ ⊆ Aut(X)0.

(i) For each k = 1, . . . , ρ, the group Gk acts almost transitively on X
and at any point of its open orbit, Gk has cyclic isotropy group of
order l1n1.

(ii) For k = 1, . . . , ρ, the Gk-action turns X into an equivariant Gk-
compactification if and only if l1n1 = 1 holds.

(iii) For ζ = 1 and k = ρ+ ζ, the group Gk acts almost transitively on
X and at any point of its open orbit, Gk has cyclic isotropy group
of order l0n0.

(iv) For ζ = 1 and k = ρ+ζ, the Gk-action turns X into an equivariant
Gk-compactification if and only if l0n0 = 1 holds.

Proof. We prove (i). Lemma 13.4 shows that each of the groups Gk =
UkoψkK∗ acts almost transitively; see also [3, Cor. 5.11]. Now, fix k and set
G := Gk. For the K∗-general point x ∈ X, the isotropy group Gx projects
via G → K∗ isomorphically onto a finite cyclic group. Take a generator
g ∈ Gx. As g is semisimple, we have sgs−1 ∈ K∗ for suitable s ∈ Uk. Thus
sGxs

−1 = Gs·x = K∗s·x. Remark 13.3 and Lemma 13.4 yield the assertion.
Assertion (i) is a direct consequence of (ii). Assertions (iii) and (iv) are
proven in the same way. �

Together with Remark 13.3, the above Proposition gives us in particular
the following.

Corollary 13.6. Let X = X(A,P ) be non-toric. Then Aut(X) acts
almost transitively on X if and only if X admits horizontal P -roots.

Besides the obvious subgroups Gk ⊆ Aut(X)0 acting almost transitively
on X, we sometimes also encounter the following more hidden family of
two-dimensional subgroups of Aut(X)0.

Construction 13.7. Let X = X(A,P ) be non-toric with x− ∈ X and
P normalized. Assume ρ ≥ 1, ζ = 1 and consider

Aut(X)0 =
(
Kρ oϕ Kζ

)
oψ K∗.

Then every choice of a non-zero element wρ ∈ K gives rise to a one-
dimensional subgroup of Kρ oϕ Kζ via

U(wρ) := {(sρw1, s
ρ−1w2, . . . , swρ, s); s ∈ K},

wk := 1
(ρ− k + 1)

(
ρ− 1
k − 1

)
wρ.

If l0n0 = ρ and l1n1 = 1 hold, then U(wρ) ⊆ Aut(X)0 is normalized by K∗
and thus gives rise to a two-dimensional subgroup

G(wρ) := U(wρ) oψ K∗ ⊆ Aut(X)0.

Remark 13.8. In the setting of Construction 13.7, assume ρ = l0n0 =
l1n1 = 1. Then the unit component of the automorphism group of X is given
by

Aut(X)0 = K2 oψ K∗, ψ(t) = diag(t−1, t−1).
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Moreover, the subgroups U1, U2 and U(w1), where w1 ∈ K∗ are precisely
the lines through the origin of K2.

The fact that U(wρ) ⊆ KρoϕKζ is indeed a subgroup as well as the con-
dition for being normalized by K∗ are direct consequences of the subsequent
two more general observations.

Proposition 13.9. Let X = X(A,P ) be non-toric with x− ∈ X and P
normalized. Assume ρ ≥ 1 and ζ = 1. Consider a subset of KρoϕKζ of the
form

U(w) := {(w(s), s); s ∈ K}, w(s) := (sγ1w1, . . . , s
γρwρ),

with a given non-zero w = (w1, . . . , wρ) ∈ Kρ and given integers γ1 > . . . >

γρ > 0. Then U(w) ⊆ Kρ oϕ Kζ is a subgroup if and only if U(w) = U(wρ)
holds.

Proof. First, recall from Theorem 0.1 the matrix A(s) defining the
twisting homomorphism ϕ : Kζ → Aut(Kρ). The subset U(w) of Kρ oϕ Kζ

is a subgroup if and only if

(w(r), r) ◦ (w(s), s) = (w(r) +A(r) · w(s), r + s) = (w(r + s), r + s)

holds for any two r, s ∈ K. Now, for k = 1, . . . , ρ, the k-th coordinate of the
second of the above equalities gives us the following identities of polynomials
pk and qk in r, s, altogether characterizing the subgroup property of U(w):

pk(r, s) := wkr
γk +

ρ∑
i=k

(
i− 1
k − 1

)
wir

i−ksγi

= wkr
γk +

ρ−k∑
i=0

(
k + i− 1
k − 1

)
wk+ir

isγk+i

= wk(r + s)γk

=
γk∑
i=0

(
γk
i

)
wkr

isγk−i

=: qk(r, s).

We claim that if U(w) is a subgroup of KρoϕKζ , then w1, . . . , wρ ∈ K∗
holds. Otherwise, let k be minimal with wk = 0. Then pk = qk implies
wi = 0 for i = k, . . . , %. Due to w 6= 0, we have k > 1. The equation
pk−1 = qk−1 yields

rγk−1 + sγk−1 =
γk−1∑
i=0

(
γk−1
i

)
risγk−1−i.

This is only possible for γk−1 = 1. As we have γ1 > . . . > γρ > 0, we
conclude k − 1 = ρ. A contradiction to the choice of k. Thus, if U(w) is a
subgroup of Kρ oϕ Kζ , then we must have w1, . . . , wρ ∈ K∗.

This reduces our task to showing that a given U(w) with w1, . . . , wρ ∈
K∗ is a subgroup of Kρ oϕ Kζ , if and only if U(w) equals U(wρ) from
Construction 13.7. Comparing the number of terms of pk and qk, we obtain
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γk = ρ − k + 1. Now, comparing the coefficients of pk and qk leads to the
following identities, characterizing the subgroup property of U(w) by

(?)
(
k + i− 1
k − 1

)
wk+i =

(
γk
i

)
wk =

(
ρ− (k − 1)

i

)
wk,

where k = 1, . . . , ρ and i = 0, . . . , γk. In particular, taking k and i = ρ− k,
the identities (?) bring us to the conditions

wρ = wk+(ρ−k) =
(
ρ− k + 1
ρ− k

)(
ρ− 1
k − 1

)−1

wk,

which in turn are equivalent to the defining conditions of U(wρ) from Con-
struction 13.7. Conversely, we retrieve the characterizing identities (?) from
the above conditions by an explicit computation:(

k + i− 1
k − 1

)
wk+i =

(
k + i− 1
k − 1

)(
ρ− 1

k + i− 1

)(
ρ− (k + i) + 1
ρ− (k + i)

)−1

wρ

=
(
ρ− (k − 1)

i

)
wk.

�

Proposition 13.10. Let X = X(A,P ) be non-toric with x− ∈ X and P
normalized. Assume ρ ≥ 1, ζ = 1. For any one-dimensional closed subgroup
U ⊆ Kρ oϕ Kζ neither contained in Kρ nor in Kζ the following statements
are equivalent.

(i) The group U ⊆ Aut(X)0 is normalized by K∗.
(ii) We have l0n0 = ρ, l1n1 = 1 and U = U(wρ).

Proof. First assume that U is normalized by K∗. By assumption we
have ζ = 1 and the projection U → Uρ+ζ ∼= K is surjective. As U is
unipotent, U → Uρ+ζ is an isomorphism. In particular, there is a unique
element w = (w1, . . . , wρ, 1) ∈ U with wk ∈ K and wk 6= 0 at least once. As
U is normalized by K∗, we obtain

(0, t) ◦ (w, 1) ◦ (0, t−1) = (ψ(t)(w), 1) = (tγ1w1, . . . , t
γρwρ, t

l1 , 1)
for all t ∈ K∗, where we set γk := l0n0 − (k − 1)l1n1 and l1 := l1n1 for the
moment. The right hand side gives us a parametric representation of the
variety U ⊆ Kρ ×Kζ . Thus, setting ck := wl1k , we obtain defining equations
for U ⊆ Kρ ×Kζ by

T l1k − ckT
γk
ρ+ζ = 0, k = 1, . . . , ρ.

Observe that γk and l1 are coprime due to smoothness of x− ∈ X; see
Proposition 6.10. Since at least one of the wk is non-zero and 0 ∈ Kρ ×Kζ

is a smooth point of U , we conclude l1 = 1. Thus, setting l0 = l0n0 , we have

U = {(w(s), s); s ∈ K} ⊆ KρoϕKζ , w(s) := (sl0w1, s
l0−1w2, . . . , s

l0−ρ+1wρ).

Since U is a subgroup of Kρ×Kζ , Proposition 13.9 yields that we have l0 = ρ
and the wk arise from a wρ ∈ K∗ as in Construction 13.7. Conversely, if (ii)
holds, then one directly checks that U = U(wρ) is normalized by K∗. �
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Proposition 13.11. Let X = X(A,P ) be non-toric with x− ∈ X and
P normalized. Assume ρ ≥ 1, ζ = 1 and l0n0 = ρ, l1n1 = 1. Then G(wρ) ⊆
Aut(X)0 acts almost transitively and the isotropy group of a general x ∈ X
is cyclic of order l0n0 = ρ.

Proof. Set for short G = G(wρ). It suffices to show that for the general
point x ∈ X, the isotropy group Gx is cyclic of order l0n0 . For this note first
that any element ϑ ∈ U(wρ) decomposes as

ϑ = ϑρ ◦ ϑζ , ϑρ ∈ Kρ, ϑζ ∈ Kζ .

Using Lemma 13.4, we see that there are an ϑ ∈ U(wρ) and a K∗-general x ∈
X such that ϑζ(x) ∈ D0n0 . Applying Lemma 13.4 again shows ϑρ(ϑζ(x)) ∈
D0n0 . As in the proof of Proposition 13.5, we conclude that Gx is cyclic of
order l0n0 . �

Proposition 13.12. Let X = X(A,P ) be non-toric with x− ∈ X and P
normalized. Let G ⊆ Aut(X)0 be a two-dimensional subgroup containing K∗
and acting almost transitively on X.

(i) If G ⊆ Kρ oψ K∗ or G ⊆ Kζ oψ K∗ holds, then G is equal to one
of the subgroups G1, . . . , Gρ+ζ .

(ii) If neither G ⊆ KρoψK∗ nor G ⊆ KζoψK∗, then l0n0 = ρ, l1n1 = 1
and G = G(wρ) with wρ ∈ K∗.

Up to conjugation, items (i) and (ii) list all closed two-dimensional sub-
groups of Aut(X)0 that act almost transitively on X and have a maximal
torus of dimension one.

Proof. We show (i). For G ⊆ Kζ oϕ K∗, the group G equals Gρ+ζ by
dimension reasons. Assume G ⊆ Kρ oϕ K∗. By assumption, p : G → K∗
is surjective. Thus, U := ker(p) is a one-dimensional subgroup of Kρ and
hence a line. Moreover, we find an element (w, 1) ∈ G, where w ∈ U . Then,
for all t ∈ K∗, we have

(0, t) ◦ (w, 1) ◦ (0, t−1) = (ψ(t)(w), 1) = (tγ1w1, . . . , t
γρwρ, 1),

where we set γk := l̃0ñ0 − (k − 1)l1n1 as before and evaluate the twisting
homomorphism ψ : K∗ → Aut(Kρ) according to its definition. In particular,

(tγ1w1, . . . , t
γρwρ) ∈ U ⊆ Kρ

holds for all t ∈ K∗. As the γk are pairwise distinct, we see that U is one
of the Ui. Now, using again the definition of the twisting homomorphism
ψ : K∗ → Aut(Kρ), we arrive at the assertion.

We turn to (ii). Surjectivity of p : G→ K∗ implies that U := ker(p) is a
one-dimensional subgroup of Kρ oϕ Kζ . Because of K∗ ⊆ G, the subgroup
U ⊆ Aut(X)0 is normalized by K∗. Proposition 13.10 shows l0n0 = ρ and
l1n1 = 1 as well as U = U(wρ). In particular, we arrive at G = G(wρ). �

Proposition 13.13. Consider X = X(A,P ) with x− ∈ X and P nor-
malized. Then each of the subgroups Kρ,Kζ ⊆ Aut(X)0 acts with orbits of
dimension at most one. Moreover, any subgroup G ⊆ Kρ oψ Kζ containing
U1 and Uρ+ζ acts almost transitively.
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Proof. Consider X ′ ← X̃ → X as provided by Theorem 11.1 and
Proposition 12.3. Then Kρ is generated by the root groups stemming from
horizontal P -roots at (x−, 0, 1), see Propositions 10.2 and 10.3. Thus, the
corresponding subgroup of Aut(X ′) is generated by the root groups coming
from Demazure roots at a common ray. Looking at the resulting root groups
of X ′ in Cox coordinates, we directly see that Kρ acts with at most one-
dimensional orbits. For Kζ and G, we succeed by the same idea. �

Proposition 13.14. Let X = X(A,P ) be non-toric with x− ∈ X and
P normalized. Assume ρ ≥ 1 and ζ = 1 and consider G := U1 oϕ Uρ+ζ ⊆
Aut(X)0.

(i) The group G is isomorphic to the vector group K2.
(ii) The G-action turns X into an equivariant G-compactification.
(iii) The subgroup G ⊆ Aut(X)0 is normalized by K∗ ⊆ Aut(X)0.

Proof. Assertion (i) can be directly deduced from the structure of
Kρ oϕ Kζ . We show (ii). According to Proposition 13.13, the group G
acts with an open orbit. In particular, its general isotropy group is finite,
hence trivial due to (i). Assertion (iii) is again directly checked. �

Proof of Theorem 0.2. Clearly, (i) implies (ii). Assume that (ii)
holds. Then we infer from Proposition 13.1 that there must be horizon-
tal P -roots. Thus, we may assume that there is a fixed point x− ∈ X and
that P is normalized. Then we have ρ + ζ > 0 and this translates to (iii),
see Proposition 12.2. Now, if (iii) holds, then there is a horizontal P -root
and an associated root group as in Remark 13.3. By Proposition 13.5, this
yields an almost transitive action of G = KoK∗ ⊆ Aut(X)0 on X. So, we
made our way back to (i).

We turn to the supplement concerning the case that a two-dimensional
subgroup G ⊆ Aut(X) acts almost transitively on X. First note that G
is either solvable with one-dimensional maximal torus or G is unipotent.
Thus, we either can assume by suitably conjugating that K∗ ⊆ G holds or
we must have G ∼= K o K and hence G ∼= K2. Then (iv) is covered by
Propositions 13.5, 13.11 and 13.12. For (v) observe first that both series
of inequalities being valid means ρ ≥ 1 and ζ = 1 due to Proposition 12.2.
Then the assertion is a direct consequence of (iv) and Proposition 13.14. �

Finally, we descibe all the subgroups G ⊆ Aut(X) that are isomorphic
to the vector group K2 and act almost transitively on X.

Proposition 13.15. Let X = X(A,P ) be non-toric with x− ∈ X and
P normalized. Assume ρ > 1 and ζ = 1. For 0 6= wρ ∈ K, set

V (wρ) := U1U(wρ) ⊆ Kρ oϕ Kζ ,

where U1 and U(wρ) are the subgroups of KρoϕKζ from Constructions 13.2
and 13.15. Then the following holds.

(i) V (wρ) is a subgroup of Kρ oϕ Kζ , isomorphic to K2.
(ii) V (wρ) is normalized by K∗ in Aut(X)0 if and only if l0n0 = ρ and

l1n1 = 1.
(iii) V (wρ) acts almost transitively on X.
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Proof. We show (i). Clearly, U1∩U(wρ) contains only the zero element.
Moreover, we directly see that the each element of U1 commutes with each
element of U(wρ). Thus, V (wρ) is a subgroup of KρoϕKζ isomorphic to the
vector group K2. Assertion (ii) holds because U1 is normalized by K∗ and
U(wρ) is normalized by K∗; see Proposition 13.10 for the latter. For (iii),
we use Theorem 5.4 and Lemma 13.4 to show that D0n0 and D1n1 lie in the
orbit of V (wρ) through x− ∈ X. Thus the orbit of Vρ through x− ∈ X is
open in X. �

Remark 13.16. Let X = X(A,P ) be non-toric with x− ∈ X and P
normalized. Assume ρ ≥ 1 and ζ = 1.

(i) If l0n0 = ρ and l1n1 = 1 hold, then we have a one-parameter family
of one-dimensional unipotent subgroups

{U(wρ); wr ∈ K∗} = {tU(1)t−1; t ∈ K∗} ⊆ Kρ oϕ Kζ ,

and we have a one-parameter family of subgroups isomorphic to
the vector group K2:

{tV (1)t−1; t ∈ K∗} ⊆ Kρ oϕ Kζ .

(ii) If l0n0 6= ρ or l1n1 6= 1 holds, then we have a two-parameter family
of one-dimensional unipotent subgroups

{tU(wρ)t−1; wρ ∈ K∗, t ∈ K∗} ⊆ Kρ oϕ Kζ ,

and we have a two-parameter family of subgroups isomorphic to
the vector group K2:

{tV (wρ)t−1; wρ ∈ K∗, t ∈ K∗} ⊆ Kρ oϕ Kζ .

Proposition 13.17. Let X = X(A,P ) be non-toric with x− ∈ X and
P normalized. Then X admits additive actions if and only if ρ ≥ 1 and
ζ = 1. In this case, the additive actions on X are given by the groups
G = U1 oϕ Uρ+ζ and, up to conjugation by elements from K∗, the groups
G = V (w%), where wρ ∈ K∗.

Proof. The first statement is clear by Propositions 13.14 and 13.13.
For the second one, we consider once more X ′ ← X̃ → X as provided by
Theorem 11.1 and Proposition 12.3. This realizes Aut(X)0 as a subgroup
of the automorphism group of the smooth toric surface X ′ in such a way
that K∗ becomes a subtorus of the (two-dimensional) acting torus T′ of X ′.
In particular, U1 oϕ Uρ+ζ and the family V defined by V (1) in the sense of
Remark 13.16 show up in of Aut(X ′), where V is a locally closed subvariety
isomorphic to a torus of dimension one or two. According to [17, Thm. 3],
there are only two additive actions on X ′ up to conjugation by T′. One them
is normalized by T′. Proposition 4.4 (iii) tells us that this is U1oϕUρ+ζ . The
other additive action G′ has a non-trivial orbit T′∗G′ under the T′-action on
Aut(X ′) via conjugation. Thus, T′ ∗G′ is isomorphic as a variety either to
a one-dimensional torus or to a two-dimensional torus. This reflects exactly
the cases (i) and (ii) of Remark 13.16. Thus, injectivity of the morphism
Aut(X)0 → Aut(X ′)0 gives the assertion. �
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14. Examples

In this section we want to construct rational projective K∗-surfaces
X(A,P ) with horizontal and vertical P -roots to gain a deeper understanding
of Theorem 0.1.

In the whole section we consider horizontal P -roots at elliptic fixed points
x− and vertical P -roots at a parabolic fixed point curve D+. Moreover the
defining matrices P are adapted to the source or sink, when considering
horizontal P -roots or vertical P -roots, respectively. Additionally in the first
case the defining matrix P is normalized.

The first two examples show that there are surfaces with horizontal P -
roots at (x−, 0, 1), but not at (x−, 1, 0) and vice versa. In particular, there is
no relation between the exponents ρ and ζ of Aut(X)0 =

(
Kρ oϕ Kζ

)
oψK∗.

Remark 14.1. Let X(A,P ) be a rational projective K∗-surface with
an elliptic fixed point x− ∈ X(A,P ). Recall the mutually inverse bijection
between integers in the interval Γ(i0, i1) and horizontal P -roots at (x−, i0, i1)
as seen in Proposition 9.11.

For 0 ≤ i, k ≤ r, define rational numbers

ηk := − 1
lknkm

− , ξi :=

0, ni = 1,
1

lini (mini−1−mini )
, ni ≥ 2.

For any two 0 ≤ ι, κ ≤ r, we define the intersections

∆(ι, κ) =
⋂
i 6=ι

[ξi, ηκ] ⊆ Q≥0.

We find horizontal P -roots at (x−, i0, i1) if and only if there are integers
γ ∈ ∆(i0, i1) such that γdi1ni1 ≡ −1 mod li1ni1 .

Example 14.2. We consider the following rational projective K∗-surface
X(A,P ) with defining data:

P :=

−3 5 2 0 0
−3 0 0 1 1
−2 3 1 1 0

 , A :=
[
1 0 −1
0 1 −1

]
.

The only horizontal P -root is given by the linear form u = (−1, 0, 2). It is a
horizontal P -root at (x−, 1, 0). In particular there are no horizontal P -roots
at (x−, 0, 1) since the following holds:

ξ1 = 5, ξ2 = 1, η1 = 3, i.e. ∆(0, 1) =
⋂
i=1,2

[ξi, 3] = ∅.

Example 14.3. We consider the following rational projective K∗-surface
X(A,P ) with defining data:

P :=

−3 2 0 0
−3 0 3 1
−2 1 1 0

 , A :=
[
1 0 −1
0 1 −1

]
.

The only horizontal P -root at x− is given by the linear form u = (−2, 0, 3).
It is a horizontal P -root at (x−, 0, 1). Moreover, there is no horizontal P -root
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at (x−, 1, 0) since the following holds:

ξ0 = 0, ξ2 = 3, η0 = 2, i.e. ∆(0, 1) =
⋂
i=0,2

[ξi, 2] = ∅.

Note that x− is smooth, in particular we find that smoothness of x− does
not imply ζ = 1.

Recall that for a K∗-surface with P normalized the exponent ρ in the
automorphism group can be expressed in terms of self intersection numbers
of invariant curves, see Theorem 0.1:

ρ = max
(

0,
⌊
l−1
1n1 min

i 6=0
(liniD2

ini + (lini − l1n1)DiniD1n1)− c(x−)
⌋

+ 1
)

The next example illustrates that it is necessary to use the integral part in
the formula.

Example 14.4. Let X(A,P ) be the smooth rational projective K∗-
surface defined by the following matrices:

P :=

−1 −2 −3 1 2 0 0 0 0
−1 −2 −3 0 0 1 2 1 0
0 −1 −2 1 1 1 1 0 1

 , A :=
[
1 0 −1
0 1 −1

]
.

Note that there is precisely one horizontal P -root at (x−, 0, 1), given by the
linear form u = (−2, 0, 3), i.e. we obtain ρ = 1.

Since X(A,P ) is smooth, we have c(x−) = 0. Moreover we have:

l1n1D
2
1n1 + (l1n1 − l1n1)D1n1D1n1 = l1n1D

2
1n1 , = 2

l2n2D
2
2n2 + (l2n2 − l1n1)D2n2D1n1 = 1.

Therefore by the formula above, ρ is the maximum of zero and the following
expression: ⌊

l−1
1n1 min(1, 2)

⌋
+ 1 =

⌊1
2

⌋
+ 1 = 1.

The next three examples show that for every (ρ, ζ) ∈ Z≥0 × {0, 1} there
is a rational projective K∗-surface X(A,P ).

Example 14.5. Let ρ ∈ Z≥1 and consider the rational projective K∗-
surface X(A,P (ρ)) with the following defining data:

P (ρ) :=

 −4ρ 2 0 0
−4ρ 0 1 1
−2ρ− 1 1 1 0

 , A :=
[
1 0 −1
0 1 −1

]
.

Observe that there are ρ-many distinct horizontal P -roots at (x−, 0, 1) given
by the following linear forms:

u(γ) = (−1− γ, 0, 1 + 2γ), 0 ≤ γ ≤ ρ− 1.

Note that since the elliptic fixed point x− is not smooth we know by Propo-
sition 9.12 (i) that there is no horizontal P -root at (x−, 1, 0). In particular,
we have Aut(X(A,P ))0 = Kρ oψ K∗.
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Example 14.6. Let ρ ∈ Z≥1 and consider the rational projective K∗-
surface X(A,P (ρ)) with the following defining data:

P (ρ) :=

−(2ρ− 1) 2 0 0
−(2ρ− 1) 0 1 1
−ρ 1 1 0

 , A :=
[
1 0 −1
0 1 −1

]
.

Observe that there are ρ-many distinct horizontal P -roots at (x−, 0, 1) given
by the following linear forms:

u(γ) = (−1− γ, 0, 1 + 2γ), 0 ≤ γ ≤ ρ− 1.
Furthermore the linear form u = (−1, 0, 2) defines a horizontal P -root at
(x−, 1, 0). In particular, we have Aut(X(A,P ))0 = (Kρ oϕ K) oψ K∗.

Example 14.7. Let ρ ∈ Z≥1 and consider the rational projective K∗-
surface X(A,P (ρ)) with the following defining data:

P (ρ) :=

−1 −1 1 1 0 0 0
−1 −1 0 0 1 1 0
−ρ −ρ− 1 0 −1 0 −1 1

 , A :=
[
1 0 −1
0 1 −1

]
.

Oow observe that there are ρ-many distinct vertical P -roots at D+ essential
to the indices 0, 1 given by the following linear forms:

u(α) = (α, 0,−1), 0 ≤ γ ≤ ρ− 1.
In particular, we have Aut(X(A,P ))0 = Kρ oψ K∗.

The last examples gives an inside in the results of Section 10. In the
first part of this Section we studied rational projective K∗-surfaces with
quasismooth elliptic fixed points x− such that lini = 1 for more than r − 1
indices.

Proposition 10.5 gave relations among horizontal P -roots, which we il-
lustrate with the following example

Example 14.8. Let X = X(A,P ) be the rational projective K∗-surface
with the following defining data:

P :=

−1 −1 1 1 0 0
−1 −1 0 0 1 1
0 −1 1 0 1 0

 , A :=
[
1 0 −1
0 1 −1

]
.

There are six horizontal P -roots at the elliptic fixed point x− given as:
linear form u pair of indices i0, i1
u0 = (0, 0, 1) i0 = 1, i1 = 0

u0 i0 = 2, i1 = 0
u1 = (−1, 0, 1) i0 = 0, i1 = 1

u1 i0 = 2, i1 = 1
u2 = (0,−1, 1) i0 = 0, i1 = 2

u2 i0 = 1, i1 = 2
We note that for any pair of indices i 6= ι we have (ui)1,ι = uι. Thus,
setting τ(i0, i1) := (ui1 , i0, i1, (2, 2, 2)) for the corresponding Demazure P -
root and {i0, i1, i2} = {0, 1, 2} we find the following representation according
to Theorem 5.4:

λτ(i0,i1)(s) = λui1 (s) ◦ λui2 (−s)|X .
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The following equalities show that the pair of indices 0, 1 is a pair of gener-
ating indices:

λτ(0,2)(s) = λτ(0,1)(−s), λτ(1,2)(s) = λτ(1,0)(−s),

λτ(2,0)(s) = λτ(1,0)(s)◦λτ(0,1)(−s), λτ(2,1)(s) = λτ(0,1)(s)◦λτ(1,0)(−s).

Note that the first line above is exactly the first statement of Proposi-
tion 10.5 and the second line is exactly the second statement of the same
Proposition.

15. The Gorenstein log del Pezzo case

The Gorenstein log del Pezzo K∗-surfaces have been classified in [32],
see also [2, Chapter 5.4.4].

We want to use Theorem 0.1 to obtain all unit components of the au-
tomorphism groups of Gorenstein log del Pezzo K∗-surfaces and compare
the results to recent classifications of surfaces with infinite automorphism
groups and equivariant compactifications.

Algorithm 15.1. Input: matrices A and P defining a rational projec-
tive K∗-surface X(A,P ).

• Test whether there is a parabolic fixed point curve of positive self
intersection. If there is one, D+ say, do the following:

– For every i = 0, . . . , r find a Hilbert basis for cone(vi1, er+1).
– Calculate c(D+) and ρ as in Theorem 0.1 (i).
– If ρ > 0, return Kρ and ψ as in Theorem 0.1 (i).

• Test whether there is a quasismooth elliptic fixed point x. If there
is one, x− say, do the following:

– Normalize the matrix P .
– Compute the Hilbert basis of cone((−l0n0 , d0n0), (l1n1 , d1n1))

as in Construction 11.3.
– If x− is simple, compute ρ as given in Theorem 0.1 (ii).
– Set ζ = 1 if the conditions of Theorem 0.1 (ii) hold, else set
ζ = 0.

– If ρ > 0 or ζ > 0, return Kρ o Kζ and ϕ,ψ as in Theo-
rem 0.1 (ii).

• If none of the above procedures yield ρ 6= 0 or ζ 6= 0, return K∗.

Remark 15.2. We use the following short notation for the automor-
phism ψ described in Theorem 0.1:

ψq1,...,qk : K∗ → Aut(Kρ oKζ), t 7→ diag(tq1 , . . . , tqk).

Furthermore for ζ = 1 observe that the automorphism ϕ : K → Aut(Kρ)
is uniquely determined by ρ. Hence we will omit it and write Kρ o K for
Kρ oϕ K.

Proposition 15.3. The following table lists the Cox ring R(X) and the
unit component of the automorphism group of all non-toric Gorenstein log
del Pezzo K∗-surfaces with Aut(X)0 6= K∗:
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no. R(X) Cl(X) [w1, . . . , wr] Aut(X)◦

1 K[T1,...,T4]
〈T1T2+T 3

3 +T 2
4 〉

Z [1 5 2 3]
(
K2 oK

)
oψ3,1,2 T

2 K[T1,...,T4]
〈T 2

1 T2+T 3
3 +T 2

4 〉
Z [1 4 2 3] K2 oψ3,2 T

3 K[T1,...,T4]
〈T1T2+T 4

3 +T 2
4 〉

Z⊕ Z/2Z
[

1 3 1 2
1̄ 1̄ 0̄ 1̄

]
Koψ1 T

4 K[T1,...,T4]
〈T 3

1 T2+T 3
3 +T 2

4 〉
Z [1 3 2 3] Koψ3 T

5 K[T1,...,T5]
〈T1T2+T3T4+T 2

5 〉
Z2

[
1 3 1 2 2
1 1 0 2 1

] (
K2 oK

)
oψ2,1,1 T

6 K[T1,...,T5]
〈T1T2+T 2

3 T4+T 2
5 〉

Z2
[

1 3 1 2 2
0 2 1 0 1

]
K2 oψ2,1 T

7 K[T1,...,T5]
〈T1T2+T3T4+T 3

5 〉
Z2

[
1 2 1 2 1
1 −1 −1 1 0

]
Koψ1 T

8 K[T1,...,T5]
〈T1T2+T 3

3 T4+T 2
5 〉

Z2
[

1 3 1 1 2
1 1 0 2 1

]
Koψ1 T

9 K[T1,...,T5]
〈T 2

1 T2+T 2
3 T4+T 2

5 〉
Z2

[
1 2 1 2 2
1 0 0 2 1

]
Koψ2 T

10 K[T1,...,T6]
〈T1T2+T3T4+T5T6〉 Z3

[
1 −1 −1 1 0 0
0 1 0 1 1 0
1 0 0 1 0 1

]
K2 oψ1,1 T

11 K[T1,...,T6]
〈T1T2+T3T4+T 2

5 T6〉
Z3

[
1 2 1 2 1 1
1 0 0 1 0 1
1 −1 −1 1 0 0

]
Koψ1 T

Remark 15.4. Recall the group structure of (Kρ oϕ Kζ) oψ T as given
in Theorem 0.1. The following holds:

(i) For ρ = 2 and ζ = 1 take two elements (r, s), (r′, s′) ∈ K2 oϕ K.
The group operation is given as follows:

(r, s) ◦ (r′, s′) = (r1 + r′1 + sr′2, r2 + r′2, s+ s′).

(ii) For ρ = 1, ζ = 0 consider the semidirect product K oψ1 K∗,
where ψ1 is defined as seen in Remark 15.2. For two elements
(r, t), (r′, t′) ∈ Koψ1 K∗ we have

(r, t) ◦ (r′, t′) = (r + tr′, tt′).

Remark 15.5. For the general linear group GLn(K) recall the following
definitions:

(i) The set of all upper triangular matrices Bn ⊆ GLn(K) is a sub-
group of GLn(K).

(ii) The set of upper triangular matrices with 1′s on the diagonal Un ⊆
GLn(K) is a subgroup of GLn(K).

(iii) Let C denote the center of GLn(K). Then the projective linear
group PGLn(K) is given as GLn(K)/C.

Lemma 15.6. Consider the projective linear group PGLn(K) and the
following subgroups:

Bn := Bn/C ⊆ PGLn(K), Un := Un/(Un ∩ C) ⊆ PGLn(K)

Then the following is true:
(i) The group Koψ1 K∗ is isomorphic to B2.
(ii) The group K2 oϕ2 K∗ is isomorphic to U3.
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Proof. For the first statement we consider the following bijective map:

f : Koψ1 K
∗ → B2, (s, t) 7→

[
t s
0 1

]
We show that the map f is a group homomorphism:

f((s, t) · (s′, t′)) = f(s+ ts′, tt′)

=
[
tt′ s+ ts′

0 1

]
=
[
t s
0 1

]
·
[
t′ s′

0 1

]
= f(s, t) · f(s′, t′)

This shows the first statement. For the second statement we consider the
bijective map g given as follows:

g : K2 oψ2 K
∗ → U3, (x1, x2, y) 7→

1 y x1
0 1 x2
0 0 1


Again, we show that this map is a group homomorphism:

g((x1, x2, y) · (x′1, x′2, y′)) = g(x1 + x′1 + yx′2, x2 + x′2, y + y′)

=

1 y + y′ x1 + x′1 + yx′2
0 1 x2 + x′2
0 0 1


=

1 y x1
0 1 x2
0 0 1

 ·
1 y′ x′1

0 1 x′2
0 0 1


= g(x1, x2, y) · g(x′1, x′2, y′).

This shows the second statement and therefore ends the proof. �

Corollary 15.7. The following table lists the degree K2
X , the Picard

number ρ(X) and the singularity type S(X) of all non-toric Gorenstein log
del Pezzo K∗-surface with Aut(X)0 6= K∗:

no. in Prop 15.3 no. in [10] K2
X ρ(X) S(X) Aut(X)◦

1 36 5 1 A4 U3 o T
2 24 4 1 D5 K2 o T
3 15 3 1 A1A5 B2
4 14 3 1 E6 Ko T
5 43 6 2 A2 U3 o T
6 37 5 2 A3 K2 o T
7 18 4 2 A1A3 B2
8 27 4 2 A4 B2
9 26 4 2 D4 Ko T

10 45 6 3 A1 K2 o T
11 39 5 3 A2 B2

Remark 15.8. Observe that the surfaces in the lists of Corollary 15.7
are exactly the non-toric K∗-surfaces with Aut(X)0 6= K∗ that occur in the
big table of [10].
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Recall that statements (iv) and (v) of Theorem 0.2 give conditions on
the defining matrix P of a rational projective K∗-surface X(A,P ) to be an
equivariant compactification:

(i) X(A,P ) is an equivariant compactification of KoK∗ if and only
if there is a horizontal P -root at (x−, i0, i1) with li1ni1 = 1.

(ii) X(A,P ) is an equivariant compactification of K2 if and only if
there are horizontal P -roots at (x−, i0, i1) and (x−, i1, i0).

We check these coonditions

Corollary 15.9. The following table lists the degree K2
X , the singularity

type S(X) and the set I(X) of index pairs (i0, i1) with horizontal P -roots
at (x−, i0, i1) of all non-toric Gorenstein log del Pezzo K∗-surface that are
equivariant group compactification for some semidirect product Ko T.

The index pairs are printed in bold type if and only if li1ni1 = 1. Fur-
thermore the varieties are equivariant compactifications of K2 if and only if
there is an asterisk in the last column.

no. in Prop 15.3 K2
X S(X) (l0n0 , l1n1 , l2n2) I(X)

5 6 A2 (1, 1, 2) (0, 2), (2, 0), (1, 2), (2, 1) ?
10 6 A1 (1, 1, 1) all ?
11 5 A2 (1, 1, 1) all

6 5 A3 (1, 1, 2) (2, 0), (1, 2), (2, 1) ?
7 4 A1A3 (1, 1, 3) (2, 0), (2, 1)

9 4 D4 (1, 1, 2) (2, 0), (2, 1)

Additionally, precisely the following non-toric Gorenstein log del Pezzo
surfaces are equivariant compactifications of a homogeneous space for some
semidirect product Ko T.

no. in Prop 15.3 K2
X S(X) (l0n0 , l1n1 , l2n2) I(X)

1 5 A4 (1, 3, 2) (1, 2), (2, 1) ?
2 4 D5 (1, 3, 2) (1, 2), (2, 1) ?
8 4 A4 (1, 1, 2) (1, 2), (2, 1)
3 3 A1A5 (1, 4, 2) (1, 2)
4 3 E6 (1, 3, 2) (1, 2)

Remark 15.10. Observe that the surfaces which occur in the lists of
Corollary 15.9 are precisely the non-toric ones in [16, Theorem 1.1]. To
compare the first table with the result given there note that all Gorenstein
log del Pezzo surfaces of degree ≥ 7 are toric, furthermore so are the sur-
faces of degree 6 and singularity type A1A2 and 2A1 and of degree 5 and
singularity type A1A2.

Moreover, the surfaces with asterisks are precisely the non-toric ones oc-
curing in [15, Theorem]. In particular, all Gorenstein log del Pezzo surfaces
that are K2-compactifications admit an effective K∗-operation.





CHAPTER 2

The almost homogeneous log del Pezzo case

1. Outline of the chapter

In this chapter we develop an algorithm to classify almost homogeneous
log del Pezzo K∗-surfaces. The results have been achieved in joint work with
Daniel Hättig.

As described in the introduction the algorithm consists of three steps:

(i) Find all almost k-hollow polygons.
(ii) Find all combinatorially minimal almost homogeneous, almost k-

hollow LDP complexes.
(iii) Build all almost homogeneous, almost k-hollow LDP complexes.

In the whole chapter a k-fold point is a point in kZn. We give an out-
line of the following chapter: The first two sections are dedicated to the
classification of almost k-hollow polygons, i.e. polygons whose only interior
k-fold point is the origin. The main idea is to classify certain minimal poly-
gons and inductively “grow“ these minimal polygons by successive addition
of vertices. These ideas have been developed in [33] in a general manner
and used to classify all toric Fano threefolds. Daniel Hättig adapted these
ideas to an algorithm classifying all almost k-hollow polygons, presented in
Section 2, and run it successfully for k = 2. In Section 3 we concentrate
on algorithmic aspects to make the described algorithm feasible for larger
k. The algorithm provided a classification of all almost 3-hollow polygons
presented in Theorem 12.1; there are exactly 910786.

Sections 4-6 establish a one-to-one correspondence between certain poly-
hedral complexes and log del Pezzo K∗-surfaces. This correspondence relies
on the anticanonical complex introduced in [8, 31]. In Section 4 we give
a short summary of the results achieved on anticanonical complexes for
varieties of complexity one. In the following section we develop arithmetic
conditions necessary to show the one-to-one correspondence of so called LDP
complexes with log del Pezzo K∗-surfaces. We collect some of the results
already known in [32]; For convenience, we show the full proofs. Last we
present some useful properties of LDP complexes in Section 6. The section
ends with the defintion of a standard form for LDP complexes, providing a
quick way to compare these complexes.

We go on with the second and third part of the algorithm: In Section 7
we introduce a way to remove vertices of an LDP complex such that the re-
maining vertices still define an LDP complex. Reversing this process yields
a possibility to “grow“ LDP complexes from minimal ones, similar to the
process for polygons. For the corresponding K∗-surfaces applying this pro-
cess means contracting a divisor: We show that the contraction of a divisor

87
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of a 1/3-log canonical del Pezzo K∗-surfaces yields a 1/3-log canonical del
Pezzo K∗-surfaces.

Sections 8 investigates step (ii) of the algorithm described: Removing
vertices from a given LDP complex ends in a non-toric combinatorially min-
imal LDP complex or a toric LDP complex. In the former case, Propo-
sition 8.2 states constraints, which are an improvement on results in [32].
In the latter case Proposition 8.5 formulates conditions for toric LDP com-
plexes that are contractions of non-toric LDP complexes. The following
Section 9 specializes to almost homogeneous LDP complexes and classifies
the combinatorially minimal ones.

Last, in Section 10 we show that there are only finitely many LDP com-
plexes corresponding to almost homogeneous 1/k-log canonical K∗-surfaces.
This has already been shown in [6] for general 1/k-log canonical surfaces.
However, our proof is constructive relying on the algorithm described. Hence
it can be implemented in a computer algebra system to achieve a classifica-
tion of all almost homogeneous 1/k-log canonical K∗-surfaces. The general
algorithm is described in Section 11 and we state our results in Section 12.

2. Hättig’s results on almost k-hollow lattice polygons

We start this section by describing a process to successively deconstruct
almost k-hollow lattice polygons, see Construction 2.6. This process ends in
combinatorially minimal almost k-hollow polygons which have been classi-
fied in [24], see Proposition 2.9. The main result of this first part, Proposi-
tion 2.5, provides us with upper bounds for the vertices of almost k-hollow
polygons.

This algorithm has been developed by Daniel Hättig and successfully
used to classify all almost 2-hollow polygons up to unimodular transforma-
tion.

Definition 2.1. Let n, k ∈ Z≥1 and consider a convex rational polytope
P ⊆ Qn. The set of vertices of P is denoted by V(P), the relative interior by
P◦ and the boundary by ∂P. We call P

(i) a lattice polytope, if V(P) ⊆ Zn.
(ii) a lattice polygon, if P is a lattice polytope and n = 2.
(iii) k-hollow, if P◦ ∩ kZ2 = ∅,
(iv) almost k-hollow, if P◦ ∩ kZ2 = {(0, 0)}.

Definition 2.2. The group GLn(Z) of unimodular transformations in
Qn acts on the set of lattice polytopes in Qn. Lattice polytopes P1 and P2
are called unimodular equivalent, if P2 ∈ GLn(Z) · P1.

Remark 2.3. Let A ∈ GLn(Z) and P be a lattice polytope. Then the
following hold.

• A(Zn) = Zn.
• A(kZn) = kZn.
• A(V(P)) = V(A(P)).
• A(∂P) = ∂A(P).
• A(P◦) = A(P)◦.
• vol(P) = vol(A(P)).
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Therefore, the number of vertices, the number of (interior) lattice points
and the number of (interior) k-fold lattice points are invariant under the
action of GLn(Z).

Remark 2.4. For r ∈ Q, the ball of radius r centered at the origin
Br(0) ⊆ Q2 is the following subset of Q2:

Br(0) := {x ∈ Q2; |x| ≤ r}.

Proposition 2.5. Let P be an almost k-hollow lattice polygon. Then
there is a unimodular transformation A ∈ GL2(Z) such that V(A(P)) ⊆
Br ∩ Z2 with r := k2√(2k + 1)2 + 1.

In particular, the number of almost k-hollow polygons up to unimodular
transformation is finite.

Construction 2.6. Let P be a lattice polygon. For a vertex p ∈ V(P)
we define the convex set

Pp := conv
(
(P ∩ Z2) \ {p}

)
.

p

Figure 1. A polygon P and Pp in grey as in Construction 2.6.

Remark 2.7. Let P be a lattice polygon and p ∈ P. Then the following
holds:

(i) The convex set Pp is a lattice polygon.
(ii) We have Pp ( P.
(iii) If P is almost k-hollow, then so is Pp.

Definition 2.8. A lattice polygon P is combinatorially minimal if for
every point p ∈ Z2 with p ∈ V(P) we have 0 6∈ Pp.

Proposition 2.9 (Compare [24]). The combinatorially minimal almost
k-hollow lattice polygons are up to unimodular equivalence precisely the fol-
lowing:

Pa := conv(e1, e2,−ae1 − e2), a ∈ {1, . . . , 2k},
P2k+1 := conv(±e1,±e2).

Remark 2.10. For the polygons Pa ⊆ Q2 of Proposition 2.9 the following
holds, where ra ∈ Q is the maximal radius such that Bra(0) ⊆ P:
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a |V(Pa)| vol(Pa) ra
≤ 2k 3 1 + a

2
1√

(a+1)2+1
2k + 1 4 2 1√

2

Construction 2.11. Let P ⊆ Q2 be a lattice polygon. The polygon
Pp1,...,pr deconstructed along p1, . . . , pr is defined inductively as follows:

(i) Take a point p1 ∈ V(P) and consider Pp1 as in Construction 2.6.
(ii) Take a point pi ∈ V(Pp1,...,pi−1) and set Pp1,...,pi := (Pp1,...,pi−1)pi .

Deconstructible points p1, . . . , pr are points that admit this construction i.e.
they suffice pi ∈ V(Pp1,...,pi−1) for all i = 1, . . . , r.

Lemma 2.12. For every almost k-hollow lattice polygon P there is a
unimodular transformation A ∈ GL2(Z) and an integer 1 ≤ a ≤ 2k+ 1 such
that Pa ⊆ A(P), where Pa is one of the polygons as in Proposition 2.9.

Proof. For an almost k-hollow lattice polygon P one takes decontructile
points as in Construction 2.11 until one arrives at a combinatorially minimal
lattice polygon P0. The latter is almost k-hollow by Remark 2.7 (iii). Thus it
is unimodular equivalent to one of the polygons given in Proposition 2.9, i.e.
one finds a unimodular transformation A ∈ GL2(Z) such that Pa = A(P0)
for some 1 ≤ a ≤ 2k + 1. Since P0 ⊆ P, we have shown the statement. �

Remark 2.13 (Minkowski’s Theorem). Let S ⊆ Qn be a convex, cen-
trally symmetric set with a volume greater than 2n. Then there is a lattice
point in S besides the origin.

Corollary 2.14. Let P ⊆ Q2 be an almost 1-hollow polygon and let
Br(0) ⊆ P. Then for every p ∈ Z2 such that P(p) is almost 1-hollow we find
|p| ≤ 2r−1.

Proof. Consider the convex set conv(Br(0), p)◦ ⊆ P(p)◦ and note
that it contains a lattice point if and only if there is a lattice point in
S := conv(Br(0),−p, p)◦. The latter set is centrally symmetric. Hence by
Remark 2.13 we have vol(S) = 2r|p| ≤ 4 since otherwise there is a lattice
point in conv(Br(0), p)◦ ⊆ P◦. This contradicts the almost 1-hollowness of
P. Reformulating the inequality yields the statement. �

Lemma 2.15. Let P be an almost k-hollow lattice polygon containing Pa.
For every vertex v ∈ V(P) we find:

|v| ≤ k2
√

(a+ 1)2 + 1, if a ≤ 2k,

|v| ≤ k2√2, if a = 2k.

Proof. Since Pa ⊆ P note that Pa(v) ⊆ P. We consider the following
polygon:

P′a(v) := {p ∈ Z2; kp ∈ Pa(v)}.
Note that P′a(v) is almost hollow if and only if Pa(v) is almost k-hollow.
Moreover, for the radii ra in Remark 2.10 we have Bra/k(0) ⊆ P′a(v) and
k−1v ∈ P′a(v). By Corollary 2.14 we find |k−1v| ≤ 2(ra/k)−1. Reformulating
the last inequality yields the statement. �
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Proof of Proposition 2.5. By Lemma 2.12 we find a unimodular
transformation A ∈ GL2(Z) such that Pa ⊆ A(P). For the latter polygon
Lemma 2.15 yields the upper bound. Since the upper bound limits the
number of possible vertices, we infer that the number of almost k-hollow
polygons, up to unimodular equivalence, is finite. �

The objective of the following parts of this section is to develop Con-
struction 2.23. Here we establish an algorithm that classifies (after finitely
many steps) all almost k-hollow polygons up to unimodular equivalence.
This is achieved by reversing the process described in Construction 2.6.

Definition 2.16. Let P be a lattice polygon in Q2 and let p ∈ Z2\(P∩Z)
be a point. The p-expansion of P is the following set:

P(p) := conv(V(P) ∪ {p}).

Remark 2.17. Let P be a lattice polytope in Q2 and let p ∈ Z2 \ P be
a point. Then the following statements are true:

(i) We find V(P(p)) ⊆ V(P) ∪ {p}, thus P(p) is a lattice polytope.
(ii) We have P ( P(p), in particular if 0 ∈ P, then 0 ∈ P(p).
(iii) If P(p) is almost k-hollow, then so is P.

Definition 2.18. Let P ⊆ Q2 be a lattice polygon and let p1, . . . , pr ∈
Z2 be points. The expansion of P along (p1, . . . , pr) is defined inductively
as follows:

P(p1, . . . , pr) := P(p1, . . . , pr−1)(pr).

Lemma 2.19. Let P ⊆ Q2 be a polygon with points p1, . . . , pr ∈ P. Then
we find

Pp1,...,pr(p1, . . . , pr) = P.

Proof. Observe that Pp1,...,pr ⊆ P, thus the inclusion
Pp1,...,pr(p1, . . . , pr) ⊆ P holds since p1, . . . , pr ∈ P.

For the other inclusion note that V(Pp1,...,pr) ⊇ V(P)\{p1, . . . , pr}, there-
fore we have:

Pp1,...,pr(p1, . . . , pr) = conv (V(Pp1,...,pr) ∪ {p1, . . . , pr})
⊇ conv(V(P) \ {p1, . . . , pr} ∪ {p1, . . . , pr})
= P.

�

Definition 2.20. Let P ⊆ Q2 be an almost k-hollow polygon. The
k-search space is the following set

Sk(P) := {p ∈ Z2 \ (P ∩ Z); P(p) is almost k-hollow}.

Lemma 2.21. Consider an almost k-hollow lattice polygon P ⊆ Q2. The
following statements hold:

(i) The set Sk(Pa) is finite for all 1 ≤ a ≤ 2k + 1.
(ii) For a point p ∈ V(P) we have p ∈ Sk(Pp).
(iii) For an almost k-hollow lattice polygon P′ with P ( P′ we have

Sk(P′) ( Sk(P).
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Proof. The first statement follows with Lemma 2.15 and the second is
an immediate consequence of Lemma 2.19.

For the third statement note that we have P(p) ⊆ P′(p), which yields
the containment Sk(P′) ⊆ Sk(P). The sets are not equal, since we find a
lattice point p ∈ P′ \ P. Thus we have p ∈ Sk(P) \ Sk(P′). �

Lemma 2.22. Let P be an almost k-hollow lattice polygon with k-search
space Sk(P). Then for every almost k-hollow lattice polygon P′ that contains
P we find p1, . . . , pr ∈ Sk(P) such that P′ = P(p1, . . . , pr).

Proof. Let p1, . . . , pr be the vertices of P′ that are not contained in P,
then P(p1, . . . , pr) = P′. �

Construction 2.23. Let (Pi, Sk(Pi)) be a pair, where Pi is a combina-
torially minimal lattice polygon as given in Proposition 2.9 and Sk(Pi) its
k-search space. Set
L0 := {(Pi, Sk(Pi); i = 1, . . . , 2k + 1} and L := {Pi; i = 1, . . . , 2k + 1}.

While |L0| 6= 0 do the following:
(i) Take a pair (P, S) ∈ L0.
(ii) Set S′ := {p ∈ S; P(p) is almost k-hollow}.
(iii) For all p ∈ S′ test whether there is a polygon P′ ∈ L such that P′

and P(p) are unimodular equivalent.
(iv) If not, add the pair (P(p), S′ \ (P ∩ Z2)) to L0 and P(p) to L.

This algorithm ends after finitely many steps and yields the set L of all
almost k-hollow lattice polygons, up to unimodular equivalence.

Proof. We want to show that this construction yields all almost k-
hollow lattice polygons, up to unimodular equivalence. Observe that by
Lemma 2.12 is suffices to find all almost k-hollow polygons containing Pa
for every 1 ≤ a ≤ 2k + 1 and Lemma 2.22 states that these are given by
Pa(p1, . . . , pr) where p1, . . . , pr ∈ Sk(Pa).

Thus we show that for a given index a the construction yields all polygons
Pa(p1, . . . , pr). Note that in the second step we only remove those points
from S that do yield non almost k-hollow lattice polygons, in particular we
have Sk(P(p)) = S′ \ (P ∩ Z2) by Lemma 2.21 (iii).

Furthermore in step (iii) note that if there is a lattice polygon P′ ∈ L
unimodular equivalent to P, it has been found in a previous step and its
k-search space Sk(P′) has been already computed, in particular all polygons
P′(p′1, . . . , p′r) lie in the set L when the construction ends. Thus removing
P from the process, we do not lose polygons P(p1, . . . , pr) up to unimodular
equivalence.

Last note that since Sk(Pa) is finite by Lemma 2.21 (i) and S′ ( S the
construction terminates after finitely many steps. �

3. Algorithmic aspects for polygons

For growing k, the steps needed when running the algorithm established
in Construction 2.23 increase profoundly and the task to classify polygons
becomes infeasible in reasonable time.

The following considerations significantly lower the number of computa-
tions performed. We concentrated on three aspects of the algorithm:
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(i) Improving the test on unimodular equivalence of two polygons.
(ii) Improving the test on almost k-hollowness of polygons.
(iii) Removing certain point from the k-search space to prevent unnec-

essary computations.
This finally yields a faster method to find all almost k-hollow polygons, see
Construction 3.14.

We start with the first aspect and introduce the standard vertex matrix
for polygons, a useful tool to check whether two polygons are unimodular
equivalent.

Definition 3.1. Let v1, . . . , vr be vertices of a lattice polygon P. We
set v0 := vr and vr+1 := v1.

(i) The vertices are in adjacent order if for every 1 ≤ i ≤ r the lines
through vi−1, vi and vi, vi+1 lie in the boundary of P.

(ii) For vertices v1, . . . , vr in adjacent order choose a Z-linear basis
w1, w2 ∈ Z2 such that

v1 = a1w1, v2 = a2w1 + b2w2, 0 ≤ a < b,

vi = aiw1 + biw2, ai, ai ∈ Z.
The Hermite vertex matrix H(v1, . . . , vr) is the (2×r)-matrix with
columns [ai, bi], 1 ≤ i ≤ r, i.e. we have:

H(v1, . . . , vr) :=
[
a1 a2 · · · ar
0 b2 · · · br

]
.

(iii) The standard vertex matrix SV(P) is the Hermite vertex matrix
H(v1, . . . , vr) that is lexicographically minimal among all Hermite
vertex matrices for all adjacent orders of v1, . . . , vr.

Remark 3.2. Let v1, . . . , vr be vertices of a lattice polygon P in adjacent
order. Then the following is true:

(i) For every tuple of vertices v1, . . . , vr there is a unique Hermite
vertex matrix H(v1, . . . , vr).

(ii) Let Dn ⊆ Sn the dyhedral group of order 2n. The standard vertex
matrix is the matrix H(v1, . . . , vr) such that
H(v1, . . . , vr) ≤lex H(vσ(1), . . . , vσ(1)) for every σ ∈ Dn.

(iii) Every polygon P has a unique standard vertex matrix since the
lexicographic order is a total order on

(
Z2)r.

Lemma 3.3. Let P,P′ ⊆ Q2 be two convex polygons. Then the following
statements are equivalent.

(i) There is a unimodular transformation A ∈ GL2(Z) such that
A(P) = P′.

(ii) We have r = r′ and their standard vertex matrices coincide.
Proof. The first implication is clear. For the second implication assume

that the vertices v1, . . . , vr of P and v′1, . . . , v
′
r of P′ are numerated as they

are in its standard vertex matrix. Choose a Z-linear basis w1, w2 ∈ Z2 as in
Definition 3.1 (ii). Thus, there are two unimodular matrices B,B′ ∈ GL2(Z)
such that

Bvi = aiw1 + biw2 = B′v′i.
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In particular, for A := B−1B′ we find A(P) = P′. �

Remark 3.4. Let P be a lattice polygon and let S be a set of lattice poly-
gons. Checking whether there is a lattice polygon P′ ∈ S that is unimodular
equivalent to P means performing (possibly) |S|-many tests on unimodular
equivalence, i.e. finding matrices A ∈ GL2(Z) such that A(P) = P′.

If for every P′ ∈ S its standard vertex matrix is known, the test on
unimodular equivalence boils down to finding the standard vertex matrix of
P. This is especially useful, when a large amount of polygons have to be
tested on unimodular equivalence.

We turn to the second aspect and find a quick way to test whether
triangles, i.e. lattice polygons with three vertices, are almost k-hollow. For
a fixed triangle the computation needed to test k-hollowness decrease with
increasing k, see Remark 3.8.

Since for every polygon P there is a triangulation, this implies a method
to test almost k-hollowness of P. Observe that for the algorithm in Con-
struction 2.23 it suffices to check (almost) k-hollowness of triangles (see
Lemma 3.10).

Definition 3.5. Consider two numbers a ∈ Q and k ∈ Z. We set:
back := max (l ∈ kZ, l ≤ q) , daek := min (u ∈ kZ, u ≥ q) .

Lemma 3.6. Let a, b ∈ Q be rational numbers and let k ∈ Z≥1 be an
integer. Then the following holds:

(i) The number of k-fold points in [a, b] is given by:

ρk := max
(

0, bbck − daek
k

+ 1
)
.

(ii) There are no k-fold points in (a, b) if and only if one of the followng
statements hold.
(a) ρk = 0.
(b) ρk = 1 and daek = a or bbck = b.
(c) ρk = 2 and daek = a and bbck = b.

Proof. The first statement is clear and the second statement follows
immediately using the first statement and the fact that for ρk 6= 0 and
(a, b) ∩ kZ = ∅ the only possible k-fold points in [a, b] \ (a, b) are given by
a, b. �

Corollary 3.7. Let T ⊆ Q2 be a triangle and let n ∈ kZ be an integer.
Let I(n,T) ⊆ Q be the open interval in Q such that

({n} × Z) ∩ T◦ = {n} × I(n,T).
Then T is k-hollow if and only if for every n ∈ kZ the intervall I(n,T) does
not contain any k-fold points.

Construction 3.8. Let T ⊆ Q2 be a triangle with vertices
v1 := [x1, y1], v2 := [x2, y2], v3 := [x3, y3].

Then test the following:
(i) Set xl := max(x1, x2, x3) and xu := min(x1, x2, x3).
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(ii) For every dxlek ≤ n ≤ bxuck such that n ∈ kZ test whether I(n,T)
contains k-fold points following Lemma 3.6.

If one of the tests in step (ii) fails, T is not k-hollow, otherwise it is k-hollow.

Remark 3.9. Let T ⊆ Q2 be a triangle with vertices

v1 := [x1, y1], v2 := [x2, y2], v3 := [x3, y3].

We want to check whether T is k-hollow. A canoncial way to do so is to find
all integer points in T and check whether they are contained in (kZ)2. We
preceed with the following steps:

(i) We define the following numbers:

xl := min(x1, x2, x3), xu := min(x1, x2, x3),

yl := min(y1, y2, y3), yu := min(y1, y2, y3).
(ii) For every pair [x, y] ∈ Z2 such that xl ≤ x ≤ xu and yl ≤ y ≤ yu

test whether [x, y] ∈ T◦.
(iii) For every [x, y] ∈ T◦ test whether [x, y] ∈ (kZ)2.

If one of the tests in step (iii) is true, T is not k-hollow, otherwise T is
k-hollow.

Note that for a triangle T that is not k-hollow, checking k-hollowness
with this steps means performing (yl − yu + 1)(xl − xu + 1) tests. Using
the algorithm as described in Construction 3.8 we only have to perform
bxuck−dxlek

k + 1 calculations in Q. In particular, for increasing k the number
of tests performed decreases.

Lemma 3.10. Consider a k-hollow polygon P and a point p ∈ Z2 such
that P(p) has more than three vertices.

Let v1, v2 ∈ V(P(p)) be the vertices such that conv(p, v1), conv(p, v2) are
the facets of P(p) containing p. Then the following is equivalent:

(i) The polygon P(p) is k-hollow.
(ii) The triangle conv(p, v1, v2) is k-hollow and there are no k-fold

points in the relative interior of conv(v1, v2).

Proof. The convex polygon P(p) can be split in the following way:

P(p) = conv(v1, v2, p) ∪ P \ conv(v1, v2, p).

Note that the latter set is contained in P, therefore it does not contain any k-
fold points, since P is k-hollow. Furthermore since P(p) has more than three
vertices we have conv(v1, v2) 6⊆ ∂P(p) Thus it suffices to check k-hollowness
of conv(v1, v2, p) and that there are no k-fold points in conv(v1, v2). �

Remark 3.11. All described statements and algorithms have versions
to test almost k-hollowness. In all cases one needs to pay attention to the
origin being the only k-fold point in the polygon.

Last, we turn to the k-search space. When the Algorithm in Construc-
tion 2.23 has found an almost k-hollow polygon P, it computes the k-search
space Sk(P) in step (iv) without considering other polygons that had been
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p

Figure 2. An almost k-hollow polygon P and P(p) for a
point p ∈ Z2; points in (kZ)2 are drawn in bold. To check
whether P(p) is almost k-hollow it suffices to test the triangle
in dark grey.

found in the previous step leading to unnecessary computations. Remov-
ing suitable point from the k-search space yields a drop in the number of
computations, see Figure 3 and Example 3.13.

Lemma 3.12. Consider a k-hollow polygon P and a set S̃ of points in
Z2. For a point p′ ∈ S̃ we define the following:

P′ := P(p′), S̃(P′) :=
(
S̃ \ (P′ ∩ Z2)

)
\ {p ∈ S̃; P′ ⊆ P(p)}.

Then the following containment holds:
{P′(q); q ∈ S̃ \ (P′ ∩ Z2)} ⊆ {P(p); p ∈ S̃} ∪ {P′(q); q ∈ S̃(P′)}

Proof. Let q ∈ S̃ \ (P′ ∩ Z2). If we have P′ ⊆ P(q), then note that
P′(q) = P(q), i.e. P′(q) lies in the first set. Otherwise we have q ∈ S̃(P′),
thus P(q) lies in the second set. �

Example 3.13. Let P = P1 = conv(e1, e2,−e1 − e2) be one of the com-
binatorially minimal lattice polygons as seen in Proposition 2.9. For the
3-search space of P we find:

|S3(P )| = 2 424.
We take [−1, 0] ∈ S3(P) and set P′ = P([−1, 0]). We note the following:

|S3(P) \ (P′ ∩ Z)| = 2 423, |S̃(P′)| = 2 271.
Furthermore we find the following statement:∑
p∈S3(P )

|S3(P) \ {P ∩ Z}| = 5 716 935,
∑

p∈S3(P )
|S̃(P(p))| = 5 560 530.

Note that we save 156 405 tests on k-hollowness in this first step.
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p

q

Figure 3. The polygon P1 in grey and the polygons P′ :=
P(p) in light grey and P(p, q). Note that we have P′(q) =
P(q).

p

Figure 4. The combinatorially minimal polygon P1 and its
3-search space S3(P1). For P′ := P1(p) all points encircled
correspond to points q ∈ S3(P1) such that P′(q) = P1(q).

Construction 3.14. Consider the combinatorially minimal polygons
Pa as in Proposition 2.9 and their k-search spaces Sk(Pa).

• Set L := {SV(Pa); a = 1, . . . , 2k + 1}.
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• For a = 1, . . . , 2k + 1 set L0 := {(Pa, Sk(Pa)}.
While |L0| 6= 0 do the following:
(i) Take a pair (P, S) ∈ L0 and test whether Pj ⊆ P for j =

1, . . . , a− 1.
(ii) If none of the polygons Pj is contained in P set

S′ := {p ∈ S; P(p) is k-hollow}.
The test on almost k-hollowness is performed using the tri-
angle described in Lemma 3.10 and the method described in
Corollary 3.7.

(iii) For all p ∈ S′ compute SV(P(p)).
(iv) If SV(P(p)) 6∈ L, add the following to the sets L0 and L:(

P(p), S̃(P(p))
)

to L0, SV(P(p)) to L,

where S̃(P(p)) is the set described in Lemma 3.12.
This algorithm ends after finitely many steps and yields the set L of all
almost k-hollow lattice polygons, up to unimodular equivalence.

Proof. We want to show that this yields all almost k-hollow lattice
polygons. Note that this construction is a modification of Construction 2.23
which computes all almost k-hollow lattice polygons. Thus it suffices to
show that the modification only prevents redundant computations.

We do this by induction on a. We first note that step (ii) and (iii) check
almost k-hollowness and unimodular equivalence as in Construction 2.23.

We turn to step (iv) For a = 1 the only difference to Construction 2.23
is the space S̃. Note that Lemma 3.12 shows that we do not miss polygons
using the smaller set S̃ since for q ∈ S′ \ S̃(P(p)) all polygons P(p, q) have
already been found. Therefore by Lemma 2.22 this first step computes all
almost k-hollow polygons containing P1.

Now for a > 1 note that for j = 1, . . . , a − 1 all polygons containg Pj
have already been found, therefore it suffices to consider the polygons not
containing Pj , in particular the first step only removes redundant computa-
tions. The remaining is seen as for a = 1. �

4. The anticanonical complex

First we summarize the combinatorial theory of normal rational Fano
varieties with torus action of complexity one developed in [8,25,29].

Construction 4.1. Fix r ∈ Z≥1, a sequence n0, . . . , nr ∈ Z≥1, set
n := n0 + . . . + nr, and fix integers m ∈ Z≥0 and 0 < s < n + m − r. The
input data are matrices

A = [a0, . . . , ar] ∈ Mat(2, r+1;K), P =
[
L 0
d d′

]
∈ Mat(r+s, n+m;Z),

where A has pairwise linearly independent columns and P is built from an
(s× n)-block d, an (s×m)-block d′ and an (r × n)-block L of the form

L =

 −l0 l1 . . . 0
...

... . . . ...
−l0 0 . . . lr

 , li = (li1, . . . , lini) ∈ Zni≥1
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such that the columns of P are pairwise different vectors generating Qr+s

as a cone. Consider the polynomial algebra

K[Tij , Sk] := K[Tij , Sk; 0 ≤ i ≤ r, 1 ≤ j ≤ ni, 1 ≤ k ≤ m].

Denote by I the set of all triples I = (i1, i2, i3) with 0 ≤ i1 < i2 < i3 ≤ r
and define for any I ∈ I a trinomial

gI := gi1,i2,i3 := det
[
T
li1
i1

T
li2
i2

T
li3
i3

ai1 ai2 ai3

]
, T lii := T li1i1 · · ·T

lini
ini

.

Let P ∗ denote the transpose of P , consider the factor group K :=
Zn+m/im(P∗) and the projection Q : Zn+m → K. We define a K-grading on
K[Tij , Sk] by setting

deg(Tij) := wij := Q(eij), deg(Sk) := wk := Q(ek).

Then the trinomials gI just introduced are K-homogeneous, all of the same
degree. In particular, we obtain a K-graded factor algebra

R(A,P ) := K[Tij , Sk] / 〈gI ; I ∈ I〉.

Remark 4.2. The K-graded ring R(A,P ) of Construction 4.1 is a com-
plete intersection: with gi := gi,i+1,i+2 we have

〈gI ; I ∈ I〉 = 〈g0, . . . , gr−2〉, dim(R(A,P )) = n+m− (r − 1).

Definition 4.3. Consider a K-graded algebra R(A,P ) from Construc-
tion 4.1. The anticanonical class R(A,P ) is

κ(A,P ) :=
∑
i,j

wij +
∑
k

wk − (r − 1)
n0∑
j=0

l0jw0j ∈ K

and the moving cone of R(A,P ) in KQ := K ⊗Z Q is

Mov(A,P ) :=
⋂
i,j

cone(wuv, wt; (u, v) 6= (i, j)) ∩
⋂
k

cone(wuv, wt; t 6= k).

Construction 4.4. Let (A,P ) be Fano data. The K-grading on
K[Tij , Sk] defines an action of the quasitorus H := SpecK[K] on Z̄ := Kn+m

and
SpecR(A,P ) ∼= X̄ := V (gI ; I ∈ I) ⊆ Z̄

is an H-invariant closed subvariety. We now pass to GIT quotients. The set
of H-semistable points of Z̄ associated with κ(A,P ) is

Ẑc := {z ∈ Z̄; f(z) 6= 0 for some f ∈ K[Tij , Sk]νκ(A,P ), ν ∈ Z>0} ⊆ Z
¯
.

The intersection X̂ := X̄ ∩ Ẑc is an open H-invariant set in X̄ and the
quotient map Ẑc → Zc := Ẑc//H yields a commutative diagram

X̂ //

//H

��

Ẑc

//H

��
X(A,P ) // Zc
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with a Fano variety X(A,P ) embedded into the projective toric variety Zc.
Dimension, divisor class group, anticanonical class and Cox ring of X(A,P )
are given by

dim(X(A,P )) = s+ 1, Cl(X(A,P )) ∼= K,

−KX = κ(A,P ), R(X) ∼= R(A,P ).
For a face δ0 � δ of the orthant δ ⊆ Qn+m, let δ∗0 � δ denote the comple-
mentary face and call δ0 relevant if we have

κ(A,P ) ∈ Q(δ∗0)◦.

Then we obtain the describing fans Σ̂c in Zn+m and Σc in Zr+s of Ẑc and
Zc respectively as

Σ̂ := {δ1 � δ0; δ0 � δ relevant}, Σ := {σ � P (δ0); δ0 � δ relevant}.

The subtorus T ⊆ Tr+s of the acting torus of Zc associated with the sub-
lattice Zs ⊆ Zr+s leaves X(A,P ) invariant and the induced T -action on
X(A,P ) is of complexity one.

By the results of [25,29] every normal rational Fano variety with a torus
action of complexity one arises from this construction.

Remark 4.5. Consider the case r = 1 in Constructions 4.1 and 4.4.
Then the defining matrix P is of the form

P =
[
−l0 l1 0
d0 d1 d′

]
,

the algebra R(A,P ) equals K[Tij , Sk], we have X(A,P ) = Zc and T is
a one-codimensional subtorus of Tr+s. Moreover, every action of a one-
codimensional subtorus on a toric Fano variety can be represented this way.

Remark 4.6. The following elementary column and row operations on
the defining matrix P do not change the isomorphy type of the associated
Fano variety X(A,P ); we call them admissible operations:

(i) swap two columns inside a block vij1 , . . . , vijni ,
(ii) swap two whole column blocks vij1 , . . . , vijni and vi′j1 , . . . , vi′jni′

,
(iii) add multiples of the upper r rows to one of the last s rows,
(iv) any elementary row operation among the last s rows,
(v) swap two columns inside the d′ block.

The operations of type (iii) and (iv) do not change the associated ring
R(A,P ), whereas the types (i), (ii), (v) correspond to certain renumber-
ings of the variables of R(A,P ) keeping the (graded) isomorphy type.

Construction 4.7. Let X = X(A,P ) be obtained from Construc-
tion 4.4. The tropical variety of X is the fan trop(X) in Qr+s consisting of
the cones

λi := cone(vi1)+lin(er+1, . . . , er+s) for i = 0, . . . , r, λ := λ0∩. . .∩λr,

where vij ∈ Zr+s denote the first n columns of P and ek ∈ Zr+s the k-th
canonical basis vector; we call λi a leaf and λ the lineality part of trop(X).



4. THE ANTICANONICAL COMPLEX 101

trop(X) for r = 2

We say that a face δ0 � δ of the orthant δ ⊆ Qn+m is an X-face, if it is
relevant and the relative interior of P (δ0) intersects trop(X). Define a fan
Σ in Zr+s by setting

Σ := {σ � P (δ0); δ0 � δ X-face}.
Then the toric variety and Z associated with Σ is minimal toric ambient
variety of X, that means, the smallest open toric subvariety of Zc containing
X as a closed subvariety.

Definition 4.8. Let X = X(A,P ) arise from Construction 4.1 and
denote by Σ the fan of the minimal toric ambient variety Z of X. Define a
(rational) polyhedron

B(−KX) := Q−1(−KX) ∩Qn+m
≥0 ⊆ Qn+m

and let B := B(g0) + . . . + B(gr−2) ⊆ Qn+m be the Minkowski sum of
the Newton polytopes B(gi) of the relations g0, . . . , gr−2 of R(A,P ). Let
eZ ∈ Zn+m denote the sum over the canonical basis vectors eij and ek of
Zn+m.

(i) The anticanonical polyhedron of X is the dual polyhedron AX ⊆
Qr+s of the polyhedron

BX := (P ∗)−1(B(−KX) +B − eΣ) ⊆ Qr+s.

(ii) The anticanonical complex of X is the coarsest common refinement
of polyhedral complexes

AcX := faces(AX) u Σ u trop(X).
(iii) The relative interior of AcX is the interior of its support with re-

spect to the intersection Supp(Σ) ∩ trop(X).
(iv) The relative boundary ∂AcX is the complement of the relative in-

terior of AcX in AcX .

Theorem 4.9. Let X = X(A,P ) arise from Construction 4.1. Then
the following statements hold.

(i) AcX contains the origin in its relative interior and all primitive
generators of the fan Σ are vertices of AcX .

(ii) X has at most log terminal singularities if and only if the anti-
canonical complex AcX is bounded.

(iii) X has at most canonical singularities if and only if 0 is the only
lattice point in the relative interior of AcX .

(iv) X has at most terminal singularities if and only if 0 and the prim-
itive generators v% for % ∈ Σ(1) are the only lattice points of AcX .

(v) X has at most 1/k-log canonical singularities if and only if 0 is
the only k-fold lattice point in the relative interior of AcX .
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Construction 4.10. Let X = X(A,P ) arise from Construction 4.1 and
let Σ the fan of the minimal toric ambient variety Z. Write vij := P (eij)
and vk := P (ek) for the columns of P . Consider a pointed cone of the form

τ = cone(v0j0 , . . . , vrjr) ⊆ Qr+s,

that means that τ contains exactly one vij for every i = 0, . . . , r. We call
such τ a P -elementary cone and associate the following numbers with τ :

`τ,i := l0j0 · · · lrjr
liji

for i = 0, . . . , r, `τ := (1− r)l0j0 · · · lrjr +
r∑
i=0

`τ,i.

Moreover, we set

v(τ) := `τ,0v0j0 + . . .+ `τ,rvrjr ∈ Zr+s, %(τ) := Q≥0 · v(τ) ∈ Qr+s.

We denote by T(A,P ) the set of all P -elementary cones τ ∈ Σ. For a given
σ ∈ Σ, we denote by T(σ) the set of all P -elementary faces of σ.

Remark 4.11. Let X = X(A,P ) arise from Construction 4.1. Let Σ be
the fan of the minimal toric ambient variety of X and λ0, . . . , λr ⊆ trop(X)
the leaves of the tropical variety of X. As in [8, Def. 4.1], we say that

(i) a cone σ ∈ Σ is a leaf cone if σ ⊆ λi holds for some i = 0, . . . , r,
(ii) a cone σ ∈ Σ is called big if σ ∩ λ◦i 6= ∅ holds for all i = 0, . . . , r.

Observe that a given cone σ ∈ Σ is big if and only if σ contains some
P -elementary cone as a subset.

Proposition 4.12. Let X = X(A,P ) arise from Construction 4.1, let Σ
be the fan of the minimal toric ambient variety Z, denote by λ0, . . . , λr the
leaves of trop(X) and by λ = λ0 ∩ . . . ∩ λr its lineality part.

(i) The fan Σu trop(X) consists of the cones σ ∩ λ and σ ∩ λi, where
σ ∈ Σ and i = 0, . . . , r. Here, one always has σ ∩ λ � σ ∩ λi.

(ii) The fan Σutrop(X) is a subfan of the normal fan of the polyhedron
BX . In particular, for every cone σ∩λi, there is a vertex uσ,i ∈ BX
with

∂AcX ∩ σ ∩ λi = {v ∈ σ ∩ λi; 〈uσ,i, v〉 = −1}.

(iii) If a P -elementary cone τ is contained in some σ ∈ Σ, then τ is
simplicial, v(τ) ∈ τ◦ holds, %(τ) is a ray, %(τ) = τ ∩ λ holds as
well as Q%(τ) = Qτ ∩ λ.

(iv) Let σ ∈ Σ be any cone. Then, for every i = 0, . . . , r, the set of
extremal rays of σ ∩ λi ∈ Σ u trop(X) is given by

(σ ∩ λi)(1) = {%(σ0); σ0 ∈ T(σ)} ∪ {% ∈ σ(1); % ⊆ λi}.

(v) The set of rays of Σ u trop(X) consists of the rays of Σ and the
rays %(σ0), where σ0 ∈ T(A,P,Φ).

(vi) If a P -elementary cone τ is contained in some σ ∈ Σ, then the
minimum value among all 〈u, v(τ)〉, where u ∈ BX , equals −`τ .

(vii) Let the P -elementary cone τ be contained in σ ∈ Σ. Then %(τ) 6⊆
AcX holds if and only if `τ > 0 holds; in this case, %(τ) leaves AcX
at v(τ)′ = `−1

τ v(τ).
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(viii) The vertices of AcX are the primitive generators of Σ, i.e. the
columns of P , and the points v(σ0)′ = `−1

σ0 v(σ0), where σ0 ∈
T(A,P,Φ) and `σ0 > 0.

Remark 4.13. Recall the structure of a rational projective K∗-surface as
described in Section 6 of the last chapter. Several aspects of the description
in Construction 4.1 simplify:

First, the lower part [d, d′] of the matrix P is just a row and we have
m ≤ 2 . We arrange P to be slope ordered, that means that for each
0 ≤ i ≤ r, we order the block vi1, . . . , vini of columns in such a way that

mi1 > . . . > mini, where mij := dij
lij
.

Observe that the defining fan Σ of the ambient toric variety Z is basically
unique and needs no extra specification. More precisely, the rays of Σ are
the cones over the columns of P and we always have the following maximal
cones, which are leaf cones

τij := cone(vij , vij+1) ∈ Σ, i = 0, . . . , r, j = 1, . . . , ni − 1.

Writing v+ := v1 = (0, . . . , 0, 1) and v− := v2 = (0, . . . , 0,−1) for the
columns of P that arise for m = 1, 2, the collection of maximal cones of Σ
is complemented depending on the value of m as follows

m = 2 : (p-p) τ+
i := cone(v+, vi1)
τ−i := cone(vini , v−)

m = 1 : (p-e) τ+
i := cone(v+, vi1)
σ− := cone(v0n0 , . . . , vrnr)

(e-p) σ+ := cone(v01, . . . , vr1)
τ−i := cone(vini , v−)

m = 0 : (e-e) σ+ := cone(v01, . . . , vr1)
σ− := cone(v0n0 , . . . , vrnr)

The cones σ+ and σ−, if they exists, are P -elementary big cones. Further-
more all big cones are of this form. Last we fix the following notation:

mij := dij
lij
, m+ :=

r∑
i=0

mi1, m− :=
r∑
i=0

mini ,

l+ := l01 · · · lr1, l− := l0n0 · · · lrnr ,

l̄+ :=
r∑
i=0

1
li1
− (r − 1), l̄− :=

r∑
i=0

1
lini
− (r − 1).

Lemma 4.14. A del-Pezzo K∗-surface X(A,P ) is log terminal if and only
if the following statements are true:

(i) If there is an elliptic fixed point x+, then l̄+ > 0.
(ii) If there is an elliptic fixed point x−, then l̄− > 0.
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Proof. Note that by Theorem 4.9 the K∗-surface is log terminal if and
only if the anticanonical complex is bounded.

By Proposition 4.12 the anticanonical complex is bounded if and only
for all elementary big cones σ we have `σ > 0. Since in dimension two the
only elementary big cones correspond to elliptic fixed points, the statement
follows with the equivalences below:

`σ+ > 0 ⇔ l̄+ > 0, `σ− > 0 ⇔ l̄− > 0.
We exemplarily show the first equivalence. By definition of `σ+ in Construc-
tion 4.10 we have

`σ+,i = l+

li1
for i = 0, . . . , r, `σ+ = (1− r)l+ +

r∑
i=0

`σ+,i.

The last equality yields `σ+ = l+ l̄+. Since l+ > 0, the equivalence follows.
�

Remark 4.15. Let X(A,P ) be a del Pezzo K∗-surface with a bounded
anticanonical complex and an elliptic fixed point, say σ+. For the vectors
defined in Construction 4.10 we obtain:

v(σ+) = `σ+,0v01 + . . .+ `σ+,rvr1

= l+
(
d01
l01

+ · · · d01
l01

)
er+1

= l+m+er+1.

The analagous statement is true for an elliptic fixed point σ−. As we have
seen in the proof of Lemma 4.14 we have `σ+ = l+ l̄+. Thus, we achieve

`−1
σ±v(σ±) = m±/l̄±er+1.

Lemma 4.16. Let X(A,P ) be a del Pezzo K∗-surface with a bounded
anticanonical complex. Set:

v+ :=
{
er+1, type (p-p) or (p-e),
m+/l̄+er+1, type (p-p) or (p-e).

v− :=
{
−er+1, type (e-p) or (p-p),
m−/l̄−er+1, type (p-e) or (e-e).

Then the anticanonical complex is the polyhedral complex given by the
following polytopes lying in the leaves λi.

Pi := AcX ∩ λi = conv(v+, vi1, . . . , vini , v
−).

Furthermore these polytopes intersect in the lineality part λ, where we have
AcX ∩ λ = conv[v+, v−].

Proof. Since AcX is bounded we find the vertices of AcX by Proposi-
tion 4.12 (viii). They are given as the primitive ray generators vij , v1, v2 of
the minimal ambient toric variety and for every elementary big cone τ we
have another vertex given by `−1

τ v(τ).
If there are parabolic fixed point curves D± note that its corresponding

primitive ray generators v1, v2 coincide with v+, v− as defined. The case of
an elliptic fixed point is treated in Remark 4.15. �
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5. LDP-Complexes

Recall that a lattice polytope is called Fano if the origin lies in its inte-
rior. For every projective toric variety ZΣ with fan Σ ⊆ NQ there is a Fano
polytope PZ defined by:

PZ := conv(vρ; vρ primitive ray generator of Σ) ⊆ NQ.

There is a well known one-to-one correspondence:
{Fano polytopes} ←→ {Fano toric varieties}

P 7→ ZΣ(P)

PZ ←[ Z

Here, Σ(P) ⊆ NQ is the face fan of P.
In this section we establish a similar one-to-one correspondence for K∗-

surfaces in Theorem 5.10. In fact, they correspond to polyhedral complexes,
so called LDP complexes.

Remark 5.1. For the rest of this chapter we fix the following notation:
Fix an integer r ∈ Z≥0, consider the rational vector space Qr+1 and set

e0 := −e1 · · · − er, where ei is the i-th standard basis vector. We define the
following subsets in Qr+1:

λ := cone(±er+1), λi := λ+ cone(ei).
Moreover, for every 0 ≤ i ≤ r consider primitive vectors vi1, . . . , vini ∈ λi \λ
and write

vij := lijei + dijer+1, where dij
lij

>
dik
lik

whenever j > k

with coprime integers lij ∈ Z≥1, dij ∈ Z. Furthermore we fix the following
notation:

mij := dij
lij
, m+ :=

r∑
i=0

mi1, m− :=
r∑
i=0

mini ,

l̄+ :=
r∑
i=0

1
li1
− (r − 1), l̄− :=

r∑
i=0

1
lini
− (r − 1).

Last, for any point in λ we set:
v+ = d+er+1, if d+ > 0, v− = d−er+1, if d− < 0.

Definition 5.2. An LDP precomplex is a polyhedral complex L of r+1
convex polytopes Pi ⊆ λi of dimension 2 such that the following holds:

(i) The origin lies in the relative interior of L.
(ii) The intersection of any two polygons Pi,Pk coincides and we have

Pi ∩ Pk = cone(v+, v−) ⊆ λ.
(iii) For every non-primitive vertex v of L we have v ∈ λ.

An LDP complex of type (p-e) is an LDP precomplex such that the following
assumptions hold:

(iv) The inequalities l̄− > 0 and m+ < l̄+ hold.
(v) The equalities m− = l̄−d− and d+ = 1 hold.

An LDP complex of type (e-e) is an LDP precomplex such that the following
assumptions hold:
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(iv) The inequalities l̄− > 0 and l̄+ > 0 hold.
(v) The equalities m− = l̄−d− and m+ = l̄+d+ hold.

An LDP complex in Q3.

Remark 5.3. We want to investigate the definition of LDP complexes
by the following two remarks:

(i) There are LDP complexes of type (p-e) with primitive vertex v−.
Consider the LDP complex defined by the following vertices:

v01 = [−5,−5, 6], v02 = [−5,−5,−6], v11 = [2, 0, 1],
v21 = [0, 3, 2], v+ = [0, 0, 1], v− = [0, 0,−1].

Then note that condition (v) is fulfilled:

m− = −6
5 + 1

2 + 2
3 = − 1

30 = 1
6 + 1

2 + 2
3 − 1 = l̄−d−.

(ii) For LDP complexes L the following assumption is true:
V (conv(L)) = {vij , v+, v−}.

Observe that the converse is not true: Consider the complex given
by the vertices

v01 = [−5,−5, 6], v02 = [−5,−5,−6], v11 = [2, 0, 1],
v21 = [0, 3, 2], v+ = [0, 0, 1], v− = [0, 0,−1].

Then we find V (conv(L)) = {vij , v+, v−}, but this complex is not
an LDP complex since condition (iv) is violated:

m+ = 71
30 >

1
30 = l̄+.

Definition 5.4. A unimodular transformation A ∈ GLr+1(Z) on Qr+1

is LDP-preserving if the following two conditions apply:
(i) We have A(λ) ⊆ λ.
(ii) For every 1 ≤ i ≤ r there is a 1 ≤ j ≤ r such that A(λi) ⊆ λj .

Remark 5.5. Let A ∈ GLr+1(Z) be an LDP-preserving unimodular
transformation. Then it can be written as a series of the following opera-
tions:

(i) For a pair 0 ≤ j, k ≤ r the unimodular transformation of the
following form:

A(j, k) : Qr+1 → Qr+1, ei 7→


ek, i = j,

ej , i = k,

ei, i 6= j, k.
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(ii) For an index 0 ≤ k ≤ r and an integer a ∈ Z the unimodular
transformation A(a; r + 1, k) ∈ GL2(Z) defined by:

A(a; k) : Qr+1 → Qr+1, ei 7→
{
er+1 + aek, i = j,

ei, i 6= j.

(iii) The unimodular transformation A± ∈ GL2(Z) defined as follows:

A± : Qr+1 → Qr+1, ei 7→
{
ei, i 6= r + 1,
−er+1, i = r + 1.

Note that these notions coincide with the admissible operations (ii), (iii)
and (iv) of Remark 4.6.

Construction 5.6. Let L be an LDP complex. Then the following
construction yields a well defined K∗-surface:

(i) If the LDP complex is of type (p-e), let P (L) be the matrix with
columns er+1 and vij for 0 ≤ i ≤ j and 1 ≤ j ≤ ni, and set:

P (L) := [vij , er+1], A(L) :=
[
1 0 −1 −1 · · · −1
0 1 −1 −2 · · · 1− r

]
.

(ii) If the LDP complex is of type (e-e), let P (L) be the matrix with
columns vij for 0 ≤ i ≤ j and 1 ≤ j ≤ ni, and set:

P (L) := [vij ], A(L) :=
[
1 0 −1 −1 · · · −1
0 1 −1 −2 · · · 1− r

]
.

Proof. We need to show that the columns of P (L) generate Qr+1 as
a cone. Note that for every 0 ≤ i ≤ r there is a primitive ray generator
vij ∈ λi. Thus it suffices to show that ±er+1 ∈ cone(vij). Since the origin
lies in the interior of L we find vectors v+, v− ∈ λ such that v+ = d+er+1
with d+ > 0 and v− = d−er+1 with d− < 0. Hence ±er+1 ∈ cone(vij). �

Remark 5.7. Let X = X(A,P ) be a log del Pezzo K∗-surface. Then
the anticanonical complex AcX is an LDP precomplex:

(i) By the first statement of Theorem 4.9 the origin lies in the relative
interior of AcX .

(ii) The anticanonical complex suffices the second condition by
Lemma 4.16.

(iii) The only non-primitive vertices of AcX are given as v± ∈ λ.

Definition 5.8. Let L be an LDP complex. Set ni ∈ Z≥1 to be the
number of vertices of Pi lying in λi \ λ.

(i) The LDP complex is irredundant if linini 6= 1 for all 0 ≤ i ≤ r.
Otherwise, it is called redundant.

(ii) The LDP complex is non-toric if it is irredundant and we have
r ≥ 2.

(iii) The LDP complex is toric if it is irredundant and we have r = 1.

Remark 5.9. Let L be a toric LDP complex with polygons P0,P1. Note
that we obtain the following:

(i) If L is of type (e-e), we have v+ ∈ conv(v01, v11).
(ii) For both types we obtain v− ∈ conv(v0n0 , v1n1).
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In particular we have P0 ∪P1 that is a lattice polygon containing the origin
with primitive vertices v01, . . . , v0n0 and v11, . . . , v1n1 . In particular, every
lattice polygon is an LDP complex.

Theorem 5.10. Up to LDP-preserving unimodular transformations and
isomorphism of K∗-surfaces there are mutually inverse bijections:

{LDP complexes} ←→ {log del Pezzo K∗-surfaces}
L 7→ X(A(L), P (L))

AcX ←[ X

To show this statement we start by finding conditions on the defining
data of a rational projective K∗-surface X(A,P ) to be Fano, i.e. conditions
on the entries of the defining matrix P .

Remark 5.11 (Kleiman’s criterium for ampleness). Let D be a divisor
of a normal complete variety of dimension two. Then D is ample if and only
if D · C > 0 for all effective curves C.

Proposition 5.12. Let X(A,P ) be a log terminal rational projective
K∗-surface. We set

li0 := lini+1 := 0, di0 := m+

l̄+
, and dini+1 := m−

l̄−
.

Then the following equivalences hold:
(i) If there is a parabolic fixed point curve D± we have

−KX ·D± > 0 ⇔ ±m± < l̄±.

(ii) For a divisor Dij, the intersection product −KX ·Dij is positive if
and only if

(lij − lij+1)(dij−1 − dij)− (dij − dij+1)(lij−1 − lij) > 0.

In particular, X(A,P ) is a del Pezzo surface if and only if all of the above
inequalities hold.

Remark 5.13. For X = X(A,P ), the intersection numbers of the orbit
closures Dij ⊆ X and possible parabolic fixed point curves D+, D− ⊆ X
vanish in all but the stated cases. They are given by:

Dij ·Dij+1 = 1
lijlij+1

1
mij −mij+1

, Di1·D+ = 1
li1
, Dini ·D− = 1

lini
.

Di1 ·Dk1 =


1

li1lk1

(
1
m+ − 1

m−

)
, (e-e) with nink = 1,

1
li1lk1m+ , (e-e) with nink 6= 1 or (e-p).

Dini ·Dknk =


1

lini lknk

(
1
m+ − 1

m−

)
, (e-e) with nink = 1,

−1
lini lknkm

− , (e-e) with nink 6= 1 or (p-e).
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Furthermore the self intersection numbers are given by

D2
i1 =



1
l2i1

( 1
m+ − 1

m−
)
, (e-e),

0 (p-p),
1

l2i1m
+ , (e-p),

−1
l2i1m

− , (p-e),

for ni = 1,

D2
ij =



1
l2ij

( 1
m+ − 1

mij−mij+1

)
, j = 1 and (e-e) or (e-p),

−1
l2ij(mij−mij+1) , j = 1 and (p-p) or (p-e),

−(mij−1−mij+1)
l2ij(mij−1−mij)(mij−mij+1) , 1 < j < ni,

−1
l2ij(mij−1−mij)

, j = ni and (p-p) or (e-p),
1
l2ij

(
− 1
m− + 1

mij−mij−1

)
, j = ni and (e-e) or (p-e),

for ni > 1,

(D+)2 = −m+,

(D−)2 = m−.

Lemma 5.14 (Compare Proposition 4.24 in [32]). Let X := X(A,P ) be
a rational projective K∗-surface and consider the anticanonical divisor −KX .
Then the following is true:

(i) If there is a parabolic fixed point curve D+ we have

−KX ·D+ > 0 ⇔ l̄+ −m+ > 0.

(ii) If there is a parabolic fixed point curve D− we have

−KX ·D− > 0 ⇔ m− + l̄− > 0.

(iii) For some i with ni = 1 we have the following cases:
(a) If there are two elliptic fixed points x− and x+ we find:

−KX ·Di1 > 0 ⇔ m+ l̄− −m− l̄+ > 0.

(b) If there is a parabolic fixed point curve D+ and an elliptic
fixed point x− we have

−KX ·Di1 > 0 ⇔ m− − l̄− > 0.

(c) If there is a parabolic fixed point curve D− and an elliptic
fixed point x+ we have

−KX ·Di1 > 0 ⇔ l̄+ −m+ > 0.

(d) If there are two parabolic fixed point curves D− and D+ we
find that −KX · Di1 > 0. The condition can be stated as
follows:

li1 + li1 > 0.
(iv) For some i with ni ≥ 2 we find:

(a) If there is a parabolic fixed point curve D+ we find

−KX ·Di1 > 0 ⇔ li1 − li2 + di1li2 − di2li1 > 0.
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(b) If there is an elliptic fixed point x+ we find

−KX ·Di1 > 0 ⇔ (li1di2 − di1li2)l̄+ +m+ (li2 − li1) > 0.

(c) If ni ≥ 3 and 2 ≤ j ≤ ni − 1 we have

−KX ·Dij > 0 ⇔ (lij− lij+1)(dij−1−dij)− (dij−dij+1)(lij−1− lij) > 0.

(d) If there is an elliptic fixed point x− we find

−KX ·Dini > 0 ⇔ (linidini−1 − dini lini−1)l̄− +m− (lini−1 − lini) > 0.

(e) If there is a parabolic fixed point curve D− we find

−KX ·Dini > 0 ⇔ lini−1 − lini + dini−1lini − dini lini−1 > 0.

Proof. We calculate the intersection product −KX ·Dij for every given
case. We note that the anticanonical divisor can be written as follows

−KX =
∑
i,j

Dij +
∑
k

Dk − (r − 1)
ni0∑
j=1

li0jDi0j , where 0 ≤ i0 ≤ r.

We show the first statement and note that the second statement is proved
analogously. For the index i0 in the formula of −KX given above we choose
i0 = 0. Then we have:

−KX ·D+ =
r∑
i=0

D+ ·Di1 + (D+)2 − (r − 1)l01D
+ ·D01

= −m+ +
r∑
i=0

1
li1
− (r − 1)

= −m+ + l̄+.

For the statements (iii) and (iv) we choose i0 = i for the formula of −KX
given above, respectively. Note that we get the following expression:

−KX ·Dij = Dij ·

∑
ι6=i,j

Dιj +
∑
k

Dk

+
∑
κ

(1− liκ(r + 1))Dij ·Diκ

We show the assumption (iii) (a) by calculating the two summands as
given:

Di1 ·

∑
ι 6=i,j

Dιj +
∑
k

Dk

 =
∑
ι6=i

Di1 ·Dι1 +Di1 ·Dιnι

=
∑
ι6=i

1
li1lι1

( 1
m+ −

1
m−

)
∑
κ

(1− liκ(r + 1))Di1 ·Diκ = (1 + li1(r − 1))D2
i1

= 1 + li1(r − 1)
l2i1

( 1
m+ −

1
m−

)
= 1

l2i1

( 1
m+ −

1
m−

)
+ (r − 1)

li1

( 1
m+ −

1
m−

)
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Therefore, combining the two calculations we find:

−KXDij =
∑
ι

1
li1lι1

( 1
m+ −

1
m−

)
+ r − 1

li1

( 1
m+ −

1
m−

)

= − 1
li1m+m−

(
m+

(∑
ι

1
lιnι
− (r − 1)

)
−m−

(∑
ι

1
lι1
− (r − 1)

))

= − 1
li1m+m−

(
m+ l̄− −m− l̄+

)
We go on by showing statement (iii) (b) and note that the assumption

(iii) (c) is proved analagously. Again, we first consider the two summands
as above:

Di1 ·

∑
ι6=i,j

Dιj +
∑
k

Dk

 =
∑
i 6=ι

Di1 ·Dini +Di1 ·D+

=
∑
ι6=i

−1
li1lιnιm

− + 1
li1∑

κ

(1− liκ(r + 1))Di1 ·Diκ = (1 + li1(r − 1))D2
i1

= −1 + li1(r − 1)
l2i1m

−

= − 1
l2i1m

− + (r − 1)
li1

1
m−

Adding the two equalities yields the intersection product −KX ·Di1, namely:

−KX ·Di1 = −
∑
ι

1
li1lιnιm

− + 1
li1

+ (r − 1) 1
li1m−

= 1
li1m+

(
−
∑
ι

1
lιnι

+ (r − 1) +m−
)

= 1
li1m+

(
−l̄− +m−

)
For the statement (iii) (d) we turn to the same summands as above:

Di1 ·

∑
ι6=i,j

Dιj +
∑
k

Dk

 = Di1 · (D+ +D−)

= 1
li1

+ 1
li1∑

κ

(1− liκ(r + 1))Di1 ·Diκ = (1− li1(r + 1))D2
i1 = 0

Since the second summand vanishes we end up with the following equality
for the intersection product, which can be expressed as follows:

−KX ·Di1 = 1
l2i1

(li1 + li1)

We turn to the statements (iv) using the same methods as above. We
will show statements (a), (b) and (c) and note that statements (d) and (e)
are shown analoguosly to statements (b) and (a), respectively.
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For the statement (a) we consider the second summand. Note that
the only intersection products that do not vanish are given for κ = 1, 2.
Therefore the second summand is given as follows:

(1− li1(r − 1))D2
i1 + (1− li2(r − 1))Di1 ·Di2

= − 1− li1(r − 1)
l2i1(mi1 −mi2)

+ 1− li2(r − 1)
li1li2(mi1 −mi2)

= −li2 + li1li2(r − 1) + li1 − li1li2(r − 1)
l2i1li2(mi1 −mi2)

= li1 − li2
l2i1li2(mi1 −mi2)

Now, since there is a parabolic fixed point D+, the only non-vanishing com-
ponent of the first summand is Di1 ·D+, hence we find:
−KX ·Di1 = Di1 ·D+ + (1− li1(r − 1))D2

i1 + (1− li2(r − 1))Di1 ·Di2

= 1
li1

+ li1 − li2
l2i1li2(mi1 −mi2)

= li1li2(mi1 −mi2) + (li1 − li2)
l2i1li2(mi1 −mi2)

= 1
l2i1li2(mi1 −mi2)

(li1 − li2 + di1li2 − di2li1)

For the statement (iv) (b) we consider the first summand of the inter-
section product −KX ·Di1:

Di1 ·

∑
ι6=i,j

Dιj +
∑
k

Dk

 =
∑
ι6=i

Di1 ·Dι1 =
∑
ι6=i

1
li1lι1m+

For the second summand we note, as before, that the only intersection prod-
ucts that do not vanish are given for κ = 1, 2. Therefore the second sum-
mand is given as follows:

(1− li1(r − 1))D2
i1 + (1− li2(r − 1))Di1 ·Di2

= 1− li1(r − 1)
l2i1

( 1
m+ −

1
mi1 −mi2

)
+ 1− li2(r − 1)

li1li2

1
mi1 −mi2

= 1
li1m+

( 1
li1
− (r + 1)

)
+ −li2 + li1li2(r − 1) + li1 − li1li2(r − 1)

l2i1li2(mi1 −mi2)

= 1
li1m+

( 1
li1
− (r + 1)

)
+ li1 − li2
l2i1li2(mi1 −mi2)

Since the intersection number −KX ·Di1 is the sum of the intersection num-
bers already calculated we find:

−KX ·Di1 =
∑
ι6=i

1
li1lι1m+ + 1

li1m+

( 1
li1
− (r + 1)

)
+ li1 − li2
l2i1li2(mi1 −mi2)

= 1
li1m+

(∑
i

1
li1
− (r − 1) + m+(li1 − li2)

li1li2(mi1 −mi2)

)

= − 1
l2i1li2m

+(mi1 −mi2)

(
(li1di2 − di1li2)l̄+ +m+ (li2 − li1)

)
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Last we turn to statement (iv) (c). Note that since 1 < j < ni we find
that the first summand vanishes since Dij · Dικ = 0 for i 6= ι. In order to
calculate the second summand we consider the following equality:

−lij−1Dij−1 ·Dij − lij+1Dij ·Dij+1

= − lij−1
lij−1lij(mij−1 −mij)

− lij+1
lijlij+1(mij −mij+1)

= −lij−1lij+1(mij −mij+1)− lij+1lij−1(mij−1 −mij)
lij−1lijlij+1(mij−1 −mij)(mij −mij+1)

= −(mij−1 −mij+1))
lij(mij−1 −mij)(mij −mij+1)

= lijD
2
ij

This shows that the second summand can be written as
∑
κDijDiκ and

hence we find:

−KX ·Dij

=
∑
κ

DijDiκ

= Dij−1 ·Dij +D2
ij +Dij+1 ·Dij

= 1
lij−1lij(mij−1 −mij)

− (mij−1 −mij+1)
l2ij(mij−1 −mij)(mij −mij+1)

+ 1
lijlij+1(mij −mij+1)

= lijlij+1(mij −mij+1)− lij−1lij+1(mij−1 −mij+1) + lij−1lij(mij−1 −mij)
lij−1l2ijlij+1(mij−1 −mij)(mij −mij+1)

= lij−1mij−1(lij − lij+1) + lijmij(lj+1 − lj−1) + lij+1mij+1(lij−1 − lij)
lij−1l2ijlij+1(mij−1 −mij)(mij −mij+1)

= dij−1(lij − lij+1) + dij(lij+1 − lij−1) + dij+1(lij−1 − lij)
lij−1l2ijlij+1(mij−1 −mij)(mij −mij+1)

= (lij − lij+1)(dij−1 − dij)− (dij − dij+1)(lij−1 − lij)
lij−1l2ijlij+1(mij−1 −mij)(mij −mij+1)

Note that in every case the expression for the intersection product −KX ·Dij

or −KX · D+ is given as a product of a positive rational number and the
terms stated. Hence we have shown the assumptions. �

Proof of Proposition 5.12. The statement follows immediately by
casewise comparing the inequality with the ones given in Lemma 5.14. We
exemplarily consider the case (iv) (b) of Lemma 5.14. Since X(A,P ) is
log-terminal we can divide the inequality given by l̄+ to find:

(li1di2 − di1li2) + d+(li2 − li1) = (li1 − li2)(d+ − di1)− (di1 − di2)(0− li1)
= (li1 − li2)(di0 − di1)− (di1 − di2)(li0 − li1)

This shows the statement. All other cases can be seen analaguously. �

The next objective of this section is to show the implications of Propo-
sition 5.15 which yields that every del Pezzo surface possesses at most one
parabolic fixed point curve.
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Proposition 5.15 (Compare Lemma 5.7 in [32]). Let X(A,P ) be a
non-toric rational porjective K∗-surface with irredunant defining matrix P .
The the following implications hold:

(i) If m+ < l̄+ then m− ≤ −l̄−.
(ii) If m− > −l̄− then m+ ≥ l̄+.

Corollary 5.16. Let X(A,P ) be a log terminal del Pezzo surface. Then
there is at most one parabolic fixed point curve.

Proof. Assume there is a del Pezzo surface X(A,P ) with two parabolic
fixed point curves. Then Proposition 5.12 (i) yields that m+ < l̄+ and
m− > −l̄−, a contradiction to Proposition 5.15. �

Lemma 5.17. Consider a defining matrix P of a rational projective K∗-
surface X(A,P ). Then the following inequalities hold:

(i) For the slopes mij we find:

mij + lij − 1
lij

≥ dmije, mij −
lij − 1
lij

≥ bmijc.

(ii) Furthermore the following inequality holds:

dmi1e − bminic ≥ 1.

(iii) We find that the following is true:(
m+ − l̄+

)
−
(
m− + l̄−

)
+ 4 ≥ r + 1.

Proof. To prove the first statement we write dij = qijlij + rij , where
qij , rij ∈ Z and 0 ≤ rij < lij . We consider the case that rij 6= 0. Note that
in this case we have bmijc = qij and dmije = qij + 1. Thus we find:

mij + lij − 1
lij

= (qij + 1)lij + rij − 1
lij

= (qij + 1) + rij − 1
lij

≥ dmije,

mij −
lij − 1
lij

= qijlij + rij − lij + 1
lij

= qij + 1− (lij − rij)
lij

≤ bmijc.

Now for rij = 0, we find lij = 1, since gcd(lij , dij), therefore the inequalities
above also hold as shown here:

mij ±
lij − 1
lij

= mij = dij = dmije = bmijc.

We turn to statement (ii). It is clear that the difference of the inte-
gers dmi1e, bminic is positive since mi1 ≥ mini , furthermore the difference
vanishes only if li1ni = 1 since the following holds:

dmi1e−bminic = 0 ⇔ mi1 = mini and mi1 ∈ Z ⇔ li1 = 1 and ni = 1.

This contradicts irredundancy, i.e. the difference is greater than 1.
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For the last statement we find the following series of inequalities where
the first estimate stems from statement (ii) and the second one from state-
ment (i):

r + 1 ≤
r∑
i=0
dmi1e − bminic

≤
r∑
i=0

mi1 + li1 − 1
li1

−
(

r∑
i=0

mini −
lini − 1
lini

)

=
(

r∑
i=0

mi1 −
r∑
i=0

1
li1

+ (r + 1)
)
−
(

r∑
i=0

mini +
r∑
i=0

1
lini
− (r + 1)

)
=

(
m+ − l̄+

)
−
(
m− + l̄−

)
+ 4.

�

Proof of Proposition 5.15. We show that the following two in-
equalities cannot hold simultaneously:

m+ − l̄+ < 0 and m− + l̄− > 0

Therefore assume that the inequalities do hold. By Lemma 5.17 (iii) we find
that r + 1 < 4, i.e. r = 2, since the K∗-surface is non-toric.

For r = 2 we consider the inequality as given in the proof of Lemma 5.17:

3 = r + 1 ≤
r∑
i=0
dmi1e − bminic < 4.

Since the sum is an integer, equality holds, i.e.
∑r
i=0dmi1e − bminic = 3,

moreover the following inequality holds:

2 > 2 +
(
m+ − l̄+

)
=

r∑
i=0

(
mi1 + li1 − 1

li1

)
≥

∑
dmi1e

≥
∑
dmi1e − bminic = 3

Since the sum in the second line is an integer, we find
∑
dmi1e = 3 and

therefore bminic = 0, i.e. mini ≥ 0 for all i = 0, . . . , r. This contradicts
m− < 0. Therefore the two stated inequalities cannot hold simultaneously.

�

Lemma 5.18. Let Pi ⊆ λi be a convex polygon having a face
conv(v+, v−) ⊆ λ. Let vij ∈ λi be vertices of Pi with

vij = lijei + dijer+1,
di1
li1

> · · · > dini
lini

.

Set vi0 := v+ and vini+1 := v−. Then for every j = 1, . . . , ni the following
inequality holds:

(lij − lij+1)(dij−1 − dij)− (dij − dij+1)(lij−1 − lij) > 0.
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Proof. Set Hij to be the affine hyperplane that contains vij and vij+1
and the closed halfspace H+

ij which contains the origin. This halfspace is
defined by the linear form uij and the integer bij given as follows:

uij = (dij+1 − dij , lij − lij+1) and bij = dij+1lij − dijlij+1.

Now note that since bij < 0 we find vij−1 ∈ H+
ij \ Hij if and only if the

following inequality holds:
(dij+1 − dij)lij−1 + (lij − lij+1)dij−1 > dij+1lij − dijlij+1

After subtraction bij on both sides of the inequality we end up with the
following inequality:

(dij+1 − dij)lij−1 + (lij − lij+1)dij−1 − dij+1lij + dijlij+1 > 0
⇔ (lij − lij+1)(dij−1 − dij)− (dij − dij+1)(lij−1 − lij) > 0.

�

Proof of Theorem 5.10. By Remark 5.9 every toric LDP complex
is a Fano polygon. Since correspondence between Fano polygons and toric
surfaces is well known, it only remains to show the correspondence between
non-toric LDP complexes and non-toric K∗-surfaces.

We first show that for an LDP complex the surface X := X(A(L), P (L))
is log del Pezzo. Note that by Construction 5.6 we obtain that X is a well
defined K∗-surface. Furthermore X is log terminal by Lemma 4.14 since we
have l̄− > 0 for an LDP complex of type (p-e) and l̄+ l̄− > 0 for an LDP
complex of type (e-e) by condition (iv) of the Definition 5.2.

Last observe that convexity of the polygons Pi implies that the in-
equalities of Lemma 5.18 hold. These inequalities coincide with the ones
given in Proposition 5.12 (ii). Moreover, for an LDP complex of type (p-e)
condition (iv) states m+ < l̄+, which is exactly the inequality in Proposi-
tion 5.12 (i), i.e. X is a del Pezzo surface.

Now for a log del Pezzo K∗-surface X the anticanonical complex AcX
is an LDP precomplex by Remark 5.7. Furthermore there is at most one
parabolic fixed point curve by Corollary 5.16, which we can take as D+.

If there is a parabolic fixed point curve, the conditions (iv) of Defini-
tion 5.2 is equivalent to X being log terminal (see Lemma 4.14) and the
first condition of Proposition 5.12. and conditions (v) of Definition 5.2 fol-
low since v+ = er+1 is a vertex of AcX and v− = m−/l̄−er+1 by Lemma 4.16.

If there is no parabolic fixed point curve, the conditions (iv) of Defini-
tion 5.2 is equivalent to X being log terminal (see Lemma 4.14) and condi-
tions (v) of Definition 5.2 follow since v+ = m+/l̄+er+1 and v− = m−/l̄−er+1
by Lemma 4.16.

Last, for an LDP complex L set X := X(A(L), P (L)). It is clear that
L = AcX . Furthermore for a rational projective K∗-surface X(A,P ) it is
clear by definition that P = P (AcX). Therefore, the maps are bijections. �

6. Properties of LDP complexes

In this section we collect some basic properties of LDP complexes. We
start by considering redundant LDP complexes, i.e. LDP complexes such
that li1ni1 > 1 for all i = 0, . . . , r.
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Proposition 6.1. For every non-toric rational projective K∗-surface X
there is an irredundant LDP complex L with X ∼= X(A(L), P (L)).

Construction 6.2. Let L be a redundant LDP complex with r ≥ 2, i.e.
there is an index 0 ≤ ι ≤ r such that lι1nι = 1. The redundancy elimination
at ι is defined by the following steps:

(i) Apply a unimodular transformation A(−dι1; ι) to L and set L′ =
AL.

(ii) Set prι : Zr+2 → Zr+1 defined as follows:

prι : Zr+1 → Zr, ei 7→


ei, i < ι

0, i = ι

ei−1, i > ι.

Then the polygons prι(Pi), i 6= ι define an LDP complex L′′ in Zr.
Successively applying eliminations of redundancies yields an irredundnant
LDP complex or a toric LDP complex.

Construction 6.3. Let (A,P ) be defining data as in Construction 4.1;
in particular, P is built from the blocks L, 0, d and d′. By a redundant
extension of (A,P ) we mean defining data of the form

Ã := [a0, . . . , ar, ar+1], P̃ :=

 P 0 0
0 1 0
d 0 d′


such that the column ar+1 of Ã is not proportional to any of the columns
a0, . . . , ar of A. The pair (Ã, P̃ ) satisfies the conditions of 4.1, we have a
canonical isomorphism K̃ ∼= K of grading groups and one of the associated
graded K-algebras:

R(Ã, P̃ ) → R(A,P ), Tij 7→
{
Tij , i = 0, . . . , r,
0, i = r + 1,

Sk 7→ Sk.

In particular the rational projective K∗-surfaces X(A,P ) and X(Ã, P̃ ) are
isomorphic.

Proof of Proposition 6.1. Let (A,P ) be a pair of defining data for
X, i.e. X ∼= X(A,P ) and consider the anticanonical complex L := AcX .
If there is an index 1 ≤ i ≤ r such that li1ni = 1 apply an redundancy
elimination on L as in Construction 6.2 to achieve an LDP complex L′. Note
that by Construction 6.3 we have X(A(L′), P (L′)) ∼= X(A,P ). Successively
applying redundancy eliminations yields the statement. �

Definition 6.4. An LDP complex L is almost k-hollow if the only k-fold
point in the relative interior of L is the origin, i.e.

L◦ ∩ (kZ)r+1 = {0}.

Remark 6.5. Consider the LDP complex L corresponding to a log del
Pezzo surface X. Then note that by Theorem 4.9 the surface X has at most
1/k-log canonical singularities if and only if L is almost k-hollow.

Lemma 6.6. An LDP complex is almost k-hollow if and only if the fol-
lowing holds:
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(i) Pi is k-hollow for every 0 ≤ i ≤ r.
(ii) d+ ≤ k and d− ≥ −k.

Proof. The points in the relative interior of L◦ are exactly the points
in the relative interior of Pi and in conv(v−, v+). Hence L is almost k-hollow
if and only if if there are no k-fold points in Pi for all 0 ≤ i ≤ r, i.e. Pi is
k-hollow, and the only k-fold point in conv(v−, v+) is the origin. The latter
is equivalent to (ii). �

Remark 6.7. For an LDP complex consider the number l̄+ defined in
Remark 5.1 and the condition l̄+ > 0.

Assume l01 ≥ · · · ≥ lr1. Then l31 = · · · = lr1 = 1 holds and (l01, l11, l21)
is a platonic triple, i.e. one of the following tripels:

(l01, l11, 1), (l01, 2, 2), (3, 3, 2), (4, 3, 2), (5, 3, 2).

Furthermore the following is true:

l̄+ =
r∑
i=0

1
li1
− (r − 1) =



1
l01

+ 1
l11
, if (l01, l11, l21) = (l01, l11, 1),

1
l01
, if (l01, l11, l21) = (l01, 2, 2),

1
6 , if (l01, l11, l21) = (3, 3, 2),
1
12 , if (l01, l11, l21) = (4, 3, 2),
1
30 , if (l01, l11, l21) = (5, 3, 2).

Note that the maximal value for l̄+ is given by 2. The same statements hold
for l̄−.

Lemma 6.8. Consider an LDP complex L with vertices vij = (lij , dij)
such that l2n2 = · · · = lrnr = 1 and d2n2 = · · · = drnr = 0. Consider the
following Z-linear map:

π : Zr+1 → Z2, ei 7→


e1, i = 1,
0, i 6= 1, r + 1,
er+1 i = r + 1.

Then π(L) ⊆ Z2 is a convex polygon with vertices π(v0j), π(v1j) and π(v+).
In particular, the following statements are equivalent:

(i) P0 and P1 are k-hollow and (d−, d+) ∩ kZ = {0}.
(ii) The polygon π(L) is almost k-hollow.

Proof. To prove the first statement it suffices to show that for the
vector π(v−) we have π(v−) ∈ conv(π(v0n0), π(v1n1)). Therefore we first
consider the following sum of rational numbers:

1
l̄−l0n0

+ 1
l̄−l1n1

= 1
l̄−

( 1
l0n0

+ 1
l1n1

)
= l̄−

l̄−
= 1.
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Now note the following linear combination of vectors which proves the state-
ment:

1
l̄−l0n0

π(v0n0) + 1
l̄−l1n1

π(v1n1) = 1
l̄−l0n0 l1n1

(l1n1π(v0n0) + l0n0π(v1n1))

= 1
l̄−l0n0 l1n1

(l0n0 l1n1(m0n0 +m1n1)e2)

= m−

l̄−
e2 = d−e2 = π(v−).

This means that π(v−) can be written as linear combination of vectors in
conv(π(v0n0), π(v1n1)), furthermore the coefficients add up to 1, i.e. π(v−)
is no vertex of π(L).

The latter equivalence follows with Lemma 6.6. �

The following part defines a standard form for rational projective K∗-
surfaces, see Definition 6.21. This definition is independent of ampleness of
the anticanonical divisor. The corresponding statement also holds for LDP
complexes. It yields a quick possibility to check whether two LDP com-
plexes L and L′ are unimodular equivalent, i.e. there is an LDP-preserving
unimodular transformation A such that A(L) = L′.

The first part establishes a notion of symmetry for matrices P when
applying an admissible operation of type (iv).

Definition 6.9. Let X(A,P ) be a rational projective K∗-surface. We
define the following:

(i) The slopes of P are the rational numbers mij = dij
lij

.
(ii) The i-th block of P is the vector mi = (mi1, . . . ,mini) ∈ Qni .
(iii) For every block we define the normalized slope vectors:

σi := (mi1 + ai, . . . ,mini + ai) ,
τi := (−mini + bi, . . . ,−mi1 + bi) ,

where ai = d−mi1e ∈ Z and bi = dminie ∈ Z.
(iv) A symmetric block is a block mi such that σi = τi. Otherwise the

block is called asymmetric.

Example 6.10. Let X(A,P ) be the K∗-surface with defining matrix

P :=

−3 2 0 0
−3 0 1 1
−2 1 1 −1

 .
The matrix P consists of the following three blocks:

m0 = (−2/3), m1 = (1/2), m2 = (1,−1).

For every 0 ≤ i ≤ 2 we compute the normalized slope vectors σi and τi:

σ0 = (1/3), τ0 = (2/3), σ1 = (1/2), τ1 = (1/2),

σ2 = (0,−2), τ2 = (0,−2).
Thus there are two symmetric blocks and one asymmetric block, namely
block 0.
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Definition 6.11. Let mi be an asymmetric block of a matrix P . Then
we define the following:

(i) Let 1 ≤ j ≤ ni be the smallest index such that the j-th entry of σi
and τi differ.

The pair of asymmetric slopes is the following pair of rational
numbers: (

mij + ci,−mini−j+1 + di
)
∈ Q2,

where ci := d−mije, di := dmini−j+1e.

(ii) The block mi faces up if mij + ci > −mini−j+1 +di. Otherwise the
block faces down.

Example 6.12. We turn again to Example 6.10 and consider the defining
matrix P given as follows:

P :=

−3 2 0 0
−3 0 1 1
−2 1 1 −1

 .
Note that the only asymmetric block is block 0. Its pair of asymmetric
slopes is given by (1/3, 2/3), i.e. the block 0 faces down. The remaining
blocks are symmetric.

Definition 6.13. Let X(A,P ) be a rational projective K∗-surface.
(i) The symmetry vector S(mi) of an asymmetric block mi is σi if

the block faces up and τi if the block faces down.
(ii) The matrix P is called symmetric if it is of type (e-e) or (p-p),

we have m+ = −m− and for every symmetry vector there are the
same number of blocks facing up and facing down.

Remark 6.14. For any matrix P consider the matrix P− obtained by
applying the admissible operation (iv) on P and rearranging the columns
such that P− is slope ordered.

For the rest of this part we use the notation mP
ij and mP−

ij when talking
about the slopes of P and P−, respectively. Moreover the sum of slopes is
written as m+

P and m−P− , respectively. It is clear that the following holds:

(i) For every slope we have mP
ij = −mP−

ini−j+1.
(ii) For the slope sum we obtain m+

P = −m−P− and m−P = −m+
P− .

Lemma 6.15. Let X(A,P ) be a rational projective K∗-surface and con-
sider P−. Then the following conditions are equivalent.

(i) P can be obtained by applying a series of admissible operations of
type (i) to (iii) and (v) on P−.

(ii) P is symmetric.

Proof. Suppose that P can be brought to the form of P− by admissible
operations of type (i) to (iii) and (v). Hence we have

m+
P = m+

P− = −m−P .
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Consider the slope vector (mi1, . . . ,mini) of a block of P such that no change
of blocks is necessary to bring P− to the form of P . That means there is an
integer a ∈ Z such that the following holds

(mi1, . . . ,mini) = (mini + a, . . . ,mi1 + a) .
Thus this block is symmetric by definition. Suppose on the other hand that
(mi1, . . . ,mini) is a slope vector of a block such that a change of blocks is
necessary to bring P− to the form of P . That means there is an integer
ι 6= i and a ∈ Z such that

(mi1, . . . ,mini) = (mιnι + a, . . . ,mι1 + a)
for some ι 6= i and a ∈ Z. Note that the blocks have the same symmetry
vector but differ by the directions they face to. We conclude that for every
symmetry vector occurring there is the same number of blocks facing up and
down, which proves that P is symmetric.

Now suppose that P is symmetric. Consider P− and exchange blocks of
P− facing up with blocks of the same symmetry vector facing down, which
yields a matrix P̃−. By definition of symmetry vectors every block of P̃−
now coincides with the blocks of P up to an admissible operation of type
(iii). Hence we can assume that

mP̃−
ij = mP

ij for all i = 1, . . . , r.

Note that the 0-th blocks of P and P̃− are of the same symmetry type, i.e.
they only differ by an integer vector in Zni . Since additionally m+ = −m−
we find mP̃−

01 = mP
01, thus the 0-th blocks coincide as well. �

Remark 6.16. Let X := X(A,P ) be a rational projective K∗-surface
with a symmetric defining matrix P . Then the following two assertions
hold:

(i) There is an automorphism ϕ : X → X switching source and sink,
i.e. we have

ϕ(x+) = x− or ϕ(D+) = ϕ(D−).
(ii) The unit component of the automorphism group is trivial.

The latter follows since otherwise there are two quasismooth simple elliptic
fixed points or two parabolic fixed point curves admitting vertical roots, a
contradiction to Theorem 8.4 and Proposition 9.18, respectively.

Definition 6.17. Let P be a defining matrix of a rational projective K∗-
surface with asymmetric blocks mi1 , . . . ,mik . Then we define the following:

(i) Let S(mi) be a symmetry vector. Set k(S(mi))+ to be the number
of blocks of P with symmetry vector S(mi) facing up. Analagu-
osly, we define k(S(mi))− for blocks facing down.

(ii) The matrix symmetry vector S(P ) is the lexicographically maxi-
mal among all symmetry vectors S(mi) such that k(S(mi))+ 6=
k(S(mi))−.

Lemma 6.18. Let X(A,P ) be a rational projective K∗-surface and con-
sider P− and the matrix symmetry vector S(P ) and S(P−). The following
assertions hold:
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(i) If P is of type (p-e), then P− is of type (e-p).
(ii) If P is of type (e-e) or (p-p) and m+

P > −m
−
P , then P− is of type

(e-e) or (p-p) and m+
P− < −m

−
P−.

(iii) Suppose that P is of type (e-e) or (p-p) and m+
P = −m−P

holds. Assume further that for the symmetry vector S(P ) we have
k(S(P ))+ > k(S(P ))−.

Then P− is of type (e-e) or (p-p) and m+
P = −m−P . Moreover

for the symmetry vector S(P−) we have k(S(P−))+ < k(S(P ))−.

Proof. The first and the second statements are clear by the defintion
of P−. For the last statement note that every block in P that faces up yields
a block in P− with the same symmetry vector that faces down. Therefore
we have

k(S(P−))+ = k(S(P ))− < k(S(P ))+ = k(S(P−))−.
�

Definition 6.19. Let X(A,P ) be a K∗-surface. The matrix P faces up
if one of the following conditions holds.

(i) The matrix P is of type (p-e).
(ii) The matrix P is of type (e-e) and m+ > −m−.
(iii) The matrix is of type (e-e) and m+ = −m−. Additionally, for the

symmetry vector of P we have:
k(S(P ))+ > k(S(P ))−.

The matrix P faces down if P− faces up.

Remark 6.20. Let P be a defining matrix of a rational projective K∗-
surface X(A,P ). Then Lemma 6.18 yields the following three cases:

(i) The matrix P is symmetric.
(ii) The matrix P faces up.
(iii) The matrix P− faces up.

Definition 6.21. Let X(A,P ) be a rational projective K∗-surface. The
defining matrix P is in standard form if the following assumptions hold:

(i) The matrix is irredundant, i.e. nili1 > 1 for all i = 0, . . . , r.
(ii) The matrix P does not face down.
(iii) For the length of the arms of X(A,P ) we have:

nmax := n0 ≥ · · · ≥ nr.

(iv) We have 0 ≤ mi1 < 1 for all i = 1, . . . , r.
(v) Let ι be the largest index such that nι = nmax and set a :=
d−m01e ∈ Z. Then for every 0 ≤ i ≤ ι we have

(m01, . . . ,m0n0) ≥lex (mi1 − a, . . . ,mini − a) .
(vi) For indices i1 ≤ · · · ≤ ik with ni1 = · · · = nik and ij 6= 0, the

tuples (
mi11, . . . ,mi1ni1

)
, . . . ,

(
mik1, . . . ,miknik

)
are in descending lexicographical order.
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Proposition 6.22. The standard form of a defining matrix P is unique.
In particular, two defining matrices P and P ′ are equivalent if and only if
their standard forms coincide.

Proof. It is clear that every matrix P can be brought into standard
form using admissible operations.

Suppose that P is in standard form and there is a distinct matrix P ′ in
standard form such that P and P ′ are equivalent. We show that P = P ′.

It is clear that admissible operations do not change the number of blocks
with the same length. Thus observe that for i = 1, . . . , r the blocks of P
and P ′ coincide by conditions (ii), (iii) and (vi) of Definition 6.21.

For i = 0 note that by condition (v) the block is uniquely determined
among all blocks of length nmax. In particular, the 0-th block of P and P ′

coincide.
Last note that by Remark 6.20 and the second condition of Defini-

tion 6.21 P and P ′ both face up or they are symmetric. In the second
case note that the standard form of P− coincides with the one of P by
Lemma 6.15 using the same arguments as above. �

7. Contraction of LDP complexes

In section 2, we investigated a deconstruction method of polygons, see
Construction 2.6, that was a vital ingredient in the classification process for
almost k-hollow polygons.

Now, our objective is to achieve a similar method for LDP complexes,
see Construction 7.3: We define a process of removing vertices of an LDP
complex without losing basic properties. Theorem 7.4 ensures that this
process is well-behaved.

Moreover in Proposition 7.9, we observe that this process corresponds to
contractions of divisors of K∗-surfaces. In particular, in Theorem 7.7 we ob-
tain that contractions of K∗-surfaces preserve ampleness of the anticanonical
divisor, log terminality and 1/k-log canonicity.

Definition 7.1. Let L be an LDP complex consisting of the polygons
Pi with ni vertices in λi \ λ. If nι ≥ 2, we define the following:

m+(ι) = m+ +mι2 −mι1, m−(ι) = m− +mιnι−1 −mιnι ,

l̄+(ι) = l̄− + 1
lι2
− 1
lι1
, l̄−(ι) = l̄− + 1

lιnι−1
− 1
lιnι

.

Last if the rational numbers l̄±(ι) do not vanish we define

d±(ι) = m±(ι)
l±(ι) .

Definition 7.2. Let L be an LDP complex. A combinatorially con-
tractible vertex v of L is a vertex sufficing one of the following conditions:

(i) The complex is of type (p-e) and for v = v+ we have m+ > 0.
(ii) For v = vι1 we have nι > 1 and the complex is of type (p-e) or

m+(ι) > 0.
(iii) For v = vιj with j = 2, . . . , nι − 1.
(iv) For v = vιnι we have nι > 1 and m−(ι) > 0.
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Construction 7.3. Let L be an irredundant LDP complex with a com-
binatorially contractible vertex v. We define the following polygons:

(i) If L is of type (p-e) and v = v+, for all i = 0, . . . , r set

Pvi := conv
(
V(Pi) \ {v} ∪ {m+/l̄+er+1}

)
.

(ii) If L is of type (e-e) and v = vι1 we set

Pvι := conv
(
V(Pι) \ {v, v+} ∪ {d+(ι)er+1}

)
,

Pvi := conv
(
V(Pi) \ {v+} ∪ {d+(ι)er+1}

)
, i 6= ι.

(iii) If L is of type (e-e) or (p-e) and v = vini we set
Pvι := conv

(
V(Pι) \ {v, v−} ∪ {d−(ι)er+1}

)
,

Pvi := conv
(
V(Pi) \ {v−} ∪ {d−(ι)er+1}

)
, i 6= ι.

(iv) If L is not of type (p-e) or v 6= v+, vi1, vini , set
Pvι := conv (V(Pι) \ {v}) , Pvi := Pi, i 6= ι.

The LDP complex Lv contracted along the vertex v is the polyhedral complex
consisting of the polygons Pvi for i = 0, . . . , r. If v = v+, the complex is of
type (e-e), in all the other cases the types of L and Lv coincide.

The following theorem shows that the polyhedral complex Lv is indeed
an LDP complex.

Theorem 7.4. Let L be an irredundant LDP complex with contractible
vertex v. Then the following is true:

(i) The polyhedral complex Lv is an LDP complex.
(ii) We obtain Lv ⊆ L. In particular, if L is almost k-hollow, then so

is Lv.

Lemma 7.5. Let L be an LDP complex of type (p-e) with v+ combina-
torally contractible. Then the following statements hold:

(i) We have l̄+ > 0.
(ii) We find m+/l̄+ < 1, i.e. m+/l̄+er+1 ∈ conv(0, v+).

Proof. We first note that m+ > 0 by Definition 7.2 (i) since v+ is com-
binatorially contractible. Now the statements are immediate consequences
of the inequality in condition (iv) of Definition 5.2, namely:

l̄+ > m+ > 0 and l̄+ −m+ > 0 ⇔ m+

l̄+
< 1.

The last part of statement (ii) is clear since v+ = er+1. �

Lemma 7.6. Let L be an LDP complex of type (e-e) and a contractible
vertex vι1 and nι ≥ 2. Then the following statements hold:

(i) We have l̄+(ι) > 0.
(ii) We find d+ > d+(ι), i.e. d+(ι)er+1 ∈ conv(0, v+).

The same statements are true for an LDP complex of type (p-e) or (e-
e) and a combinatorially contractible vertex vιnι, namely l̄−(ι) > 0 and
d−(ι)er+1 ∈ conv(0, v−).
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Proof. We prove exemplarily the case for the first statements and note
that the proof for the latter statements is analagous. First note that since
vι1 is contractible the inequality m+(ι) > 0 given in Definition 7.2 (ii) holds,
furthermore Lemma 5.14 (iv) (b) yields another inequality which after divi-
sion on both sides by lι1lι2 l̄+ > 0 can be restated as follows:

(mι2 −mι1) + m+

l̄+

( 1
lι1
− 1
lι2

)
> 0.

Hence we have two inequalities depending on mι1 − mι2. Restating these
two inequalities solving for mι1 −mι2 we find

m+ > mι1 −mι2 >
m+

l̄+

( 1
lι1
− 1
lι2

)
.

Using these estimates for mι1−mι2 and the fact that m+ is positive we find:
1
l̄+

( 1
lι1
− 1
lι2

)
< 1

⇔ l̄+(ι) = l̄+ +
( 1
lι2
− 1
lι1

)
> 0.

Hence we have shown the first statement.
For the second statement we consider d+(ι) = m+(ι)

l̄+(ι) :

m+(ι)
l̄(ι)

= m+

l̄+
+ m+(ι)l̄+ −m+ l̄+(ι)

l̄+ l̄+(ι)

= m+

l̄+
+ (l̄+ − l̄+(ι))m+ + (m+(ι)−m+)l̄+

l̄+ l̄+(ι)

= m+

l̄+
+

(
1
lι1
− 1

lι2

)
d+ + (mι2 −mι1)
l̄+(ι)

<
m+

l̄+
.

In the third step we used the definitions of l̄(ι) and m+(ι) and the inequality
follows directly from the inequality of Lemma 5.14 (iv) (b) and statement
(i), i.e. l̄+(ι) > 0.

The second part of the statement follows immediately since v+ = d+er+1
and d+(ι) < d+. �

Proof of Theorem 7.4. We want show that Lv is a well-defined LDP
complex, i.e. that conditions (i) to (v) of Definition 5.2 hold. We do this
casewise using the definitions of Lv in Construction 7.3.

We start with case (i). By Lemma 7.5 we obtain that l̄+ does not
vanish, i.e. m+/l̄+ is a well defined rational number. Since it is positive we
also conclude that the origin lies in the relative interior of Lv. Note that
conditions (ii) and (iii) are fulfilled by definition of Lv.

We turn to conditions (iv) and (v). Note that by definition Lv is of type
(e-e), furthermore l̄− > 0 and m− = l̄−d− since the vertices vini and v− are
not affected by the contraction. Last note that l̄+ > 0 by Lemma 7.5 (i)
and m+ = l̄+d+ by definition of Lv. Last observe that Pvi ⊆ Pi for every
i = 0, . . . , r since m+/l̄+er+1 ∈ conv(0, v+). Thus we have Lv ⊆ L.
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Case (ii) and (iii) are proven analagously; We exemplarily show (ii):
First observe that nι > 1 since vιnι is contractible, furthermore for Lv the
upper slope sum and the sum of inverse integers li1 are given by m+(ι) and
l̄+(ι). By Lemma 7.6 we know that l̄+(ι) > 0, i.e. d+(ι) is well defined.
Moreover, since d+(ι) is positive, we conclude 0 ∈ Lv, i.e. condition (i) of
the definition of an LDP-complex is fulfilled. Observe that conditions (ii)
and (iii) of are fulfilled by the construction of Lv.

To see that conditions (iv) and (v) hold note that l̄− > 0 and m− = l̄−d−

remain unchanged since the vertices vini and v− are not affected by the
contraction, moreover l̄(ι)+ > 0 by Lemma 7.6 (i) and m+ = l̄+d+ by
definition of Lv. Last observe that Pvi ⊆ Pi for every i = 0, . . . , r since
m+/l̄+er+1 ∈ conv(0, v+). Thus we have Lv ⊆ L.

For case (iv) note that the vertices of Pi and Pvi contained in λ and
the vertices vi1 and vini coincide. Therefore all conditions of Definition 5.2
hold. �

Recall that an irreducible curve D on a normal projective surface X is
called contractible if there is a morphism π : X → X ′ onto a normal surface
X ′ mapping D to a point x′ ∈ X ′ and inducing an isomorphism from X \D
onto X ′ \ {x′}.

Theorem 7.7. Let X(A,P ) be a rational projective K∗-surface with a
contraction π : X → X ′ of an irreducible curve D. Then the following holds:

(i) If X is log del Pezzo, then so is X ′.
(ii) If X is 1/k-log canonical, then so is X ′.

Remark 7.8. Consider a log del Pezzo K∗-surface X = X(A,P ). Given
a column v of P , let D ⊆ X be the corresponding curve and P ′ the matix
obtained from P by removing v. Then the following statements are equiva-
lent.

(i) The curve D ⊆ X is contractible.
(ii) The matrices A and P ′ define a K∗-surface X ′ = X(A,P ′).

If one of these statements holds, then D is contracted by the K∗-equivariant
morphism X → X ′ induced by the map of fans Σ→ Σ′ and there is a unique
cone σ′ ∈ Σ′ containing v in its relative interior.

Proposition 7.9. Let X(A,P ) be a log del Pezzo K∗-surface with cor-
responding LDP complex L. Given a column v of P , let D ⊆ X be the
corresponding curve and P ′ the matix obtained from P by removing v. Then
the following statements are equivalent:

(i) The divisor D is contractible.
(ii) The vertex v ∈ L is contractible.

In particular, we obtain X(A,P ′) = X(A,P (Lv)).

Lemma 7.10. Let P be a matrix of the following type as seen in Con-
struction 4.1 and Remark 4.13:

P =
[
L 0
d d′

]
∈ Mat(r + 1, n+m;Z),
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where m ≤ 2 and for the matrix L ∈ Mat(r, n;Z) we have

L =

 −l0 l1 . . . 0
...

... . . . ...
−l0 0 . . . lr

 , li = (li1, . . . , lini) ∈ Zni≥1.

As above, we denote the columns as vij and v+ or v−, if present. Then
we have cone(vij , v+, v−) = Qr+1 if and only if one of the following two
statements holds:

(i) We have m = 0 and m+ > 0 and m− < 0.
(ii) We have m = 1 and m− < 0.
(iii) We have m = 2.

Proof. We start by showing the following equivalence:
±er+1 ∈ cone(vij) ⇔ ±m± > 0.

Thus, consider the following two equalities:

m+er+1 =
r∑
i=0

1
li1
vi1, m−er+1 =

r∑
i=0

1
lini

vini .

Hence if m+ > 0, then er+1 ∈ cone(vij , v+) and m− < 0, then −er+1 ∈
cone(vij , v+).

Now consider any positive combination of er+1, i.e.

er+1 =
∑
ij

aijvij , aij ∈ Z≥0.

Note that the shape of P implies that for every 0 ≤ i ≤ r there is an
1 ≤ j ≤ ni such that aij does not vanish. Moreover, we have

vij = lij

( 1
li1
vi1 + (mij −mi1)er+1

)
for all i = 0, . . . , r, j = 1, . . . , ni.

Plugging this equality into the positive combination and solving for er+1
yields:1 +

∑
ij

aijlij(mi1 −mij)

 er+1 =
∑
ij

aij
lij
li1
vi1 =

∑
i

∑
j

aij
lij
li1

 vi1.
Note that for i = 1, . . . , r the i-th component on the right side vanishes, i.e.
we have:

−l01

∑
j

a0j
l0j
l01

+ li1

∑
j

aij
lij
li1

 = 0.

Now plugging this expression into the equation above and considering the
(r + 1)-st component, we obtain1 +

∑
ij

aijlij(mi1 −mij)

 =

∑
j

a0jl0j

∑
i

1
li1
di1 =

∑
j

a0jl0j

m+.

Note that both brackets are positive, i.e. we have m+ > 0. The same
argument yields the statement that −er+1 ∈ cone(vij) implies m− < 0.
This shows the equivalence above.
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We go on to show the statement. By the shape of P it is clear that
±er+1 ∈ cone(vij , v+, v−) implies ei ∈ cone(vij , v+, v−) for all i = 1, . . . , r
since the following holds:

ei = 1
li1
vi1 −mi1er+1.

Hence to see that the columns of P generate Qr+1 as cone it suffices to
show that ±er+1 ∈ cone(vij , v+, v−). Last, observe that in the situation
of statements (i) to (iii) this is exactly the case, when the conditions there
hold.

We exemplarily show (ii): Since m = 1 there is a parabolic fixed point
curve, i.e. er+1 is a column of P . Moreover we have −er+1 ∈ cone(vij , v+)
if and only if −er+1 ∈ cone(vij). The latter one is equivalent to m− < 0 by
the considerations above. �

Proof of Proposition 7.9. By Remark 6.6 it suffices to show that
the data (P ′, A′) is defining data for a rational projective K∗-surface, i.e. it
suffices to show that the columns of P ′ generate Qr+1 as a cone.

By Lemma 7.10 it suffices to consider the following conditions, where
(m′)± are the slope sums for P ′:

(m′)+ > 0 and (m′)− < 0 type (e-e), (m′)− < 0 type (p-e).
Casewise we consider the matrices P ′ := P (Lv) for a contractible vertex v
as in Definition 7.2. We have:

(i) For type (p-e), v+ is contractible if and only if m+ > 0. Note that
we have (m′)+ = m+ and (m′)− = m− < 0.

(ii) For v = vι1 we have m+(ι) = (m′)+ > 0 and m− = (m′)− < 0.
(iii) If v = vιj , where j 6= 1, nι the slope sums do not change, i.e.

m± = (m′)±.
(iv) In the case v = vιnι we have m+ = (m′)+ and (m′)− = m−(ι) < 0.

Thus, the statement follows with Lemma 7.10. �

Proof of Theorem 7.7. Consider a log del Pezzo K∗-surface with
contractible divisor D. By Proposition 7.9 the corresponding LDP complex
L possesses a contractible vertex v ∈ L and we have X ′ = X(A,P (Lv)).
Now the statement follows by Theorem 5.10 since Lv is an almost k-hollow
LDP complex by Theorem 7.4. This shows statement (i).

For the second statement note that by Remark 6.5 X and X ′ are 1/k-
log canonical if and only if L and L′ = Lv are almost k-hollow, respectively.
Hence the statement follows since Lv ⊆ L by Theorem 7.4. �

Remark 7.11. Recall from Construction 2.4 that the Cox ring of ev-
ery K∗-surface is given as R := R(A,P ) for defining matrices A and P .
Furthermore the following holds, compare [2, Theorem 3.4.3.7]:

dim(X) = dim(R)− dim(KQ).
Since R is a normal complete intersection, we find dim(R) = n+m−(r+1),
where n + m is the number of variables of R and r + 1 is the number of
relations. Hence for surfaces, the Picard number ρ(X) can be expressed as
follows:

ρ(X) = dim(KQ) = n+m− (r + 1).
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It is clear that with every contracion the Picard number decreases by one,
moreover for ρ(X) = 1 the surface does not admit any contractions.

Remark 7.12. Let L be an LDP complex with vertex v. Consider the
corresponding K∗-surface X and the curve D with weight [D] ∈ Cl(X).

By [2, Remark 4.1.3.4] the toric prime divisor D is contractible if and
only if the following holds:

(i) The weight [D] ∈ Cl(X) sits on an extremal ray of the effective
cone Eff(X) ⊆ ClQ(X).

(ii) No other weight [D′] lies on Q[D] ⊆ ClQ(X).
Such a weight is called exceptional. Moreover, there are no contractible
curves in X if and only if there are no exceptional weights, i.e. if and only
if there are at least two weights of curves on every extremal ray of Eff(X).

Lemma 7.13. Let L be an LDP complex and consider the corresponding
log del Pezzo surface X(A(L), P (L)). Then the following statements are
equivalent:

(i) The vertex v is contractible.
(ii) The selfintersection number D2 is negative.

Proof. In order to show the statement we reformulate the self-
intersection numbers as given in Remark 5.13. For ni = 1 we have:

(Di1)2 =



1
l2i1

(
1
m+ − 1

m−

)
, (e-e),

0, (p-p),
1

l2i1m
+ , (e-p),

−1
l2i1m

− , (e-p).

Observe that in all cases the intersection numbers are positive or vanish
since m+ > 0 and m− < 0. Furthermore by Definition 7.2 the corresponding
vertices are not contractible.

For ni > 1 we first consider the cases, where j = 1 or j = ni and the
types (e-e) or (e-p) and (e-e) or (p-e), respectively. The self-intersection
numbers are given as follows:

(Di1)2 = 1
l2i1

( 1
m+ −

1
mi1 −mi2

)

= 1
l2i1

(
mi1 −mi2 −m+

(mi1 −mi2)m+

)

= −m+(i)
l2i1(mi1 −mi2)m+ ,

Dini = m−(i)
−l2i1(mini−1 −mini)m−

.

Note that these expressions are a product of a positive rational number and
−m+(i) or m−(i), respectively. Hence we find that the self-intersection num-
bers are negative if and only if m+(i) > 0 or m−(i) < 0, respectively, which
is exactly the conditions given in Definition 7.2 (ii) and (iv), respectively.
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For all other cases we restate the self-intersection numbers:

(Dij)2 =


− 1
l2i1(mi1−mi2) , (p-p) or (p-e),
−(mij−1−mij+1)

l2ij(mij−1−mij)(mij−mij+1) , 1 < j < ni,

− 1
l2i1(mini−1−mini )

, (p-p) or (e-p).

By slopeorderedness, all given self-intersection numbers are positive, which
are exactly statements (ii), (iii), and (iv) of Definition 7.2.

For statement (i) we note the following self-intersection numbers, which
completes the proof:

(D+)2 = −m+ < 0 ⇔ m+ > 0.

�

8. Combinatorially minimal LDP complexes

In this section we are concerned with non-toric LDP complexes that do
not admit contractions to a non-toric LDP complex. In general there are
two possibilites: There are no contractible vertices or a contraction yields a
toric LDP complex.

We start by considering the first possibility, so called combinatorially
minimal LDP complexes, and achieve conditions for non-toric LDP com-
plexes, see Proposition 8.2. This is an improvement on similar conditions in
[32, Proposition 4.18] since Proposition 8.2 yields an equivalent description
of non-toric combinatorially minimal LDP complexes. For convenience, we
show the full proofs.

Definition 8.1. An LDP complex L is combinatorially minimal if no
vertex vij and possibly v+ is combinatorially contractible.

Proposition 8.2. Let L be a non-toric LDP complex. Then L is com-
binatorially minimal if and only if one of the following holds:

(i) The LDP complex is of type (p-e) and we have ni = 1 for all
0 ≤ i ≤ r.

(ii) The LDP complex is of type (e-e) and there is exactly one index
0 ≤ ι ≤ r such that nι = 2 and ni = 1 for all ι 6= i.

(iii) The LDP complex is of type (e-e) and exactly two indices 0 ≤ ι <
κ ≤ r such that nι, nκ = 2 and ni = 1 for all i 6= ι, κ and we have

m+(ι) ≤ 0, m−(ι) ≥ 0, m+(κ) ≤ 0, m−(κ) ≥ 0.

Lemma 8.3. Let L be an irredundant LDP complex.
(i) If L is of type (p-e) and there is an index 0 ≤ i ≤ r such that

ni = 2 then L is not combinatorially minimal.
(ii) If there is an index 1 ≤ i ≤ r such that ni > 2 then L is not

combinatorially minimal.

Proof. The statements (i) and (ii) are immediate consequences of Def-
inition 7.2 (ii), (v) and (iii), respectively, namely the vertices vi1 and vi2 are
contractible. �
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Lemma 8.4. Consider an LDP complex L of type (e-e) such that ni = 2
for all i = 0, . . . , r̄ and ni = 1 for all i = r̄+ 1, . . . r. If L is combinatorially
minimal, then r̄ ≤ 1.

Proof. We first consider the Picard-number ρ(X) of the K∗-surface
X := X(A(L), P (L)). We find:

ρ(X) =
r∑
i=0

ni − (r − 1)− dim(X)

=
r̄∑
i=0

2 +
r∑

i=r̄+1
1− (r − 1)− 2

= 2(r̄ + 1) + (r − r̄)− (r − 1)− 2
= r̄ + 1.

Since the cone of effective divisors is full dimensional, there are at least r̄+1
extremal rays, which by Remark 7.12 all host at least two weights of the
form wij since X(A,P ) is combinatorially minimal.

Now we consider two weights, say wi1, wi2 for 0 ≤ i ≤ l̄, and the weight
µ = deg(g). Note that both of the weights mentioned first lie on an ex-
tremal ray of Eff(X) since Di1, Di2 are not combinatorially contractible,
respectively.

Since µ = li1wi1 + li2wi2 and µ ∈ Eff(X)◦ we find that wi1, wi2 lie on
two distinct extremal rays of Eff(X).

Consider two weight wι1, wι2 with 1 ≤ ι ≤ r̄ such that one of the weights
lies on an extremal ray of Eff(X) that hosts wi1 or wi2, say wι1 lies on the
ray cone(wi1), i.e. wι1 = λwi1. Then we find:

wι2 = µ− lι1wι1
lι2

= li1wi1 + li2wi2 − lι1wι1
lι2

= li1 − λlι1
lι2

wi1 + li1
lι2
.

Since cone(wi2), cone(wι2) are extremal rays of Eff(X), we have cone(wi2) =
cone(wι2).

We conclude that the extremal rays of Eff(X) come in pairs and for every
such pair we find indices 0 ≤ i1, . . . , is ≤ r̄ such that wik1, wik2 lie on one
of the extremal rays of this pair, respectively. Hence the maximal possible
number of extremal rays is achieved when every such pair of extremal rays
hosts exactly four weight wi1, wi2, wι1, wι2, if the number of weight pairs
wi1, wi2, namely r̄ + 1, is even, or if every such pair hosts exactly four
weights and one pair does host six weights, if r̄ + 1 is odd.

Hence we find the following bounds for the number of extremal rays:

2 · 2(r̄ + 1)
4 = r̄ + 1, if r̄ is odd, 2 · 2r̄

4 = r̄, if r̄ is even.

We conclude r̄ is odd and we have r̄+ 1 many extremal rays. Now after
possibly relabeling the weights we can assume that the indices are given
such that for 0 ≤ i ≤ r̄+1

2 we have:

cone(w(2i)1) = cone(w(2i+1)1), cone(w(2i)2) = cone(w(2i+1)2).

Note that for 1 ≤ i ≤ r̄+1
2 we find w(2i)2, w(2i+1)1, w(2i+1)2 ∈ LinQ(µ,w(2i)1),

since µ = li1wi1 + li2wi2 and the fact that the weights share extremal rays,
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furthermore wij ∈ LinQ(µ) for all i ≥ r̄ + 1. Therefore we find:
ρ(X) = dim LinQ Eff(X) = dim LinQ(wij ; 0 ≤ i ≤ r, 1 ≤ j ≤ ni)

= dim LinQ

(
µ,w(2i)1; 0 ≤ i ≤ r̄ + 1

2

)
≤ r̄

2 + 3
2 .

Since ρ(X) = r̄ + 1, this inequality yields r̄ ≤ 1. �

Proof of Proposition 8.2. We start by showing that every combi-
natorially minimal LDP complex is of one of the stated forms.

If the LDP complex is of type (p-e) we find by statement (i) of Lemma 8.3
that ni = 1 for all 0 ≤ i ≤ r, which exactly yields the first shape stated.

For the type (e-e) we find by Lemma 8.3 (ii) that ni ≤ 2 for all 0 ≤ i ≤ r.
Now Lemma 8.4 tells us that the number of indices i with ni = 2 is bounded
by 2. Note that ni = 1 for all 0 ≤ i ≤ r contradicts the following for
X := X(A(L), P (L)):

1 ≤ ρ(X) = n− (r − 1)− dim(X) = (r + 1)− (r − 1)− 2 = 0.
Hence we achieve the stated shapes in (ii) and (iii). Furthermore note that
for the shape (iii) the inequalities are exactly the inequalities given in Defi-
nition 7.2 (i) and (iv).

To see that all stated shapes of P are indeed combinatorially minimal
we first note that ρ(X) = 1 for shapes (i) and (ii), so there are no combina-
torially contractible vertices by Remark 7.11. For case (iii) we compare the
inequalities stated in Definition 7.2 (i) and (iv). �

In the remaining part of the section we are concerned with finding all
toric LDP complexes that are contractions of non-toric LDP complexes. The
main result is Proposition 8.5 characterizing these toric LDP complexes.
Construction 8.9 uses these results to give an algorithm to find these LDP
complexes.

Note that these toric LDP complexes are not necessarily combinatorially
minimal.

Proposition 8.5. Let P be a Fano polygon with n vertices and let L
be a non-toric LDP complex with a contractible vertex v such that Lv = P.
Then one of the following two statements holds:

(i) There is a primitive vector v ∈ P.
(ii) There is a Fano polygon P̃ with n+ 1 vertices such that P ⊆ P̃.

Lemma 8.6. Let L be an irredundant non-toric LDP complex with con-
tractible vertex v such that L′ = Lv is toric.

Then v = vιj for a pair indices 0 ≤ ι ≤ r and 1 ≤ j ≤ nι and we have
the following constraints:

(i) The number of polygons Pi in L is r + 1 = 3.
(ii) For the index ι we have nι = 2 and setting {j, j′} = {1, 2} we

have lιj′ = 1.

Proof. First note that since L is a non-toric LDP complex we have r ≥
2, moreover since L′ is toric we find r′ = 1. Observe that after contracting
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v = v+ we have L′ = Lv is irredundant, since L is, thus r′ = r. Therefore,
we have v 6= v+.

Now consider a series of redundant extensions on L′ as described in
Construction 6.3 to obtain an LDP complex L̃ such that r̃ = r. Now since
L = Lv we obtain that, after possibly applying an LDP preserving unimod-
ular transformation to L, the two LDP complexes L and L̃ only differ by one
vertex, say vιj . This yields r = 2 since otherwise there is an index i 6= 0, 1, ι
such that nιlini = 1, which contradicts the irredundancy of L.

Since vιj is contractible, we have nι ≥ 2. Moreover, since r′ < r a
redundancy elimination at ι has been applied, i.e. lιj′ = 1. �

v02

v01

v11

(0, d+)

v02

v01

v11

(0, d+)

Figure 5. The two cases of Proposition 8.5, i.e. e2 ∈ P on
the left and e2 6∈ P on the right and the Fano polygon P̃ in
gray.

Proof of Proposition 8.5. For the LDP complex L, Lemma 8.6 im-
plies that r = 2 and wlog we can take the contracted vertex to be v21 and
l22 = 1, furthermore we set d22 = 0 and 0 ≤ d1n1 < l1n1 .

By Proposition 9.5 we have d+ ≥ 1 or d− ≤ −1. We assume that
d+ ≥ 1 and note that the statement follows in the same way for d− ≤ −1.
Consider the primitive vector e2 = (0, 1) ∈ Z2. We define the following
convex polygon and the set of its vertices:

P̃ := conv(V(P) ∪ {e2}), V(P̃) ⊆ V(P) ∪ {e2}.

Note that this polygon is Fano and the following holds since d+ ≥ 1:

P̃ ⊆ conv(V(P) ∪ {d+e2}).

Consider the case that e2 6∈ P, then e2 is a vertex of P̃, i.e. P̃ is a
Fano polygon with n + 1 vertices containing P. Thus the statement (ii)
holds. When e2 ∈ P we have a primitive vector in P, namely e2, hence
statement (i) holds. �

Remark 8.7. Let P ⊆ Q2 be a Fano polgon and consider the situation
of Proposition 8.5. Then we note the following:
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(i) For the polygon P̃ ⊆ Q3 defined in the proof of Proposition 8.5 we
find

P̃ ⊆ conv(V(P) ∪ d+e2) = π(P0 ∪ P1),
where π is the projection onto Q2 as in Lemma 6.8 and P0,P1 the
polygons of the LDP complex.

(ii) The proof yields a method to find all polygons A(P), A ∈ GL2(Z),
such that there is an LDP complex with a contractible vertex v
sufficing A(P) = Lv, see Construction 8.9.

Definition 8.8. Let L be an LDP complex.
(i) We call P adapted to the source if it satisfies

(a) −li1 < di1 ≤ 0 for i = 1, . . . , r,
(b) l01, l11 ≥ l21 ≥ . . . ≥ lr1.

(ii) We call P adapted to the sink if it satisfies
(a) 0 ≤ dini < lini for i = 1, . . . , r,
(b) l01, l11 ≥ l21 ≥ . . . ≥ lrnr .

Construction 8.9. Let P be a Fano polygon with n vertices and let L
be an LDP complex adapted to the sink with contractible vertex v21 ∈ L.

If Lv is unimodular equivalent to P, then the polygon Lv occurs in the
set S defined by the following steps:

(i) For all primitive vectors v ∈ P do the following:
(a) Choose a vector w ∈ Z2 such that v, w form a Z-linear basis

with the following property:
There is a vertex v̄ ∈ V(P) such that:

v̄ = lw + dv, l ∈ Z>0, d ∈ Z, 0 ≤ d < l.

(b) Consider the unimodular transformation A ∈ GL2(Z) with
A : Z2 → Z2, e1 7→ w, e2 7→ v.

(c) Add A−1(P) to the set S.
(ii) For all Fano polygons P̃ with n+ 1 vertices do the following:

(a) For every vertex v ∈ V(P̃) choose a vector w ∈ Z2 such that
v, w form a Z-linear basis with the following property:
There is a vertex v̄ ∈ V(P) such that:

v̄ = lw + dv, l ∈ Z>0, d ∈ Z, 0 ≤ d < l.

(b) Consider the unimodular transformation A ∈ GL2(Z) with
A : Z2 → Z2, e1 7→ w, e2 7→ v.

(c) If V(P) ⊆ V(P̃), add A−1(P) to the set S.
If there are only finitely many polygons P̃ up to unimodular equivalence, the
algorithm stops after finitely many steps, in particular the set S is finite.

Proof. Let Lv be unimodular equivalent to P. By Lemma 8.6 we find
l22 = 1, and thus d22 = 0 since L is adapted to the sink.

By Proof of Proposition 8.5 we obtain e2 ∈ Lv or there is a Fano polygon
P̃ containing Lv with vertex e2. Note that the first case is treated in part
(i), the second case is exactly part (ii). In both cases we have A(Lv) = P by
the construction.
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For the last statement, note that part (i) stops after finitely many steps
since every polygon P only contains fintely many lattice points in its interior.
For the second part note that two unimodular equivalent polygons yield the
same polygon after applying A−1 in step (c). This is due to the fact that the
conditions in (a) uniquely fix the basis chosen there. Hence part (ii) stops
after finitely many steps if there are only finitely many polygons P̃ , up to
unimodular equivalence. �

9. Almost homogeneous combinatorially minimal LDP complexes

Remark 9.1. We recall the notion of almost homogeneous K∗-surfaces.
A K∗-surface X(A,P ) is called almost homogeneous if there is a horizontal
Demazure P -root, i.e. a linear form u ∈ M and two indices 0 ≤ i0, i1 ≤ r
such that i0 6= i1 that fulfills the (in)equalities given in Definition 3.4.

By Proposition 9.3 we know that there is a quasismooth elliptic fixed
point x with exceptional indices i0, i1. We can assume x = x− i.e. the
following is true

(i) For all i 6= i0, i1 we have lini = 1.
After a series of admissible operation on P we can assume i0, i1 ∈ {0, 1} as
well. We called such a Demazure P -root a horizontal P -root at (x−, i0, i1)
and found out that all horizontal Demazure P -roots are of this type (see
Section 9 of the last chapter). Furthermore in Construction 9.7 we define
the following rational numbers:

ηk := − 1
lknkm

− , ξi :=

0, ni = 1,
1

lini (mini−1−mini )
, ni ≥ 2.

Setting ∆(i0, i1) =
⋂
i 6=i0 [ξi, ηi1 ] we found that there is a horizontal P -root

if and only if the following statement is true:
(ii) There is an integer γ ∈ ∆(i0, i1) such that γdi1ni1 ≡ −1 mod li1ni1 .

In particular, we infered that u = u(i0, i1, γ), where u(i0, i1, γ) is as in
Definition 9.9. Furthermore we found the following propositions in the last
chapter:

(iii) If l0n0 ≤ l1n1 we find x− to be smooth.
(iv) If γ = ηi0 for some horizontal P -root, then the elliptic fixed point

x− is smooth.
(v) For all i 6= i0 the divisors Dini have positive self-intersection num-

ber.
(vi) We have 1 ≤ γ ≤ ηi1 , i.e. li1ni1m

− ≥ −1.

Definition 9.2. An almost homogeneous LDP complex L is an LDP
complex with a linear form u ∈ Hom(Zr+1,Z) with two indices 0 ≤ i0, i1 ≤ r
such that the following holds:

〈u, v1n1〉 = −1, 〈u, vini〉 = 0, i 6= 0, 1, lini = 1, i 6= 0, 1,
〈u, v0n0〉 ≥ 0, 〈u, v1n1−1〉 ≥ 0, n1 > 1, 〈u, vini−1〉 ≥ lini−1, i 6= 0, 1.

Remark 9.3. Let L be an almost homogeneous LDP complex with linear
form u ∈ Hom(Zr+1,Z). It follows immediately that u = u(0, 1, γ) for an
integer γ ∈ ∆(i0, i1).
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Theorem 9.4. There are only finitely many combinatorially minimal
almost homogeneous almost k-hollow LDP complexes.

After a set of admissible operations their defining matrices P (L) have
the following forms:−l01 l11 0 0

−l01 0 l21 1
d01 d11 d21 0

 ,
−2 2 1 0 0
−2 0 0 2 1
−1 1 0 1 0

 .
Proposition 9.5. Let L be an almost homogeneous LDP complex. Then

the following statements hold:
(i) We have m− > −l̄− and m+ ≥ l̄+.
(ii) The LDP complex L is of type (e-e).

In particular, there is a one to one correspondence between almost homoge-
neous log del Pezzo K∗-surfaces and almost homogeneous LDP complexes.

Proof. We start by proving statement (i). Since there is a horizontal
P -root at x− we find indices i0, i1 such that li1ni1m

− ≥ −1 and lini = 1 for
all i 6= i0, i1. Now the following is true:

−1 ≤ li1ni1m
− = m−

1
li1ni1

<
m−

1
li0ni0

+ 1
li1ni1

= m−

l̄−
.

Now note that by Proposition 5.15 we have m+ ≥ l̄+, which proves state-
ment (i).

For the second statement note that for an LDP complex of type (p-e)
statement (i) contradict the fourth condition of the definition of an LDP
complex.

The correspondence follows with Remark 9.1: Applying suitable ad-
missible operations, every log del Pezzo surface X(A,P ) with horizontal
Demazure P -root u can be brought to a form such that u is a horizontal
P -root at (x−, 0, 1). �

Proposition 9.6. Consider an almost k-hollow LDP complex L such
that P (L) is of the following form:

P (L) :=

−l01 l11 0 0
−l01 0 l21 1
d01 d11 d21 0

 , 0 ≤ m11 < 1, 1 ≤ − 1
l11m−

.

Set c to be the maximal volume of k-hollow Fano polygons with three vertices.
Then the integers l01, l11, l21 are bounded as follows:

2 ≤ l01, l11 ≤ 2c− 2, l21 ≤
l01l11

l01l11 − l01 − l11
.

Furthermore we find the following constraints on dij:
(i) For i = 0 we have 0 > di0 > l01.
(ii) For i = 1 we have 0 < di1 < l11.

(iii) For i = 2 we have 0 < d21 ≤ l21
(
kl̄+ −m01 −m11

)
.

In particular, there are only finitely many such K∗-surfaces.
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Proof. We consider the bound on the integers lij ∈ Z≥1. First note
that l01 = 1 or l11 = 1 yield irredundancy of P , therefore we find l01, l11 ≥ 2.

For the upper bounds we first note that since L is almost k-hollow, we
find by Lemma 6.6 that P0 and P1 are k-hollow and that (d−, d+)∩kZ = {0}.

Now observe that L satisfies the conditions of Lemma 6.8, hence we
find that the convex polytope π(P0 ∪ P1) is almost k-hollow. By Propo-
sition 9.5 (i) we know that d+ ≥ 1 which yields the containment of the
following polygon:

P := conv((−l01, d01), (l11, d11), e2) ⊆ π(P0 ∪ P1).

(−l01, d01)

(l11, d11)

(0, d+)

Figure 6. The convex polygon π(P0 ∪ P1) and the Fano
polygon P contained (gray).

Since gcd(l01, d01), gcd(l11, d11) = 1 the polygon P is Fano, hence its
volume is bounded by c. Now we find the following:

c ≥ vol(P) = −m−l01l11 + l01 + l11
2 .

Bringing l01 to one side of the inequality yields the following statement,
where we use that m− < 0:

l01 ≤ 2c− l11 +m−l01l11 ≤ 2c− l11 ≤ 2c− 2.

The same calculation can be done for l11, i.e. l11 ≤ 2c− 2.
We turn to the integer l21. First observe that l̄+ > 0 by definition of an

LDP complex, which implies the following inequality:
1
l21

> 1− 1
l01
− 1
l11

⇔ l21 <
l01l11

l01l11 − l01 − l11
.

Last we consider the bounds for the integers dij . First note that m11 = 0
implies l11 = 1, which is a contradiction to L being irredundant. Therefore
the integer d11 is bounded by the condition 0 < m11 < 1. For the constraint
on d01 first note that m01 < 0 since m01 < m01 +m11 = m− < 0. Now using
m− ≥ − 1

l11
we find the following:

m01 ≥ −m11 −
1
l11

= −d11 + 1
l11

≥ −1.
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In the last estimate we used that d11 ≤ l11−1. The constraint on d21 follows
from (d−, d+) ∩ kZ = {0}, which translates to d+ ≤ k, therefore we have:

m01 +m11 +m21 = m+ ≤ kl̄+ ⇔ d21 ≤ l21
(
kl̄+ −m01 −m11

)
.

This is exactly the bound stated.
To see that there are only finitely many such K∗-surfaces note that by

Proposition 2.5 it is clear that the volume of Fano polygons with three
vertices is bounded since there are only finitely many such polygons up to
unimodular equivalence. This binds the possible integers l01, l11 to a finite
number.

Last we note that the bounds for l21, d01 and d11 only depend on the
integers l01 and l11. The bound on d21 only depends on the integers l21, d01
and d11. Hence there are only finitely many possibilities for these integers,
which ends the proof. �

Proposition 9.7. Consider a combinatorially minimal LDP complex L
as in (iii) of Proposition 8.2. Furthermore the following holds:

(i) The number polygons Pi is bound by r − 1 ≤ 2.
(ii) For the numbers of primitive ray generators we have ni = 1 for all

i = 0, . . . , r − 2 and ni = 2 for i = r − 1, r.
(iii) L is adapted to the sink, i.e. 0 ≤ mini < 1 for all i = 1, . . . , r.
(iv) There is a horizontal P -root at (x−, i0, i1) with i0, i1 ∈ {0, 1}, i.e.

(a) There is an integer γ ∈ ∆(i0, i1) with γdi1ni1 ≡ −1 mod li1ni1 .
(b) For the integers lij we have lini = 1 for all i 6= 0, 1.

Then r = 2 and the defining matrix P (L) has the following form:

P (L) =

−2 2 1 0 0
−2 0 0 2 1
−1 1 0 1 0

 .
Proof. We first note that since this LDP complex is of the type (iii) of

Proposition 8.2, we have

m+(r − 1), m+(r) ≤ 0 and m−(r − 1), m−(r) ≥ 0.

We calculate these expressions, where we note that mi2 = 0 for i = r − 1, r
by the conditions (iii) and (iv) (b) and mini = mi1 for all i < r − 1. We
have:

m+(r − 1) =
r−2∑
i=1

mi1 +mr−1 2 +mr1 =
r−2∑
i=1

mi1 +mr1 = m−(r),

m−(r − 1) =
r−2∑
i=1

mi1 +mr−1 1 +mr2 =
r−2∑
i=1

mi1 +mr−1 1 = m+(r).

With the estimates to zero above we find that all given equalities vanish
which yields mr−1 1 = mr1, furthermore we can deduce the following

r−2∑
i=2

mi1 +mr1 = m− +mr1 = 0 ⇒ m− = −mr1.
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Now note that since there is a horizontal P -root at (x−, i0, i1) we find an
integer γ that fulfills the following inequalities:

1
mr1

= ξr ≤ γ ≤ ηi1 = − 1
li1ni1m

− = 1
li1ni1mr1

This yields li1ni1 = 1, therefore ni1 = 2 by irredundancy of P . We conclude
that r = 2 and i1 = 1 since otherwise condition (ii) implies redundancy, i.e.
the matrix P (L) has the following form:

P (L) =

−l01 l11 1 0 0
−l01 0 0 l21 1
d01 d11 0 d21 0

 .
Last we note that by the series of inequalities above we have

γ = (−li1ni1m
−)−1 and therefore x− is smooth by Remark 9.1 (iv), i.e.

l01l11m
− = −1 and the following is true:
d01
l01

= m01 = m01 +m21 = m− = − 1
l01l11

= − 1
l01
.

This yields d01 = −1.
The remaining values for the integers l01, d21, l21 follow by the proven

equalities m11 = m21 and m01 = m− = −m21. We find l01 = l11 = l21
and −d01 = d11 = d21 = 1.

To see the concrete value of l01 we consider the condition (iv) of the
definition of an LDP complex:

0 < l̄+ = 1
l01

+ 1
l01

+ 1
l01
− 1 ⇔ l01 < 3.

Since l01 6= 1 by irredundancy of P we find l01 = 2, hence the stated form
of P . �

Proof of Theorem 9.4. Since L is almost homogeneous, by state-
ment (i) of Remark 9.1 we know that lini = 1 for all i ≥ 2. By admissible
operations we can assume L to be adapted to the sink, i.e. 0 ≤ mini < 1,
furthermore r ≥ 2 since L is non-toric.

We first turn to the condition of combinatorially minimality which yields
three different types of defining matrices P as given in Proposition 8.2. Note
that (i) is of type (p-e) and hence not almost homogeneous by Proposi-
tion 9.5.

Note that for an LDP complex of the shape (ii) of Proposition 8.2 there
is a positive integer γ ∈ ∆(0, 1) such that

1 ≤ γ ≤ η1 = − 1
l11m−

.

Therefore L satisfies the conditions of Proposition 9.6, hence there are only
finitely many such LDP complexes.

We turn to the case (iv) and first consider the integers ni. Note that
there are exactly two indices ι, κ with nι = nκ = 2. Since by Remark 9.1 (i)
we know that lini = 1 for all i 6= 0, 1, we find that r ≤ 3 by irredundancy
since otherwise there is an index i such that i 6= 0, 1, ι, κ, i.e. linini = 1.
Furthermore note that for r = 3 we have {0, 1}∩ {ι, κ} = ∅ since otherewise
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there is an index 0 ≤ i ≤ 3 such that lini = 1 and ni = 1. Therefore we can
swap the blocks such that ι, κ ∈ {r − 1, r}.

This yields an LDP complex L which satisfies the conditions of Propo-
sition 9.7, which yields the statement. �

Proposition 9.8. There are only finitely many polygons P such that
P = Lv for an almost k-hollow LDP complex L with a contractible vertex
v ∈ L.

Proof. Since L is almost k-hollow note that Lv is almost k-hollow as
well, see Theorem 7.4 (ii). Thus by Remark 5.9 we obtain that Lv is an al-
most k-hollow Fano polygon. Since by Proposition 2.5 there are only finitely
many up to unimodular transformation, it suffices to show the statement for
all polygons that are unimodular equivalent to a specific polygon P.

In this case, Construction 8.9 yields an algorithm to find all LDP com-
plexes contracting onto P. Note that the polygon P̃ in the second step
coincides with the one described in Remark 8.7 (i). i.e. it is contained in
π1(P0 ∪ P1). Thus it is almost k-hollow. Since there are only finitely many
almost k-hollow polygons, up to unimodular equivalence, we have shown the
statement using the last statement in Construction 8.9. �

10. Building almost homogeneous LDP complexes

In this section we want to show following theorem:

Theorem 10.1. There are only finitely many almost homogeneous al-
most k-hollow LDP complexes.

As mentioned in the introduction, finiteness of 1/k-log canonical del
Pezzo surfaces has already been shown in [6]. Our approach is to show this
statement using an explicit construction (see Construction 10.3) to contract
LDP complexes in an orderly manner which ends in non-toric combinatori-
ally minimal LDP complex or a toric LDP complex, both of which we have
been studying in the previous section. Reversing this construction not only
proves the theorem, furthermore it yields an algorithmic approach to classify
all LDP complexes that are almost k-hollow and almost homogeneous.

Definition 10.2. Let L be an LDP complex of type (e-e). Then we
define the following:

(i) A boundary vertex is a vertex vij ∈ V(L), where j = 1 or j = ni.
(ii) An interior vertex is a vertex vij ∈ V(L), where j 6= 1, ni.

For an LDP complex of type (p-e) we define:
(i) A boundary vertex is a vertex vij ∈ V(L), where j = ni.
(ii) An interior vertex is a vertex vij ∈ V(L), where j 6= ni.

Construction 10.3. Let L be an almost k-hollow LDP complex.
We consider the following two steps:

(i) Successively contract every interior vertex of L. This yields an
LDP complex L′ with no interior vertices.

(ii) For every 0 ≤ i ≤ r, successively contract all boundary vertices of
L if contractible. This yields an LDP complex L′′.
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The Construction ends in a non-toric combinatorially minimal almost ho-
mogeneous almost k-hollow LDP complex or a toric LDP complex as in
Proposition 8.5.

Proposition 10.4. Let L be an almost homogeneous LDP complex with
contractible vertex v. Then Lv is almost homogeneous.

Proof. We show the following containment for the intervals
∆(i0, i1),∆′(i0, i1) which we will do by proving the equivalent statement
below:

∆(i0, i1) ⊆ ∆′(i0, i1) ⇔ ξ′i ≤ ξi for all i 6= 0, η1 ≤ η′1.

Observe that it suffices to show the containment to prove that L′ is almost
homogeneous since then the horizontal P -root corresponding to some γ ∈
∆(i0, i1) also corresponds to a horizontal P -root for L′.

We start with the case of a contraction of a divisor D0j with j 6= ni, Dij

with i ≥ 1 or j 6= ni−1 or D+. All of these cases do not change the rational
numbers ξi, η1, i.e. ξi = ξ′i, and η1 = η′1.

Now consider D = D0n0 . The rational numbers ξi are not affected by
the contraction, i.e. ξi = ξ′i. Since D0n0 is contractible we have m−(0) < 0,
therefore the following holds

η′1 = − 1
l1n1m

−(0) = − 1
l1n1m

− + m−(0)−m−

l1n1m
−m−(0)

= − 1
l1n1m

− + m1n1−1 −m1n1

l1n1m
−m−(0)

> − 1
l1n1m

− = η1.

The inequalitiy follows by slopeorderedness, i.e. m1n1−1 > m1n1 . This ends
the prove for this case.

If ni ≥ 2 for some i 6= 0 and D = Dini−1 is contractible, we note that
η1 = η′1. For ni > 2 the rational numbers ξi, ξ′i we find:

ξi = 1
lini(mini−1 −mini)

= 1
lini(mini−2 −mini)

− (mini−1 −mini)− (mini−2 −mini)
lini(mini−1 −mini)(mini−2 −mini)

= 1
lini(mini−2 −mini)

− mini−1 −mini−2
lini(mini−1 −mini)(mini−2 −mini)

>
1

lini(mini−2 −mini)
= ξ′i.

Again, slopeorderedness yields the inequality, i.e. mini−2 ≥ mini−1 ≥ mini .
For ni = 2 note that ξ′i = 0 ≤ ξi. This ends the proof. �

Proof of Construction 10.3. We remark that every interior vertex
is contractible by Definition 7.2 (iii), thus the construction is well defined.
Furthermore note that L′′ is a well-defined, almost homogeneous and almost
k-hollow LDP complex by Construction 7.3, Proposition 10.4 and Theo-
rem 7.4, respectively. �
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Definition 10.5. Let L be an LDP complex with vertices v1, . . . , vk ∈
V(L). Inductively we define:

Lv1,...,vκ := (Lv1,...,vκ−1)vκ κ = 1, . . . , k.
Moreover, a series of contractible vertices are vertices v1, . . . , vk admitting
this construction, i.e. the vertex vκ is a contractible vertex of the LDP
complex Lv1,...,vκ−1 .

Proposition 10.6. Let L′ be an LDP complex. Then the following two
statements hold:

(i) There are only finitely many almost k-hollow LDP complexes L
with contractible interior vertices v1, . . . , vk such that

Lv1,...,vk = L′.
(ii) There are only finitely many almost k-hollow LDP complexes L

with ni ≤ 2 for all 0 ≤ i ≤ r and contractible boundary vertices
v1, . . . , vk such that

Lv1,...,vk = L′.

Proposition 10.7 (Compare Proposition 5.12 in [32]). Let L be an
almost k-hollow LDP complex. Then the number of poylgons Pi ⊆ L is
bounded by

r + 1 ≤ 4k.

Proof. Since the LDP complex is almost k-hollow the following two
inequalities hold by Lemma 6.6:

d+ = m+

l̄+
≤ k, d− = m−

l̄−
≥ −k.

Now by Lemma 5.17 (iii) we have the following inequality:

r + 1 ≤
(
m+ − l̄+

)
−
(
m− + l̄−

)
+ 4

≤ (k − 1)l̄+ + (k − 1)l̄− + 4.
Here we used the inequalities above, i.e. d+ ≤ k, d− ≥ −k. Since the
maximal value for l̄+, l̄− is given by 2 we have proven the statement. �

Lemma 10.8. Let a, b, l ∈ Z>0 and d ∈ Z be integers and consider the
convex polytope of the following form:

Pa,b := conv(1/a e2,−1/b e2, (l, d)) ⊆ Q2.

If this polytope is k-hollow, we have l < 2k2 ·max(a, b).

Proof. Wlog we set a ≤ b and assume that Pa,b is k-hollow. Note that
Pb,b ⊆ Pa,b. We now consider the convex polytope Pb,b ∪ −Pb,b ⊆ Q2.
Observe that if there is a k-fold point in Pb,b ∪ −Pb,b then there is a k-fold
point in Pb,b and therefore in Pa,b. We conclude that Pb,b∪−Pb,b is k-hollow.

By Minkowski’s Theorem 2.13 we find that the volume of the polytope
is bounded and therefore the statement follows:

vol(Pb,b ∪ −Pb,b) = 2b−1l < (2k)2 ⇔ l < 2bk2.

�
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Corollary 10.9. Let L be an almost k-hollow LDP complex. For any
0 ≤ ι ≤ r we define the following numbers:

aι := min
(
a; 1/a ≤ d+(ι)

)
, a := min

(
a; 1/a ≤ d+

)
,

bι := min
(
b; 1/b ≤ −d−(ι)

)
, b := min

(
b; 1/b ≤ −d−

)
.

Then we find the following constraints on lιj:
(i) If L is of type (p-e) and j = 1 we have lι1 < 2k2 · b.
(ii) If L is of type (e-e) and j = 1 we have lι1 < 2k2 ·max(aι, b).
(iii) For any 2 ≤ j ≤ nι − 1 we have lιj < 2k2 ·max(a, b).
(iv) For j = nι we have lιnι < 2k2 ·max(a, bι).

Proof. We first prove the third statement. The following containments
hold:

conv(1/a er+1,−1/b er+1, vιj) ⊆ conv(v+, v−, vιj) ⊆ Pι.

The latter polygon is k-hollow, hence the same is true for first polygon above.
Now Lemma 10.8 yields the statement.

For the statements (ii) and (iv) we note that by Lemma 7.6 (ii) we have
v+(ι) ∈ conv(0, v+) and v−(ι) ∈ conv(0, v−), respectively. Therefore the
following containments hold:

conv(1/aι er+1,−1/b er+1, vι1) ⊆ conv(v+(ι), v−, vι1)
⊆ conv(v+, v−, vι1) ⊆ Pι,

conv(1/a er+1,−1/bι er+1, vι1) ⊆ conv(v+, v−(ι), vι1)
⊆ conv(v+, v−, vι1) ⊆ Pι.

Again we conclude that the convex polytopes contained in Pι are k-hollow
since Pι is k-hollow and therefore we find the statements by Lemma 10.8.
The first statement is shown in the same way as statements (iv). �

Remark 10.10. Let L be an LDP complex comprising of polygons Pi
for 0 ≤ i ≤ r. For indices 1 ≤ j1 < j2 < j3 ≤ nι consider the following
convex polygon:

conv(vιj1 , vιj2 , vιj3 , v+, v−) ⊆ Qr+1.

Note that vιj is a vertex of this polygon, since it is a vertex of Pι. Thus
Lemma 5.18 yields that the following inequality holds:

(lιj2 − lιj3)(dιj1 − dιj2)− (dιj2 − dιj3)(lιj1 − lιj2) > 0.

Lemma 10.11. Let L be an almost k-hollow LDP complex. For any index
0 ≤ ι ≤ r we have the following constraints on dιj:

(i) If L is of type (p-e) and nι = 2, we set l := lι1 and find the
following inequalities

dι1 < lmι2 + ll̄+(ι)
(
1− d+(ι)

)
+ l

(1
l
− 1
lι2

)
,

dι1 > lmι2,

dι1 > lmι2 + l

(1
l
− 1
lι2

)
.



144 2. THE ALMOST HOMOGENEOUS LOG DEL PEZZO CASE

(ii) If L is of type (e-e) and nι = 2, the following inequalities are true,
where l := lι1:

dι1 ≤ lmι2 + ll̄+(ι)(k − d+(ι)) + kl

(1
l
− 1
lι2

)
,

dι1 > lmι2,

dι1 > lmι2 +
(1
l
− 1
lι2

)
ld+(ι).

(iii) If nι ≥ 3, then for any 2 ≤ κ ≤ nι − 1 we set l := lικ to find:

dικ < lmι1,

dικ < lmi1 + ld+
(1
l
− 1
lι1

)
,

dικ > lmιnι + ld−
(1
l
− 1
lιnι

)
,

dικ > lmιnι .

(iv) If nι = 2, the following inequalities are true, where l := lι2:

dι2 ≥ lmι1 + ll̄−(ι)(−k − d−(ι)) + kl

(1
l
− 1
lι1

)
,

dι2 < lmι1,

dι2 < lmι1 +
(1
l
− 1
lι1

)
ld−(ι).

(0, d+)

(0, d−)
(lini , dini)

Figure 7. The remaining polygon Pvi of an LDP complex for
a boundary vertex v. The hatched space marks all possible
positions for v as seen in Lemma 10.11 (ii).
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(0, d+)

(0, d−)

(li1, di1)

(li2, di2)

Figure 8. The remaining polygon Pvi of an LDP complex for
an interior vertex v. The hatched space marks all possible
positions for v as seen in Lemma 10.11 (iii).

Proof. We consider the statement (i). By Lemma 5.14 (i) we find the
following which yields the first inequality:

m+ < l̄+

⇔ m+(ι)−mι2 +mι1 < l̄+(ι)− 1
lι2

+ 1
lι1

⇔ mι1 < mι2 + l̄+(ι)−m+(ι)− 1
lι2

+ 1
lι1

⇔ dι1 < lι1mι2 + lι1 l̄
+(ι)

(
1− d+(ι)

)
+ lι1

( 1
lι1
− 1
lι2

)

The second inequality follows immediately by slope orderedness, i.e.
mι1 > mι2 and the third one is a restatement of the inequality given in
Lemma 5.14 (iv) (a).

We turn to statement (ii). First note that by Lemma 6.6 we have d+ ≤ k,
which yields the following:

d+ ≤ k ⇔ mι1 +
∑
i 6=ι

mi1 = m+ ≤ kl̄+

⇔ dι1 ≤ klι1 l̄
+ − lι1

∑
i 6=ι

mi1

= klι1 l̄
+(ι) + klι1

( 1
lι1
− 1
lι2

)
− lι1m+(ι) + lι1mι2

= lι1mι2 + lι1 l̄
+(ι)(k − d+(ι)) + klι1

( 1
lι1
− 1
lι2

)
.

The second statement follows immediately by slope orderedness, i.e. mι1 >
mι2 and the third statement follows immediately from Lemma 5.14 (iv) (b)
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and the following:

dι1 >
dι2 − d+

lι2
lι1 + d+

⇔ dι1lι2 l̄
+ > dι2 l̄

+lι1 +m+(lι2 − lι1)
⇔ dι1lι2 l̄

+ > dι2 l̄
+lι1 + (m+(ι) +mι1 −mι2)(lι2 − lι1)

⇔ dι1lι2 l̄
+ − dι1

lι1
(lι2 − lι1) > dι2 l̄

+lι1 −
dι2
lι2

(lι2 − lι1) +m+(ι)(lι2 − lι1)

⇔ dι1lι2

(
l̄+ −

( 1
lι1
− 1
lι2

))
> dι2lι1

(
l̄+ −

( 1
lι1
− 1
lι2

))
+m+(ι)(lι2 − lι1)

⇔ dι1lι2 l̄
+(ι) > dι2lι1 l̄

+(ι) +m+(ι)(lι2 − lι1)

⇔ dι1 > lι1mι2 +
( 1
lι1
− 1
lι2

)
lι1d

+(ι).

Note that statement (iv) is proven analaguously.
We turn to statement (iii). First note that the first and the last inequal-

ities follow immediately by slopeorderedness.
For the inequalities two and three we consider the inequality given in

Remark 10.10. For j1 = 0, j2 = 1 and j2 = κ we find:
(li1 − liκ)(di0 − di1)− (di1 − diκ)(li0 − li1) > 0
⇔ (li1 − liκ)(d+ − di1) + (di1 − diκ)li1 > 0

⇔ li1 − liκ
lι1

d+ +mi1liκ > diκ

⇔ mi1liκ + d+liκ

( 1
lικ
− 1
lι1

)
> diκ.

The third inequality follows in the same manner with j1 = κ, j2 = nι − 1
and j3 = nι and Remark 10.10. �

Lemma 10.12. Let L be an almost homogeneous, almost k-hollow LDP
complex with linear form u = u(0, 1, γ), where γ ∈ Z≥0. Then, aditionally
to the constraint given in Lemma 10.11, we find:

(ii) For every ι 6= 0 with nι = 2 we have

dι1 ≥ lι1mι2 + lι1
lι2γ

.

(iii) For every ι 6= 0 with nι ≥ 3 and every 2 ≤ κ ≤ nι − 1 we set
l := lικ and find

dικ ≥ lmιnι + l

lιnιγ
.

(iv) For ι = 0 and nι = 2 we have

d01 ≤ −l02m1n1 −
l02
γl11

.

Proof. The statements (i), (ii) and (iii) follow from the fact ξι ≤ γ and
the last statement from the fact that γ ≤ η0. �

Remark 10.13. Let L be an LDP complex with contractible vertex
v ∈ L. Set L′ := Lv.

Then we note the following:
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(i) For v = vι1 we have d+(ι) = (d′)+.
(ii) For v = vιj , with 1 < j < nι we have d+ = (d′)+ and d− = (d′)−.
(iii) For v = vιnι we have d−(ι) = (d′)−.

Therefore the bounds for the integer lιj given in Corollary 10.9 only de-
pend on L′. Furthermore all bounds on dιj stated in Lemma 10.11 and
Lemma 10.12 only depend on L′ and the integer lιj .

proof of Proposition 10.6. We start with statement (i). Note that
for every interior vertex vij = lijei + dijer+1 of L we have bounds on lij
by Corollary 10.9 (i) or (iii) and bounds on dij by Lemma 10.11 (i) or (iii).
Both bounds only depend on entries in L′, which yields that there are only
finitely many possible interior points for L, i.e. finiteness of almost k-hollow
LDP complexes.

We turn to the second statement. Note that by Proposition 10.7 there
are at most 4k polygons Pi in L, furthermore with every contraction the
number of boundary vertices decreases by one since ni ≤ 2 for all 0 ≤ i ≤ r.
Hence the maximal number of successive contractions is given by 4k.

Thus it suffices to show that for an LDP complex L′ there are only
finitely many LDP complexes L with a contractible boundary vertex v
such that Lv = L′. To see this observe that for v = lijei + dijer+1
there are bounds for lij by Corollary 10.9 (ii) or (iv) and bounds on dij
by Lemma 10.11 (ii) or (iv). �

Proof of Theorem 10.1. We consider Construction 10.3 to see that
any LDP complex is contracted onto an almost homogeneous, almost k-
hollow non-toric combinatorially minimal LDP complex or an almost ho-
mogeneous, almost k-hollow toric LDP complex. For the latter case note
that there are only finitely many by Proposition 9.8. Moreover, Theorem 9.4
states that there are only finitely many almost k-hollow almost homogeneous
combinatorially minimal LDP complexes.

Now since there are only finitely many LDP complexes to contract onto,
it suffices to show that for every such LDP complex L′ there are only finitely
many LDP complexes L such that Lv1,...,vk = L. This follows with Proposi-
tion 10.6 and Construction 10.3. �

11. Classification algorithms for LDP complexes

This section summarizes all observations of the previous ones in algo-
rithmic constructions to find all almost homogeneous, almost k-hollow LDP
complexes.

We recall some definitions that will occur in the following constructions.
An LDP complex L is called irredundant if for every i = 0, . . . , r we have
linini 6= 1. It is called adapted to the sink if the following two conditions
hold:

(i) 0 ≤ dini < lini for i = 1, . . . , r.
(ii) l0n0 , l1n1 ≥ l2n2 ≥ · · · ≥ lrnr .

Algorithm 11.1. The following algorithm defines a set S0 of all poly-
gons P with at most five vertices with a non-toric almost k-hollow, almost
homogeneous LDP complex L such that P = Lv for a contractible vertex
v ∈ V(L) and L is irredundant and adapted to the sink:
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• For every almost k-hollow Fano polygon P with at most five ver-
tices do the following:
• For every vertex v1 ∈ V(P) test whether it admits a Demazure

root, i.e. a linear form u ∈M such that

〈u, v1〉 = −1, 〈u, v〉 ≥ 0, for all v ∈ V(C) \ {v1}.

• If the test is true, then do the following steps:
(i) (a) If V(P) > 3, then for every vertex v+ ∈ V(C) with

v1 6= v+ find the basis (v+, v̄+) such that the following
is true:

v1 = lv̄+ + dv+, where 0 < l, 0 ≤ d < l.

(b) If V(P) < 5, then for every primitive vector v+ ∈ P with
v1 6= v+ find the basis (v+, v̄+) such that the following
is true:

v1 = lv̄+ + dv+, where 0 < l, 0 ≤ d < l.

(ii) For every vertex v 6= v1 write v = l(v)v̄+ + d(v)v+ and con-
sider the partition of vertices given by

V0 := {(l(v), d(v)); v ∈ V(C) and l(v) < 0},

V1 := {(l(v), d(v)); v ∈ V(C) and l(v) > 0},

V± = {(l(v), d(v)); v ∈ V(C) and l(v) = 0}.
(iii) If we have |V0|, |V1| ≤ 2 and |V±| = 1, add the polygon P′ =

conv ((l(v), d(v); v ∈ V(P)) to the set S0.

Algorithm 11.2. Let L′ be an almost k-hollow, almost homogeneous
LDP complex with ni ≤ 2 and linear form u = u(0, 1, γ).

The set Sint(L′) of all LDP complexes L with contractible interior points
v1, . . . , vk such that Lv1,...,vk is determined by the following steps:

(i) For every 0 ≤ i ≤ r find all possible interior points for an LDP
complex, i.e. do the following:
(a) Set Vi := {vi1, . . . , vini}.
(b) For every 0 ≤ i ≤ r with ni = 2 find all pairs of co-

prime integers (l, d) sufficing conditions (iii) of Corollary 10.9,
Lemma 10.11 and Lemma 10.12, respectively.

(c) If conv(0, vi1, vini , lei + der+1) is k-hollow add lei + der+1 to
Vi.

(ii) For every 0 ≤ i ≤ r find all possible almost k-hollow polygons Pi
with vertices in Vi, i.e. do the following
(a) Set Pi := {conv(0, vi1, . . . , vini)}.
(b) Take a subset V ⊆ Vi and define P̃i(V ) := conv(0, V ).
(c) If P̃i(V ) is k-hollow, then add Pi(V ) to Pi

(iii) Construct all possible LDP complexes with polgons P̃i ∈ Pi, i.e.
do the following:
(a) For every i = 0, . . . , r take a polygon Pi ∈ P̃i.
(b) Check the inequalities (iv) of the Definition 5.2 of an LDP

complex.
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(c) Calculate the vertices v+ and v− as in Definition 5.2 (v) and
define Pi := conv(v+, v−, P̃i).

(d) If L :=
⋃
i Pi is almost k-hollow, add it to the set Sint(L′).

Lemma 11.3. Let L,L′ be almost k-hollow LDP complexes such that
Lv1,...,vk = L′ for contractible boundary vertices v1, . . . , vk ∈ V(L). We set:

a′ := max
(
a; 1/a < (d′)+

)
, b′ := max

(
b; 1/b < −(d′)−

)
.

Then for every 1 ≤ κ ≤ k the following statements is true:
(i) If vκ = vι1 = lι1eι + dι1er+1, then

lι1 ≤ 2k2 ·max(a′, b′),

dι1 ≤ lι1mι2 + 2lι1(k − (d+)′) + klι1

( 1
lι1
− 1
lι2

)
.

(ii) If vκ = vιnι = lιnιeι + dιnιer+1, then

lιnι ≤ 2k2 ·max(a′, b′),

dιnι ≥ lιnιmι2 + 2lιnι(−k − (d+)′) + klιnι

( 1
lιnι
− 1
lι1

)
.

Proof. This is an immediate consequence of Lemma 7.6, namely the
inequalities d+ ≥ (d′)+ and d− ≤ (d′)− and the fact that the maximal
number for l̄+ and l̄− is 2.

We show the statement for vι1 and note that the statement for vιnι is
shown in the same way. First note that L′ ⊆ L by Theorem 7.4 (ii), in
particular we have (d′)+ ≤ d+ and (d′)− ≥ d−. For the bounds for lι1
consider the integers defined in Corollary 10.9:

aι = max(a; 1/a ≤ d+(ι)) ≤ max(a; 1/a ≤ (d′)+) = a′, b′ ≤ b.

Therefore we find the following:

lι1 ≤ 2k2 ·max(aι, b) ≤ 2k2 ·max(a′, b′).

We turn to the upper bound of dι1. Here we find:

dι1 ≤ lι1mι2 + lι1 l̄
+(ι)(k − d+(ι)) + klι1

( 1
lι1
− 1
lι2

)
≤ lι1mι2 + lι1 l̄

+(ι)(k − (d′)+) + klι1

( 1
lι1
− 1
lι2

)
≤ lι1mι2 + 2lι1(k − (d′)+) + klι1

( 1
lι1
− 1
lι2

)
For the last estimate we used that l̄+ ≤ 2 as seen in Remark 6.7. �

Remark 11.4. Let L be an almost homogeneous LDP complex. Then
the vertices v1n1 , . . . , vrnr are not contractible since by Proposition 9.6 the
self intersection numbers of the corresponding divisors D2

ini
are positive, see

Lemma 7.13. In particular, there are no contractible boundary vertices vini
for every i = 1, . . . , r.

Algorithm 11.5. Let L′ be an almost k-hollow, almost homogeneous
LDP complex with ni ≤ 2 and linear form u = u(0, 1, γ).



150 2. THE ALMOST HOMOGENEOUS LOG DEL PEZZO CASE

The set Sbound(L′) of all LDP complexes L with contractible boundary
points v1, . . . , vk such that Lv1,...,vk = L′ is determined by the following
steps:

(i) Find all possible boundary vertices for an LDP complex L, i.e.
find all pairs of coprime integers (l, d) sufficing the conditions of
Lemma 11.3 (i) and (ii) and add them to the set V+ and V−,
respectively.

(ii) Find all possible k-hollow polygons Pi with boundary vertices V+

and V−, i.e. do the following:
(a) For all i = 0, . . . , 4k − 1 define Pi := {conv(vi1 , . . . , vini)}.
(b) If n0 = 1, for every v ∈ V− test whether the polygon P̃0 :=

conv(0, v01, v) is k-hollow and whether v suffices condition (iv)
of Lemma 10.11 and condition (iv) of Lemma 10.12. If so, add
P̃0 to P0

(c) For all i = 1, . . . , r, if ni = 1 then for every v ∈ V+ test
whether P̃i := conv(0, vini , v) is k-hollow and suffices condi-
tions (ii) of Lemma 10.11 and condition (ii) of Lemma 10.12
if i 6= 0. If so, add P̃i to Pi.

(iii) Construct all possible LDP complexes with polygons P̃i ∈ Pi, i.e.
do the following:
(a) For every i = 0, . . . , r take a polygon Pi ∈ P̃i.
(b) Check the inequalities (iv) of the Definition 5.2 of an LDP

complex.
(c) Calculate the vertices v+ and v− as in Definition 5.2 (v) and

define Pi := conv(v+, v−, P̃i).
(d) If L :=

⋃
i Pi is almost k-hollow, add it to the set Sbound(L′).

Algorithm 11.6. The set S defined with the following steps contains
all almost k-hollow, almost homogeneous LDP complexes.

(i) Set S to be the set of all combinatorially minimal non-toric LDP
complexes as in Theorem 9.4 and all Fano polygons found with
Algorithm 11.1.

(ii) For every LDP complex L′ ∈ S find all LDP complexes L with
contraction onto L′ with boundary vertices as in Algorithm 11.5.
Add the LDP complexes found to the set S.

(iii) For every LDP complex L′ ∈ S find all LDP complexes L with
contraction onto L′ with interior vertices as in Algorithm 11.2.
Add the LDP complexes found to the set S.

(iv) Delete all LDP complexes with coinciding standard form, see Def-
inition 6.21.

12. Almost 3-hollow polygons and LDP complexes

In this section we present the results using the algorithms developed for
the case k = 3. All algorithms have been implemented in the computer
algebra system Maple.

With the algorithm described in Construction 12.2 we achieved the fol-
lowing classification.
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Theorem 12.1. There are exactly 910786 almost 3-hollow lattice poly-
gons. Furthermore the maximal volume is given by 48 and the maximal
number of vertices by 11. They are distributed as shown in the following
table:

no. of vertices no. of polygons maximal volume
3 1012 48
4 18944 95/2
5 113758 47
6 280316 45
7 310587 43
8 150866 39
9 32743 69/2

10 2526 61/2
11 34 28

Corollary 12.2. There are exactly 47902 many 3-hollow Fano poly-
gons. Furthermore the maximal volume is given as 47 and the maximal
number of vertices by 11. They are distributed as shown in the following
table:

no. of vertices no. of Fano polygons maximal volume
3 355 44
4 3983 91/2
5 13454 47
6 17791 43
7 9651 39
8 2360 34
9 280 30

10 27 57/2
11 1 47/2

We turn to K∗-surfaces. Using Proposition 9.6 and Proposition 9.7 we
found the following combinatorially minimal almost homogeneous 1/3-log
canonical del Pezzo surfaces K∗-surfaces. The list is in accordance with the
classification result for combinatorially minimal 1/2-log canonical del Pezzo
surfaces K∗-surfaces found in [24].

Proposition 12.3. The following list contains all almost homogeneous
1/3-log canonical del Pezzo surfaces that are combinatorially minimal. Here
ι(X) denotes the Gorenstein index, furthermore the last column marks the
numeration in [24] if the surface is 1/2-log canonical.

No. R(X) Cl(X) [w1, . . . , wr] ι(X) No. in [24]

1 C[T1,...,T4]
〈T1T2+T 4

3 +T 23
4 〉

Z
[
11 81 23 4

]
33 -

2 C[T1,...,T4]
〈T1T2+T 4

3 +T 22
4 〉

Z⊕ Z/2Z

[
5 39 11 2
0̄ 0̄ 1̄ 1̄

]
15 -

3 C[T1,...,T4]
〈T1T2+T 3

3 +T 20
4 〉

Z
[
11 49 20 3

]
539 -

4 C[T1,...,T4]
〈T1T2+T 4

3 +T 20
4 〉

Z⊕ Z/4Z

[
2 18 5 1
1̄ 3̄ 1̄ 0̄

]
6 -

5 C[T1,...,T4]
〈T1T2+T 3

3 +T 19
4 〉

Z
[
10 47 19 3

]
235 -
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6 C[T1,...,T4]
〈T1T2+T 4

3 +T 19
4 〉

Z
[
7 69 19 4

]
21 -

7 C[T1,...,T4]
〈T1T2+T 4

3 +T 17
4 〉

Z
[
9 59 17 4

]
177 -

8 C[T1,...,T4]
〈T1T2+T 2

3 +T 19
4 〉

Z
[
11 27 19 2

]
99 -

9 C[T1,...,T4]
〈T1T2+T 2

3 +T 17
4 〉

Z
[
11 23 17 2

]
253 -

10 C[T1,...,T4]
〈T1T2+T 2

3 +T 17
4 〉

Z
[
11 57 34 4

]
33 -

11 C[T1,...,T4]
〈T1T2+T 3

3 +T 17
4 〉

Z
[
8 43 17 3

]
86 -

12 C[T1,...,T4]
〈T1T2+T 4

3 +T 17
4 〉

Z
[
5 63 17 4

]
15 -

13 C[T1,...,T4]
〈T1T2+T 3

3 +T 15
4 〉

Z⊕ Z/3Z

[
3 12 5 1
1̄ 2̄ 1̄ 0̄

]
6 -

14 C[T1,...,T4]
〈T1T2+T 4

3 +T 15
4 〉

Z
[
7 53 15 4

]
371 -

15 C[T1,...,T4]
〈T1T2+T 2

3 +T 16
4 〉

Z⊕ Z 2Z

[
5 11 8 1
1 1 1 0

]
55 -

16 C[T1,...,T4]
〈T1T2+T 2

3 +T 16
4 〉

Z⊕ Z 2Z

[
5 27 16 2
0̄ 0̄ 1̄ 1̄

]
15 -

17 C[T1,...,T4]
〈T1T2+T 3

3 +T 16
4 〉

Z
[
7 41 16 3

]
287 -

18 C[T1,...,T4]
〈T1T2+T 4

3 +T 16
4 〉

Z⊕ Z/4Z

[
1 15 4 1
1̄ 3̄ 1̄ 0̄

]
3 -

19 C[T1,...,T4]
〈T1T2+T 2

3 +T 13
4 〉

Z

[
1 15 4 1
1̄ 3̄ 1̄ 0̄

]
51 -

20 C[T1,...,T4]
〈T1T2+T 2

3 +T 13
4 〉

Z
[
9 43 26 4

]
129 -

21 C[T1,...,T4]
〈T1T2+T 3

3 +T 13
4 〉

Z
[
7 32 13 3

]
14 -

22 C[T1,...,T4]
〈T1T2+T 3

3 +T 13
4 〉

Z
[
5 47 13 4

]
235 -

23 C[T1,...,T4]
〈T1T2+T 2

3 +T 14
4 〉

Z⊕ Z/2Z

[
4 10 7 1
1̄ 1̄ 1̄ 0̄

]
10 -

24 C[T1,...,T4]
〈T1T2+T 2

3 +T 14
4 〉

Z⊕ Z/4Z

[
2 12 7 1
3̄ 1̄ 2̄ 0̄

]
6 -

25 C[T1,...,T4]
〈T1T2+T 3

3 +T 14
4 〉

Z
[
5 37 14 3

]
185 -

26 C[T1,...,T4]
〈T1T2+T 4

3 +T 14
4 〉

Z⊕ Z/2Z

[
1 27 7 2
0̄ 0̄ 1̄ 1̄

]
3 -

27 C[T1,...,T4]
〈T1T2+T 2

3 +T 15
4 〉

Z
[
7 23 15 2

]
161 -

28 C[T1,...,T4]
〈T1T2+T 2

3 +T 13
4 〉

Z
[
7 19 13 2

]
133 -

29 C[T1,...,T4]
〈T1T2+T 2

3 +T 13
4 〉

Z
[
7 45 26 4

]
21 -

30 C[T1,...,T4]
〈T1T2+T 3

3 +T 13
4 〉

Z
[
4 35 13 3

]
35 -

31 C[T1,...,T4]
〈T1T2+T 4

3 +T 13
4 〉

Z
[
1 51 13 4

]
3 -

32 C[T1,...,T4]
〈T1T2+T 4

3 +T 13
4 〉

Z⊕ Z/2Z

[
3 17 5 2
1̄ 1̄ 0̄ 1̄

]
51 -

33 C[T1,...,T4]
〈T1T2+T 2

3 +T 11
4 〉

Z
[
7 15 11 2

]
105 -

34 C[T1,...,T4]
〈T1T2+T 2

3 +T 11
4 〉

Z
[
7 37 22 4

]
259 -

35 C[T1,...,T4]
〈T1T2+T 3

3 +T 11
4 〉

Z
[
5 28 11 3

]
10 28

36 C[T1,...,T4]
〈T1T2+T 4

3 +T 11
4 〉

Z
[
3 41 11 4

]
41 -

37 C[T1,...,T4]
〈T1T2+T 2

3 +T 14
4 〉

Z⊕ Z/2Z

[
2 12 7 1
1̄ 1̄ 1̄ 0̄

]
6 -

38 C[T1,...,T4]
〈T1T2+T 3

3 +T 9
4 〉

Z⊕ Z/3Z

[
2 7 3 1
1 2 1 0

]
21 -

39 C[T1,...,T4]
〈T1T2+T 4

3 +T 9
4 〉

Z
[
5 31 9 4

]
155 -
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40 C[T1,...,T4]
〈T1T2+T 2

3 +T 11
4 〉

Z
[
5 17 11 2

]
85 -

41 C[T1,...,T4]
〈T1T2+T 2

3 +T 11
4 〉

Z
[
5 39 22 4

]
15 -

42 C[T1,...,T4]
〈T1T2+T 3

3 +T 11
4 〉

Z
[
2 31 11 3

]
31 -

43 C[T1,...,T4]
〈T1T2+T 2

3 +T 8
4 〉

Z⊕ Z/2Z

[
3 5 4 1
1̄ 1̄ 1̄ 0̄

]
3 -

44 C[T1,...,T4]
〈T1T2+T 2

3 +T 8
4 〉

Z⊕ Z/2Z

[
3 13 8 2
1̄ 1̄ 1̄ 1̄

]
39 -

45 C[T1,...,T4]
〈T1T2+T 3

3 +T 8
4 〉

Z
[
5 19 8 3

]
95 -

46 C[T1,...,T4]
〈T1T2+T 4

3 +T 8
4 〉

Z⊕ Z/4Z

[
1 7 2 1
1̄ 3̄ 1̄ 0̄

]
14 -

47 C[T1,...,T4]
〈T1T2+T 2

3 +T 9
4 〉

Z
[
5 13 9 2

]
65 21

48 C[T1,...,T4]
〈T1T2+T 2

3 +T 9
4 〉

Z
[
5 31 18 4

]
155 -

49 C[T1,...,T4]
〈T1T2+T 3

3 +T 9
4 〉

Z⊕ Z/3Z

[
1 8 3 1
1̄ 2̄ 1̄ 0̄

]
2 27

50 C[T1,...,T4]
〈T1T2+T 4

3 +T 9
4 〉

Z
[
1 35 9 4

]
35 -

51 C[T1,...,T4]
〈T1T2+T 2

3 +T 10
4 〉

Z⊕ Z/2Z

[
2 8 5 1
1̄ 1̄ 1̄ 0̄

]
8 -

52 C[T1,...,T4]
〈T1T2+T 2

3 +T 10
4 〉

Z⊕ Z/4Z

[
1 9 5 1
3̄ 1̄ 2̄ 0̄

]
3 -

53 C[T1,...,T4]
〈T1T2+T 3

3 +T 10
4 〉

Z
[
1 29 10 3

]
29 -

54 C[T1,...,T4]
〈T1T2+T 2

3 +T 11
4 〉

Z
[
3 19 11 2

]
57 -

55 C[T1,...,T4]
〈T1T2+T 2

3 +T 7
4 〉

Z
[
5 9 7 2

]
5 -

56 C[T1,...,T4]
〈T1T2+T 2

3 +T 7
4 〉

Z
[
5 23 14 4

]
115 -

57 C[T1,...,T4]
〈T1T2+T 3

3 +T 7
4 〉

Z
[
4 17 7 3

]
34 26

58 C[T1,...,T4]
〈T1T2+T 4

3 +T 7
4 〉

Z
[
3 25 7 4

]
75 -

59 C[T1,...,T4]
〈T1T2+T 2

3 +T 6
4 〉

Z⊕ Z/2Z

[
2 4 3 1
1̄ 1̄ 1̄ 0̄

]
2 19

60 C[T1,...,T4]
〈T1T2+T 2

3 +T 6
4 〉

Z⊕ Z/4Z

[
1 5 3 1
3̄ 1̄ 2̄ 0̄

]
10 -

61 C[T1,...,T4]
〈T1T2+T 3

3 +T 6
4 〉

Z⊕ Z/3Z

[
1 5 2 1
1̄ 2̄ 1̄ 0̄

]
15 24

62 C[T1,...,T4]
〈T1T2+T 4

3 +T 6
4 〉

Z⊕ Z/2Z

[
1 11 3 2
0̄ 0̄ 1̄ 1̄

]
11 -

63 C[T1,...,T4]
〈T1T2+T 2

3 +T 7
4 〉

Z
[
3 11 7 2

]
11 63

64 C[T1,...,T4]
〈T1T2+T 2

3 +T 7
4 〉

Z
[
3 25 14 4

]
25 -

65 C[T1,...,T4]
〈T1T2+T 3

3 +T 7
4 〉

Z
[
1 20 7 3

]
2 25

66 C[T1,...,T4]
〈T1T2+T 2

3 +T 8
4 〉

Z⊕ Z/2Z

[
1 7 4 1
1̄ 1̄ 1̄ 0̄

]
7 -

67 C[T1,...,T4]
〈T1T2+T 2

3 +T 8
4 〉

Z⊕ Z/2Z

[
1 15 8 2
0̄ 0̄ 1̄ 1̄

]
3 -

68 C[T1,...,T4]
〈T 2

1 T2+T 2
3 +T 8

4 〉
Z⊕ Z/2Z

[
1 6 4 1
1̄ 0̄ 1̄ 0̄

]
3 -

69 C[T1,...,T4]
〈T1T2+T 5

3 +T 8
4 〉

Z
[
1 39 8 5

]
3 -

70 C[T1,...,T4]
〈T1T2+T 2

3 +T 5
4 〉

Z
[
3 7 5 2

]
3 18

71 C[T1,...,T4]
〈T1T2+T 2

3 +T 5
4 〉

Z
[
3 17 10 4

]
51 -

72 C[T1,...,T4]
〈T1T2+T 3

3 +T 5
4 〉

Z
[
2 13 5 3

]
13 23
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73 C[T1,...,T4]
〈T1T2+T 4

3 +T 5
4 〉

Z
[
1 19 5 4

]
19 -

74 C[T1,...,T4]
〈T1T2+T 2

3 +T 7
4 〉

Z
[
1 13 7 2

]
13 -

75 C[T1,...,T4]
〈T1T2+T 2

3 +T 7
4 〉

Z
[
1 27 14 4

]
3 -

76 C[T1,...,T4]
〈T 2

1 T2+T 2
3 +T 7

4 〉
Z

[
1 12 7 2

]
3 -

77 C[T1,...,T4]
〈T1T2+T 9

3 +T 3
4 〉

Z⊕ Z/3Z

[
1 8 1 3
1̄ 2̄ 0̄ 2̄

]
6 -

78 C[T1,...,T4]
〈T1T2+T 2

3 +T 4
4 〉

Z⊕ Z/2Z

[
1 3 2 1
1̄ 1̄ 1̄ 0̄

]
1 16

79 C[T1,...,T4]
〈T1T2+T 2

3 +T 4
4 〉

Z⊕ Z/2Z

[
1 7 4 2
0̄ 0̄ 1̄ 1̄

]
7 -

80 C[T1,...,T4]
〈T1T2+T 3

3 +T 4
4 〉

Z
[
1 11 4 3

]
11 22

81 C[T1,...,T4]
〈T1T2+T 3

3 +T 4
4 〉

Z
[
1 9 5 2

]
9 17

82 C[T1,...,T4]
〈T1T2+T 2

3 +T 5
4 〉

Z
[
1 19 10 4

]
19 -

83 C[T1,...,T4]
〈T 2

1 T2+T 2
3 +T 5

4 〉
Z

[
1 8 5 2

]
4 53

84 C[T1,...,T4]
〈T1T2+T 7

3 +T 3
4 〉

Z
[
2 19 3 7

]
19 -

85 C[T1,...,T4]
〈T1T2+T 2

3 +T 3
4 〉

Z
[
1 5 3 2

]
1 15

86 C[T1,...,T4]
〈T1T2+T 2

3 +T 3
4 〉

Z
[
1 11 6 4

]
11 -

87 C[T1,...,T4]
〈T 2

1 T2+T 2
3 +T 3

4 〉
Z

[
1 4 3 2

]
1 51

88 C[T1,...,T4]
〈T 3

1 T2+T 2
3 +T 3

4 〉
Z

[
1 3 3 2

]
1 40

89 C[T1,...,T4]
〈T 3

1 T2+T 2
3 +T 3

4 〉
Z

[
1 9 6 4

]
9 -

90 C[T1,...,T4]
〈T1T2+T 5

3 +T 3
4 〉

Z
[
1 14 3 5

]
7 -

91 C[T1,...,T5]
〈T 2

1 T2+T 2
3 T4+T 2

5 〉
Z2

[
1 2 1 2 2
1 0 0 2 1

]
1 64

Last we turn to the classification of almost homogeneous 1/3-log canon-
ical del Pezzo surfaces. Using Algorithm 11.6 we achieved the following
result.

Theorem 12.4. There are exactly 21968 almost homogeneous 1/3-log
canonical del Pezzo surfaces.

The unit component of its automorphism group is given as(
Kρ oKζ

)
oK∗, where ρ ≤ 5, ζ ≤ 1.

We find the following distribution among the exponents ρ and ζ:

(ρ, ζ) no. of surfaces
(1, 0) 17274
(2, 0) 625
(3, 0) 27
(4, 0) 1

(ρ, ζ) no. of surfaces
(0, 1) 183
(1, 1) 1002
(2, 1) 1602
(3, 1) 884
(4, 1) 168
(5, 1) 2
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