Aus der

Universitätsklinik für Kinder- und Jugendmedizin Tübingen

Abteilung Kinderheilkunde I mit Poliklinik

(Schwerpunkt: Allgemeine Pädiatrie, Hämatologie und Onkologie)

Molekulare Analyse des intratumoralen Immunkompartments nach immuntherapeutischer Kombinationstherapie aus tumorgerichtetem IL-12 und lokaler Radiotherapie im Rhabdomyosarkom im Tiermodel

> Inaugural-Dissertation zur Erlangung des Doktorgrades der Medizin

der Medizinischen Fakultät der Eberhard Karls Universität zu Tübingen

vorgelegt von

Oehme, Moritz Philipp

Dekan: Professor Dr. B. Pichler

- 1. Berichterstatter: Professor Dr. K. Schilbach-Stückle
- 2. Berichterstatter: Professor Dr. G. Jung

Tag der Disputation: 03.12.2020

Inhaltsverzeichnis

1	Einleitung		. 1
	1.1 Rh	abdomyosarkom	. 1
	1.2 Imr	nunsystem, Tumorimmunologie und Krebsimmuntherapie	. 2
	1.2.1	Hämatopoese und das zelluläre Immunsystem	. 2
	1.2.1.	1 T-Lymphozyten, ihre Entwicklung und Funktion	. 4
	1.2.1.	1.1 αβ T-Zellen	11
	1.2.1.	1.2 γδ T-Zellen	16
	1.2.1.	2 NK-Zellen, ihre Entwicklung und Funktion	19
	1.2.2	Tumorimmunologie und Krebsimmuntherapie	23
	1.2.3	NHS-IL12, lokale Radiotherapie und Kombinationstherapie	31
	1.3 NS	G-Mäuse und RMS A204	32
	1.4 Zie	Isetzung der Arbeit	34
2	Material u	nd Methoden	36
	2.1 Ver	rsuchstiere, Tumore und Materialien	36
	2.1.1	Versuchstiere und RMS A204	36
	2.1.2	Materialien	39
	2.1.3	Molekularbiologische Kits zur cDNA-Synthese	42
	2.1.4	Materialien für PCR und Fragmentlängenanaly	se
	("Spe	ctratyping")	43
	2.2 Me	thoden	44
	2.2.1	Versuchsaufbau	44
	2.2.2	Histologie und Immunhistochemie	47
	2.2.3	Molekularbiologische Methoden	48

2.2.3.1 RNA-Isolation
2.2.3.2 cDNA-Synthese
2.2.3.3 PCR-Primer
2.2.3.4 RT-PCR
2.2.3.5 Nested PCR und Multiplex PCR53
2.2.3.6 Fragmentlängenanalyse (TCR- und KIR-Spectratyping) 54
2.2.3.6.1 TCRVα-Spectratyping56
2.2.3.6.2 TCRVγ- und δ-Spectratyping56
2.2.3.6.3 KIR-Spectratyping57
3 Ergebnisse
3.1 Tumorregression und verbessertes Überleben nach T-Zellinfiltratior
und Myogener Enddifferenzierung der Tumore durch Kombinationstherapie
bestehend aus lokaler Bestrahlung und NHS-IL12 Gabe58
3.1.1 Relative Tumorgröße und Survivalanalyse in Abhängigkeit vor
der Behandlungsgruppe58
3.1.2 Histologische und immunhistochemische Untersuchung de
Tumore64
3.2 Induktion einer breiten Immunantwort auf T-Zell und NK-Zell-Ebene
nach Behandlung mit Kombinationstherapie68
3.2.1 NK-Zellrezeptorgene werden durch alle Kontroll- und
Therapiegruppen hindurch homogen exprimiert68
3.2.2 Kombinationstherapie induziert breitestes TCRVα-Repertoire mi
höchsten Peaks und systemisch nachweisbaren Klonen
3.2.3 TCRVγ- und δ-Repertoire indifferent zwischen Behandlungs

	gruppen mit größter klonaler Breite in Tumoren von kombiniert
	therapierten Mäusen108
	3.2.4 Induktion der deutlichsten Immunantwort nach Kombinations-
	therapie113
4	Diskussion115
5	Zusammenfassung127
6	Literaturverzeichnis
7	Erklärung zum Eigenanteil der Dissertationsschrift 155
8	Veröffentlichung157

Abkürzungsverzeichnis

α	alpha
Abb.	Abbildung
ADCC	antibody-dependent cellular cytotoxicity
β	beta
bp	Basenpaar
v	aamma
Ċ	constant
CD	Cluster of Differentiation
CLP	common lymphoid progenitor
CMP	common myeloid progenitor
CTx	Chermotherapie
δ	delta
0	Diversity
	Departitische Zelle
	Denult Negetive Thymezyten
	Doppen Negative Thymozyten
	Doppelt Desitive Thymesystem
	Doppen Positive Thymozyten
CDNA	complementary Deoxyribonucleic Acid
	complementarity-determining region
CTLA-4	Cytotoxic 1-lymphocyte-associated Protein 4
EIP	Early t-cell progenitor
FAM	Fluorescein amidite
FasL	Fas-Ligand
Foxp3	Forkhead-Box-Protein P3b
GM-CSF	Granulozyten-Monozyten-
	Kolonie-stimulierender Faktor
Gy	Gray
HSC	hematopoetic stem cell
HLA-DR	Human Leukocyte Antigen – Antigen D Related
ICB	Immune checkpoint blockade
ICD	Immunogenic Cell Death
IDO	Indolamin-2,3-Dioxygenase
IEL	Intraepitheliale Lymphozyten
IFN	Interferon
ILL	Innate like Lymphocyte
IL	Interleukin(e)
iNKT	invariant natural killer T cell
IR	Irradiation
J	ioining
KG	Kontrollaruppe(n)
KIR	Killer Cell Immunoglobulin-like Recentor

LT-α/β	Lymphotoxin alpha/beta
MCSF	Macrophage stimulating factor
MDSC	Mveloid-derived Suppressor Cells
MaCl ₂	Magnesiumchlorid
МНС	Major Histocompatibility Complex
MIP	macrophage inflammatory protein
ul	Mikroliter
ml	Milliliter
mM	millimolar
mRNA	Messenger Ribonucleic Acid
MPP	multipotent progenitor
NCR	natürlicher Zytotoxizitätsrezeptor
NKG2D	Aktivierender lectin-like Rezentor ursprünglich
	in NK-Zellen identifiziert
NKB	NK-7ell-Rezentor
NSG	NOD scid gamma
NSCLC	Non Small-Cell Lung Cancer
PBS	nhosphate buffered saline
PCB	Polymerase Chain Reaction
PD-1	Programmed cell death Protein 1
RAG	Recombination Activating Genes
RMS	Rhabdomyosarkom
RNA	
RORvt	RAR-related orphan recentor damma two
RTy	Radiotheranie
NHS76	Bezeichnung eines nacktes-Histon hindenden
	monoklonalen Antikörners
nmol	niko-Mol
pho	prö-Mol nrä- T. alnha-Kette
PANTES	regulated on activation normal T-cell-
IVANI ES	expressed and secreted beta chemokine
	Poverse Transkriptase DCP
Scid	Severe combined Immunodeficiency
	Secondary Lymphoid Tissue
	Single Desitive sinfact positive Thymozyten
JF Tog	Thormus aquaticus
	T Zoll Dozontor
	V Sogment des T Zell Pezenter Conlekus
That	They expressed in T colle
	Terminal deavy nucleaty dil Transference
	Tumornekroeefekter
	Tumornekrooofekter Bezenter Typ 1
	Transporter Dipervision Asid
	UL 10-DINUING MOLEIN
V V (real	
vrgi.	vergieich

Abbildungsverzeichnis

Abb. 1.1: Modelle der Hämatopoese	3
Abb.1.2: T-Zellreifung im Thymus und Differenzierung der stadienassoziierte	n
Oberflächenmarker	7
Abb. 1.3: Schematische Darstellung der Genumlagerung der TCR α - und β	3-
Genloci	0
Abb. 1.4: Cancer Immunoediting	7
Abb. 1.5 Cancer-Immunity cycle	9
Abb. 1.6: Exemplarische lang-fristige Tumortherapie	0
Abb.2.1.: Studiendesign	7
Abb. 2.2: Tumorextraktio und Gruppierung4	5
Abb. 2.4: Exemplarisches PCR-Programm im Thermocycler	2
Abb. 2.5: Schema einer Nested PCR	3
Abb. 2.6: Schematische Darstellung des Spectratyping5	5
Abb. 2.7: Thermocyclerprogramm zur Denaturierung	6
Abb. 3.1: Tumorwachstum	0
Abb. 3.2: Tumorwachstum (Tag 15)62	2
Abb. 3.3: Tumorgrößespezifische Survivalanalyse	3
Abb. 3.4.: Histologie und Immunhistochemie6	5
Abb 3.5.: Quantitatives Scoring der Histologie und Immunhistochemie 6	6
Abb 3.6.: Relative Tumorgröße und Gesamtüberleben in Abhängigkeit von T	[-
Zellinfiltration	7
Abb 3.7: Exemplarische Darstellung des KIR-Spectratyping von infiltrierende	n
NK-Zellen aus Tumoren unterschiedlicher Therapiegruppen	9
Abb 3.8: Homogene Expression der NK-Zellrezeptorgene durch all	е
Therapiegruppen hindurch	0
Abb 3.9: Exemplarische Darstellung des TCRVα-Spectratyping eines Tumors au	s
der Kontrollgruppe (I1) und eines Tumors einer Maus, welche die	е
Kombinationstherapie erhalten hatte (III5)72	2

Abb. 3.10 Expressionsniveau und –Breite TCRVα-Segment 1-1 und 1-2 774
Abb. 3.11: Expressionsniveau und –Breite von TCRVα-Segment 2 11
Abb. 3.12: Expressionsniveau und –Breite von TCRVα-Segment 3 16
Abb. 3.13: Expressionsniveau und –Breite von TCRVα-Segment 4 2077
Abb. 3.14: Expressionsniveau und –Breite von TCRVα-Segment 5 15
Abb. 3.15: Expressionsniveau und –Breite von TCRVα-Segment 6 5
Abb. 3.16: Expressionsniveau und –Breite von TCRV α -Segment 8-1 und 8-3
1B80
Abb. 3.17: Expressionsniveau und –Breite von TCRV α -Segment 8-4 und 8-6
1A81
Abb. 3.18: Expressionsniveau und –Breite von TCRVα-Segment 9-2 22 82
Abb. 3.19: Expressionsniveau und –Breite von TCRV α -Segment 10 24 83
Abb. 3.20: Expressionsniveau und –Breite von TCRV α -Segment 12-1, 12-2 und
12-3 2
Abb. 3.21: Expressionsniveau und –Breite von TCRVα-Segment 13-1 und 13-2
8
Abb. 3.22: Expressionsniveau und –Breite von TCRV α -Segment 14DV4 686
Abb 3.23: Expressionsniveau und –Breite von TCRVα-Segment 16 9 87
Abb. 3.24: Expressionsniveau und –Breite von TCRVα-Segment 17 3 88
Abb. 3.25: Expressionsniveau und –Breite von TCRVα-Segment 19 12 89
Abb. 3.26: Expressionsniveau und –Breite von TCRVα-Segment 20 30 90
Abb. 2.27. Expressionenity setuped Draits your TCDV/r Segment 21 22 01
Abb. 3.27. Expressionshiveau und –Breite von TCRVd-Segment 21 23 91
Abb. 3.27: Expressionsniveau und –Breite von TCRVd-Segment 21 23 91 Abb. 3.28: Expressionsniveau und –Breite von TCRV α -Segment 22 13 92
Abb. 3.27: Expressionsniveau und –Breite von TCRV α -Segment 21 23 91 Abb. 3.28: Expressionsniveau und –Breite von TCRV α -Segment 22 13 92 Abb. 3.29: Expressionsniveau und –Breite von TCRV α -Segment 23DV6 17 93
Abb. 3.27: Expressionsniveau und –Breite von TCRVα-Segment 21 23 91 Abb. 3.28: Expressionsniveau und –Breite von TCRVα-Segment 22 13 92 Abb. 3.29: Expressionsniveau und –Breite von TCRVα-Segment 23DV6 17 93 Abb. 3.30: Expressionsniveau und –Breite von TCRVα-Segment 24 18 94
Abb. 3.27: Expressionsniveau und –Breite von TCRVα-Segment 21 23 91 Abb. 3.28: Expressionsniveau und –Breite von TCRVα-Segment 22 13 92 Abb. 3.29: Expressionsniveau und –Breite von TCRVα-Segment 23DV6 17 93 Abb. 3.30: Expressionsniveau und –Breite von TCRVα-Segment 24 18 94 Abb. 3.31: Expressionsniveau und –Breite von TCRVα-Segment 25 32 95
Abb. 3.27: Expressionsniveau und –Breite von TCRVα-Segment 21 23 91 Abb. 3.28: Expressionsniveau und –Breite von TCRVα-Segment 22 13 92 Abb. 3.29: Expressionsniveau und –Breite von TCRVα-Segment 23DV6 17 93 Abb. 3.30: Expressionsniveau und –Breite von TCRVα-Segment 24 18 94 Abb. 3.31: Expressionsniveau und –Breite von TCRVα-Segment 25 32 95 Abb. 3.32: Expressionsniveau und –Breite von TCRVα-Segment 26-2 4A 96
Abb. 3.27: Expressionsniveau und –Breite von TCRVα-Segment 21 23 91 Abb. 3.28: Expressionsniveau und –Breite von TCRVα-Segment 22 13 92 Abb. 3.29: Expressionsniveau und –Breite von TCRVα-Segment 23DV6 17 93 Abb. 3.30: Expressionsniveau und –Breite von TCRVα-Segment 24 18 94 Abb. 3.31: Expressionsniveau und –Breite von TCRVα-Segment 25 32 95 Abb. 3.32: Expressionsniveau und –Breite von TCRVα-Segment 26-2 4A 96 Abb. 3.33: Expressionsniveau und –Breite von TCRVα-Segment 26-2 4A 96
Abb. 3.27: Expressionsniveau und –Breite von TCRVα-Segment 21 23 91 Abb. 3.28: Expressionsniveau und –Breite von TCRVα-Segment 22 13 92 Abb. 3.29: Expressionsniveau und –Breite von TCRVα-Segment 23DV6 17 93 Abb. 3.30: Expressionsniveau und –Breite von TCRVα-Segment 24 18 94 Abb. 3.31: Expressionsniveau und –Breite von TCRVα-Segment 25 32 95 Abb. 3.32: Expressionsniveau und –Breite von TCRVα-Segment 26-2 4A 96 Abb. 3.33: Expressionsniveau und –Breite von TCRVα-Segment 26-2 4A 96 Abb. 3.34: Expressionsniveau und –Breite von TCRVα-Segment 26-2 4B 97 Abb. 3.34: Expressionsniveau und –Breite von TCRVα-Segment 27 10 98
Abb. 3.27: Expressionsniveau und –Breite von TCRVα-Segment 21 23 91 Abb. 3.28: Expressionsniveau und –Breite von TCRVα-Segment 22 13 92 Abb. 3.29: Expressionsniveau und –Breite von TCRVα-Segment 23DV6 17 93 Abb. 3.30: Expressionsniveau und –Breite von TCRVα-Segment 24 18 94 Abb. 3.31: Expressionsniveau und –Breite von TCRVα-Segment 25 32 95 Abb. 3.32: Expressionsniveau und –Breite von TCRVα-Segment 26-2 4A 96 Abb. 3.33: Expressionsniveau und –Breite von TCRVα-Segment 26-2 4A 96 Abb. 3.34: Expressionsniveau und –Breite von TCRVα-Segment 26-2 4B 97 Abb. 3.34: Expressionsniveau und –Breite von TCRVα-Segment 27 10 98 Abb. 3.35: Expressionsniveau und –Breite von TCRVα-Segment 29DV5 21 99
Abb. 3.27: Expressionsniveau und –Breite von TCRV α -Segment 21 23 91 Abb. 3.28: Expressionsniveau und –Breite von TCRV α -Segment 22 13 92 Abb. 3.29: Expressionsniveau und –Breite von TCRV α -Segment 23DV6 17 93 Abb. 3.30: Expressionsniveau und –Breite von TCRV α -Segment 24 18 94 Abb. 3.31: Expressionsniveau und –Breite von TCRV α -Segment 25 32 95 Abb. 3.32: Expressionsniveau und –Breite von TCRV α -Segment 26-2 4A 96 Abb. 3.33: Expressionsniveau und –Breite von TCRV α -Segment 26-2 4B 97 Abb. 3.34: Expressionsniveau und –Breite von TCRV α -Segment 27 10 98 Abb. 3.35: Expressionsniveau und –Breite von TCRV α -Segment 29DV5 21 99 Abb. 3.36: Expressionsniveau und –Breite von TCRV α -Segment 30 29 100

Abb. 3.38: Expressionsniveau und –Breite von TCRVα-Segment 35 25 102
Abb. 3.39: Expressionsniveau und –Breite von TCRVα-Segment 36DV7 25 28
Abb. 3.40: Expressionsniveau und –Breite von TCRV α -Segment 38-1 38-2DV
14
Abb. 3.41: Expressionsniveau und –Breite von TCRVα-Segment 39 27 105
Abb. 3.42: Expressionsniveau und –Breite von TCRVα-Segment 40 31 106
Abb. 3.43: Expressionsniveau und –Breite von TCRV α -Segment 41 19 107
Abb 3.44: Exemplarische Darstellung des TCRVγ- und $\delta\mbox{-}Spectratyping bei$
Tumoren von Mäusen unterschiedlicher Therapiegruppen
Abb 3.45: Darstellung des Vδ-Repertoires für die TCRVδ-Segmente 1-4110
Abb 3.46: Darstellung des Vδ-Repertoires für die TCRVδ-Segmente 5-8111
Abb 3.47: Darstellung der Vy-Repertoires für die TCRVy-Segmente 2-4, 3, 5, 8
und 9112
Abb. 3.48: Exprimierte NK-Zellrezeptorgene, TCRV α - und TCRV $\delta\gamma$ -Repertoires

Tabellenverzeichnis

Tabelle 1: Glas, Plastik, Laborzubehör	39
Tabelle 2: Stammlösungen und Chemikalien	40
Tabelle 3: Geräte	41
Tabelle 4: Computersoftware	42
Tabelle 5: Molekularbiologische Kits zur cDNA-Synthese	42
Tabelle 6: Enzyme	43
Tabelle 7: Untersuchte TCR- und KIR-Segmente	46
Tabelle 8: Mastermixe zur cDNA-Synthese von 20 µl Endvolumen	50
Tabelle 9: Verwendete Thermocyclerprogramme für cDNA-Synthese	50
Tabelle 10: Verwendete PCR-Primer	51
Tabelle 11: Exemplarische Darstellung PCR-Mix	52
Tabelle 12: Exemplarischer Multiplex-PCR-Ansatz für Detektion von	NKp44,
NKp46, CD226	54
Tabelle 13: PCR-Produkt-Vorbereitung für Sequenziergerät	55

1.1 Rhabdomyosarkom

Das Rhabdomyosarkom (RMS) ist ein hochmaligner Weichteiltumor vornehmlich des Kindesalters. Es macht 5 % aller Tumore im Lebensalter von 0 bis 18 Jahren aus. Wie bei allen Sarkomen handelt es sich beim RMS um eine Neoplasie mesenchymalen Ursprungs. Das RMS im Speziellen leitet sich von dem Mesenchym entstammenden Muskelstammzellen ab. Histopathologisch treten embryonale, alveoläre und pleomorphe (oder auch anaplastische) RMS auf, welche sich in Wachstumsmuster und Differenzierung unterscheiden. Der pleomorphe Typ wird vorwiegend bei Erwachsenen, der embryonale Typ vor allem bei Kleinkindern gefunden. Hauptlokalisation für die Manifestation des RMS sind Kopf, Extremitäten, Urogenitaltrakt und Hals. Metastasierung und Rezidive sind möglich. Das mittlere 5-Jahres-Überleben variiert zwischen 35 % und 95 %, wobei die Prognose neben anderem von Lokalisation und klinischem Stadium des Tumors abhängt.¹ ² Beim metastasierten RMS liegt die Heilungschance bei unter 20 %. ³

Die multimodale Therapie des kindlichen Rhabdomysarkoms (RMS) ist mit den etablierten Werkzeugen der chirurgischen Resektion, neoadjuvanter oder adjuvanter Radio-/Chemotherapie (RTx, CTx) nach wie vor unbefriedigend. Eine Tumorkontrolle bleibt schwierig. ^{4 5 6} Bei kompletter primärer Resektion liegt das 5-Jahres-Überleben bei 90 %, bei mikroskopischen Residuen um 80 %, bei makroskopischen Residuen um 70 %. ^{7 8} Ob ein Ansprechen des Patienten auf Induktions-Chemotherapie eine Verbesserung des Outcome bedeutet, ist fraglich. ^{9,10} Trotz verbessertem Verständnis der Biologie des RMS, ist die multimodale Therapie die derzeit beste Alternative.³ Insgesamt bleibt die Prognose dieser Erkrankung ungünstig. ¹¹

Wie bei Neoplasien anderer Entitäten, zum Beispiel beim metastasierten Melanom, Prostata-, Ovarialtumoren, NSCLC und dem Glioblastom, subklinisch

und klinisch gezeigt, präsentiert sich die Immuntherapie als vielversprechende Alternative. ^{12,13,14(p),15–17} Erste Ansätze in der Immuntherapie des kindlichen RMS sind wenig wirksam, wobei die Daten derzeit noch limitiert sind. ^{18,19} Es konnte jedoch gezeigt werden, dass eine IL-12-Immuntherapie in Kombination mit IL-2 oder lokaler Bestrahlung *in vivo* und *in vitro* zu Tumorkontrolle des RMS führen können. ^{20,21}

Die hier durchgeführte Arbeit zeigt und diskutiert das nach einer Kombinationstherapie aus Immuntherapie (NHS-IL12) und lokaler Radiatio ausgebildete Immunrepertoire an T-Lymphozyten und NK-Zellen.

1.2 Immunsystem, Tumorimmunologie und Krebsimmuntherapie

1.2.1 Hämatopoese und das zelluläre Immunsystem

Als Hämatopoese wird die Ausbildung der Zellen des menschlichen Blutes bezeichnet, ebenso die der Vorläuferzellen des zellulären Immunsystems. Ursprung all dieser Zellen und den ihnen vorangehenden Zelllinien ist die typischerweise CD34⁺ hämatopoetische Stammzelle (HSC). Diese differenziert nach der klassisch dichotomen Vorstellung über Multipotente Progenitoren (MPPs) entweder zu Common Myeloid Progenitoren (CMPs/CMEPs) oder Common Lymphoid Progenitoren (CLPs) aus. Die CMPs sind Vorläufer sowohl für die Granulozyten Monozyten Progenitoren (GMPs), aus denen Granulozyten und Monozyten hervorgehen, als auch für die Megakaryozyten Erythrozyten Progenitoren (MEPs), aus denen sich Thrombozyten und Erythrozyten entwickeln. Common Lymphoid Progenitoren (CLPs) sind Vorläufer der T- und B-Lymphozyten sowie der natürlichen Killerzellen (NK-Zellen). (s. Abb 1.1(A)). Neben diesem klassischen Modell der Hämatopoese nach Abramson (1977) wurden über die Jahre weitere vorgestellt und diskutiert. (s. Abb 1.1)

A: Klassisches Modell nach Abramson (1977). B: Myeloid-basiertes Modell nach Katsura und Kawamoto (2001). Auch nach einer ersten Aufspaltung der Population der HSC in eine lymphoide und myeloide Linie persistiert das myeloide Potential in der lymphoiden Linie. C: Modifiziertes klassisches Modell nach Jacobson (2005). Bereits auf Knochenmarkebende konnte ein gemeinsamer myeloidlymphoider Progenitor (CMLP) gefunden werden. Einordnung zwischen HSC und CLP. M: Myeloid. E: Erythroid. Meg: Megakaryoid. T: T-Lymphozyten. B: B-Lymphozyten. TB: T- u B-Zell-lymphoid. HSC: Hämatopoetische Stammzelle. C: Common L: Lymphoid. P: Progenitor. Übernommen von Kawamoto et al ²².

Das zelluläre Immunsystem besteht neben den Lymphozyten aus neutrophilen, eosinophilen und basophilen Granulozyten, Monozyten und Makrophagen, Mastzellen und dendritischen Zellen. Die Zellen der myeloiden Linie, sowie die Natürlichen Killerzellen (NK-Zellen) sind Teil der angeborenen Immunantwort. Alle weiteren Zellen der lymphatischen Linie sind der adaptiven Immunantwort zuzuordnen. ²³ Physiologisch eng mit dem zellulären Immunsystem verknüpft ist das humorale Immunsystem, bestehend aus Antikörpern, Komplementsystem und Interleukinen. Neben der Erkennung und Bekämpfung viraler, bakterieller oder parasitärer Infektionen von extrakorporal, ist dieses System auch dazu in der Lage entartete körpereigene Zellen zu detektieren und zu beeinflussen. ²⁴ Die Lymphozyten lassen sich in vier Subpopulationen aufteilen: die B-Zellen, die $\alpha\beta$ T-Zellen, die $\gamma\delta$ T-Zellen und die NK-Zellen.

1.2.1.1 T-Lymphozyten, ihre Entwicklung und Funktion

T-Lymphozyten bilden T-Zell-Rezeptoren (TCR) aus entweder einer α -Kette kombiniert mit einer β -Kette oder einer γ -Kette kombiniert mit einer δ -Kette aus. Anhand dessen werden zwei T-Zelllinien unterschieden.

 $\alpha\beta$ T-Zellen sind nach Aktivierung durch ihr spezifisches Antigen in ihren Effektorfunktionen als CD8⁺ zytotoxische T-Zellen (CTLs) oder als CD4⁺ T-Helfer-Zellen, die mit weiteren Leukozyten wie B-Lymphozyten oder Monozyten kommunizieren, Teil der adaptiven Immunantwort. γδ T-Zellen fungieren vornehmlich als Teil der primären Immunantwort. Sie machen den weitaus kleineren Anteil der insgesamt zirkulierenden T-Zellen aus.^{25–27}

Bis die T-Zelle diese Funktionen als reifer, kompetenter T-Lymphozyt ausführen kann, durchläuft sie einen komplexen Entwicklungs- und Reifeprozess durch mehrere Kompartimente: Knochenmark, Thymus und sekundäre lymphatische Organe. Die Stadien dieses Prozesses lassen sich je nach Expression bestimmter Oberflächenmarker differenzieren. (s. Abb 1.2 (B))

Erster Progenitor des T-Lymphozyten ist die HSC im Knochenmark. Nach der weiteren Entwicklung zu MPPs lassen sich diese unter anderem anhand der Expression des Stammzellmarkers Fms-related tyrosine kinase (FLT3), auch CD135, weiter unterscheiden. Ist die CD135-Expression hochreguliert, ordnet man diesen MPPs ein lymphoides Potential zu. Es wird von lymphoid multipotent progenitors (LMPPs) gesprochen.^{28,29} LMPPs differenzieren zu CLPs aus, dem Vorläufer der T- und B-Lymphozyten sowie der NK-Zellen. Im Gegensatz zu den CMPs ist diese Zelllinie CD127⁺. LMPPs und CLPs verlassen das Knochenmark und gelangen als T-Zell-Vorläufer über die Blutbahn zum Thymus.^{28 30}

Der Thymus ist ein primäres lymphatisches Organ und liegt im vorderen oberen Mediastinum. Er bietet durch ein Grundgerüst retikulär angeordneter Epithelzellen, dem Thymusstroma, und ein spezielles Zytokinprofil ein besonderes Milieu für die Entwicklung der hoch diversen und zugleich selbst-

toleranten T-Lymphozyten.^{31,32} Die T-Zell-Vorläufer treten in der kortikomedullären Junktionszone aus postkapillären Venolen aus dem Gefäßsystem in den Thymus über. Von dort aus migrieren sie im Laufe ihrer Entwicklung zunächst in die subkapsuläre Zone, um schliesslich wieder zum Thymusmark zurückzukehren. (s. Abb.1.2 (A)) ^{33–35}

Die T-Zellreifung findet im Thymus in zwei wesentlichen Phasen statt. Die frühe Phase, die in der subkapsulären Cortexzone des Thymus abläuft, lässt antigenunabhängig in einer ersten sogenannten β -Selektion T-Zellen-Vorläufer mit prä-TCR oder $\gamma\delta$ -TCR proliferieren.³⁶ In der späten Phase, die in der Medulla des Thymus stattfindet, wird der durch Genumlagerung (Rearrangement) entstandene endgültige TCR Antigen-abhängig und MHC-restringiert zweifach geprüft: Durch Positiv- und Negativselektion. Dieser komplexe Reifeprozess mit drei Selektionspunkten, an denen über weitere Proliferation und Differenzierung oder Apoptose der Vorläuferzelle entschieden wird, gewährleistet zweierlei Eigenschaften des reifen T-Lymphozyten: Durch wiederholte Genumlagerung kann eine hohe Diversität des TCR erreicht werden. Durch Apoptose derjenigen Vorläuferzellen, welche zu stark autoreaktiv an Selbst-MHC-Antigene binden, entsteht Selbsttoleranz.³⁷ Lediglich 10-30 % der gebildeten TCR werden diesen Anforderungen gerecht.³⁸

Tritt der T-Zell-Vorläufer in der kortikomedullären Junktionszone in den Thymus über ist er CD4^{neg} sowie CD8^{neg}, ergo doppelt negativ (DN). In diesem Abschnitt wird zur Verdeutlichung der CD-Evolution der T-Lymphozyten von CDx^{neg/pos} gesprochen, im weiteren Verlauf wird die sonst gebräuchliche Schreibweise CDx^{-/+} verwendet. Die zu T-Lymphozyten heranreifenden T-Zell-Vorläufer werden während ihrer Reifung im Thymus auch Thymozyten genannt. Die Fraktion der DN-Thymozyten wird weiterhin in 4 Subpopulationen aufgeteilt: DN1 bis DN4. Sie weist die größte Dynamik in Bezug auf Veränderungen der Oberflächenmarker auf.²⁸(s. Abb. 1.2) DN1-Thymozyten, auch Early T-cell progenitors genannt (ETPs), differenzieren über die Expression von CD25 zu DN2-Thymozyten. Diese weisen noch sowohl ein T-lymphoides als auch ein myeloides Potential auf.^{28,39} Während der Migration des Thymozyten gen subkortikaler Zone des Cortex, legt der DN3-Thymozyt dieses myeloide Potential ab, die CD44 Expression wird

herunterreguliert und es findet intensive Genumlagerung der β -, γ -, und δ -Genloci statt. Die Zelllen sind nun T-Zell-Linien restringiert (t-cell lineage commitment). Es wird diskutiert, ob dieses commitment intrathymisch Notch-Signal vermittelt ist, oder ob schon präthymisch T-Zelllinien-restringierte Progenitoren über Notch Überlebens- und Proliferationssignale erhalten. 40-42 DN3-Thymozyten müssen in der subkapsulären Zone des Cortex der β-Selektion standhalten, um weiter zu reifen zu können. Hat der Thymozyt an diesem Punkt eine funktionsfähige β-Kette exprimiert, kann sich diese mit der invarianten präα-T-Zell-Kette (pTα) zum präTCR verbinden und der Thymozyt so das Signal zur weiteren Differenzierung zu DN4/ISP-Thymozyten und zur Proliferation erhalten. ³⁶So wie die DN2-Thymozyten Umlagerungen der β -Ketten erfahren, findet auch eine vielfache Umlagerung der γ- und δ-Ketten statt, die bei den DN3-Thymozyten endgültige yδ-TCRs bilden. Werden diese selektiert, verlassen sie den Thymus schon an diesem Punkt als reife γδ T-Zellen.^{27,43} Wenn auch abschließend ungeklärt wird derzeit die Theorie der Signalstärke (signal strength, signaling potential) als Erklärung dafür diskutiert, warum ein kleiner Anteil der Gesamtthymozyten statt nach der
ß-Selektion über das Stadium der DN4/ISP und DP zu SP $\alpha\beta$ T-Zellen zu differenzieren schon hier als TCR $v\delta^{pos}$ Zellen selektiert wird. Demnach bildet der DN3-Thymozyt nach zeitgleichem Rearrangement der β -, γ -, und δ -Genloci entweder einen präTCR oder einen definitiven TCR aus y- und δ -Ketten aus. Der y δ TCR vermittelt bei Aktivierung ein relativ starkes Signal, welches die entsprechenden Thymozyten proliferieren und den Thymus als reife naive γδ T-Zellen verlassen lässt. Der präTCR vermittelt ein relativ schwaches Signal, welches die entsprechenden Thymozyten prolifereren und zu DN4/ISP-Thymozyten differenzieren lässt. Die Signalstärke wird dabei durch Stabilität und Expressionsniveau des TCR-Komplexes bestimmt. 44-46

Abb.1.2: T-Zellreifung im Thymus und Differenzierung der stadienassoziierten Oberflächenmarker.

(A) Schematische Darstellung der T-Zellreifung und Thymozytenmigration zum und durch den Thymus. (B) Überblick zur stadienassoziierten Differenzierung der Thymozyten nach Oberflächenmarkern sowie Aktivitätsphasen der Gensegment umlagernden Enzyme RAG, TdT. CLP: Common lymphoid progenitor, DN: Double Negative, DP: Double Positive, ETP: Early t-cell progenitor, HSC: Hematopoetic stem cell, ISP: Immature single positive, LMPP: Lymphoid multipotent progenitor, MPP: Multipotent Progenitor, RAG: Recombination activation genes, SP:Single positive, TdT: Terminal deoxynucleotydil Transferase, TCR: T-cell receptor. Übernommen und modifiziert nach Michael Litt et al (A), Elizabeth Fayard et al (B).^{28,47}

Hat der Thymozyt bei funktionsfähigem präTCR das Signal zur Proliferation erhalten, beginnen im jetzt CD25^{neg} DN4-Thymozyten die Umlagerungen des α-Ketten-Genlocus. Über ein Stadium der immature CD8 single positive cells (ISP) differenzieren die T-Zell-Vorläufer zu CD4^{pos} CD8^{pos} doppelt positiven (DP) Thymozyten. Es finden nun intensive Umlagerungen des TCRα-Genlocus statt, bis eine Positivselektion des Thymozyten stattfindet, oder durch Neglekt die Apoptose eintritt. ^{37,48}

Vorwiegend in der Thymusmedulla finden die Positiv- und Negativselektion der DP-Thymozyten statt. Positiv selektiert werden jene Thymozyten deren TCR mit mittlerer Affinität (mit Co-Rezeptor CD4) Major Histocompatibility Complex II (MHC) oder (mit Co-Rezeptor CD8) MHC I erkennen. Wird der TCR des T-Zell-Vorläufers nicht durch einen MHC-Autoantigenkomplex aktiviert, wird die Apoptose des Thymozyten eingeleitet. Ebenso werden diejenigen DP Zellen exkludiert, welche im Rahmen der Negativ-Selektion mit zu großer Affinität an MHC-Autoantigenkomplexe binden. Von ihnen geht die Gefahr der Autoreaktivität An diesen diffizilen Eliminationsprozessen sind neben aus. den Thymusepithelzellen vor allem bei der Negativselektion professionelle antigenpräsentierende Zellen (APC) des Knochenmarks beteiligt. 37,38,49,50 Die positiv selektierten und bei der Negativselektion nicht deletierten Thymozyten

differenzieren schließlich zu CD4^{pos} oder CD8^{pos} einfach positiven (SP) naiven $\alpha\beta$ T-Zellen aus und verlassen den Thymus gen sekundäre lymphatische Organe.²⁸

Um die besprochene hohe Rezeptordiversität zu erreichen, werden die TCR-Gen-Segmente mehrfach umgelagert: -β -, γ-, und δ-Genloci vor der β-Selektion, der α-Genlocus im DP Stadium. Dieser Prozess wird auch T-Zell-Rezeptor-Gen Rearrangement genannt. Wesentlich an diesem Prozess beteiligte Enzyme sind der "Recombination Activation Genes" (RAG-1/-2) Enzymkomplex sowie die Terminal Deoxynucleotidyl Transferase (TdT).⁵¹ (s.Abb. 1.2. B)

Die Genloci (α , β , γ , δ) des TCR sind jeweils in Segmenten (V, D, J, C) organisiert. (s. Abb 1.3.) Die Segmente der VDJ-Region machen den variablen Anteil der finalen Kette aus. Die C-Region ist konstant.

Der TCRa-Genlocus ist in 70-80 V-Segmenten, 61 J-Segmenten und einem C-Segment, der β-Genlocus in 52 V-Segmenten und zwei getrennten Clustern mit je einem D-Segment und einem C-Segment und dazwischen gelagert einmal sechs und einmal sieben J-Segmenten organisiert.(s.Abb. 1.3.) Durch somatische Rekombination und Verbindung der einzelnen Segmente durch Nund P-Nukleotide entsteht je Genlocus ein funktionelles Exon. Die Gesamtvielfalt der so zufällig entstehenden TCR aus den transkribierten funktionellen Exonen des α - und β -Lokus liegt bei ~10^18 Varianten.³⁸ Die Genloci für y- und δ -Ketten sind ähnlich organisiert, wobei der Aufbau des v-Genlocus mit dem des β-Genlocus vergleichbar ist, wenn auch ohne D-Segmente. Der TCRδ-Locus liegt innerhalb des TCR α -Locus zwischen den V $_{\alpha}$ - und J $_{\alpha}$ -Segmenten verstreut. y-, und δ -Locus codieren weniger V-Segmente als die homologen α -, und β -Loci. $[V_{y} \times 12], [J_{y} \times 3], [C_{y1}], [J_{y} \times 2], [C_{y2}] \text{ und } [V_{\delta} \times 8], [D_{\delta} \times 3], [J_{\delta} \times 4], [C_{\delta 1}], [J_{\delta} \times 61],$ $[C_{\delta 2}]$. (Vgl.Abb. 1.3). ^{52,53} Eine weitere Besonderheit des TCR δ -Locus ist die Tatsache, dass fünf der V $_{\delta}$ -Segmente mit denen des V $_{\alpha}$ -Lokus identisch sind und für beide verwendet werden können. 38,54 Es wird angenommen, dass y-, und δ -Locus trotz der geringeren Segmentanzahl durch junktionale Variabilität und Organisation der drei Do-Gensegmente vor zwei Clustern mit Jo-Segmenten TCR mit ähnlicher oder sogar größerer Gesamtvielfalt generieren. 55

In Betrachtung der Tertiärstruktur des letzlich aus den besprochenen funktionellen Exons generierten TCRs lassen sich auf Proteinebene drei complimentarity-defining regions (CDR) erkennen. CDR1 und CDR2 sind peripher, CDR3 im antigenbindenden Zentrum des TCR gelagert. Dieser Anordnung entsprechend sind die MHC-Molekül-bindenden CDR1 und CDR2 weniger variabel als die sogenannte hypervariable CDR3, welche das jeweils potentielle Antigen binden können muss. Die hohe Diversität dieser dritten CDR ist durch die große junktionale Variabilität im Bereich der V-, D- und J-Gensegmente bedingt sowie durch die zufällig häufige und beliebige Insertion von Nukleotiden zwischen die rearrangierte Variable Region und D Region durch die TdT. Die nichtkeimbahnkodierten N Nukleotide tragen wesentlich zur Diversität der TCRs bei. Kommt es im Zuge einer Immunantwort zur T-Zellaktivierung lässt sich deren TCR-Repertoire und mögliche klonale

Expansion mittels CDR3-Fragmentlängenanalyse (Spectratyping) abschätzen. 52,56

Abb. 1.3: Schematische Darstellung der Genumlagerung der TCR α - und β -Genloci Schema der V(D)J-Rekombination der TCR α - und β -Genloci und Prozessierung zum $\alpha\beta$ -TCR. Übernommen aus Janeway Immunologie.⁵⁴

1.2.1.1.1 αβ T-Zellen

TCRαβ⁺ Zellen machen mit 95 % den Großteil der zirkulierenden T-Lymphozyten aus. Ihr reifer Phänotyp ist entweder Corezeptor CD4⁺ oder CD8⁺. Haben diese T-Zellen den Thymus verlassen, migrieren Sie als reife, naive Zellen in sekundäre lymphatische Organe. Binden Sie dort mit ihrem TCR an ihr komplementäres durch APC über MHC präsentiertes Antigen und erhalten sie die notwendige CD28 Costimulation, kommt es zur Aktivierung und Differenzierung.

αβ T-Zellen differenzieren zu verschiedenen Subpopulationen unterschiedlicher Effektorzellen aus.

Das zum Zeitpunkt der Aktivierung der naiven T-Zelle vorherrschende Zytokinmillieu gibt vor, entlang welcher Effektorwege sich die T-Zellen differenzieren. Einen dieser Effektorwege eingeschlagen, zeichnet sich die ausdifferenzierte T-Effektor-Zelle durch ein individuelles Profil exprimierter Oberflächenmoleküle und sezernierter Zytokine aus. Innerhalb der CD4⁺ T-Lymphozyten lassen sich die Subpopulationen der T-Helfer-Zellen (T_H), T_H1, T_H2 und T_H17, und regulatorischen T-Zellen (T_{reg}) mit jeweils individuellen Effektorfunktionen unterscheiden. T_H-Zellen werden über an MHC II gebundene Antigene beziehungsweise Antigenfragmente aktiviert.⁵⁷

T_H1-Zellen entstehen, wenn naive T-Lymphozyten in einem Milieu aktiviert werden, in dem IL-12 und IFNγ vorherrschen. Sie wirken als Mediatoren einer zellulär vermittelten Immunantwort und proinflammatorisch. T_H1-Zellen rekrutieren Makrophagen (über CXCL2, TNF α und LT- β), costimulieren diese bei bakteriellen intravesikulären Infektionen über IFNγ und CD40-Ligand oder töten über Fas-Ligand (FasL) oder LT- α (TNF β) chronisch infizierte Makrophagen. Das, durch T_H1-Zellen über den Transkriptionsfaktor T-bet vermittelt, in großen Mengen sezernierte IFNγ (T-bet aktiviert auch die Rezeptorexpression von IL-12) bedingt MHC I- und MHC II-Induktion, NK-Zellaktivierung und T_H2-Zellhemmung und ist in der Lage Virusreplikation zu supprimieren.⁵⁸ B-Zellen werden durch T_H1-Zellen zur Synthese opsonisierender IgGs und zum Klassenwechsel angeregt; dies geschieht allerdings weniger stark als durch T_H2-Zellen. Über IL-2

lösen T_H1-Zellen T-Zellproliferation, über IL-3 und den Granulozyten-Monozyten-Kolonie-stimulierenden Faktor (GM-CSF) gemeinsam mit T_H2-Zellen die Synthese von Monozyten, Granulozyten und dendritischen Zellen (DCs) im Knochenmark aus. Permanente IL-12-Verfügbarkeit begünstigt auch nach primärer Aktivierung eine effiziente T_H1-Antwort über weitere Proliferation und Differenzierung der T_H1-Zellen.^{59,60}

Das Entstehen von T_H2-Zellen wird durch ein IL-4-dominiertes Zytokinmillieu begünstigt. Sie vermitteln eine humorale Immunantwort. Über die GATA-3 aktivierte Sekretion von IL-4, IL-5, IL-9 und IL-13 und das Oberflächenmolekül CD40-Ligand werden B-Zellaktivierung, Isotopenwechsel (IgG und IgE), Hemmung der Makrophagenaktivierung sowie Mastzellwachstum vermittelt.⁶¹ Das durch T_H2-Zellen sezernierte IL-10 blockiert die Zytokinfreisetzung durch Makrophagen und hemmt T_H1-Zellen.⁵⁹

Die jüngst beschriebene Subpopulation der T_H17-Zellen entwickelt sich in der Frühphase einer Infektion aus naiven T-Zellen, gewährleistet das Zytokinmillieu bei Aktivierung eine Stimulation durch IL-6, TGF- β , allerdings nicht IL-12 und IL-4. Sie exprimieren den IL-23-Rezeptor, den Chemokinrezeptor CCR6 und den lineage marker CD161 und sezernieren IL-17 und IL-6, aber kein IFN γ . So stimulieren T_H17-Zellen eine akute Entzündungsreaktion und rekrutieren neutrophile Granulozyten zum Infektfokus. So wie T_H1-Zellen eines permanenten IL-12-Angebots bedürfen, ist für T_H17-Zellen IL-23 erforderlich, welches (gemeinsam mit IL-6 und TGF- β) den Transkriptionsfaktor ROR γ t exprimieren lässt. ROR γ t legt die Diffenzierung der T-Zelle auf die T_H17-Zelllinie fest und induziert CD161-Expression. Schlägt das Zytokinmilleu allerdings in ein IL-12und IFN γ -dominiertes um, kann es zur Repolarisierung naiver T_H17-Zellen in T_H1-Zellen kommen.^{62–65}

Eine weitere Subpopulation der CD4⁺ T-Zellen sind die T_{reg}-Zellen, welche überschießende Immunantworten sowie Autoimmunreaktionen verhindern. Diese subsumieren unter sich die natürlichen regulatorischen T-Zellen und die

heterogene Gruppe der adaptiven regulatorischen T-Zellen. Natürliche T_{reg}-Zellen erfahren schon im Thymus eine Vorprägung. Sie bedürfen zur Ausbildung ihrer Effektorfunktionen eines TGF-β dominierten Zytokinmillieus bei gleichzeitiger Pathogen-, IL-12, IL-6- und IFNy-Abwesenheit. Sie sind CD25⁺, exprimieren den Transkriptionsfaktor Foxp3, und supprimieren die T-Zellantwort über die Sekretion der inhibitorischen Zytokine TGF-β und IL-10 und exprimierte Oberflächenmoleküle. Die adaptiven regulatorischen T-Zellen differenzieren sich in der Peripherie unter Einfluss von IL-10 aus naiven CD4⁺ T-Lymphozyten. Untergruppen der adaptiven T_{reg}-Zellen sind sogenannte T_H3-Zellen sowie T_R1-Zellen. Zuletzt wurden weitere beschrieben, welche über unterschiedliche Mechanismen supprimierende Effektorfunktionen ausüben. T_H3-Zellen sind im Immunsystem der Mucosae zu finden und sezernieren IL-10, IL-4 und TGF-β, worin sie sich von den T_R1-Zellen entscheiden, welche kein IL-4 freisetzen.^{38,66,67}

Naive CD8⁺ T-Lymphozyten entwickeln sich bei Kontakt mit ihrem komplementären an MHC I gebundenen Antigen (Fremd- oder Eigenpeptid) und den nötigen Costimuli zu zytotoxischen T-Zellen (CTLs). Über mehrere Mechanismen sind CTLs effizient in der Lage bei infizierten und entarteten Zellen, sowie zur Beendigung einer Immunantwort bei aktivierten Lymphozyten, die Apoptose herbeizuführen. Auf Grund ihres immensen zytotoxischen Potenzials und zur Vermeidung von Kollateralschäden an körpereigenen Zellen, ist die CTL-Aktivierung aus CD8⁺ T-Zellen komplexer organisiert als die der CD4⁺ T-Zellen. APC selbst können in bestimmten Fällen (z.B. virusinfizierte APC) CD8+ T-Lymphozyten über Costimulation (zur IL-2 vermittelten Autostimulation) aktivieren und ihre Diffenzierung und Proliferation herbeiführen. Häufig aber bedarf es einer zusätzlichen Bindung einer CD4⁺ T-Zellen über ein verwandtes MHC II präsentiertes Antigen an derselben APC um CD8⁺ T-Zellen zu aktivieren. APC werden über das CD40 Signal der CD4⁺-Zelle, stimuliert B7-Moleküle zu exprimieren, welche CD8⁺ direkt costimulieren. Auch die zusätzliche IL-2-Sekretion der CD4⁺ T-Zellen trägt zur Aktivierung der CD8⁺ T-Zellen bei.⁶⁸ Kommt es zur Aktivierung und Ausdifferenzierung einer CTL, sind ihre vielfältigen zytotoxischen Effektorfunktionen auf Grund präformierter zytotoxischer Granula

schnell verfügbar. Diese Granula beinhalten Perforin, Granzyme und Granulysin. Perforin scheint, nicht wie angenommen durch Porenbildung, sondern durch Komplexbildung die Zellmembran für Granzyme durchgängig zu machen, welche über Caspasen-Aktivierung Apoptose zu induzieren. Weitere Möglichkeiten der CTL Apoptose in Zielzellen auszulösen besteht, wie schon bei den T_H1-Zellen beschrieben, in der Expression des Fas-Liganden. LT- α , TNF- α , können über den Tumornekrosefaktor-Rezeptor Typ 1 (TNFR-1) auf der Zielzelle apoptotisch wirken. Das CTL-sezernierte IFN γ hemmt Virusreplikation und rekrutiert und aktiviert gemeinsam mit TNF- α Makrophagen.^{69–71}

T-Effektorzellen der CD4⁺- wie auch der CD8⁺-Subpopulationen können Gedächtniszellen (mermory cells) bilden: sogenannte CCR7⁻ Effektor-Gedächtniszellen (T_{EM}). Im lymphatischen System ohne Antigenkontakt differenzierte CCR7⁺ Gedächtniszellen werden zentrale Gedächtniszellen (T_{CM}) genannt. Beide Gruppen von Gedächtniszellen sind in sich in Bezug auf exprimierte Oberflächemmoleküle heterogen. Wobei T_{CM} weder der T_H1- oder T_H2-Linie zugeordnet werden. entsprechen CCR5⁺ Тем in ihrem Chemokinrezeptorrepertoire TH1-Zellen, CCR4⁺ TEM den TH2-Zellen. Haben sich nach primärer adaptiver Immunantwort gegen ein bestimmtes Antigen TEM gebildet (Immunität des Organismus), werden diese im Falle der sekundären oder weiteren Reaktion schnell reaktiviert, differenzieren und proliferieren erneut zu Effektorzellen und sezernieren IFNy, IL-4 und IL-5. Es kommt zu keiner erneuten Aktivierung naiver T-Lymphozyten.^{38,72}

Wie oben beschrieben interagieren T-Zellen auf unterschiedliche Weise mit Makrophagen. Auch für deren Aktivierung und Ausdifferenzierung sind das vorherschende Zytokinmillieu und die dominierende Effektorzellen entscheidend. Myeloide Vorläufer, die Monozyten, wandern in periphere Gewebe ein und differenzieren dort zu Makrophagen aus. In ihrer Effektorfunktion setzen sie sich mit Pathogenen auseinander, modulieren als APC die adaptive Immunantwort, regulieren die Entzündungsreaktion und tragen zur Wundheilung bei ^{73,74}. Nach dem klassischen Paradigma lassen sich zwei Makrophagen-Phänotypen

mit weiteren Subpopulationen unterscheiden: M1 und M2.75

Dominieren IFNγ, Lipopolysachharide (LPS) und GM-CSF, polarisieren diese Makrophagen in Richtung des M1-Phänotyps. M1-Makrophagen sezernieren II-1-beta, TNF-α, IL-12, IL-18 und IL-23 und begünstigen so eine proinflammatorische T_H1-Immunantwort. ⁷³

Die Polarisierung in Richtung des M2-Phänotyps kann in mehreren Immunkontexten ausgelöst werden und produziert eine Vielzahl heterogener M2-Untergruppen.⁷⁶ Auslösend für eine Aktivierung können Parasiten- oder Pilzinfektionen, der macrophage colony stimulating factor (MCSF), IL-4, IL-6, IL-10, IL-13 oder IL-1R sein. Typische Effektormoleküle von M2-Makrophagen sind IL-10 und TGFβ. So wird dieser Makrophagesubpopulation ein antiinflammatorischer Einfluss in Richtung einer TH2-Immunantwort zugeschrieben.⁷⁷ Neben Wundheilung und der Vermittlung allergischer Inflammation konnte auch gezeigt werden, dass M2-Makrophagen als Reservoir für bestimmte phagocytierte Pathogene fungieren und Tumorwachstum unterstützen. ^{76,78}

Zuletzt konnte gezeigt werden, dass Makrophagen *in vitro* dazu fähig sind ihre Polarisierung umzukehren und abhängig vom vorherrschenden Millieu zu M1oder M2-Makrophagen zu repolarisieren. ⁷⁹ Das bipolare Modell bildet vermutlich nicht die eigentliche Vielfalt des Differenzierungsspektrums der Makrophagen ab. ^{74,80}

Handelt es sich beim vorherrschenden Millieu um einen soliden Tumor, können infiltrierende Ly-6C^{high} Monozyten zu sogenannten Tumor assoziierten ausdifferenzieren.⁸¹ TAMs Makrophagen (TAM) subsumieren mehrere heterogene Makrophagensubpopulationen unter sich, wobei diese sich entsprechend des Zytokinprofils des tumor microenvironments differenzieren und sowohl einen M1- also auch M2-ähnlichen Phänotyp annehmen können.⁸² M2ähnliche TAMs vermitteln Tumorangiogenese, Stromastrukturierung und Immunsupression und sind mit einer schlechten Prognose assoziiert. 83 Gelingt es, TAMs vorwiegend in Richtung des M1-ähnlichen Phänotyps zu (re-)polarisieren, ist dies mit einer besseren Prognose verbunden. M1-Makrophagen vermitteln eine tumorgerichtete TH1-Immunantwort und bedingen Tumorabstoßung.84

1.2.1.1.2 γδ T-Zellen

 $\gamma\delta$ T-Zellen unterscheiden sich phänotypisch (überwiegend CD4⁻ und CD8⁻ doppelt negative, nur 20 % der Fälle CD8⁺ Corezeptorexpression, Spezifität der TCRs ist weitgehend invariant durch idente TCRs, und erkennen stressregulierte Selbstantigene), in ihrem anatomischen Einsatzort sowie in ihrer Funktion von $\alpha\beta$ T-Zellen. Etwa 1-10 % der im peripheren Blut detektierbaren CD3⁺ Zellen sind $\gamma\delta$ T-Zellen. Die bisher bekannten Aufgabenfelder dieser T-Zelllinie liegen in der Immunregulation, Wundheilung, Tumorüberwachung und der Kommunikation zwischen angeborener (innate Immunity) und adaptiver Immunantwort (adaptive Immunity) als Innate like Lymphocytes (ILL). ^{38,85,86}

Neben der in Kapitel 1.2.2.1 und Abb.1.2 gezeigten thymischen Entwicklung der $\gamma\delta$ T-Zellen wird eine intraepitheliale Entwicklung diskutiert. Hämatopoetische Vorläufer würden demnach direkt im mucosa-assoziierten lymphatischen System in crypto patches einwandern und dort zu TCRV_{δ}1⁺ intraepithelialen Lymphozyten (IELs) reifen. ⁸⁵

TCRγδ⁺ T-Zellen sind im Gegensatz zu TCRαβ⁺ Zellen nicht MHC-restringiert und weisen hauptsächlich einen CD4⁻/CD8⁻, doppelt negativen, Phänotyp auf, wobei eine geringe Fraktion der Zellen CD4⁺ oder CD8⁺ ist. In Bezug auf die Spezifität der γδ-TCR und die anatomische Nische lassen sich drei Subpopulationen innerhalb γδ T-Zellen unterscheiden: eine in der Peripherie zirkulierende Gruppe, welche TCRV_y9 und TCRV_δ2 koexprimiert, eine Gruppe welche intraepithelial angesiedelt ist und TCRV_δ1 mit einer variablen TCRV_y-Kette koexprimiert, und eine Gruppe, welche in der Leber und bei chronischen viralen Infekten vermehrt im Blut zu detektieren ist. Diese Gruppe bildet einen TCR aus einer TCRV_δ3-Kette mit einer variablen TCRV_y-Kette.^{85,87} Trotz der geringeren Anzahl rekombinierbarer Segmente im TCRγ- und TCRδ-Genlocus im Vergleich zu TCRαβ⁺ Zellen ist vorallem bei der Gruppe V_y9/V_δ2 T-Lymphozyten eine hohe Rezeptordiversität zu finden. Dies ist durch die große junktionale Variabilität dieser Loci zu erklären. (s. 1.2.2.1)

Die Effektorfunktionen der $\gamma\delta$ T-Zellen sind sehr heterogen. In puncto

Zytokinresektion, zytotoxischem Potential und Immunregulation ähneln diese den $\alpha\beta$ T-Zellen. Sowohl ein proinflammatorisches T_H1-Zellen-assoziiertes Zytokinprofil (IFN γ und TNF α) als auch ein T_H2-Zellen-assoziiertes (IL-2, IL-4, IL-5, IL-10) sind möglich.^{88,89} In der Frühphase nach der Aktivierung werden vorallem die proinflammatorischen und Makrophagen-rekrutierenden Zytokine IFN γ und TNF α sezerniert. ⁸⁶

Vy9/Vs2 T-Lymphozyten werden bei bakteriellen, viralen und parasitären Infektionen aktiviert. Sie exprimieren die Chemokinrezreptoren CCR1 und CCR5 und können so schnell zum Infektionsort rekrutiert werden. Zusätzlich sind sie selbst dazu in der Lage, Chemokine wie RANTES und macrophage inflammatory 90,91 (MIP) sezernieren. $V_v 9/V_{\delta} 2$ **T-Zellen** protein zu können Perforin/Granzym-abhängig Apoptose induzieren, triggern die DC-Reifung, rekrutieren Makrophagen und unterstützen die B-Zell-Differenzierung und Isotopenwechsel. Wie auch V $_{\delta}1$ T-Zellen exprimieren V $_{v}9/V_{\delta}2$ T-Lymphozyten den Fas-Liganden und können so Zielzellen lysieren.^{85,92} Weiterhin sind Vy9/V₀2 T-Lymphozyten dazu in der Lage, als professionelle APC CD4⁺ oder CD8⁺ αβ T-Zellen zu stimulieren. Nach Aktivierung und Entwicklung entlang dieses Effektorweges können sie Antigene prozessieren und präsentieren und exprimieren APC-ähnliche Muster costimulierender Oberflächenmoleküle (HLA-DR⁺ (ein MHC II- Rezeptor), CD40⁺, CD80⁺, CD86⁺). ^{93–95}

Die Effektorfunktionen der TCRV_δ1-Subpopulation, Großteil der intraepitheliale Lymphozyten (IEL), liegen vor allem in der Regulation der Epithelhomöostase. Wundheilung und Fibrogenese werden über die Sekretion von keratinocyte growth factor (KGF), Insuline-like growth facor 1 (IGF-1), Fibroblast growth factor 9 (FGF-9) und connective tissue growth factor (CTGF) vermittelt. Maligne oder infizierte Epithelzellen, welche Selbst- oder Fremd-Antigen präsentieren, werden durch IEL detektiert und Perforin/Granzym-abhängig oder über den Fas-Liganden vernichtet. Über die Sekretion von antimicrobial peptides (AMP) sind IEL antimikrobiell wirksam, können über den Chemokinrezeptor CCR6 chemotaktisch zu einem Infektfokus rekrutiert werden und wirken über die Sekretion von TGF-β immunregulatorisch. ^{96,97}

Kommt es zur Aktivierung von V_δ3 T-Zellen, können diese HLA-DR, CD56,

CD161 und NKG2D exprimieren. Unter IL-2 Stimulation sind sie in der Lage T_H1, T_H2 und T_H17 ähnliche Zytokinprofile zu sezernieren und APC-Zellen zu stimulieren. 85,87

Da TCR $\gamma\delta^+$ T-Zellen nicht wie TCR $\alpha\beta^+$ Zellen MHC-restringiert mit Corezeptor CD4 (MHC II) oder CD8 (MHC I) Antigene binden, werden mehrere MHCunabhängige Wege der Antigenerkennung diskutiert.

So erkennen $V_{v}9/V_{\delta}2$ T-Zellen Phosphoantigene, Metabolite des Mevalonat-Stoffwechsels pathogener Bakterien, jedoch nicht direkt sondern durch phosphoantigenmediierte Konformationsänderung der Liganden BTN3A1. 98 V₅1-T-Zellen können MHC I verwandte Moleküle (MICA/MICB) binden, welche stressinduziert von Epithelzellen exprimiert werden. MICA ist auch Ligand des auf NK-Zellen, γδ T-Zellen und αβ T-Zellen zu findenden aktivierenden NKG2D-Rezeptors. NKG2D-Liganden wie MICA und das ebenfalls MHC I verwandte UL16-Binding Protein (ULBP) werden häufig auf neoplastischen Zellen exprimiert, was den NKG2D-Rezeptor zu einem wichtigen Wekzeug zur Tumorerkennung und -kontrolle macht. Auch CD1-Antigene und Hitzeschokproteine (HSP) können von γδ T-Zellen erkannt werden.99 92(p1),100,101,102(p2),103

Insgesamt scheint die Antigenerkennung durch γδ T-Zellen damit polyspezifisch zu sein, maßgeblich durch Erkennung von stressregulierten Selbstantigenen geprägt und vom Charakter her eher regulierend im Bezug auf Induktion und Gestaltung der adaptiven Immunantwort.^{58 99}

Das Potenzial der γδ T-Zelllinie in der Tumorüberwachung konnte in mehreren Kontexten gezeigt werden. So wirken γδ T-Zellen *in vitro* zytotoxisch gegenüber Kolon-, Nierenzell- und Pankreaskarzinomen sowie auch bei Plasmozytomen, Lymphomen, Leukämien und dem Neuroblastom. ^{104 105–107}

Nach Pamidronatgabe konnte auch bei bestimmten Osteosarkom- und Myelomlinien sowie bei Lungen-, Blasen- und Nierentumoren $\gamma\delta$ T-Zell induzierte Zytotoxizität festgestellt werden.¹⁰⁸

γδ T-Zellen sezernieren eine Vielzahl an Zytokinen und exprimieren

Oberflächenmoleküle, welche auf den Tumor und sein Microenvironment einwirken. ¹⁰⁹ IFNγ nimmt dabei eine zentrale Rolle ein, indem es neben der Makrophagenrekrutierung und –aktivierung Tumorzellen direkt in ihrem Wachstum hemmt und deren Angiogenese behindert. ⁸⁵

1.2.1.2 NK-Zellen, ihre Entwicklung und Funktion

NK-Zellen bilden keine durch Genumlagerung entstandenen antigenspezifischen Rezeptoren wie die T- und B-Lymphozyten und werden deshalb dem angeborenen Immunsystem zugeordnet. Hier aber nehmen sie eine differenzierte Position mit elaborierten Erkennungsmechanismen von Fremd und Eigen ein.^{110–112} Wenn auch phylogenetisch älter und vermeintlich rudimentärer als T- und B-Zellen, sind NK-Zellen entscheidend an der immunologischen Kontrolle von Infektionen und Neoplasien beteiligt.^{113,114} Nach Aktivierung sezernieren NK-Zellen innerhalb kurzer Zeit große Mengen IFNγ und lysieren entartete oder infizierte Zellen, ähnlich den CD8⁺ CTL, über die Freisetzung zytotoxischer Granula.

NK-Zellen entwickeln sich von der CD34⁺ HSC ausgehend über einen gemeinsamen Progenitor mit T-, B-Zellen und DCs, dem CLP, zur reifen NK-Zelle. ¹¹⁵ (s. 1.2.1) Neben dem Knochenmark scheinen auch sekundäre lymphatische Organe wie das gut associated lymphatic tissue (GALT) Stationen des Reifungsprozess der NK-Zellen zu sein.¹¹⁶

NK-Zellen präsentieren sich in zwei wesentlichen phänotyptischen Subpopulationen. CD56^{bright} Zellen mit der Fähigkeit zur Zytokinsektretion, nicht aber zur Zytolyse, machen in sekundären lymphatischen Geweben (SLT) den Großteil der NK-Zellen aus. Im Blut sind vor allem CD56^{dim} Zellen zu finden, welche auch zur spontanen Zytolyse von Zielzellen in der Lage sind. Es wird diskutiert, ob sich CD56^{bright} NK-Zellen in SLT zu CD56^{dim} ausdifferenzieren. ^{117,118(p56)}

Der phänotypische Prototyp der NK-Zellen ist CD3^{neg}CD56⁺ NKp46⁺. Wie bei den T-Zellen sind verschiedene phänotypische und funktionelle Ausdifferenzierungen

möglich, wie unter anderem an CD56- und CD16-Expression zu sehen. ^{113,119}

Um aktiviert zu werden, benötigen die NK-Zellen ein Zytokinmillieu dominiert durch Interferone und Zytokine der Makrophagen (IFNα, IFNβ und den NK-Zell aktivierenden Faktor IL-12). Ist IL-12 permanent verfügbar, fällt die NK-Zell-Antwort um ein vielfaches verstärkt aus. Um große Mengen IFNγ sezernieren zu können, bedarf es der Stimulation der CD56^{bright} NK-Zelle durch IL-12 in Kombination mit einem weiteren Stimulus wie IL-2, IL-15 oder IL-18 oder über einen aktivierenden NK-Zell-Rezeptor wie NKG2D. Ähnlich den Aktivierungsmechanismen der CTLs, müssen mehrere Bedingungen erfüllt sein, damit eine CD56^{dim} NK-Zelle ihr immenses zytotoxisches Potential ausüben kann. Neben der Abwesenheit inhibierender MHC I-Moleküle, ist das Gesamtequilibrium aktivierender und inhibierender Signale an einer NK-Zelle für ihre Aktivierung entscheidend. ^{113,120,121}

Diese Signale werden über verschiedene Rezeptoren heterogener Gruppen transduziert. Innerhalb dieser Gruppen gibt es sowohl inhibitorische als auch aktivierende Rezeptoren, wobei das Zusammenspiel aller noch nicht verstanden worden ist.

Zur Erkennung von untypischen MHC Ib-Komplexen (HLA-E) nutzt die NK-Zelle ein Heterodimer aus CD94 und einem NKG2-Molekül. Diese beiden entstammen dem sogenannten NK-Rezeptorkomplex (NKC) Gencluster, welcher Gene für sogenannte Killerzellen-lektinähnliche-Rezeptoren (KLR) beinhaltet. Zu den KLR wird auch der aktivierende Rezeptor NKR-P1A (CD161) gezählt. Im zweiten großen Cluster, dem Leukozytenrezeptorenkomplex (LRC), liegen unter anderem Gene für die Killerzellen-immunglobulinähnlichen-Rezeptoren (KIR), welche typische MHC Ia-Komplexe (HLA-A, HLA-B, HLA-C) erkennen, und solche für den natürlichen Zytotoxizitätsrezeptor (NCR) NKp46. Die weiteren NCR-Gene NKp30 und NKp44 sind im HLA-Komplex codiert. Das aktivierende Molekül DNAM-1 (CD226) gehört wie auch die KIR zur Immunglobulin-Superfamilie.^{38,122} Wichtige inhibierende Rezeptoren sind die MHC Ia und MHC Ib erkennenden KIR-DL-Rezeptoren und die Heterodimere CD94/NKG2A oder CD94/NKG2C, welche bei Bindung eine Aktivierung der NK-Zelle verhindern.¹²³

Nach der missing-self theory, werden NK-Zellen, dann aktiviert, wenn Zielzellen nicht mehr in der Lage sind, durch Infektion oder Entartung, die Liganden für diese inhibierenden Rezeptoren zu exprimieren. Ergänzend erläutert die induced-self theory, dass beschädigte Zellen Liganden exprimieren, welche von aktivierenden Rezeptoren der NK-Zellen erkannt werden.^{113,121,124,125} Letztlich entscheidend für die NK-Zell-Aktivierung oder –Inhibierung ist das Gleichgewicht aktivierender und inhibierender Signale.¹²⁶

Wichtige aktivierende NK-Zell-Rezeptoren sind die NCRs NKp30, NKp44 und NKp46, sowie die KLR NKG2D und NKG2E.¹²⁷ Während die Liganden für die NCR weitestgehend unbekannt sind, bindet der auch auf Makrophagen und γδ T-Zellen sowie CTL vorhandene NKG2D stressinduziert exprimierte MHC I-ähnliche Moleküle.¹⁰³ (s.1.2.2.1.2). CD226 vermittelt nach Bindung von CD112 oder CD155 ein aktivierendes Signal¹²⁸. CD16, ein in großem Maße auf CD56^{dim} NK-Zellen exprimierter FcIIIa-Rezeptor, bindet den Fc-Teil obsonisierender IgG-Antikörper.¹²⁹ Ein weiterer aktivierender NK-Zell-Rezeptor ist der NKR-P1A (CD161) aus der Gruppe der KLR, welcher an zelleigene non-MHC Moleküle (Lectin-like transcript 1, LLT-1) bindet. Er scheint für die Aktivierung und Induktion von NK-Zell-Zytotoxizität eine Rolle zu spielen. ^{123,130} NKR-P1A findet sich als lineage-marker auch auf TH17-Lymphozyten.⁶⁵

Sind NK-Zellen einmal aktiviert, sind sie innerhalb von Minuten dazu in der Lage, massiv zur Immunantwort beizutragen. Weder Vorstimulation noch Proliferation sind nötig, damit NK-Zellen ihre zytolytische und immunmodulatorische Wirkung entfalten können. Effektormoleküle sind in präformierten Vesikeln gespeichert (Ready-to-go-state). ¹²⁶

Ihre zytolytische Effektorfunktion üben NK-Zellen, ähnlich den CD8⁺ CTLs, über Freisetzung von Granzym und Perforin enthaltende Granula sowie über die Expression des Fas-Liganden aus. Immunmodulatorisch wirken aktivierte NK-Zellen über die schnelle Sekretion großer Mengen IFNγ, welches in der Lage ist das Immunsystem in Richtung einer proinflammatorischen T_H1-Antwort zu polarisieren. Zu dieser Polarisierung trägt bei, dass aktivierte CXCR3⁺ NK-Zellen in Lymphknoten einwandern und so über IFNγ-Sekretion das Priming von T_H1-Lymphozyten begünstigen. T_H1-Zellen wiederum rekrutieren und aktivieren

Makrophagen über Sekretion von GM-CSF und TNF- α . IFN γ sorgt außerdem für die Hochregulation von MHC I und MHC II, was nicht-beschädigte Zellen vor der NK-Zell vermittelten Zytolyse schützt. ^{38,114,120,131} Insgesamt überbrücken die NK-Zellen innate und adaptive Immunantwort, indem sie früh und polyspezifisch aktiviert werden können, das Immunsystem in Richtung T_H1-Antwort polarisieren und komplementär zu den CTL die Zellen lysieren, welche keine MHC-I-Moleküle exprimieren. ¹¹³

Wenn auch derzeit noch nicht ausreichend verstanden, bieten NK-Zellen über ihre polyspezifischen Erkennungsmechanismen ein großes Potential zur Tumorüberwachung und –kontrolle sowie für das Verständnis von Tumorevasion. So konnte gezeigt werden, dass chemisch induzierte Fibrosarkome unter IL-12 Therapie über den NKG2D-Pathway verhindert werden können und, dass im weiteren Verlauf dieses Pathways TNF α und IFN γ eine wichtige Rolle spielen. ^{113,132} Dass NKG2D eine wichtige Rolle in der Tumorüberwachung einnimmt, lässt sich auch an der Vielfalt der Mechanismen erkennen, mit denen Tumore der Erkennung durch NKG2D zu entgehen versuchen. So setzt ein Mechanismus der Immunescape die Immunantwort über zwei Pathways herab: Epitheliale Tumore sind dazu fähig mit MICA/MICB

NKG2D-Liganden zu sezernieren (sogenanntes Antigenshedding). Einerseits kommt es so zu einer Herunterregulation der NKG2D-Expression durch adaptive T-Zellen und innate NK-Zellen, welche diese tumorsezernierten Antigene binden. Anderseits stimulieren die sezernierten NKG2D-Liganden NKG2D⁺ immunsupprimierende T-Zellen, welche die Immunantwort über TGF-β-Sekretion eindämmen.^{113,133,134(p30)}

Auch über CD226 vermittelte Adhäsion und Aktivierung konnte in *vitro* bei mehreren Tumorzelllinien (metastasiertes Neuroblastom, hämatopetische und epitheliale Tumorentitäten) NK-Zell und CTL vermittelt Tumorkontrolle über Zytolyse erreicht werden.^{135–138} Nachdem der murine CD226-Ligand (Tage-4) gefunden worden war, konnte auch *in vivo* CD226 vermittelte Tumorabstoßung gezeigt werden, sofern die Tumorzellen Tage-4⁺ waren. ^{135,139}

Eine weitere antitumoröse Wirkung der NK-Zellen wird über deren Oberflächenmarker CD16 vermittelt. Bindet CD16 an den F_c-Teil eines tumorzell-

opsonisierenden Antikörpers kommt es zur Perforin/Granzym abhängigen sogenannten antibody-dependet cellular cytotoxicity (ADCC). Es konnte gezeigt werden, dass NK-Zell-vermittelte ADCC eine wichtige Komponente der *in vivo* Antitumoraktivität gegen Rituximab- und Trastuzumabbehandelte Lymphom- und Mammakarzinomzellen ist.^{129,131}

Die Rolle der NK-Zellen als Antitumor-Effektorzellen konnte eindrücklich durch Velardi et al gezeigt werden.¹⁴⁰ So wurden nach vorangegangenen Experimenten in murinen Modellen Patienten mit Akuter Myeloischer Leukämie (AML) bewusst mit haploidenten T-Zell-depletierten Stammzellen transplantiert. Es konnte ein für das Patientenüberleben signifikanter NK-Zell vermittelter Graft-versus-Leukämie-Effekt festgestellt werden.¹⁴⁰ Zurückgeführt wurde dieser auf das Missmatch der Empfänger-MHC I-Moleküle und des Spenders inhibtorischer KIRs.¹⁴¹ Wie oben besprochen waren an diesen Prozessen notwendigerweise auch NCR, NKG2D und weitere aktivierende Rezeptoren beteiligt.^{121,142} Interessanterweise wurden bei diesen Fällen kaum oder keine Graft-versus-Host-Diseases (GVHD) festgestellt, was neben der geringen transplantierten T-Zell-Menge unter anderem durch die Tötung der Empfänger DCs durch Donatoren-NK-Zellen das ausbleibende T-Zell-Priming begründet werden kann.¹⁴³

1.2.2 Tumorimmunologie und Krebsimmuntherapie

Das Immunsystem ist eine gut organisierte Kriegsmaschine, die wie oben beschrieben über eine Vielzahl von angeborenen und adaptiven Mechanismen dazu in der Lage ist, neben Pathogeneradizierung auch Tumorabstoßung und -regression zu vermitteln.¹⁴⁴ Können Tumorzellen diesen Mechanismen über Immunoediting entgehen, kann der Tumor nicht mehr kontrolliert werden. Ein zunehmend besseres Verständnis dieser Evasionsstrategien und molekularbiologische Techniken haben zur Entwicklung aussichtsreicher multimodaler Krebsimmuntherapien geführt.

Das erste Konzept zum Verständnis der Immunogenität von Tumoren und der

Antitumorwirkung des Immunsystems war die Immunsurveillance-Hypothese nach Burnet und Thomas.145,146 Es gelang jedoch nicht diese Hypothese mit Daten zu untermauern. Das Gebiet wurde zunächst verlassen. Später zeigten Versuche mit Knock-out-Mäusen jedoch, dass ein Wirt mit defizienten NK-Zellen, $\alpha\beta$ oder $\gamma\delta$ T-Zellen, IL-12, Perforin oder IFN γ eine höhere Anfälligkeit zeigt, Tumore zu entwickeln.^{147–150} Das Modell der Immunosurveillance wurde wieder aufaeariffen und konnte über Erkenntnisse aus Studien mit nach Transplantationen immunsuprimmierten Patienten auf den Menschen übertragen werden.¹⁵¹ Im Wissen, dass sich Tumore trotz Immunosurveillance auch in immunkompetenten Individuen bilden, wurde das Konzept um die sogenannten "Three Es" des Immunoediting erweitert (Elimination, Equilibrium und Escape). Tumore und Immunsystem prägen einander. Das Immunsystem detektiert und zerstört Tumorzellen, die Tumorantigene präsentieren (Elimination). Selektionsdruck und genetische Instabilität lassen Tumorzellen entstehen und überleben, die nicht detektierbar sind, das Immunsystem supprimmieren oder andere Wege finden, dem Immunsystem zu entgehen (Equilibrium). Die Tumorimmunogenität nimmt ab. Die Evasionsmechanismen des Tumors nehmen zu. Der so durch das Immunsystem geformte Tumor (und vice versa) kann nicht mehr kontrolliert werden und breitet sich aus (Escape). ^{145,152} (s. Abbildung 1.4)

Diese Vorgänge laufen ab im Tumormicroenvironment (TME) bestehend aus Tumorzellen, Immunzellen, Gefäßen, Fibroblasten, Extrazellularmatrix (EZM) und Signalmolekülen. Das tumorinfiltrierende Immunkompartiment wird Immuncontexture genannt und ist charakterisiert durch dessen Lokalisation, Dichte, Organisation und funktionelle Orientierung.¹⁵³ Die Zusammensetzung von intratumoralen Immunkompartiment und TME sind von entscheidender Bedeutung für das klinische Outcome des Tumorpatienten. Sie bieten Angriffspunkte und Marker für eine effiziente multimodale Krebsimmuntherapie. ¹⁵⁴ So konnte durch Galon gezeigt werden, dass die Präsenz von Markern einer T_H1-Polarisierung (z.B. IFNy und T-bet) und CTLs im tumorinfiltrierenden Immunkompartiment statistisch mit einer besseren Prognose für Patienten mit kolerektalem Karzinom (CRC) korreliert sind. Im Vergleich zur UICC-TNM-

Klassifikation für das CRC wiesen Typ, Dichte und Lokalisation von Immunzellen höheren prognostischen Wert auf, was die einen Forderung nach Implementierung des Immunoscores als Teil des Tumorstagings nach sich zog. ^{24,154,155} Fridman et al. konnten diese Erkenntnisse auf Tumore weiterer Entitäten Ovarien, Brust, (u.a. der Blase, Prostata und übertragen der Kopf-Hals-Region).154

Während der Karzinogenese durchläuft das tumorinfiltrierende Immunkompartiment durch Immunoediting eine Veränderung – von einer tumorverhindernden zu einer tumorfördernden Wirkung.¹⁵⁶

In der prämalignen Phase eines Tumors dominiert eine TH1-polarisierte proinflammatorische Immunantwort. Angeborene und adaptive Mechanismen kontrollieren gemeinsam den Tumor. Tumorantigene induzieren klonale Expansion der CD4⁺ und CD8⁺ T-Zellen, Stresssignale (z.B. MICA, MICB) entarteter Zellen aktivieren Zellen der angeborenen Immunität wie NK-Zellen über NKG2D und es finden sich infiltrierende γδ T-Zellen. Tumorzellen werden über IFNy und TNF- α in ihrem Zellzyklus arrettiert und über CTLs lysiert. Deren Sekretion wird über das vorherschende IL-12 vermittelt, welches von M1-Makrophagen sezerniert wird.^{24,144,157} CTLs werden als Haupt-Antitumor Immmunzelle angesehen, vor allem wenn sie mit hoher Affinität MHC I-präsentierte Tumorantigene erkennen und Tumorzellen über Perforin und Granzym B lysieren können.^{155,158,159} Jenseits dieser rabiaten Methode liegt die Antitumorrelevanz der CD4⁺ T_H1-Zelle in ihrer Fähigkeit, IFNγ und TNFα vermittelt Zellzykklusarrest und Seneszenz in Tumorzellen zu induzieren.^{21,160–163} (s. Abb 1.4) T-Zell-Priming und -Differenzierung finden nach Fridman et al. in lokalen Lymphknoten und den Tertiary lymphoid structures (TLS) des TME statt. Die Dichte der TLS und darin vorhandene reife DCs sind mit einer guten Prognose in NSCLC assoziiert.^{24,164} Können in dieser Phase nicht alle neoplastischen Zellen eliminiert werden, stellt sich die Phase des Equilibirums ein. Vor allem die Zellen der adaptiven Immunität (CD4⁺, CD8⁺) und Zytokine wie IL-12 und IFNy halten den Tumor in Schach, liefern gleichzeitig aber den Selektionsdruck, welcher bei zunehmender genetischer Instabilität Tumorzellen
entstehen und überleben lässt, die nicht mehr kontrolliert werden können und immunevasiv werden.^{144,165} (s. Abbildung 1.4) Der Tumor entzieht sich über mannigfaltige Escapemechanismen dem Kontrollapparat Immunsystem und beginnt diesen für sich selbst zu nutzen (hijacking of host physiological processes).^{145,155,166,167} (s.Abb 1.4 und 1.5)

Der Übergang eines prämalignen in-situ Tumors hin zum invasiven Wachstum ist gekennzeichnet durch den Switch von einer T_H1/M1-dominierten zu einer nicht-T_H1-geprägten (meist durch T_H2) und von M2-Makrophagen beeinflussten Immunlandschaft im TME. Das lokale Zytokinmilleu verschiebt sich. Zytotoxische Antitumoraktivität vermittelnde Zytokine wie IL-12, IFNγ und TNF- α nehmen ab, immunsupprimierende und tumorfördernde wie IL-1, IL-4, IL-6, IL-10, IL.13 TGF-B, Indolamin-2,3-Dioxygenase (IDO), VEGF nehmen zu. (s.Abb 1.4 und 1.5A) An diesem Switch scheint wesentlich die durch den Tumor an sich oder externe Faktoren (virale Infektion, z.B. EBV) verursachte chronische Inflammation beteiligt zu sein, welche das intratumorale Immunkompartiment hin zur Vermittlung von Gewebehomöostase und in eine das Tumorwachstum fördernde Richtung polarisiert. ^{24,155,156,168–170}

Es entstehen und überleben Tumorzellen mit geringer Immunogenität (Verlust von MHC-Molekülen und Tumorantigenen). Tumorzytokine rekrutieren supprimmierende myeloide Zellen (MDSCs) und T_{reg} in das TME. Tumorzellen exprimieren Liganden für supprimierende T-Zell-Rezeptoren PD-1 und CTLA-4. NK-Zellen werden anerg durch Herunterregulation aktivierender Rezeptoren wie NKp30 und CD226. VEGF vermittelt Tumorangiogenese und im Zusammenspiel mit IL-6 Inhibition der DC-Reifung sowie Beförderung der Makrophagenreifung (M2-Phänotyp) aus Monozyten. ^{24,144,171–175}

Einleitung

Abb. 1.4: Cancer Immunoediting

Exemplarische Darstellung des sich während der Karzinogenese verändernden tumorinfiltrierende Immunkompartiment. CTLA-4: cytotoxic T-lymphocyte-associated Protein 4, IDO: Indolamin-2,3-Dioxygenase, MDSC: Myeloid-derived Suppressor Cells, PD-1: Programmed cell death protein 1, TRAIL: TNF Related Apoptosis Inducing Ligand. Adaptiert nach Schreiber et al.¹⁴⁴

Die beschriebenen Mechanismen und Abläufe im intratumoralen Immunkompartiment unterliegen nicht unbedingt diesem monodirektionalen Verlauf. In Abhängigkeit von Tumorentität, Immunstatus und externen Faktoren, wie auch Immuntherapien, findet stets ein Feintuning des intratumoralen Immunkompartiments statt, welches das Tumorwachstum sowol befördern als auch zur Tumorkontrolle oder –eliminerung bedingen kann.¹⁴⁴

Einleitung

Die Kenntnis über Beschaffenheit und prognostischen Wert des tumorinfiltrierenden Immunkompartiments zeigen viele potenzielle Ansatzpunkte für Krebsimmuntherapien auf, wie in der zyklischen Darstellung zur Tumorimmunität nach Chen et al zu sehen.¹⁷⁶ (s.Abb 1.5 A und B). So haben sich mehrere neuartige Immuntherapien etablieren können, andere zeigen in vivo vielversprechende Resultate: beispielsweise Monoklonale Tumor-Antikörper wie der CD20-Antikörper Rituximab oder der ERBB2-Antikörper Trastuzumab; ebenso der VEGF Antikörper Bevacizumab. Zytokin-therapien mit IL-2 oder IL-12. T-Zell orientierte Therapien mit adoptivem Zelltransfer von mit Chimeric Antigen Receptors (CAR) ausgestatteten autologen T-Zellen oder Krebsimpfstoffe wie das MAGE-A3-Vaxin. Oder aber auch die für die Melanomtherapie zugelassenen Checkpointinhibitoren, die auf PD-1 (Ipilimumab) und CTLA-4 (Nivolumab) abzielen. 12,21,177-182 Eine weitere Heraufregulation onkolytisch und durch von MHC I-Molekülen T-Zell stimulierende Therapie metastasierter Melanome ist die gezielte Infektion der Tumorzellen durch ein modifiziertes Herpes-simplex-virus Typ 1 (Tamilogen laherparepvec). ¹⁸³ (s. Abb. 1.5 B)

(A) Entstehung von Antitumor-Immunität und diese stimulierende (grün) und inhibierende (rot) Faktoren im TME. (B) Ansatzpunkte immuntherapeutisch Antitumor-Immunität zu stimulieren. CDN: cyclic dinucleotide, HMGB1: high-mobility group protein B1, TLR: Toll-like receptor, HVEM: herpes virus entry mediator, GITR: glucocorticoid-induced TNFR family-related gene, CXCL/CCL: chemokine motif ligands, LFA1: lymphocyte function-associated antigen-1, ICAM1: intracellular adhesion molecule 1, BTLA: B and T-lymphocyte attenuator, VISTA: V-domain Ig suppressor of T cell activation, LAG-3: lymphocyte-activation gene 3 protein: MIC: MHC class I polypeptide-related sequence protein, TIM-3: T cell immunoglobulin domain and mucin domain-3. Übernommen nach Chen und Mellmann.¹⁷⁶

Abb. 1.6: Exemplarische langfristige Tumortherapie Tx: Therapie, ICB: Immune

checkpointblockade. Übernommen nach Palucka und Coussens (2016) ¹⁵⁵ Letztlich deutet ein intratumorales Immunkompartiment charakterisiert durch hohe T-Zell-Dichte, insbesondere T_{H1} und zytotoxische T_{EM} , sowie eine geringe Dichte von Indikatoren von Inflammation und Angiogenese auf ein gutes einer Krebstherapie Ansprechen und eine dauerhaft verbesserte Prognose für den Patienten hin. Um dies zu erreichen, bietet sich Kombination mehrerer therapeutischer eine Ansätze an. Je nach Entität der Neoplasie können diese Ansätze auch klassische Mittel wie operative Resektion, CTx und RTx enthalten, um das tumorinfiltrierende Immunkompartiment entscheidend zu formen - zur Induktion einer adaptiven Immunität. 24,153,184-187

Wie durch Gatenby nach mathematischer Betrachtung der Evolutionsdynamik von Tumore nachhaltia erfolgreiche postuliert, muss Tumortherapie nicht komplette Tumoreradizierung (mit der Gefahr der Tumoradapation durch Immunoediting) zum Ziel haben. Vielversprechender scheint ein wie in Abb. 1.6 nach Palucka und Coussens dargestelltes intermittierendes Vorgehen (multimodal, Tumorund therapiemarker-orientiert) zur langfristigen Kontrolle eines persistenten Tumors (Gatenby: "To survive cancer, live with it!").^{155,188–190}

Das in dieser Arbeit betrachtete intratumorale Immunkompartiment entstand nach einer Kombinationsbehandlung durch lokale Radiotherapie und systemische Gabe eines tumorausgerichteten IL-12-Fusionsmoleküls.

1.2.3 NHS-IL12, lokale Radiotherapie und Kombinationstherapie

Humanes IL-12 nimmt bei der Vermittlung von angeborener und adaptiver Immunantwort eine Schlüsselrolle ein und kann Tumorregression induzieren. $^{21,182,191-193}$ Es ist dazu in der Lage, ein intratumorales Immunkompartiment in Richtung einer T_H1-Antwort zu (re-)polarisieren: Es vermittelt T-Zell-Priming und NK-DC Zell-Zellkommunikation sowie Proliferation und verstärkte zytolytische Aktivität beider Zellreihen. IL-12 rekonvertiert T_H17-Zellen und T_{reg} zu T_H1-Zellen sowie auch Makrophagen zum M1-Phänotyp. ^{64,193–195}

Auf molekularer Ebene hemmt IL-12 die TGF- β abhängigen Induktion von ROR γ t und Foxp3¹⁹⁵. IL-12 regt T_H1- und NK-Zellen zur massiven IFNy-Produktion an, was die MHC I- und MHC II-Expression und in Makrophagen die Sekretion der anti-angiogenetischen Chemokine CXCL9 und CXCL10 induziert.^{196–198} Es konnte gezeigt werden, dass über IFN γ und TNF α bei RMS *in vivo* nicht nur Seneszenz sondern auch myogene Differenzierung induziert wird. Diese Erkenntnisse konnten *in vitro* auch auf Glioblastom-, Neuroblastom-, CRC-, Brustkrebszellreihen sowie auf Zellen eines hepatozellulären Karzinoms übertragen werden.^{21,160,161}

Das große Potential exogener IL-12 Applikation in der Krebsimmuntherapie war lange Zeit durch deren dosisbedingte systemische Toxizität limitiert.^{199,200} In der Folge wurde IL-12 mit dem Antikörper NHS76 fusioniert, welcher an nackte Histone/DNA bindet. Diese treten auf in einem hypoxischen Tumor, der seine eigene Angiogenese überwachsen hat und zu Teilen nekrotisiert. In Form dieses Fusionsmoleküls NHS-IL12 kann IL-12 mit guter intratumoraler Bioverfügbarkeit und geringer systemischer Toxizität appliziert werden.^{196,201,202}

Eine Möglichkeit, gezielt Nekrose in einem Tumor zu induzieren und somit die intratumorale IL-12-Verfügbarkeit noch zu verbessern, besteht in der Anwendung lokaler Radiotherapie^{20,203}.

Wie in 1.2.2 beschrieben und Abb.1.5B und Abb. 1.6 zu sehen, scheint eine individuelle Kombination multimodaler Therapieansätze zur langfristigen Tumorkontrolle aussichtsreich. Wenn sich auch der alleinige Einsatz von Immuntherapie bei gewissen Tumorentitäten (Melanome, NSCLC) wirksam gezeigt hat, präsentiert sich ein multimodaler Ansatz der Therapien kombiniert,

die immunogenen Zelltod (ICD) vermitteln (RTx, CTx, tumorgerichtete zytotoxische Antikörper), vielversprechend, auch Tumorerkrankungen weiterer Entitäten effizient therapieren zu können. ^{181,204–207}

RTx (allein) ist hocheffizient darin, vorübergehend lokale Tumorkontrolle zu vermitteln, vor allem im Frühstadium. Neben dem direkt zytotoxischen Potential gezielt lokaler Bestrahlung, hat lokale RTx eine immunogene Wirkung.²⁰⁸ RTx verursacht ICD, eine immunstimmulierende Form des Zelltods, welche angeborene und adaptive Immunantwort induziert.^{209,210} Auf diese Weise eliminierte Tumorzellen setzen sogenannte Damage associated patterns (DAMP) frei, welche von DC aufgenommen und T-Zellen präsentiert werden können.^{208,211,212} Auch etablierte Tumore können so (vorübergehend) wieder immunogen werden. Tumorzellen exprimieren verstärkt MHC I, Tumorantigene FAS/CD95.^{213–215} Es und entsteht ein zytotoxisch inflammatorisches Immunkompartiment mit gesteigerter T-Effektorzellfunktion, die in Richtung des T_H1 Phänotyps polarisiert ist, charaktisiert durch ein Zytokinmillieu von IL-2, IL-12 und IFNy.^{208,216,217} Die Induktion einer derartigen Immunantwort liefert eine mögliche Erklärung dafür, dass lokale Bestrahlung Tumorregession auch an nicht-bestrahlten entfernteren Orten der Tumormanifestation verursachen kann. Dieses Phänomen wird Abscopaler Effekt genannt. 208,218-221

Die Synergie-Effekte bei Kombination einer Immuntherapie mit NHS-IL12 und lokaler RTx sind bidirektional: Immuntherapie befördert Abscopale Effekte außerhalb des Bestrahlungsfelds, lokale RTx setzt Tumorantigene und andere immunogene Muster frei, wandelt TME und Immuncontexture in eine gegen den Tumor wirkenden Richtung und erhöht die intratumorale Verfügbarkeit von NHS-IL12.^{208,222}

1.3 NSG-Mäuse und RMS A204

Um die menschliche Hämatopoese und das humane Immunsystem und deren Manipulationen durch Krankheit und Therapie gezielt zu erforschen, werden

Einleitung

humanisierte Mausmodelle verwendet. 2005 wurde heute der bisher immundefizienteste Mausstamm NSG (NOD.Cg-Prkdcscidll2rgtm1Wjl/SzJ) durch Shultz et al. entwickelt.²²³ Die dieser Arbeit zu Grunde liegenden Versuche wurden mit NSG-Mäusen durchgeführt. Eine Vielzahl genetischer Modifikationen macht diesen Mausstamm sehr geeignet als Rezipient von Xeno-Transplantaten sowohl für Tumore/Leukämien als auch Stammzellen und Immunzellen, letzlich damit auch die Etablierung einer humanen Hämatopoese und eines menschlichen Immunsystems. Die Null-Mutation der IL-2Ry-Kette, die Bestandteil mehrerer für die Differenzierung hämatopoetischer Zellreihen obligatorischer Zytokinrezeptoren ist, wie die für die Signalwege von IL-2, IL-4, IL-7, IL-15 und IL-21 ²²⁴, verhindert damit die NK-Zell-Differenzierung, die Entwicklung von T- und B-Zellen und damit auch die Abstoßung humaner Zellen. was wiederum die Etablierung einer humanen Hämatopoese vereinfacht.²²⁵ Von der Non-obese diabetic (NOD-Maus) Linie NOD/ShiLtJ abstammend, weist das Genom der NSG-Maus Defekte auf, die die angeborenen Immunität affektieren. DCs sind eingeschränkt funktionsfähig, Makrophagen in ihrer Aktivität gestört und kein Komplementsystem vorhanden.²²⁶ Dazu besteht ein Polymorphismus des Sirpa-Gens, welcher das Knochenmark als Nische für die Kolonisierung durch HSC empfänglicher macht.²²⁷ Eine weitere Mutation im homologen Gen zum humanen PRKDC-Gen macht dieses funktionslos und schaltet die adaptive Immunität praktisch aus.²²⁸ Dieses Gen kodiert für eine DNA-abhängige Proteinkinase (DNA-PK), welche für DNA-Strang-Reperaturaufgaben während der V(D)J-Rekombination der B- und T-Zellen zuständig ist. Dieser Defekt sorgt für eine stark verminderte Anzahl funktionsfähiger B- und T-Lymphozyten und wird combined immunodeficiency (scid) oder Prkdcscid als severe bezeichnet.228,229

In der RMS-Forschung stehen derzeit 30 humane RMS-Zellreihen zur Verfügung, die sich in Herkunft, Karyotyp und histologischen Merkmalen unterscheiden.²³⁰ Die für diese Arbeit eingesetzte Tumorentität ist die RMS-Zelllinie A204 (im American Type Culture Collection (ATCC) Katalog als HTB28 gelistet). Diese Zelllinie eines embryonalen RMS wurde 1973 aus dem Tumor eines 1-jährigen

Mädchens etabliert. Die histologische Morphologie des A204 wird als epithelartig mit Bildung einschichter Zellverbände beschrieben. In Nacktmäuse inokuliert bildet diese Zellreihe kleine maligne Tumore mit der Entität eines human embryonalen RMS. In der virologischen Untersuchung (PCR) zeigen sich die Zellen EBV-, HBV-, HCV-, HHV-8-, HIV- und HTLV-I/II-negativ.^{231,232}

1.4 Zielsetzung der Arbeit

Rhabdomyosarkompatienten sehen sich häufig einer schlechten Prognose gegenüber. Etablierte Maßnahmen wie Radiochemotherapie und chirurgische Tumorresektion erreichen selten langfristige Tumorkontrolle. RMS-Therapien mit tumorgerichtetem NHS-IL12 allein und in Kombination mit lokaler Radiotherapie haben Tumorkontrolle *in vivo* und *in vitro* über Induktion von Seneszenz, myogener Differenzierung und Abscopale Effekte erreichen können.

Diese Arbeit setzt sich zum Ziel, das im Rahmen einer Kombinationstherapie aus systemischer Applikation von NHS-IL12 und lokaler Radiotherapie entstandene tumorinfiltrierende Immunkompartiment histologisch, immunhistochemisch und molekularbiologisch zu untersuchen. Insbesondere im Fokus standen hierbei die phänotypische Charakterisierung intratumoraler T-Zellkompartimente und NK-Zellen in Abhängigkeit von Kombinationstherapie mit ipsilateraler lokaler oder contralateraler Bestrahlung.

Dabei sollten folgende Fragen geklärt werden:

Wie sieht das intratumoral induzierte Immunkompartment in den Therapiegruppen versus nicht therapierter Gruppe aus?

- Welcher T-Zellsubtyp (CD4⁺, CD8⁺) infiltriert vornehmlich den Tumor?
- Weisen die T-Zellkompartimente (αß, und γδ-T Zellen) ein breites TCR-Repertoire auf?
- Kann die klonale Expansion bestimmter T-Zell-Rezeptor-Familien festgestellt werden?

- Induziert die multimodale Therapie systemisch nachweisbare Klone und ermöglicht damit potentiell Abscopale Effekte?
- Sind die aktivierenden NK-Zell Rezeptoren NKp30, NKp44, NKp46, NKG2D, NKG2E, CD226 nachweisbar und lassen damit auf ein aktiviertes antitumoral aktives NK-Zellkompartment schließen?
- Können intratumoral CD161 und damit indirekt T_H17-Kompartimente nachgewiesen werden, die wie gezeigt durch IL-12 in einen T_H1 antitumoralen Phänotyp gepolt werden?
- Lassen sich Äquivalente zytotoxischer Aktivität (Granzym B⁺) nachweisen?

Wie sieht der Tumor makroskopisch/mikroskopisch in den Therapiegruppen versus nicht therapierter Gruppe aus?

- Wo gibt es Anhalte für Tumorregression?
- Wo kann myogene Differenzierung (Desmin⁺) als Konsequenz T_H1zytokininduzierter Seneszens nachgewiesen werden?

2 Material und Methoden

2.1 Versuchstiere, Tumore und Materialien

2.1.1 Versuchstiere und RMS A204

Bei dem letztlich für diese Arbeit untersuchten Tumormaterial handelte es sich um insgesamt 10 Tumore und deren Tumorbett. Alle Tierexperimente dieser Studie waren durch das Regierungspräsidium Tübingen genehmigt und kontrolliert worden (Nr. K6/11).

Nach dem von Schilbach et al verwendeten Protokoll waren humanisierte NSG Mäuse (JAX mouse NOD.Cg-Prkdcscidll2rgtm1Wjl/SzJ; Jackson Laboratory, USA) 2014 unter pathogen-freien Bedingungen in der Tierforschungsabteilung des Universitätsklinikums für Kinder und Jugendmedizin Tübingen behandelt worden.²¹ Diese waren im Alter von sechs bis acht Wochen mit 2,5 Gy subletal ganzkörperbestrahlt und in der Folge mit 10⁶ humanen CD34 positiven und CD3 negativen Stammzellen intravenös transplantiert worden, um eine Stammzellen Humanisierung der Hämatopoese zu erreichen. Diese entstammten durch G-CSF stimulierten Spendern mit HLA-Missmatch zu RMS-A204. Nach 12 Wochen mit wöchentlicher Fc-IL-7 (Merck, Deutschland) Injektion war das Ansprechen der Mäuse auf die Stammzelltransplantation mittels Durchflusszytometrie des peripheren Blutes überprüft worden. Im Speziellen wurden das CD3 und CD45 Repertoire und somit die Präsenz humaner T-Zellen geprüft.

Tiere mit einem erfolgten Engraftment von mindestens 5% (also einem humanen Anteil an Zellen der Hämatopoese von mindestens 5%) wurden in die Studie eingeschlossen. (s. Abb. 1)

Den eingeschlossenen Tieren waren nun in beide Oberschenkel der Hinterläufe subkutan 10⁶ Rhabdomyosarkomzellen der Zellline RMS A204 (ATCC®, Manassas, USA, ATCC®-Nummer: HTB-82) injiziert worden. Die Behandlung

war bei einer Tumorgröße (entscheidend die Größe des größeren der beiden Tumore) von 7-11 mm begonnen worden. Die Behandlung der Tiere hatte in drei Behandlungsgruppen stattgefunden. In die Behandlungsgruppe I worden Mäuse mit unilateraler lokaler Radiotherapie einer der beiden Tumore, in die Behandlungsgruppe II Mäuse mit alleiniger systemischer intravenöser Applikation von NHS-IL12 und in die Behandlungsgruppe III solche mit unilateralre Radiotherapie in Kombination mit systemischer Applikation von NHS-IL-12 eingeschlossen (s. Abb2.1).

Abb.2.1.: Studiendesign

Behandlungsgruppen. I: unilaterale lokale Radiotherapie. II: Alleinige NH-IL12-Therapie. III: Kombinationstherapie aus unilateraler Radiotherapie und systemischer NHS-IL12-Therapie. Adaptiert nach Eckert et al.²⁰

Für die lokale Radiotherapie war ein Linearbeschleuniger (Elekta Oncology Systems®, Crawley, UK) mit einer Einzeldosis von 8,0 Gy und mit 6 MV Photonen verwendet worden unter inhalativer Anästhesie mit Isofluran (Abbott, Wiesbaden, Deutschland) und Abschirmung des restlichen Mauskörpers mit Blei.

In Orientierung an der Behandlungsgruppe III, welche lokale Radiotherapie in Kombination mit der systemischen NHS-IL12 Applikation erhalten hatte, war zwei bis drei Tage nach der Bestrahlung beginnend wöchentlich in dieser und in der Behandlungsgruppe II mit alleiniger systemischer Interleukinbehandlung NHS-IL12 (20 µl/100 µl PBS) intravenös appliziert worden.

Nachdem alle zwei bis drei Tage die Tumordurchmesser gemessen worden waren, euthanasierte man gemäß den Leitlinien der Abbruchkriterien im vom Regierungspräsidium genehmigten Tierversuchsantrag alle Tiere, deren Tumor eine Größe von 15 mm überschritten hatte. Ebenso wurden jene Tiere euthanasiert, bei denen die Tumore unter der Behandlung auf einen Durchmesser von 3 mm geschrumpft waren, um Tumorgewebe für die folgenden Untersuchungen gewinnen zu können. Dafür wurden die exzidierten Tumore für die Histologie formalinfixiert, für die molekularbiologische Analyse in flüssigem Stickstoff eingefroren und bei -80 °C gelagert.²⁰

2.1.2 Materialien

Tabelle 1: Glas, Plastik, Laborzubehör

Glas, Plastik, Laborzubehör	Markenname und Hersteller
Aluminiumabdeckfolie	Papstar, Kall, Deutschland
(10 m x 30 cm x 0,015 mm)	
Diverse Glaswaren	Schott Duran ®
	Schott, Mainz, Deutschland
Einmalhandschuhe	Kimberley-Clark®, Irving, Texas, USA
	Abena®, Oberderdingen, Deutschland
Mikroreaktionsgefäße	Eppendorf, Hamburg, Deutschland
(0,2 ml, 0,5 ml, 1,5 ml, 2 ml)	
Mikrotiterplatten	MicroAmp® Optical 96-Well Reaction
	Plate, Applied Biosystems®, California,
	USA
Mikrotiterplattenabdeckung	MicroAmp® 96-Well Full Plate Cover
	Applied Biosystems®, California,
	USA
Oberflächendesinfektionsmittel	Descosept AF, Dr. Schumacher GmbH
& -tücher	Malsfeld, Deutschland
	Tapira®, Heidenheim, Deutschland
Parafilm	Bemis, Oshkosh, USA
PCR-Reaktionsgefäße	Thermo-Strips™
	PEQLAB, Erlangen Deutschland
Pipettenspitzen (2µl, 10µl, 20µl,	Sarstedt, Nümbrecht, Deutschland
100µl, 200µl) mit und ohne Filter	
Wasserfeste Pigmentliner, diverse	Staedtler Mars GmbhH, Nürnberg,
Farben	Deutschland

Stammlösung, Chemikalie	Hersteller
β-Mercaptoethanol	Sigma-Aldrich Chemie GmbH,
	Taufkirchen, Deutschland
DEPC-behandeltes Wasser	Sigma-Aldrich Chemie GmbH,
	Taufkirchen, Deutschland
Desoxynucleotidtriphosphate	GeneAmp® dNTPs, Applied
	Biosystems, California, USA
Ethanol absolut	Merck,
	Darmstadt, Deutschland
Formamid	Hi-Di™ Formamide, Applied
	Biosystems®, California, USA
Längenstandard für Spectratyping	GeneScan™ – 600 LIZ® Size Standard,
	Applied Biosysstems, California, USA
Lysepuffer	Lyse RLT,
	Qiagen, Hilden, Deutschland
Magnesiumchlorid (MgCl ₂)	Invitrogen, Groningen, Niederlande
Phosphate Bufferd Saline (PBS)	Universitätsapotheke, Tübingen,
	Deutschland

Tabelle 2: Stammlösungen und Chemikalien

Gerät	Markenname und Hersteller
Crushed-Ice-Gerät	Scotsman, Vernon Hills, USA
Drucker	Laserjet 1320 tn, HP, Palo Alto, USA
Kühlgeräte/-schränke	Liebherr Medline, Liebherr Premium
(8°C, -20°C, -80°C)	Nofrost, Forma Scientific -86 C
Mikroskop	CX40, Olympus Europa,
	Hamburg, Deutschland
PC für Spectratyping	Optiplex 745, Dell, Round Rock, USA
PCR Thermocycler	Gene AMP® PCR System 9700,
	Applied Biosystems, Foster City, USA
Pipettierhilfen (2 µl, 10 µl, 20 µl,	Eppendorf, Hamburg, Deutschland
100 µl, 200 µl)	Gilson, Villiers-le-Bel, Frankreich
Spektralphotometer	NanoDrop ND-2000
	PEQLAB,
	BiotechnologiesGmbH, Erlangen,
	Deutschland
Schredder/Homogenisator	
Sequenziergerät für Spectratyping	3130 xl Genetic Analyzer,
	Applied Biosystems, Foster City, USA
Sicherheitswerkbank	HERAsafe™
	Heraeus GmbH, Hanau, Deutschland
Vortexmischer	REAX top
	Heidolph, Nürnberg, Deutschland
Zentrifugen	Mikro 22 R, Rotixa 50 RS, Rotanta 46
Minizentrifuge	RSC Hettich, Tuttlingen, Deutschland
	Scientific MyFuge™ Mini C1008,
	Benchmark Inc., Edison, USA
Thermozentrifuge	Biofuge fresco, Heraeus GmbH, Hanau,
	Deutschland

Tabelle 4: Computers	software
----------------------	----------

Software	Hersteller
3130 xl Genetic Analyzer Data	Applied Biosystems, Foster City, USA
Collect 3.0	
Adobe Acrobat Reader	Adobe Systems,
	Mountain View, USA
Gene Mapper 4.0 / 5.0	Thermo Fisher Scientific,
	Waltham, USA
Microsoft Office 2013: Word, Excel	Microsoft, Redmond, USA
NanoDrop 2000/2000c software	PEQLAB,
	BiotechnologiesGmbH,Erlangen,
	Deutschland
PDF24 Editor	www.pdf24.org,
	www.cutepdf-editor.com

2.1.3 Molekularbiologische Kits zur cDNA-Synthese

Taballa 5.	Molekularhic	logischa Ki	ite zur cDNL	A_Synthese
Tabelle 5.	INDIERUIAI DIC	nogische Ri	its zur CDIN	A-Synthese

Molekularbiologisches Kit	Markenname und Hersteller
Kit zur RNA-Isolation	RNeasy® Mini Plus Kit
	Qiagen, Hilden, Deutschland
Kit zur cDNA-Synthese	Super Script® III First-Strand
	Synthesis SuperMix,
	Invitrogen, Groningen, Niederlande

2.1.4 Materialien für PCR und Fragmentlängenanalyse ("Spectratyping")

Die für die PCRs verwendeten Forward- und Reverse-Primer sowie Primer mit FAM-Markierung (fluorescin amidite) wurden aus etablierten Methoden vorangegangener Studien übernommen. Sie wurden über MWG Biotech AG/Eurofins (Ebersberg, Deutschland) als Lyophylisat bezogen, in DEPC-Wasser zu 20 pmol/µl aliquotiert und bei -20°C gelagert. Die exakten Primersequenzen können an folgender Stelle nachgefragt werden:

Prof. Dr. Karin Schilbach, Abteilung I: Allgemeine Pädiatrie, Hämatologie/Onkologie, Hoppe-Seyler-Straße 1, 72076 Tübingen,

Tel. 07071 29-84084

Tabelle 6: Enzyme

Enzyme	Hersteller
Gold Taq	AmpliTaq® Gold DNA Polymerase,
(inkl. PCR 10xbuffer, 25 mM MgCl ₂)	Applied Biosystems, California,
	USA
Taq-Polymerase	Taq DNA Polymerase,
(inkl. PCR10xbuffer, 50 mM MgCl ₂)	Invitrogen, Groningen, Niederlande

2.2 Methoden

2.2.1 Versuchsaufbau

Für die Survivalanalyse waren die Mäuse gemäß des Studiendesigns (s. Abb. 2.1.) in den 3 Behandlungsgruppen betrachtet und ihr Survival nach der Kaplan-Meier-Methode ausgewertet worden. Tiere, die starben oder frühzeitig euthanasiert werden mussten, da die ihnen inokulierten Tumore unter der Behandlung so stark schrumpften, dass sie nicht hätten untersucht werden können, wurden aus der Analyse ausgeschlossen, um ein Tumorgröße-spezifisches Überleben betrachten zu können.

Für die Betrachtung der relativen Tumorgröße waren die den Mäusen inokulierten Tumore gemäß ihrer Therapie in fünf Gruppen aufgeteilt und im Verlauf alle zwei bis drei Tage und an Tag 15 (+/- 2) mittels eines digitalen Messschiebers vermessen worden (s. Abb. 2.1). Das Tumorvolumen war gemäß V_T= $a^*b^*d^*\pi/6$ bestimmt worden (*a*, *b* und *d* der *Tumorlänge*, *-breite* und *-tiefe* entsprechend).

In die letztlich für diese Arbeit durchgeführte molekularbiologische Analyse wurden die Tumore von insgesamt 5 Mäusen einbezogen. Von diesen hatten zwei Mäuse unilateral Radiotherapie, eine Maus systemisch NHS-IL12 und zwei Mäuse die Kombinationstherapie aus unilateraler Radiotherapie und systemischer NHS-IL12 Applikation erhalten. Da allen Mäusen bilateral Rhabdomysarkome inokuliert worden waren, konnten 10 Tumore gewonnen werden, die wiederum entsprechend ihrer Therapie gruppiert wurden. Zwei Tumore waren ipsilateral lediglich bestrahlt worden, zwei Tumore hatten eine indirekte Therapie durch Bestrahlung des kontralateralen Tumors erhalten. Diese werden im Folgenden als Kontrollgruppe (KG) betrachtet. Zwei Tumore waren systemisch mit NHS-IL12 behandelt worden. Zwei Tumore hatten die Kombinationstherapie aus lokaler Radiotherapie und Interleukintherapie erhalten und zwei Tumore hatten systemisch NHS-IL12 erhalten, wobei der kontralateral gesetzte Tumor bestrahlt worden war.

Der beschriebene Versuchsaufbau sowie Teile der hier gezeigten Daten sind in "Tumor-targeted IL-12 combined with local irradiation leads to systemic tumor

control via abscopal effects in vivo" durch Eckert, Jelas, Oehme et al. besprochen worden. ²⁰

Abb. 2.2: Tumorextraktio und Gruppierung.

Zwei Mäusen der Gruppe I (KG) wurden je ein Tumor ohne direkte Therapie aber mit kontralateraler lokaler Bestrahlung (1) sowie je ein ispilateral bestrahlter Tumor (2) entnommen. Aus der Maus der Gruppe II wurden zwei Tumore (3) mit systemischer Behandlung mit NHS-IL12 extrahiert. Den beiden Mäusen der Gruppe III wurden je ein Tumor mit systemischer NHS-IL12-Behandlung und kontralateraler lokaler Bestrahlung (4) sowie je ein Tumor mit Kombinationstherapie aus systemischer NHS-IL12-Behandlung und ipsilateraler lokaler Bestrahlung (5) entnommen.

Die Tumore wurden lysiert, aus ihnen RNA isoliert (2.2.3.1 RNA-Isolation) und in cDNA umgeschrieben (2.2.3.2 cDNA-Synthese). Die eigentliche molekularbiologische Analyse bestand in der Untersuchung der aus dieser cDNA mittels PCR amplifizierten Segmente der TCRV α -, γ - und δ - Regionen sowie der amplifizierten KIR-Segmente durch Fragmentlängenanalyse ("Sprectratyping") (2.2.3.4 Fragmentlängenanalyse (TCR- und KIR-Sprectratyping)).

Der Fokus dieser Arbeit lag auf der Detektion der in Tabelle 7 aufgeführten Segmente der V α -Familie (TRAV-Segmente), der V γ -Familie, der V δ -Familie sowie der KIRs. So konnten die in Abhängigkeit von der jeweiligen Behandlung der Tumore entstandenen TCR- und KIR-Repertoires gezeigt werden.

TCRVα TRAV-Segment		TCRVy-	TCRVδ-	KIR-
		Segment	Segment	Segment
7 1-1 1-2	23 21	Vγ 2-4	Vδ 1	NKG2D
11 2	13 22	Vγ 3	Vδ 2	NKG2E
16 3	17 23DV6	Vγ 5	Vδ 3	Nkp30
20 4	18 24	Vγ 8	Vδ 4	Nkp44
15 5	32 25	Vγ 9	Vδ 5	Nkp46
5 6	4A 26-2		Vδ 6	CD226
1B 8-1 8-3	4B 26-2		Vδ 7	CD161
1A II 8-4 8-6	10 27		Vδ 8	
22 9-2	21 29DV5			
24 10	29 30			
2 12-1 12-	26 34			
2 12-3				
8 13-1 13-	25 35			
2				
6 14DV4	28 36DV7 25			
9 16	14 38-1 38-			
	2DV8			
3 17	27 39			
12 19	31 40			
30 20	19 41			

Tabelle	7: Unters	suchte TCF	R- und Klf	R-Seamente

Neben der molekularbiologischen Analyse wurden zuvor für die histologische Untersuchung in Formalin konservierte Tumore den entsprechenden oben beschriebenen Behandlungsgruppen zugeordnet, in Paraffin eingebettet, (immunhistochemisch) angefärbt und (semiquantitativ) mikroskopisch untersucht (2.2.2 Histologie und Immunhistochemie).

Hier lag der Fokus auf dem immunhistochemischen Nachweis von CD3⁺, CD4⁺ und CD8⁺ Zellen sowie dem Nachweis von Desmin und Granzym B. Diese Betrachtung fand wiederum unter Berücksichtigung der den Tumoren widerfahrenen Behandlung statt.²⁰

2.2.2 Histologie und Immunhistochemie

Die Färbungen der Schnitte wurden nach zuvor beschriebenen Protkollen durchgeführt.²¹ Die verwendeten Protokolle und Antikörper können an folgender Stelle nachgefragt werden:

Prof. Dr. Karin Schilbach, Abteilung I: Allgemeine Pädiatrie, Hämatologie/Onkologie, Hoppe-Seyler-Straße 1, 72076 Tübingen,

Tel. 07071 29-84084

Die Auswertung der Schnitte erfolgte nach deren Scan mit NanoZoomer (Hamatsu Photonics K.K., Hamatsu) mit NDP.view (Hamatsu Photonics K.K, Hamatsu) entsprechend dem IHC Quickscore (Q=I*P), $I \triangleq$ *Intensity* und $P \triangleq$ *postive cells*, aufsteigend von 0 bis 3 (none, low, moderate, strong).

2.2.3 Molekularbiologische Methoden

2.2.3.1 RNA-Isolation

Das zuvor bei -80 °C eingelagerte Tumormaterial wurde je Tumor zu maximal 30 mg in PBS-Puffer und DEPC-Wasser mechanisch homogenisiert/ geschreddert und in 600 μl RLT-Puffer und β-Mercaptoethanol (10 μl/1 ml RLT-Puffer) suspendiert. Die RNA-Isolation wurde gemäß den Herstellerangaben mit dem RNeasy® Mini Plus Kit von Qiagen durchgeführt. Für alle Pipettierschritte wurde mit gestopften Pipettenspitzen gearbeitet. Allen in den folgenden Schritten genannten Zentrifugationszeiten gingen 20 Sekunden Vorlaufzeit der Zentrifuge voraus, um zu gewährleisten, dass die Zentrifuge die nötige unten genannten Umdrehungen pro Minute (rpm) zu erreicht.

- Das mechanisch in RLT-Puffer und in β-Mercaptoethanol homogenisierte Tumormaterial wurde in einem 2 ml Eppie zentrifugiert, um die großen Schwebeteilchen zu pelletieren.
- Der Überstand wurde in die gDNA Eliminator spin column (befand sich in 2 ml Sammelröhrchen (Eppie)) überführt und für 30 s bei 14 000 rpm zentrifugiert. So konnte die genomische DNA enfernt werden. Die spin column wurde verworfen.
- Der im Sammelgefäß entstandene Durchfluss wurde mit 600 µl 70 % Ethanol (entsprechend der dem Tumormaterial zugegebenen Menge an RLT-Puffer in der Probevorbereitung der RNA-Isolation) durch Pipettieren durchmischt.
- 700 µl dieser Lösung wurden in ein RNeasy Mini spin column (befand sich in 2 ml Sammelröhrchen) überführt und für 15 s bei 14 000 rpm zentrifugiert. Der Durchfluss wurde verworfen.
- Die spin column wurde mit 700 µl RW1-Puffer gewaschen und f
 ür 15 s bei 14 000 rpm zentrifugiert und der Durchfluss verworfen.
- Die Säule wurden mit 500 µl RPE-Puffer gewaschen und für 15 s bei 14 000 rpm zentrifugiert. Der Durchfluss wurde verworfen.
- Die Säule wurde danach ohne weitere Zugabe von Reagenzien bei

maximaler speed zentrifugiert, um die Membran der spin column zu trocknen.

 Die spin column wurde dann in ein neues 1,5 ml Eppie überführt und 30-50 µl RNA-se freies Wasser auf die Membran der spin column pipettiert. Das gesamte Gefäß wurde bei 14 000 rpm zentifugiert. Das Eluat enthält die isolierten RNA. Die spin column wurde verworfen und das Gefäß mit isolierter RNA bis zur weiteren Nutzung bei -80 ° C gelagert.

Die Quantität und Qualität der isolierten RNA wurde mittels der Absorptionskoeffizienten bei 260 nm (A₂₆₀) und 280 nm (A₂₈₀) und deren Quotient A₂₆₀/A₂₈₀ spektralphotometrisch gemessen.

2.2.3.2 cDNA-Synthese

Die Synthese der cDNA aus isolierter RNA erfolgte mit dem Super Script® III First-Strand Synthesis Super Mix nach Angaben des Herstellers. Die Zielsetzung dieser Methode ist die Synthese der komplementären DNA zur zuvor isolierten RNA mittels reverser Transkription. In einem ersten Schritt wurden nach Denaturierung Oligo(dT)-Primer mit der RNA hybridisiert (Mastermix I), um eine Matrize für die reverse Transkriptase zu schaffen, die in einem zweiten Schritt (der eigentlichen cDNA-Synthese unter Zugabe von Mastermix II) entlang dieser Matrize komplementär zur RNA einen DNA-Strang synthetisiert. Beide Schritte fanden im Thermocycler Gene AMP® PCR System 9700 statt.

Mastermix I:	Mastermix II:
RNA-Primerhybridisierung	cDNA-Synthese
(0,1 pg bis max.) 5,0 µl RNA	10,0 µl 2x First-Strand Reaction Mix
1,0 μl Oligo(dT)-Primer (0,5μg/μl)	2,0 µl SuperScript III / RNaseOUT En- zyme Mix
1,0 µl Annealing-Buffer	

Tabelle 8: Mastermixe zur cDNA-Synthese von 20 µl Endvolumen

Tabelle 9: Verwendete Thermocyclerprogramme für cDNA-Synthese

Thermocyclerprogramm I	Thermocyclerprogramm II
Denaturierung	cDNA-Synthese
5 min bei 65°C	50 min bei 50°C
Lagerung auf Eis für 2 Min.	5 min bei 95°C

Die jeweils aus dem Tumormaterial synthetisierten cDNA-Proben wurden bis zur Verwendung bei -20°C eingelagert.

2.2.3.3 PCR-Primer

Die in den folgenden PCR-Verfahren verwendeten Primer wurden so gewählt, dass spezifisch die in Tabelle 7 genannten TCR- und KIR-Segmente amplifiziert wurden. Die Primersequenzen zur Untersuchung der TCRV α -Segmente entstammten den Publikationen von Han et al.²³³ Die der TCRV γ - und δ -Segmente wurden wie bei Déchanet et al. verwendet.²³⁴ In Tabelle 10 sind exemplarisch die durch Prof. Dr. Karin Schilbach und Kollegen designten verwendeten Primersequenzen der KIR-Segmente aufgezeigt. Alle weiteren Primersequenzen können bei Prof. Dr. Karin Schilbach in Erfahrung gebracht werden (s. 2.1.4).

KIR-Segment	Primer-Sequenz	Amplikon (bp)	
NKG2D (forward)	5'-GATTCCTCTCTGCGGTAGAC -3'	266	
NKG2D (reverse)	5`-GCACTCCATATTGCTACCAT -3`	200	
NKG2E (forward)	5`-GCCTGTGCTTCAAAGAACTCTTCT-3`	222	
NKG2E (reverse)	5`-CACACTGGTCTGATATAAGTCCACG-3`	232	
NKp30 (forward)	5'-TCTTGATCATGGTCCATCCA-3'	108	
NKp30 (reverse)	5'-TGAACTCTGGGGTTCCATTC-3'	190	
NKp44 (forward)	5'-CCTACACCCACTGCTACTGCTGCT-3'	406 502	
NKp44 (reverse)	5'-GATGTAGATGAGACTCAG-3'	490-502	
NKp46 (foward)	5'-GGCAGAATCTGAGCGATGTCTT-3'	145	
NKp46 (reverse)	5'-GCTTTTCCTTTGGAACCATGAA-3'	145	
CD226 (forward)	5'-CGAGAACATGTCTCTAGAATGTGT-3'	252	
CD226 (reverse)	5'-GGGTAAGTGTAAAGAGAGCAGG-3'	232	
CD161 (forward)	5'-CACAGACTCAGGCCCAGAAAGT-3'	313	
CD161 (reverse)	5'-GTTATTCCAAGGGTTGACAGT-3'	515	

Tabelle 10: Verwendete PCR-Primer

2.2.3.4 RT-PCR

Zur Untersuchung der Genexpression der in Tabelle 7 genannten TCR- und KIR-Segmente in T-Zellen, NK-Zellen und Monozyten des Tumormaterials wurde die isolierte mRNA (s.2.2.3.1) mittels RT-PCR und den entsprechenden Primern amplifiziert. Die RT-PCR basiert auf der aus dem Tumormaterial gewonnenen cDNA (s.2.2.3.2). Hierfür wurden je nach Gen(-segment) PCR-Mix und Thermocycler-Programm angepasst und in Abhängigkeit von der Amplikonlänge, eine nested oder semi-nested bzw. Multiplex-PCR verwendet. In nachfolgender Tabelle und Abbildung sind ein exemplarischer PCR-Mix und ein exemplarisches Thermocyclerprogramm dargestellt.

Tabelle 11: Exemplarische	Darstellung PCR-Mix
---------------------------	---------------------

Komponente	Volumen	
10x Puffer	2,0-2,5 µl	
50mM MgCl ₂	0,75-1,5 μl	
dNTPs	0,2-0,5 μl	
cDNA	0,5-1,0 μl	
Forward-Primer (20 pmol/µl)	0,5-1,0 μl	
Reverse-Primer (20 pmol/µl)	0,5-1,0 μl	
Gold-TaqPolymerase / TaqPolymerase	12,5 µl / 0,25-0,3 µl	
ad 20 µl / 25 µl H₂O		

Abb. 2.4: Exemplarisches PCR-Programm im Thermocycler

2.2.3.5 Nested PCR und Multiplex PCR

Für die Amplifikation der TCRVα, γ- und δ-Transkripte wurde mit nested bzw. seminested PCR-Verfahren gearbeitet. Zielsetzung dieser Methode ist die hochspezifischere Anreicherung des gesuchten Amplikons. Wie in Abbildung 2.5 dargestellt bedient man sich bei der nested (=verschachtelt) PCR einer nachgeschalteten zweiten PCR-Runde und eines weiteren Primersets, welches jeweils weiter upstream in Richtung 3'-Ende mit der Matrizen-DNA, dem PCR-Produkt der ersten PCR-Runde, hybridisiert. Die Wahrscheinlichkeit für das erneute Auftreten unerwünschter Primer-Bindung innerhalb der PCR-Produkt der ersten PCR-Runde ist hinreichend gering. Lediglich das erwünschte PCR-Produkt kann so hochspezifisch angereichert werden. Wird nun bei der zweiten PCR-Runde lediglich einer der beiden Primer des Primersets der ersten PCR-Runde durch einen nested PCR. Für die spätere Detektion der Amplikons wurden an dieser Stelle FAM-markierte Reverse-Primer verwendet.

Abb. 2.5: Schema einer Nested PCR P1: Primer 1, P2: Primer 2. Übernommen von Labor Gärtner.²³⁵

Multiplex-PCR-Verfahren wurden für die Amplifikation der TCRV α - und KIR-Transkripte verwendet. Vor dem Hintergrund, dass wie in Tabelle 7 gezeigt eine große Anzahl verschiedener Gen-Segmente auf Genexpression hin untersucht wurde, diente diese Methode der effektiven Nutzung des Template-Materials. Statt nur ein Primerpaar in einer PCR-Reaktion zu verwenden, werden bei der Multiplex-PCR mehrere Primerpaare in einen PCR-Ansatz gegeben. So können innerhalb einer PCR-Reaktion mehrere verschiedene Amplikons angereichert werden. Vorraussetzung für dieses Verfahren ist, dass die Oligonukleotid-Primer auf Interaktionen untereinander geprüft werden, Gen-Segmente nicht überlappen und die Amplikons für die spezifische Detektion verschiede Fragmentlängen aufweisen. So konnten 2-3 verschiedene TCRV α - bzw. KIR-Transkripte in einer PCR-Reaktion amplifiziert werden.

Tabelle	12: Exemplarischer	Multiplex-PCR-Ansatz	für	Detektion	von	NKp44,
NKp46,	CD226					

Komponente	Volumen
Gold Taq	12,5 µl
cDNA	0,5 µl
Primer-Mix (3x je Forward- und Reverse-primer 0,5 µl, 20 pmol/µl)	3 µl
H ₂ O	9 µl

2.2.3.6 Fragmentlängenanalyse (TCR- und KIR-Spectratyping)

Die Untersuchung der Genexpression der TCRV α , γ - und δ - und KIR-Gene/Gensegmente wurde mittels PCR-basierter Fragmentlängenanalyse im ABI 3130 xl Genetic Analyzer durchgeführt. Die zuvor spezifisch amplifizierten und durch FAM-Label fluoresceinmarkierten Fragmente konnten so über ihre Länge und Fluoreszenseigenschaften gelelektrophoretisch aufgetrennt und detektiert werden.

Abb. 2.6: Schematische Darstellung des Spectratyping

(1) Dem Versuchstier wird Tumorgewebe entnommen und mechanisch zerkleinert, (2) aus Tumorgewebe die mRNA isoliert, (3) an dieser wird cDNA synthetisiert und diese entsprechend der zu untersuchenden TCRV-Familie mit spezifischen Primern amplifiziert (TCRV α , - γ - und δ). (4) Es entstehen heterogene, die CDR3-Region umfassende DNA-Fragmente, die elektrophoretisch ihrer Länge nach sortiert werden. (5) Die Menge an Material der einzelnen Banden wird schließlich mittels Densometrie quantifiziert. "Fragmentlängenanalyse". Adaptiert und übersetzt nach Kepler et al.²³⁶

Tabelle 13 und Abbildung 2.7 zeigen die Probenvorbereitung zur Fragmentanalyse im Sequenziergerät.

Tabelle 13: PCR-Produkt-Vorbereitung für Sequenziergerät

Komponente	Volumen
PCR Produkt 1:10 verdünnt	1,0 µl
Formamid	13,5 µl
GeneScan™ – 600 LIZ® Size Standard	0,5 μl

Abb. 2.7: Thermocyclerprogramm zur Denaturierung

Anschließend erfolgte die Lagerung der Probe auf Eis für mindestens zwei Minuten, um sie dann auf eine Mikrotiterplatte zu pipettieren.

2.2.3.6.1 TCRVα-Spectratyping

Die TCRVα-Segmente wurden mittels TCRVα-Segment spezifischem Forwardsowie zwei Reverse-Primern des TCRCα-Segments in semi-nested RT-PCR amplifiziert. Der erste Reverse-Primer diente der Amplifikation des PCR-Produktes, der zweite Reverse-Primer war mit FAM markierrt und ermöglichte, nach der zweiten PCR, die Detektion des Amplikons im ABI 3130 xl Genetic Analyzer. Die PCR-Bedingungen und eingesetzte Primer wurden von Han et al. übernommen.²³³

2.2.3.6.2 TCRV γ - und δ -Spectratyping

Auch die TCRV γ - und δ -Ketten wurden durch jeweils einen TCRV γ/δ -Segment spezifischen Forward- und zwei Reverse-Primer des TCRC γ/δ -Segments in semi-nested RT-PCR amplifiziert. Die PCR-Bedingungen und eingesetzte Primer entstammten dem bei Annik Lim verwendeten Protokoll, aber auch aus dem Design von Prof. Dr. Karin Schilbach. ²³⁴

2.2.3.6.3 KIR-Spectratyping

Die KIR-Segmente, im Speziellen für diese Arbeit NKR- und NCR-Segmente, wurden durch Gen-Lokus spezifische Forward- und Reverse-Primer mittels RT-PCR amplifiziert. Die eingesetzten Primer waren von Prof. Dr. Karin Schilbach und Kollegen designed worden. Die PCR-Bedingungen waren wie zuvor bei Chen et al. verwendet worden. ²³⁷

3 Ergebnisse

3.1 Tumorregression und verbessertes Überleben nach T-Zellinfiltration und Myogener Enddifferenzierung der Tumore durch Kombinationstherapie bestehend aus lokaler Bestrahlung und NHS-IL12 Gabe

Nachdem die Versuchstiere wie in 2.1.1 und 2.2.1 beschrieben gruppiert, behandelt und betrachtet wurden, folgte die Auswertung der relative Tumorgröße, des tumorspezifischen Überlebens, sowie histologische Marker.

3.1.1 Relative Tumorgröße und Survivalanalyse in Abhängigkeit von der Behandlungsgruppe

Wir betrachteten das Wachstum der inokulierten Tumore in Relation zur Ausgangstumorgröße am Tag des Therapiebeginns. Wir verglichen zum einen den relativen Wachstumsverlauf über einen Zeitraum von 25 Tagen nach Therapiebeginn (s.Abb 3.1), zum anderen die relative Tumorgröße an Tag 15 nach Therapiebeginn (s.Abb 3.2).

Die unbestrahlten Tumore der unilateral radiotherapierten Tiere (I1) sowie die Tumore der nur mit NHS-IL12 systemisch behandelten Tiere (II3) wuchsen über den Beobachtungszeitraum von 25 Tagen unkontrolliert. Einen ähnlichen Wachstumsverlauf zeigten die radiotherapierten Tumore der unilateral bestrahlten Mäuse (I2). Fünf der sechs derart behandelten Tumore (I2) wuchsen stetig. Ganz anders bei den ipsilateral bestrahlten Tumoren der Mäuse, welche kombiniert mit lokaler Radiotherapie und systemisch mit NHS-IL12 therapiert worden waren (III5). Hier nahm die Tumorgröße bei zwei von sechs Tumoren ab und blieb bei den weiteren vier über mindestens sieben Tage stabil. Die nicht bestrahlten Tumore der Tiere, welche die Kombinationstherapie erhalten hatten (III4), wuchsen sehr unterschiedlich.

Die zwei Tumore, welche schrumpfende ipsilateral bestrahlte Counterparts hatten, schrumpften ebenfalls – allerdings mit einer Verzögerung von acht Tagen bei einem und zwölf Tagen Verzögerung bei einem anderen Tumor. Drei weitere der Tumore kombiniert lokal radiotherapierter und systemisch mit NHS-IL12 behandelter Mäuse, welche nicht bestrahlt worden waren, wuchsen kontinuierlich, wenn auch langsamer. Ein derart behandelter Tumor wurde in seinem Wachstum ab Tag zwölf arretiert. (s.Abb 3.1)

Tumore der KG (I) zeigten ein schnelles Wachstum. Ipsilaterale Radiatio konnte einen von sechs Tumore kontrollieren. Systemische NHS-IL12-Therapie allein (II) verlangsamte das Tumorwachstum. Nach Kombinationstherapie bei contralateraler Radatio verlangsamtes bzw. arrettiertes Wachstum, bei ipsilateraler Radatio Tumorkontrolle (III).

Bei Betrachtung der relativen Tumorgröße an Tag 15 nach Therapiebeginn zeigte die Kombinationstherapie signifikant wirksamer. (s.Abb. 3.2) Die sich Tumorgröße wurde in Relation zur Ausgangstumorgröße am Tag des Therapiebeginns bewertet. Im Vergleich der Tumore der nur unilateral bestrahlten Mäuse untereinander (11 und 12) ließ sich kein signifikanter Unterschied in Bezug auf die Tumorgröße erkennen. Ebenso zeigte sich im Vergleich der Tumore von lediglich mit NHS-IL12 behandelten Mäusen (II3) und denen der Kontrollgruppe (11) kein signifikanter Unterschied in der relativen Tumorgröße an Tag 15. Die Tumore der kombiniert therapierten Tiere verhielten sich anders. Die Kombinationstherapie verhinderte signifikant das Wachstum der ipsilateral radiotherapierten Tumore (III5). Auch bei den unbestrahlten Tumoren der kombiniert therapierten Tiere (III4) war die relative Tumorgröße an Tag 15 signifikant geringer. Ein signifikanter Unterschied war auch zwischen den radiotherapierten Tumoren der Mäuse mit Zustand ipsilateral nach Kombinationstherapie (III5) und den Tumoren der alleinig mit NHS-IL12 behandelten Tiere (II3) zu sehen. (s. Abb. 3.2)

Die relative Tumorgröße an Tag 15 nach Therapiebeginn unterschied sich signifikant zwischen nichtbestrahlten Tumoren (I1) der nur unilateral radiotherapierten Mäuse und den bestrahlten sowie unbestrahlten Tumoren (III4 und III5) von Mäusen, welche die Kombinationstherapie erhalten hatten. Signifikante Unterschiede bzgl. der Tumorgröße an Tag 15 waren ebenfalls zwischen Tumoren nur systemisch mit NHS-IL12 therapierter Mäuse (II3) und den lokal bestrahlten Tumoren kombiniert therapierter Mäuse (III5) zu sehen.

In Bezug auf das tumorgrößespezifische Überleben ließ sich ein signifikant längeres Überleben der kombiniert therapierten Tiere (III) gegenüber den Tieren aus den monotherapierten Gruppen (I und II) zeigen. Im Vergleich der Gruppen der monotherapierten Tiere untereinander unterschied sich das Überleben nicht signifikant. (s. Abb. 3.3).

Abb. 3.3: Tumorgrößespezifische Survivalanalyse

Mäuse, welche die Kombinationstherapie erhalten hatten, zeigten ein signifikant längeres Überleben als Mäuse, welche nur unilateral radiotherapiert oder nur systemisch mit NHS-IL12 behandelt worden waren

3.1.2 Histologische und immunhistochemische Untersuchung der Tumore

Die histologische und immunhistochemische Analyse diente zur Bewertung der Tumore in Hinsicht auf ihre Immunzell-Infiltration (CD4⁺ und CD8⁺ T-Zellen, NK-Zellen), auf den Phänotyp der infiltrierenden Immunzellen (Granzym B⁺ tumorlytisch) und auf eine potentiell induzierte Seneszens mit nachfolgender Differenzierung der Tumore durch das von Immunzellen sezernierten TNF α /IFN γ , sichtbar durch den Marker Desmin. Die histologisch ausgewerteten Abschnitte wurden je nach Signalstärke nach IHC-Score von 0 bis 3 bewertet (none, low, moderate, high staining). (s.a. 2.2.2) In Tumoren der mit unimodaler Therapie behandelten Tiere (I1, I2 und II3) waren abgesehen von einem ipsilateral bestrahlten Tumor kaum T-Zell-Infiltrate nachweisbar. Ganz anders die Tumore der Tiere, die Kombinationstherapie erhalten hatten. Hier fanden sich prominente T-Zellkompartimente sowohl in ipsilateral als auch in contralateral bestrahlten Tumoren (III4 und III5). In diesen mit Kombinationstherapie behandelten Tumoren fanden sich neben CD4⁺ und CD8⁺ T-Zellen auch Zytotoxine nachgewiesen durch die Expression von Granzym B und Perforin, was auf Aktivierung und eine CTL-Differenzierung des Immunkompartiments hinweist. Von übergeordneter Bedeutung für die Aussage des Studiendesigns ist jedoch, dass die Kombinationstherapie in den betreffenden Tumoren zur Expression des Markers Desmin führte, ein Protein, das von reifer quergestreifter Muskulatur exprimiert wird. Dieser Zellmarker enddifferenzierter Myozyten steht für die Entstehung quergestreifter Muskelzellverbände und weist hier auf die Enddifferenzierung quergestreifer Muskulatur aus undifferenzierten RMS-Zellen hin. Histologisch ließen sich nach Kombinationstherapie zudem mehrkernige myogene Synzytien und quergestreiftes Muskelgewebe erkennen. (s. Abb. 3.4 und Abb. 3.5).

Ergebnisse

Abb. 3.4.: Histologie und Immunhistochemie (s.a. ²⁰)

Abb 3.5.: Quantitatives Scoring der Histologie und Immunhistochemie Verstärkte T-Zell-Infiltration und –Aktivierung (CD4⁺, CD8⁺ und Granzym B⁺) lässt sich in durch lokale Bestrahlung und NHS-IL12 kombiniert therapierten Tumoren (III5) erkennen. Areale Desmin⁺ myogener Entdifferenzierung waren nur in Tumoren nach Kombinationstherapie (III4/III5) zu sehen. Bei Tieren, welche NHS-IL12 und lokale Bestrahlung erhalten hatten (III), zeigten sich, wenn der ipsilateral bestrahlte Tumor (III5) massive Immuninfiltrate aufwies, auch beim contralateralen Tumor (III4) T-Zell-Infiltrate. Im Gegensatz dazu wiesen die Tumore der nur lokal radiotherapierten Mäuse (I2) contralateral (I1) kaum Immuninfiltrate auf. (s.a. ²⁰)

Bei Betrachtung der relativen Tumorgröße an Tag 15 sowie des Gesamtüberlebens in Abhängigkeit von T-Zell-Infiltration und tumorlytischem Phänotyp zeigt sich eine weitestgehend negative Korrelation. Eine starke Infiltration durch CD4⁺ und CD8⁺ T-Zellen sowie Aktivierung und Differenzierung zu CTL (Granzym B⁺) korrelierte signifikant mit geringerem Tumorvolumen.

(s. Abb. 3.6) Für die Analyse des Gesamtüberlebens wurden jeweils die IHC-Scores des Tumors mit dem höheren Nachweis für dieses Tier verwendet. Siginifikant verlängert war das overall survival bei Tieren mit starker intratumoraler T-Zell-Infiltration (CD4 high, CD8 high) gegenüber Tieren mit geringer intratumoraler T-Zell-Infiltration (CD4 low, CD8 low). Für Granzym B ließ sich keine Korrelation zwischen starkem Zytotoxin-Nachweis (Granzym B high) und dem Gesamtüberleben zeigen. (s. Abb. 3.6)

Abb 3.6.: Relative Tumorgröße und Gesamtüberleben in Abhängigkeit von T-Zellinfiltration

Die relative Tumorgröße an Tag 15 ist bei Tumoren mit hoher T-Zell-Infiltration und –Aktivierung (CD4 high, CD8 high, GranzB high) signifikant geringer (A). Zur Betrachtung des Gesamtüberlebens in Abhängigkeit von T-Zell Infiltration und GranzymB wurden jeweils die IHC-Scores des Tumors mit dem höheren Nachweis für dieses Tier verwendet. Siginifikant verlängert ist das Über bei Tieren mit starker T-Zell-Infiltration (CD4 high, CD8 high). Für Granzym B lässt sich keine signifikante Korrelation zeigen. (s.a. ²⁰)

3.2 Induktion einer breiten Immunantwort auf T-Zell und NK-Zell-Ebene nach Behandlung mit Kombinationstherapie

Nachdem die Versuchstiere wie in 2.1.1 und 2.2.1 beschrieben gruppiert, behandelt und betrachtet worden waren, untersuchten wir die Rezeptor-Repertoires intratumoraler NK-Zellen, $\alpha\beta$ T-Lymphozyten und $\gamma\delta$ T-Zellen.

3.2.1 NK-Zellrezeptorgene werden durch alle Kontroll- und Therapiegruppen hindurch homogen exprimiert

Sowohl die aktivierende NK-Zellrezeptorgene wie NKG2D, NKG2E, NKp30, Nkp44, NKp46 und CD226 als auch CD161 als lineage marker für intratumorale T_H17-Zellen wurden in Tumoren aller Therapiegruppen homogen exprimiert. Das Rezeptorrepertoire intratumoraler NK-Zellen weist auf deren Aktivierung und lytisches Potential hin. Der gezeigte NK-Zell-Phänotyp mit Hochregulation aktivierender Rezeptoren setzt eine hohe IL-12-Verfügbarkeit voraus. Die durch alle Therapiegruppen hindurch ebenfalls exprimierten CD161-Rezeptorgene weisen auf durch TH17-Zellen produziertes IL-17 hin. Diese T-Zellsubpopulation durch IL-12-Präsenz in T_H1-Lymphozyten repolarisiert werden. kann Auffallenderweise wurde Nkp44 in keinem der Tumore nachgewiesen. (s.a. Abb. 3.6 und 3.7) NKp44 ist ein NCR, der in der Zellmembran aktivierter NK-Zellen zu finden ist, und bei Bindung eine weitere Aktivierung der NK-Zelle mit lytischer Zerstörung der erkannten Zelle vermittelt. Wie bei den weiteren NCR NKp30 und NKp46 sind die durch NKp44 erkannten Zielstrukturen noch nicht charakterisiert. NKp44 wird eine Rolle in der nicht MHC-restringierten Tumorzelllyse zugeschrieben. Neben NK-Zellen exprimiert auch eine γδ T-Zell-Subpopulation NKp44. (s.a. 1.2.2.2)

Abb 3.7: Exemplarische Darstellung des KIR-Spectratyping von infiltrierenden NK-Zellen aus Tumoren unterschiedlicher Therapiegruppen.

11: Contralateral bestrahlter Tumor ohne NHS-IL12. I2: Ipsilateral bestrahlter Tumor ohne NHS-IL12. II3: Nur systemisch NHS-IL12. III4: Cotralateral bestrahlter Tumor mit NHS-IL12. III5: Ipsilateral bestrahlter Tumor mit NHS-IL12.

Im Gegensatz zu den durch Neukombination mehrerer Gensegmente entstandenen hochindividuellen TCRs, sind NK-Zell-Rezeptoren germline encoded und das Ergebnis der Expression jeweils eines definierten Genlokus. Wird ein Genlokus exprimiert, entsteht durch Transkription eine einzige mRNA in multiplen Kopien, die sich wie in Abb. 3.7 zu sehen über einen einzelnen deutlichen Peak nachweisen lassen. Die KIR-Typedaten lassen daher nicht nur eine binäre Aussage sondern auch eine semiquantitative Aussage zu (s. Abb 3.7, vrgl. Expression des Genlokus für NKp46 in Tumoren der Therapiegruppen I1 und III5, nicht aber II3), da die Höhe der Expression eines NK-Zellrezeptorgens

	11		12		113		1114		III5	
	Maus 314	Maus 378	Maus 314	Maus 378	Maus 348		Maus 363	Maus 337	Maus 363	Maus 337
NKG2D	0	o	0	0	o	0	0	0	0	o
NKG2E	o	0	o	o	0		0	0	o	o
Nkp30	o	0	o	o	0		0	0	o	o
Nkp44										
Nkp46	o		o	o	o		o		o	
CD 226	o	o	o	o	0	o	o	0	o	о
CD161	0	0	0	0	0	0	0	0	0	0
								o Expression des Genlokus		

mit dem im KIR-Typing gezeigten Integral des Peaks (Fläche und Höhe) korreliert.

Abb 3.8: Homogene Expression der NK-Zellrezeptorgene durch alle Therapiegruppen hindurch

In keinem der Tumore konnte die Expression von Nkp44 detektiert werden. I1: Contralateral bestrahlter Tumor ohne NHS-IL12. I2: Ipsilateral bestrahlter Tumor ohne NHS-IL12. II3: Nur systemisch NHS-IL12. III4: Cotralateral bestrahlter Tumor mit NHS-IL12. III5: Ipsilateral bestrahlter Tumor mit NHS-IL12.

3.2.2 Kombinationstherapie induziert breitestes TCRVα-Repertoire mit höchsten Peaks und systemisch nachweisbaren Klonen

Wir untersuchten mittels Spectratyping das TCRV α -Repertoire tumor-infiltrierender $\alpha\beta$ T-Lymphozyten. So konnten für die einzelnen TCRV α -Segmente Expressionsniveau und klonale Breite bzw. mögliche klonale Expansion in Abhängigkeit von der Therapie analysiert werden. Die Nachweisgrenze für Peaks im Spectratyping für TCRV α -Segmente liegt bei einer Peaköhe von 30 ht.

Stellt sich im Spectratyping ein Peak prominent dar (Single Peak), lässt das auf die Proliferation eines T-Zellklons schließen, für dessen TCR dieses TCRVα-Segment exprimiert wurde. Es ist am ehesten zur (mono-)klonalen Expansion dieses T-Zell-Klones durch antigenspezifischen Aktivierung gekommen. (s. exemplarisch Abb. 3.23)

Zeigen sich mehrere Peaks für ein Segment (pseudo-gaußsche Verteilung), weist dies auf einen polyklonalen Charakter der $\alpha\beta$ T-Zellpopulation hin. Dies ist vor allem bei antigenunabhängigen Expansionen typisch, wie sie beispielsweise

durch Zytokine in Kombination mit Mitogenen hervorgerufen werden können. (s. exemplarisch Abb. 3.19)

Lassen sich im Spectratyping in beiden Tumoren einer Maus korrespondierende Peaks in Bezug auf Fragmentlänge und Klonalität finden, könnte dies auf eine systemische klonale Expansion eines $\alpha\beta$ T-Zell-Klons mit dieser betreffenden TCRV α -Kette hinweisen. Die Induktion eines systemischen Klons wird als ein Teil der immunologischen Grundlage Abscopaler Effekte diskutiert. Abscopale Effekte können nach lokaler Bestrahlung auftreten. Es kann dabei zu Tumorregession oder Seneszenzinduktion auch an nicht-bestrahlten, entfernteren Tumormanifestationsorten kommen. (s.1.2.3 und exemplarisch Abb.3.31, 3.33)

Abb 3.9: Exemplarische Darstellung des TCRVα-Spectratyping eines Tumors aus der Kontrollgruppe (I1) und eines Tumors einer Maus, welche die Kombinationstherapie erhalten hatte (III5)

Das jeweilige α -Repertoire in den analysierten Tumoren unterschied sich in Abhängigkeit von der Therapie teilweise deutlich. In den Tumoren der unilateral bestrahlten Mäuse (I1, I2) zeigten sich sowohl ipsilateral als auch contralateral multiple Peaks und einzelne Single Peaks geringen Expressionsniveaus für die jeweils untersuchte α -Kette. (s. z.B. Abb. 3.11, 3.12, 3.14, 3.16, 3.30) Bemerkenswerterweise waren sowohl quasi-gaußsche Expressionen als auch Single Peaks in nicht bestrahlten Tumoren (I1) häufiger und deutlicher zu detektieren. (s. Abb. 3.14., 3.16, 3.17) Außerdem fanden sich korrespondierende Peaks, passend zu einer systemischen klonalen Expansion, bei einigen der untersuchten TCRV α -Segmente. (s.a. Abb. 3.21, 3.26) Wenn auch mit Peaks geringerer Intensität und seltener als in den untersuchten Tumoren kombiniert

Ergebnisse

therapierter Mäuse, induzierte hier lokale Radiotherapie die Expansion systemischer Klone. Für das TCRVα-Segment 20 || 30 konnte bei je einem Tier der Therapiegruppe I und III ein korrespondierender Single Peak in beiden Tumoren gezeigt werden. (s. Abb. 3.26) In den Tumoren allein systemisch mit NHS-IL12 behandelter Mäusen (II3) ließen sich kaum Single Peaks oder polyklonale Expression finden. NHS-IL12 allein induzierte weder eine besonders breite noch besonders intensive $\alpha\beta^+T$ -Zell-Antwort. (s.a. 3.12, 3.13) Diese Antwort fiel in den Tumoren kombiniert radiotherapierter und systemisch mit NHS-IL12 behandelter Tiere (III5, III6) am intensivsten aus. Neben polyklonalen Peaks induzierte diese Therapie die meisten Single Peaks mit den höchsten Expressionsniveaus. (s. z.B. Abb. 3.11, 3.16, 3.18, 3.19) In Tumoren dieser Therapiegruppe ließen sich weiterhin für bestimmte Va-Segmente korrespondierende Peaks in ipsilateral und contrateral bestrahlten Tumoren desselben Tieres zeigen, welche auf eine systemische Expansion eines TCRαβ+-Klons hinweisen könnte. (s.a. z.B. Abb. 3.10, 3.11, 3.15, 3.18, 3.19, 3.23, 3.26, 3.31) Denkbar wäre auch eine polyklonale, jedoch längen- und TRAVfamilienrestringierte T-Zell Antwort. Die Induktion systemisch nachweisbarer Klone ließ sich hier nach multimodaler Kombination von lokaler Radiotherapie und systemischer NHS-IL12-Gabe am deutlichsten sehen. Auch vermindertes Tumorwachstum bzw. sogar Tumorregression und Seneszensinduktion im Sinne Abscopaler Effekte waren bei den Tumoren der Tiere, welche Kombinationstherapie erhalten hatten, am häufigsten. (vrgl. 3.1.1 und 3.1.2)

Abb. 3.10 Expressionsniveau und –Breite TCRVα-Segment 1-1 und 1-2 || 7 Korrespondierende Single Peaks in Tumoren eines kombiniert therapierten Tieres.

Abb. 3.11: Expressionsniveau und –Breite von TCRVα-Segment 2 || 11 In einem unbestrahlten Tumor einer unilateral bestrahlten Maus deutliche, polyklonale Expression. Korrespondierende Single Peaks in Tumoren eines kombiniert therapierten Tieres.

Abb. 3.12: Expressionsniveau und –Breite von TCRVα-Segment 3 || 16 Deutliche Single Peaks in einem nur unilateral radiotherapierten Tier. Unspezifische polyklonale Peaks in Tumoren eines kombiniert therapierten Tieres.

Abb. 3.13: Expressionsniveau und –Breite von TCRVα-Segment 4 || 20 Stärkste polyklonale Expression bei Tumoren eines Tieres nach Kombinationstherapie.

Abb. 3.14: Expressionsniveau und –Breite von TCRVα-Segment 5 || 15 Ein deutlicher Single Peak könnte auf eine klonale Expansion in einem ipsilateral radiotherapierten Tumor der Kombinationstherapiegruppe hindeuten.

Abb. 3.15: Expressionsniveau und –Breite von TCRVα-Segment 6 || 5 Höchster Single Peak in einem kombiniert therapierten Tumor. Korrespondierender Peak im contralateralen Tumor desselben Tieres.

Abb. 3.16: Expressionsniveau und –Breite von TCRVα-Segment 8-1 und 8-3 || 1B Deutliche, korrespondierende Peaks konnten in Tumoren einer kombiniert therapierten Maus detektiert werden. Polyklonale Peaks bei nur unilateral bestrahlten Tieren.

Abb. 3.17: Expressionsniveau und –Breite von TCRVα-Segment 8-4 und 8-6 || 1A Ein Tumor einer lediglich unilateral bestrahlten Maus zeigt das höchste Expressionsniveau.

Abb. 3.18: Expressionsniveau und –Breite von TCRVα-Segment 9-2 || 22 Detektion korrespondierender Peaks bei einer Maus nach Kombinationstherapie mit deutlicherer Expression im ipsilateral bestrahlten Tumor.

Abb. 3.19: Expressionsniveau und –Breite von TCRVα-Segment 10 || 24 Polyklonale Peaks nach unilateraler Bestrahlung, Deutlichste, ebenfalls multiple Peaks in Tumoren kombiniert therapierter Tiere. Deutliche Eichpeaks in Tumoren nach NHS-IL12-Therapie.

Abb. 3.20: Expressionsniveau und –Breite von TCRVα-Segment 12-1, 12-2 und 12-3 || 2 Single Peak mit höchster Intensität und korrespondierenden Peaks nach unilateraler Radiatio (I). Hingegen multiple Peaks mit breiter Expression nach Kombinationstherapie.

Abb. 3.21: Expressionsniveau und –Breite von TCRVα-Segment 13-1 und 13-2 || 8 Detektion korrespondierender Peaks in Tumoren lediglich unilateral bestrahlter Tiere. Intensivere polyklonale Peaks nach Kombinationstherapie.

Abb. 3.22: Expressionsniveau und –Breite von TCRVα-Segment 14DV4 || 6 Deutliche korrespondierende Peaks in Tumoren eines kombiniert therapierten Tieres.

Abb 3.23: Expressionsniveau und –Breite von TCRVα-Segment 16 || 9 Deutliche Expression vergleichbarer Single Peaks in Tumoren zweier kombiniert therapierter Tiere mit Hinweis auf einer systemischen klonalen Expansion, dieses Segment exprimierender T-Zellen.

Abb. 3.24: Expressionsniveau und –Breite von TCRVα-Segment 17 || 3 Intensivste polyklonale Peaks bei einem Tier nach kombinierter unilateraler Bestrahlung und systemischer NHS-IL12-Gabe.

Abb. 3.25: Expressionsniveau und –Breite von TCRVα-Segment 19 || 12 Expression multipler Peaks in Tumoren kombiniert therapierter Mäuse mit deutlicher Expression korrespondierender Peaks. Deutliche, polyklonale Peaks nach kontralateraler Radiation in einem Tumor der KG (I1).

Abb. 3.26: Expressionsniveau und –Breite von TCRVα-Segment 20 || 30 Detektion deutlicher korrespondierender Single Peaks bei zwei Tieren nach Kombinationstherapie sowie bei einem Tier nach nur unilateraler Radiatio.

Abb. 3.27: Expressionsniveau und –Breite von TCRVα-Segment 21 || 23 Intensivste polyklonale Peaks in Tumoren eines Tieres nach Kombinationstherapie.

Abb. 3.28: Expressionsniveau und –Breite von TCRVα-Segment 22 || 13 Detektion vergleichbarer Peaks in Tumoren einer Maus nach Kombinationstherapie.

Abb. 3.29: Expressionsniveau und –Breite von TCRVα-Segment 23DV6 || 17 Geringfügige Expression dieses Segments in den Tumoren der untersuchten Mäuse. Detektion eines Single Peaks in einem unbestrahlten Tumor einer unilateral bestrahlten Maus (I1).

Abb. 3.30: Expressionsniveau und –Breite von TCRVα-Segment 24 || 18 Detektion des intensivsten Single Peaks in einem nicht bestrahlten Tumor einer unilateral bestrahlten Maus (I1). Weniger deutliche aber vergleichbare Peaks bei beiden kombiniert therapierten Mäusen (III).

Abb. 3.31: Expressionsniveau und –Breite von TCRVα-Segment 25 || 32 Detektion korrespondierender Single Peaks in Tumoren beider Mäuse nach Kombinationstherapie. Weniger deutliche Single und Double Peaks bei unilateral bestrahlten Mäusen.

Abb. 3.32: Expressionsniveau und –Breite von TCRVα-Segment 26-2 || 4A Deutliche vergleichbare Single Peaks bei einer unilateral radiotherapierten Maus. Expression der deutlichsten multiplen Peaks in einem Tumor einer kombiniert therapierten Maus.

Abb. 3.33: Expressionsniveau und –Breite von TCRVα-Segment 26-2 || 4B Es zeigen sich korrespondierende Single Peaks bei einer jeweils ledliglich unilateral bestrahlten, sowie einer kombiniert therapierten Maus.

Abb. 3.34: Expressionsniveau und –Breite von TCRVα-Segment 27 || 10 Intensivste polyklonale Expression mit vergleichbaren Peaks in Tumoren kombiniert therapierter Mäuse (III).

Abb. 3.35: Expressionsniveau und –Breite von TCRVα-Segment 29DV5 || 21 Detektion von Single Peaks in beiden Tumoren einer ledliglich unilateral bestrahlten Maus. Polyklonale Expression bei Tieren nach Kombinationstherapie.

Abb. 3.36: Expressionsniveau und –Breite von TCRVα-Segment 30 || 29 Vergleichbare Single Peaks bei einer kombiniert therapierten Maus. Deutlichster Single Peak in einem Tumor einer anderen Maus, welche die Kombinationstherapie erhalten hatte.

Abb. 3.37: Expressionsniveau und –Breite von TCRVα-Segment 34 || 26 Detektion vergleichbarer Single Peaks in den Tumoren beider kombiniert therapierter Mäuse. Eichpeaks in Tumoren welche nur mit Radiatio oder systemisch mit NHS-IL12 therapiert wurden.

Abb. 3.38: Expressionsniveau und –Breite von TCRVα-Segment 35 || 25 Polyklonale Expression mit vergleichbaren Peaks bei einer kombiniert therapierten Maus.

Abb. 3.39: Expressionsniveau und –Breite von TCRVα-Segment 36DV7 25 || 28 Induktion der intensivsten Antwort mit einem Doublepeak in einem kontralateral radiotherapierten Tumor. Breite Expression mit polyklonalen Peaks nach Kombinationstherapie.

Abb. 3.40: Expressionsniveau und –Breite von TCRVα-Segment 38-1 38-2DV || 14 In zwei unbestrahlten Tumoren der KG (I) sowie allen Tumoren kombiniert therapierter Mäuse (III) zeigte sich eine polyklonale Expression. Bei einer Maus (III) mit vergleichbaren Peaks.

Abb. 3.41: Expressionsniveau und –Breite von TCRVα-Segment 39 || 27 Deutliche polyklonale Expression dieses Segments in einem Tumor einer unilateral bestrahlten Maus.

Abb. 3.42: Expressionsniveau und –Breite von TCRVα-Segment 40 || 31 Für dieses Segment konnten keine Expression detektiert werden.

Abb. 3.43: Expressionsniveau und –Breite von TCRVα-Segment 41 || 19 Für dieses Segment konnte keine Expression detektiert werden

3.2.3 TCRVγ- und δ-Repertoire indifferent zwischen Behandlungsgruppen mit größter klonaler Breite in Tumoren von kombiniert therapierten Mäusen

Hier untersuchten wir das TCRV γ - und – δ -Repertoire intratumoraler TCR $\gamma\delta^+$ -Klone mittels Spectratyping. Wir verglichen Expressionsniveau und klonale Breite bzw. mögliche klonale Expansion für die einzelnen γ - und δ -Segmente in Abhängigkeit von der Therapie.

Abb 3.44: Exemplarische Darstellung des TCRV γ - und δ -Spectratyping bei Tumoren von Mäusen unterschiedlicher Therapiegruppen.

Insgesamt präsentierten sich die jeweils exprimierten TCR-Repertoires der intratumoralen TCR $\gamma\delta^+$ -Zellen im Vergleich der Therapiegruppen untereinander weniger deutlich different als für die untersuchten TCRV α -Segmente. Expressionsniveau und vereinzelte klonale Expansion waren unabhängig von der Therapie gleichmäßig über die Tumoren der unterschiedlich behandelten Mäuse verteilt. Allerdings fanden sich bei Mäusen, welche die Kombinationstherapie erhalten hatten, in ipsilateral wie auch kontralateral bestrahlten Tumoren (III4 und

III5) häufiger multiple Peaks als bei nur unilateral bestrahlten (I1,I2) oder nur systemisch mit NHS-IL12 behandelten Mäusen (II3). (s.Abb. 3.45 und 3.46) Korrespondierende Peaks mit Hinweis auf die systemische Expansion der betreffenden γδ T-Zellklone ließen sich für die V_δ4-Kette in den Tumoren einer kombiniert therapierten Maus, sowie für die V₅5-Kette in einer nur systemisch mit NHS-IL12 behandelten Maus finden. (s. Abb. 3.45 u 3.46) Die häufigere und breiter gefächerte pseudo-gaußsche Expression der einzelnen γ- und δ-Ketten im Vergleich zu den untersuchten α-Ketten kann durch die Organisation der Gensegmente dieser Loci bedingt sein. Die Gesamtvielfalt entstehender $v\delta^+$ TCR wird bei, im Vergleich zu den α - und β -Loci, geringerer Segmentanzahl der γ -, und δ-Loci durch eine höhere junktionale Variabilität erreicht. Ein weiterer Grund hierfür kann eine polyspezifische MHC-unabhängige Aktivierung von γδ T-Zellen sein. (s.a. 1.2.2.1) Auffallenderweise wurden das Segment V₀1 gar nicht und Segment $V_{\delta}2$ lediglich in drei der untersuchten Tumoren exprimiert. Deutlich überwiegend wurde die V₈3-Kette exprimiert. (s.Abb. 3.45) Physiologisch bildet die V $_{\delta}$ 2-Kette mit V $_{v}$ 9 koexprimiert eine Subpopulation von in der Peripherie zirkulierenden v δ T-Zellen. V $_{\delta}$ 1 mit einer variablen V_v-Kette koexprimiert bildet eine intraepithelial lokalisierte Subpopulation. Das gezeigte deutlich exprimierte V₅3-Segment, welches mit einem variablen V_y-Segment koexprimiert wird, ist in einer Subpopulation von γδ T-Zellen zu finden, die bei chronischen viralen Infektionen oder in der Leber vorkommt. Die überwiegende V₅3-Expression kann Folge von false priming sein. Aufgrund ähnlicher cDNA-Sequenzen, kann es es sein, dass ein Primer während des PCR-Verfahrens an eine andere als die eigentliche Ziel-cDNA-Sequenz bindet. Es werden fälschlich entstandene cDNA-Abschnitte amplifiziert. Im Spectratyping können so zum einen Peaks detektiert werden, die zusätzlich im Hintergrund auftreten, zum anderen aber auch falsch positive Peaks für Fragmente anderer Länge gefunden werden. Letzteres tritt auf, wenn der eingesetzte Primer innerhalb des angestrebten cDNA-Abschnitts an anderer Stelle bindet und so ein kürzerer cDNA-Abschnitt amplifiziert wird, der ebenfalls einer funktionsfähigen mRNA enstpricht. In diesem Fall, ist es wahrscheinlich, dass es sich bei den detektierten V₀3-Ketten um V₀1-Ketten handelt.

Für V δ 2-4 deutlichste und breiteste Peaks exprimiert bei kombiniert therapierten Mäusen (III4 und III5). Auffällig ist die deutliche Expression von Single Peaks in Tumoren der unilateral bestrahlten Tieren(I1 und I2) sowie die stark überwiegende Expression der V δ 3-Kette. Hingegen keine bzw. kaum Expression der Segmente V δ 1 und V δ 2, Ketten der häufigsten $\gamma\delta$ T-Zell-Subpopulationen.

Abb 3.46: Darstellung des Vδ-Repertoires für die TCRVδ-Segmente 5-8 Indifferente Expression von Single Peaks in Tumoren von Tieren aller Therapiegruppen.

Abb 3.47: Darstellung der Vγ-Repertoires für die TCRVγ-Segmente 2-4, 3, 5, 8 und 9 Detektion der deutlichsten pseudo-gausschen Expression nach Kombinationstherapie.

3.2.4 Induktion der deutlichsten Immunantwort nach Kombinationstherapie

In der Gesamtbetrachtung infiltrierender Immunkompartimente ließ sich die dichteste und differenzierteste Immuncontexture in Tumoren der Mäusen zeigen, welche kombiniert mit lokaler Radiotherapie und systemisch mit NHS-IL12 behandelt worden waren.

Die untersuchten Rezeptor-Repertoires der intratumoralen NK-Zellen waren homogen bei Mäusen aller Therapiegruppen exprimiert. (s. Abb. 3.48 A) Es ließen sich sowohl die aktivierenden Rezeptoren NKG2D, NKG2E, NKp30, NKp46 und CD226 aber auch CD161 als lineage marker mit Hinweis auf intratumorale T_H17 -Zelle nachweisen. Es kam zu Tumor-Infiltration durch NK-Zellen mit Ausbildung eines Rezeptorrepertoires, welches auf deren Aktivierung und lytisches Potential hinweist.

Die Repertoires tumorinfiltrierender TCR $\gamma\delta^+$ -Zellen präsentierten sich im Vergleich der Therapiegruppen untereinander, ähnlich den untersuchten NK-Zellrepertoires, indifferent. Die Expression von polyklonalen γ - und δ -Ketten mit vereinzelten deutlichen Single Peaks war in Tumoren aller Mäuse unabhängig von der Therapie zu sehen. (s. Abb. 3.48 C)

Das differenteste Immunkompartiment in Abhängigkeit von der Therapie präsentierte das V_a-Repertoire tumorinfiltrierender $\alpha\beta$ T-Lymphozyten. Hier fanden wir in den Tumoren der Mäuse, welche die Kombinationstherapie erhalten hatten, das breiteste Va-Repertoire. Die Kombinationstherapie induzierte die Expression der größten Vielfalt verschiedener V $_{\alpha}$ -Ketten mit Peaks der deutlichsten Intensität und mit den häufigsten Single Peaks. (s. 3.48 B) Neben Single Peaks mit Hinweis auf klonale Expansion bestimmter $\alpha\beta$ T-Zellklone fanden sich in den Tumoren der Tiere, welche mit der Kombinationstherapie behandelt worden waren, bilateral korrespondierende Peaks, welche die Expansion systemischer Klone implizieren können. Die Expression korrespondierender Single Peaks war auch für vereinzelte V_α-Segmente in Tumoren von unilateral bestrahlten Mäusen zu sehen.

Deutlicher und häufiger waren sie durch die multimodale Kombination lokale Bestrahlung und systemische NHS-IL12 Gabe induziert worden. (s.a. 3.2.2)

Α										
KIR/NKR/NKP	Irradiation only			NHS-IL12 only		NHS-IL12 and Irradiation				
	contralat.	ipsilat.	contralat.	ipsilat.	no Irradiat.	no Irratiot.	contralat.	ipsilat.	contralat.	ipsilat.
NKG2D										
NKG2E Nkp30										
Nkp44										
Nkp46										
CD 226										
CD161										
									Expression	of Geneloc.
в									no Expressio	on
<u> </u>										
TCRVα		Irradiat	ion only		NHS-IL	12 only		NHS-IL12 an	d Irradiation	
7 1 1 1 2	contralat.	ipsilat.	contralat.	ipsilat.	no Irradiat.	no Irratiot.	contralat.	ipsilat.	contralat.	ipsilat.
7 1-1 1-2	IV								1	
16 3	i i	1								
20 4	III	i.			1		П	III	1	
15 5	П						- 111	1		Ш
5 6	- 10		IV		1.1		- 111	III	1	1.1
1B 8-1 8-3	IV	11			1.1		II.	IV		
1A 8-4 8-6			IV			- 111				
22 9-2		I IV	IV							V
24 10							IV			v
8 13-1 13-2			i i		ш		VII	v		iii ii
6 14DV4	ш	П	IV			Ш	П	IV	VI	v
9 16	1	V	1				1	1	1	1
3 17	- 111		Ш				IV	V	- 111	III
12 19	V	III	VII	V	1		1	V	V	III
30 20		1						II		1
23 21		IV						V II		IV
17 23DV6									1	
18 24	1	1					1	11	1	1
32 25	1	Ш	Ш		1		1	1	1	1
4A 26-2	1 I I I	1			1.1		- 111	III		П
4B 26-2	IV	II.	1				1	1		
10 27	IV		1							1
21 29DV5		1								
25 30		1						1		
25 35		i i	1		1		i ii	IV		i i
28 36DV7 25	Ш				IV			VI		Ш
14 38-1 38-2DV8	V		VI		v		v	V	V	VI
27 39	III		1				1	IV		
31 40										
19 41	1									
<u>C</u>										
TCRV-δ und -γ		Irradiat	ion only		NHS-IL	12 only		NHS-IL12 an	d Irradiation	
145.4	contralat.	ipsilat.	contralat.	ipsilat.	no Irradiat.	no Irratiot.	contralat.	ipsilat.	contralat.	ipsilat.
V01										
Vδ 3	ш	Ш					IV		IV	
νδ4							1	1		
Vδ 5	IV			I.	1	1 I	1	1	I	
Vδ 6		1			1.00					1
Vδ 7		1		1	1	V				
Võ 8		1					1	I		1
Vγ 2-4	VIII		V	IV		III	V	VI		V
Vγ 3			1	1	IV			VIII	IV	VIII
VY S	V						VIII		VIII	VII
Vy 9		IV	IV	1	V		VII	VI		VII
111								I,II,III,n	Number of	peaks expr.
									highest Peal	k ht > 8000
									h. Peak ht <	8000 >5000
									h. Peak ht <	5000 >1000
									h. Peak ht <	1000 >100
									n. Peak ht <	TOO > 30

Abb. 3.48: Exprimierte NK-Zellrezeptorgene, TCRV α - und TCRV $\delta\gamma$ -Repertoires (s.a.)²⁰

4 Diskussion

Patienten, welche mit einem Rhabdomyosarkom diagnostiziert werden, sind häufig mit einer schlechten Prognose konfrontiert. Vielversprechend sind multimodale Behandlungskonzepte mit immunstimulierenden Therapieansätzen. (s.a. Kapitel 1.2.3) Während T_H1-polarisierte Immunkompartimente durch IL-12 als Monotherapie RMS in seinem Tumorwachstum arretieren können,²¹ zeigt die Kombination lokaler Radiotherapie mit Immuntherapie eine synergistische immunmodulierende Wirkung und befördert Abscopale Effekte.^{203,208} Abscopale Effekte sind selten vorbeschriebene Befunde bei in Monotherapie bestrahlten Tumorpatienten.^{220,238(p)} Dieses Phänomen gezielt und zuverlässiger zu induzieren begründete die Rationale, lokale Radiotherapie mit Immuntherapie zu kombinieren.^{208,222} Die vorliegende Arbeit untersuchte die in vivo Zusammensetzung der intratumoralen Immuncontexture nach Behandlung des RMS mit lokaler Bestrahlung und systemischer Gabe von tumorgerichtetem IL-12. Humanisierte Mäuse – Mäuse, welche mit humanen CD34⁺ Stammzellen transplantiert ein humanes Immunsystem heranbildeten - erhielten jeweils in beide Flanken humane Rhabdomyosarkomzellen, die zu soliden Tumoren heranwuchsen, injiziert. Die Tumormäuse erhielten dann IL-12 als Fusionsprotein mit dem histonbindenden Antikörper NHS76 (NHS-IL12) und/oder unilateral lokale Radiotherapie. Neben der Wirksamkeit der Therapie galt es die Mechanismen der intratumoralen Immunaktivität/Immunantwort zu beleuchten. Wir konnten zeigen, dass nur die Kombination aus systemischer NHS-IL12-Gabe und lokaler Radiotherapie ein intratumorales Immunkompartiment mit intensiver αβ T-Zellinfiltration mit breitem TCR-Repertoire und systemischen Klonen sowie starker Infiltration durch NK-Zellen und vo T-Zellen induziert, assoziiert mit Tumorregression und verbessertem Gesamtüberleben. 20,21

Das für diese Arbeit etablierte humanisierte Mausmodell bestand aus fünf NSG-Mäusen, welche nach systemischer Bestrahlung mit CD34⁺ humanen Stammzellen transplantiert worden waren. Da auf Grund mehrerer genetischer

Modifikationen immundefizient, sind diese Tiere sehr geeignet als Empfänger für Tumore aber auch Stammzellen und Immunzellen und damit für die Etablierung einer humanen Hämatopoese und eines menschlichen Immunsystems. Humanisierte NSG-Mäuse bieten somit die Möglichkeit, humane Immunreaktionen im Kontext von Neoplasien und wie hier geschehen immuntherapeutischer Intervention Spezies-spezifisch zu untersuchen.²²³⁻²²⁹ Nach Überprüfung des Engraftments wurden den Tieren in die Oberschenkel beider Hinterläufe RMS-Zellen der Zelllinie A204 inokuliert. Die Therapie in drei unterschiedlichen Therapiegruppen begann ab einer Tumorgröße von 7 mm. Zwei Tiere wurden lediglich unilateral lokal radiotherapiert. Ein Tier wurde nur NHS-IL12 systemisch mit behandelt. Zwei Tiere wurden mit der Kombinationstherapie aus unilateraler lokaler Radiatio und systemischer Gabe von NHS-IL12 behandelt. (Vgl. Kapitel 2.1.1 und 2.2.1) So konnte die Wirksamkeit der Kombinationstherapie beider Therapiemodi im Vergleich zur Monotherapie durch alleinige Immuntherapie bzw. lokale Radiotherapie betrachtet werden.

Wie zuvor beschrieben liegt die Wirksamkeit von Radiotherapie gegen Tumore neben der direkten lytischen Komponente auch in der (meist zeitlich limitierten) Wiederherstellung von Tumorimmunogenität durch Induktion von immunogenem Zelltod (ICD) und Vermittlung Abscopaler Effekte.^{208–210,218–221,239} ICD ist eine immunstimmulierende Form des Zelltods, welche durch Freisetzung sogenannter Damage associated patterns (DAMPs), z.B. Calreticulin und HSP, angeborene und adaptive Immunantwort induziert.^{209,210} Es kommt nach lokaler Radiotherapie zur Hochregulation von MHC-I, Tumorantigenen und FAS/CD95 auf Tumorzellen und zur Polarisierung der intratumoralen Immuncontexture in Richtung einer zytotoxisch inflammatorischen T_H1-Antwort mit Präsenz von IL-2, IL-12 und IFNγ. ^{208,213–218} Die nach Radiatio infiltrierenden T-Zellkompartimente werden durch DC-Interaktion tumorgerichtet geprimed und so eine systemische CD8⁺ T-Zell-Toxizität induziert, welche Abscopalen Effekten zurunde liegen könnte^{208–} ^{212,222,240} Die gesteigerte Tumorimmunogenität nach lokaler Bestrahlung in Monotherapie war bisher durch die bestrahlungsbedingte Immunsuppression limitiert.241-243

Durch Kombination lokaler Radiotherapie mit IL-12 konnten wir eine Effizienzsteigerung der gegen den Tumor gerichteten Aktivierung des Immunsystems in einer Verbesserung des Outcomes zeigen. (Vgl. overall surival Abb. 3.3)²⁴⁴ Die Wirksamkeit von intratumoralem IL-12 fusioniert mit dem Nekrose- bzw. naked-histone binding Antikörper NHS76 zu NHS-IL12 war vorangehend durch Schilbach et al. gezeigt worden.²¹ IL-12 beförderte eine Polarisierung des intratumoralen Immunkompartiments in Richtung einer inflammatorischen T_H1-Antwort, begünstigte die Konversion von TAM (Tumor associated Makrophagen) zum M1-Phänotyp, supprimierte RORyt- und Foxp3 und induzierte einen aktivierten Phänotyp von $\alpha\beta$ und $\gamma\delta$ T-Zellen und NK-Zellen, der große Mengen an T_H1 Zytokinen sezerniert: Während IFNy vornehmlich aus Lymphozyten stammt, könnte TNFα auch über angelockte M1-Makrophagen sezerniert worden sein.^{64,193–196} Durch die Fusionierung mit NHS76 zu NHS-IL12 konnte IL-12 mit hoher intratumoraler Bioverfügbarkeit bei geringer systemischer Toxizität verwendet werden.^{196,201,202} Die in unserem Studiendesign eingesetzte Kombination dieser zwei Therapiemodi wirkte synergistisch: Immuntherapie beförderte Abscopale Effekte an nicht bestrahlten Orten der Tumormanifestation, lokale Radiotherapie setzte immunogene Muster frei, polarisierte das tumor micro environment (TME) und Tumorimmunkompartiment gegen den Tumor und erhöhte die intratumorale Verfügbarkeit von NHS-IL12.203,208,222

Die weitere Optimierung und Feinabstimmung der Kombination von Radiotherapie und Immuntherapie wird ein vielversprechendes Feld in der Tumortherapie ausmachen.²⁴⁴

Wir untersuchten für die drei Therapiegruppen zunächst das jeweilige Tumorwachstum und das Gesamtüberleben der Mäuse. Nachdem den Mäusen die Tumore entnommen worden waren, untersuchten wir weiterhin die infiltrierenden Immunkompartimente histologisch, immunhistochemisch und molekular-biologisch mittels α - und $\gamma\delta$ -Spectratyping und mittels KIR-Typing auf aktivierende NK-Rezeptoren.

Der verwendete Studienaufbau war limitiert, da das verwendete Mausmodell keine Zeit für follow-up-Untersuchungen bot. Die Mäuse waren vor Entnahme der untersuchten Tumore euthanasiert worden, sodass eine weitere Entwicklung des intratumoralen Tumorkompartiments und dessen möglicher Einfluss auf das Tumorwachstum nicht untersucht werden konnten. (Vgl. 2.1.1)

Wo in einer vorangegangenen Studie mit Therapiebeginn bei geringerer Tumorgröße das Tumorwachstum durch NHS-IL12 allein oder in Kombination mit anderen Zytokinen (IL-2, IL-7) kontrolliert werden konnte, waren in unserer Studie sowohl Radiotherapie als auch Immuntherapie als Monotherapie ineffizient.²¹ Dies liegt in der geringeren Therapiezeit sowie der verdoppelten Tumorlast begründet. Die Tumore lediglich mit lokaler Bestrahlung oder systemisch mit NHS-IL12 monotherapierter Tiere wuchsen unkontrolliert über den Beobachtungszeitraum von 25 Tagen. Einer der nur lokal bestrahlten Tumore wurde ab Tag 10 in seinem Wachstum arretiert. Ganz im Gegensatz dazu zeigte sich die Kombination der systemischen Gabe von NHS-IL12 mit lokaler Radiotherapie signifikant wirksam in Bezug auf die Kontrolle des Tumorwachstums. (Vgl. Kapitel 3.1.1, Abb. 3.1 und Abb. 3.2) Mäuse welche kombiniert therapiert worden waren, lebten tumorgrößespezifisch signifikant länger, im Schnitt 40 Tage bis zum Ende des Beobachtungszeitraums, lediglich ein Tier musste wegen Unterschreitung einer Tumorgröße von 3 mm vorzeitig euthanasiert werden. Tiere, welche in Monotherapie radiotherapiert worden waren überschritten im Schnitt 21,5 Tage nach Behandlungsbeginn eine Tumorgröße von 15 mm und wurden euthanasiert. In Monotherapie systemisch mit NHS-IL12 behandelte Tiere erreichten den Endpunkt von 15 mm Tumorgröße im Schnitt nach 24,5 Tagen. (s. Tumorgrößespezifische Survivalanalyse in Abb. 3.3).

Nicht nur wurden bei Tieren nach Kombinationstherapie die lokal radiotherapierten Tumore in ihrem Wachstum arretiert oder schrumpften, sondern auch ihre contralateralen Counterparts.²⁰ Wir konnten zeigen, dass die Kombination lokaler Radiotherapie mit necrose-targeted IL-12 eine systemische Immunantwort mit Vermittlung von Tumorregression an nicht bestrahlten Orten der Tumormanifestation begünstigt. Das Auftreten Abscopaler Effekte in Bezug

auf Tumorregression trat nur bei Tieren auf, welche die Kombinationstherapie erhalten hatten, waren jedoch nicht bei jedem der kombiniert therapierten Tiere zu sehen.

Histologie und Immunhistochemie zeigten analog zu den Befunden aus Tumorwachstums- und Survivalanalyse dichte intratumorale Immuninfiltrate vornehmlich ipsi- sowie contralateral in den Tumoren, welche unter der Kombinationstherapie im Wachstum kontrolliert werden konnten. (Vrgl. 3.1.2, Abb. 3.4 und 3.5)

Eine dichtere CD4⁺ und CD8⁺ T-Zell-Infiltration war mit einer geringeren Tumorgröße und einem besseren Gesamtüberleben assoziiert. (s. Abb. 3.6) Die Forderung nach Erweiterung bzw. Ergänzung des Tumorstagings durch einen Immunoscore besteht schon seit längerem. Nach Galon waren Marker einer T_H1-Polarisierung und CTL-Infiltration des intratumoralen Immunkompartiments mit einer besseren Prognose in CRC korreliert. Wie durch Galon und Fridman gezeigt, wies die Zusammensetzung des tumorinfiltrierenden Immunkompartiments für Tumore verschiedener Entitäten (u.a. CRC, Tumore der Blase, Brust, Ovarien oder der Kopf-Hals-Region) einen höheren prognostischen Wert auf als etablierte TNM-Klassifkationen.^{24,154,155}

Das in der vorliegenden Arbeit nach Kombinationstherapie in den Tumoren induzierte Immunkompartiment wies neben CD4⁺ und CD8⁺ T-Zellen zytolytische Aktivität auf, nachgewiesen durch den Marker Granzym B. (Vgl. Kapitel 3.1.2, Abb. 3.4 und 3.5) CD8⁺ CTLs werden als die Haupt-Antitumorzellen (""gold standard" effector cells in tumor immunotherapy")¹⁶² betrachtet, die effizient über Perforin und Granzyme Tumorzellen lysieren können – dann, wenn sie diese über MHC I präsentierte Tumorantigene erkennen.^{155,158,159} Der Nachweis von Granzym B mit Hinweis auf eine zytolytische Aktivierung und CTL-Differenzierung des intratumoralen Immunkompartiments korrelierte mit einem signifikant geringeren Tumorwachstum, nicht aber einem besseren overall survival. (s. Abb. 3.6) Bemerkenswerterweise konnten neben Granzym B vornehmlich in Tumoren kombiniert therapierter Tiere Desmin detektiert werden. (s. Abb. 3.4 und 3.5) Desmin ist ein Marker, der für myogene Enddifferenzierung

steht. Die Desminexpression korrelierte mit prominenten T-Zellkompartimenten und zeigte sich in Tumoren als histologisch mehrkernig myogenes Synzytium und quergestreiftes Muskelgewebe. (s. Abb. 3.4) Über das CTL-abhängige Abtöten von Tumorzellen hinaus induzierte die Kombinationstherapie hier myogene Enddifferenzierung aus undifferenzierten RMS-Zellen. Desmin⁺ Tumore wiesen überraschenderweise kein geringeres Volumen auf als nichttherapierte. Vorangehend hatten Braumüller, Röcken und Schilbach beschrieben, dass es sich bei dem der myogenen Enddifferenzierung von RMS-Zellen zugrunde liegenden Mechanismus um Seneszenz handelte.^{21,163} In einem durch IL-12 in Richtung einer T_H1-Antwort polarisierten TME hatten IFNy und TNF α geringeres Tumorwachstum und Seneszenz induziert, zu sehen an der intranuclearen Lokalisation des Proliferatioinsmarkers p-HP1y, der vermehrten Expression des Tumorsupressorproteins p16^{INK4a} Zellzyklusregulators und sowie der verminderten Expression des Proliferationsmarkers Ki-67.21,163,245 Auch in unserer Studie konnten IFNy und TNFa nur gemeinsam entsprechende Marker und Wachstumsarettierung in A204-Kulturen in vitro induzieren, wobei eine Blockade von TNFα trotz IFNγ-Präsenz die Seneszenzentwicklung aufhob.

TNFα, bestrahlungsabhängig aus Tumorzellen freigesetzt, wird in Kombination mit IFNγ effektiver in der Seneszenzinduktion als IFNγ kombiniert mit TNFα.²⁰ (Daten nicht Teil dieser Arbeit) Bestrahlte RMS-Zellen und M1-Makrophagen können in unserer Studie als Quelle des immunmodulierend wirkenden TNFα vermutet werden.¹⁹³ IFNγ wurde durch den eindeutigen Nachweis aktivierter Phänotypen von NK-Zellen, αβ und γδ T-Zellen in dem durch IL-12 T_H1-polarisierten TME sezerniert.¹⁹¹ Die T_H1 Zytokine TNFα und IFNγ konnten unabhängig von zytolytischer T-Zell-Aktivität nach Stimulation durch IL-12 und lokale Radiotherapie Tumorzellen zur Seneszenz und Ausdifferenzierung treiben, was die Antitumorrelevanz der CD4⁺ T-Zellen weiter untermauert.^{21,160–163}

Im Kontrast dazu zeigten Tumore solcher Tiere, welche unimodal behandelt worden waren, geringere T-Zell-Infiltration, kaum Marker zytolytischer Aktivität und keine Marker myogener Enddifferenzierung. In keinem der Tumore monotherapierter Tiere waren histologisch quergestreifte Muskelgewebe oder mehrkernige Myozyten zu erkennen. Unilateral radiotherapierte Tumore zeigten,

abgesehen von einem Tumor, wenige intratumorale Immunkompartimente, ebenso ihre nichtbestrahlen Counterparts. Mäuse, welche lediglich mit NHS-IL12 behandelt worden waren, präsentierten eine noch geringere intratumorale Infiltration durch Immunzellen. (Vgl. 3.1.2, Abb. 3.4 und 3.5)

In der molekularbiologischen Analyse intratumoraler Immunkompartimente zeigte sich eine homogene Expression von NK-Zellrezeptorgenen in allen Tumoren. Die dichtesten und differenziertesten T-Zellinfiltrate von $\alpha\beta$ und $\gamma\delta$ T Lymphozyten wiesen die Tumore der Mäuse auf, welche die Kombinationstherapie erhalten hatten.

In Tumoren aller Therapiegruppen konnten wir mittels Spectratyping die NK-Zellrezeptorgene NKG2D, NKG2E, NKp30, NKp46, CD226 sowie CD161 detektieren. Das gefundene Oberflächenmarker-Profil suggeriert eine zytolytische Aktivierung der intratumoralen NK-Zellen und setz eine hohe IL-12-Verfügbarkeit voraus. (Vrgl. 3.2.1, Abb. 3.7 und Abb. 3.8)

NKG2D bindet stressinduzierte MHC-I-ähnliche Moleküle (MICA und MICB), ist auf NK-Zellen, auf $y\delta^+$ T-Zellen, Makrophagen und CD8⁺ CTLs zu finden und aktiviert deren zytolytische Effektorfunktionen.¹⁰³ Die Relevanz des NKG2D-Rezeptors für Tumorüberwachung und -kontrolle ist groß.^{113,133,134} NKG2D-Liganden wie MICA und ULBP sind häufig auf neoplastischen Zellen exprimierte MHC-I-ähnliche Moleküle.^{99,101,103} Neben der zytolytischen Aktivierung waren vermutlich begünstigt durch das hohe IL-12-Angebot in Kombination mit NKG2Dabhängiger Aktivierung CD56^{bright} NK-Zellen an der IFNy-Sekretion im TME beteiligt.^{113,118,121} Gemeinsam mit dem ebenfalls detektierten NKp46 ist NKG2D über ULBP1 an der Lyse inhibierender Tregs beteiligt. Tregs regulieren die zytotoxische Aktivität von CD56^{dim} NK-Zellen herunter.^{246,247} Das in Tumoren aller Therapiegruppen exprimierte NKp30 suggeriert NK-Zell-DC Crosstalk, welcher DC-Reifung bzw. Lyse unreifer DCs induziert und so spezifisches T-Zell-Priming ermöglicht.^{248,249} Denn der NKp30⁺ NK-Zell Phänotyp erkennt DC-Zielstrukturen, wirkt nach Aktivierung zytotoxisch auf nichtdifferenzierte DCs und vermittelt über die Sekretion von IFNy und TNFa die Ausreifung von DC, welche eine TH1polarisierte adapative Immunantwort induzieren können.^{249,250} CD161 als lineage Marker für TH17 Zellen konnte in allen Tumoren gefunden werden.⁶⁵ CD161 weist

auf intratumorale IL-17 produzierende T-Zell-Subsets vom memory Phänotyp hin, welche wie zuvor gezeigt durch IL-12 in TH1-Zellen konvertiert werden können.^{21,251} Für diese T-Zell Subpopulation ist CD161 für die frühe Tumorinfiltration durch chemokinunabhängige transvasale Migration relevant.²⁵² In keinem Tumor ließ sich der ebenfalls untersuchte NCR NKp44 finden. NKp44 ist ein auf aktivierten NK-Zellen und $v\delta$ -T-Zellen zu findender Rezeptor, welcher wirkt 38,253,254 tumorlytisch MHC-unabhängig Das hier detektierte Oberflächenmarkerprofil suggeriert Tumorinfiltration durch innate NK-Zellen, sowie verschiedene innate T-Zell-Subpopulationen, welche in der Lage sind T_H1 -Zytokine zu sezernieren und über NK-DC-Crosstalk eine adaptive T-Zell Immunanwort einzuleiten.^{249,255}

Im Gegensatz zu der unter den Therapiegruppen homogenen Expression von NK-Zellrezeptorgenen, unterschieden sich die mittels Spectratyping detektierten intratumoralen TCR-Repertoires in Abhängigkeit von der Therapie teilweise deutlich. Das intratumorale TCRVa-Repertoire nach alleiniger NHS-IL12-Therapie wies die geringste Breite und Intensität auf. Unilaterale Radiotherapie induzierte ein mäßig breites TCRVa-Repertoire mit bemerkenswerterweise intensiverer Expression in nicht bestrahlten contralateralen Tumoren sowie die klonale Expansion einiger weniger $\alpha\beta$ T-Zell-Klone angezeigt durch die Expression von Single Peaks. Intratumorale αβ T-Zellen von Mäusen, welche die Kombinationstherapie erhalten hatten, wiesen die größte Vielfalt exprimierter Va-Ketten auf. Die im Vergleich zu Tumoren von Mäusen anderer Therapiegruppen häufigste und deutlichste Expression von Single Peaks wies auf die klonale Expansion tumor-antigenspezifisch aktivierter T-Lymphozyten hin. Darüber hinaus ließen sich in ipsilateral wie contralateren Tumoren von kombiniert therapierten Tieren am häufigsten systemische αβ T-Zell-Klone mit bilateral ebenbürtiger Tumorinfiltration finden.

Der Großteil der Tumore welche lokale Radiotherapie erhalten hatten, exprimierten die V_{α}-Kette 24 (TRAV 10). Die Expression war in Tumoren von Mäusen, welche die Bestrahlung in Kombination mit NHS-IL12 erhalten hatten, deutlicher als in Tumoren von in Monotherapie bestrahlten Mäusen. TCRV α 24

exprimierende invariant natural killer T cells (iNKT) bilden gemeinsam mit NKp46⁺ NK-Zellen, $\gamma\delta$ T-Zellen und IL-17 produzierenden T-Zell-Subsets ein T_H17-Kompartiment, welches unter IL-12-Einfluss in ein T_H1-Kompartiment konvertiert werden kann. Wie schon vorher gezeigt können iNKT selbst IFN γ sezernieren, DC-Reifung vermitteln und so zum T-Zell-Priming beitragen.^{21,256}

Bestrahlte und unbestrahlte Tumore der Mäuse, welche lokale Radiotherapie und systemisch NHS-IL12 erhalten hatten, zeigten die stärkste Tumorregression, myogene Enddiferenzierung und analog dazu bilateral die deutlichsten intratumoralen $\alpha\beta$ T-Zell-Kompartimente mit dem vielfältigsten Repertoire an V_α-Ketten. Abscopale Effekte mit Tumorregress waren schon zuvor mit T-Zell-Infiltration und Priming nach Radiotherapie in Kombination mit Immuntherapie assoziiert worden.^{257,258} Grundlage derartiger Effekte und Ziel einer langfristig wirksamen Therapie ist die Induktion einer adaptiven Anti-Tumor Immunantwort, die dann systemisch T-Zell-abhänig zytolytisch oder über Sekretion von T_H1-Zytokinen Tumorkontrolle ermöglicht.^{185,259}

Die in dieser Studie angewandte Kombinationstherapie konnte dabei für eine tumorgerichtete T-Zell Antwort mehrere entscheidende Effekte vermitteln: Radiotherapie kann die notwendige Tumorinfiltration durch T-Zellen bewirken und die Diversität derer TCR Repertoires erhöhen (s. Abb 3.48). ^{257,260,261} Relevant ist dabei vor allem die Induktion systemischer tumorspezifischer TCR, wie hier sichtbar durch prominente Single Peaks, die auf einen monoklonalen Ursprung eines antigenspezifisch expandierenden Klons schließen lassen (z.B. TRAV 9-2 (Abb. 3.18.) und TRAV 16 (Abb. 3.23)).154,262,263 IL-12 kann ebenso T-Zell-Infiltration fördern und das tumorspezifische T-Zell-Priming begünstigen. Es kann das Formen eines Übergangs von einer innate Immunität hin zur adaptiven Immunität ^{191,192} und das Beibehalten einer gegehn den Tumor gerichteten T_H1-Polarisierung des intratumoralen Immunkompartiments mit Neutralisation/Repolarisierung immunsupprimierender Faktoren wie Treas, IL-10 vermitteln^{264–266}. oder TGFβ Immunantwort Denn auch die Induktion tumorgeprimeter T-Zellen kann in einem immunsupprimierenden, tumorbegünstigend polarisierten TME nur vorübergehend Tumorkontrolle vermitteln, was eine Erklärung für die Seltenheit Abscopaler Effekte liefert. ^{257,267}

Diskussion

In dieser Studie jedoch konnte die Verwendung von lokaler Radiotherapie kombiniert mit dem T_H1-immunstimulierenden NHS-IL12 langfristige Tumorkontrolle induzieren.²⁶⁰ Die antitumorale Wirksamkeit des gezeigten deutlichen $\alpha\beta^+$ T-Zell-Kompartiments lag dabei vermutlich nicht nur in der Zytotoxizität CD8⁺ $\alpha\beta$ T-Zellen begründet: Unter IL-12-Einfluss konnten T_H1-polarisierte, tumorgeprimete CD4⁺ $\alpha\beta$ T-Lymphozyten zusammen mit NK-Zellen und $\gamma\delta$ T-Zellen große Mengen IFN γ sezernieren. Gemeinsam mit aus Tumorzellen bestrahlungsabhängig freigesetztem TNF α konnte so lokal und systemisch Seneszenz und Tumorregession vermittelt werden.

CDR3-Fragmentlängenanalyse untersuchte TCRV-Repertoire Das mittels intratumoraler yδ T-Zellen zeigte sich weniger different im Vergleich der einzelnen Therapiegruppen untereinander als die Rezeptor-Repertoires der untersuchten TCR $\alpha\beta^+$ Zellen. In Tumoren von Mäusen aller Therapiegruppen fand sich ein vergleichbar breites Repertoire von Vγ- und Vδ-Ketten. Es kam in Tumoren aller Tiere zu polyklonaler Expansion starker Intensität, hinweisend auf eine unspezifische Aktivierung der γδ T-Zellen durch Zytokine und Mitogene. In den Tumoren eines Tieres, welches die Kombinationstherapie erhalten hatte, waren häufiger multiple Peaks (pseudo-gaußsche Expression) der Vy-Ketten expimiert worden als in anderen Tumoren. Vereinzelte monoklonale Peaks für verschiedene Vo-Ketten konnten in Tumoren aller Mäuse unabhängig von der Therapie detektiert werden. Die Expression der Vo1- und Vo2-Ketten war im Verhältnis zur starken Vδ3-Expression auffallend gering. Das Vδ1-Segment war in keinem der untersuchten Tumoren zu finden. Dies ließ sich später im Sequencing über durch false priming fälschlich als Vo3-Ketten detektierte Vo1-Ketten erklären (Sequencingdaten nicht Teil dieser Arbeit). Physiologisch werden Vδ1- und Vδ2-Segmente häufigsten humanen γδ T-Zellvon den Subpopulationen exprimiert. Vy9/Vo2 T-Lymphozyten zirkulieren in der Peripherie. Vδ1⁺ T-Zellen exprimieren eine variable Vy-Kette, machen einen Großteil der IEL aus und spielen in der Tumorüberwachung eine wichtige Rolle. Eine weitere T-Zell-Subpopulation, welche TCRVδ3- Kette mit einer variablen Vy-Kette exprimiert, ist vor allem in der Leber oder bei chronischen viralen

Infekten in der Peripherie zu detektieren.^{85,87} (s.a. Kapitel 1.2.1.1.2)

Die Detektion breiter TCR Repertoires intratumoraler $\gamma \delta$ T-Zellen bei Mäusen aller Therapiegruppen lässt auf die Entstehung antigenun-spezifisch aktivierter $\gamma \delta^+$ Immunkompartimente unabhängig von der Therapie schließen. Wie schon bei der Analyse der NK-Zellrezeptorgene vermutet, suggeriert dies eine frühe Tumorinfiltration durch ein nicht-adaptives TH17-Kompartiment, dem auch $\gamma \delta$ T-Lymphozyten angehören können.^{21,105} Die Antitumor-Relevanz von $\gamma \delta$ T-zellen ist wie in der Wirksamkeit gegen verschiedene Neoplasien gezeigt groß (z.B. bei Plasmozytomen, Lymphomen, Leukämien und dem Neuroblastom) (s.a. 1.2.2.1.2).^{104–108} Durch ihre polyspezifischen Erkennungsmuster und pleiotropen Effektorwege wird den $\gamma \delta$ T-Lymphozyten ein entscheidender Stellenwert in der Tumorbekämpfung und in der Vermittlung zwischen angeborener und adaptiver Antitumor-Immunität zugesprochen.^{58,85,99}

So waren $\gamma\delta$ T-Lymphozyten in unserem Modell vermutlich unter Einfluss von NHS-IL12 an der Sekretion von T_H1 Zytokinen, allen voran IFN γ , beteiligt.^{109,191} IL-12 begünstigt Tumorinfiltration und Proliferation von $\gamma\delta$ -T-Zellen.²⁶⁸ Intratumorale $\gamma\delta$ -T-Zellen können Makrophagen rekrutieren und haben wie zuvor gezeigt das Potential, selbst als APC CD4⁺ und CD8⁺ $\alpha\beta$ T-Zellen Antigene zu präsentieren. So können $\gamma\delta$ T-Lymphozyten neben einer schnellverfügbaren innate Immunantwort, wie die Zytokinproduktion von IFNy, einen Übergang zu einer starken adaptiven Anti-Tumor-Immunintät bereiten.^{85,93}

Insgesamt ist aus den in dieser Arbeit gezeigten Befunden abzuleiten, dass in diesem Tumormodel eine langfristig effektive Tumorkontrolle nur mit der Kombination aus systemischer Gabe von tumogerichtetem NHS-IL12 und lokaler Radiotherapie gegeben war – nicht jedoch durch ihre Einzelkomponenten. Die nach Kombinationstherapie vermittelte Tumorregression wurde nicht nur über CD8⁺ zytolytische Aktivierung der deutlichen intratumoralen Immunkompartiemente sondern auch über massive T_H1-Zytokinproduktion durch tumorinfiltrierende CD4⁺ und CD8⁺ $\alpha\beta$ T-Zellen, $\gamma\delta$ T-Zellen und NK-Zellen bewirkt. Abscopale Effekte waren durch eine systemische Immunantwort und Induktion von Sensezenz und Enddifferezierung von RMS-Zellen durch IFN γ und

nach Bestrahlung aus Tumorzellen freigesetztem TNFα induziert worden.

Für die Therapie von Rhabdomyosarkomen und anderen Neoplasien stehen mittlerweile mannigfaltige immuntherapeutische Konzepte zur Verfügung, die mit unterschiedlichem Erfolg langfristige Tumorkontrolle vermitteln können. Das Ziel muss dabei nicht notwendigerweise die lokale Tumoreradikation sein, sondern eher eine langfristige systemische Tumor- und Metastasenkontrolle, welche eine langfristiges Überleben mit einer Tumorerkrankung ermöglicht.^{155,185,188,189} Die hier besprochenen Ergebnisse zeigen, dass die Kombination von lokaler Radiotherapie mit systemischer NHS-IL12-Gabe ein wirksamer multimodaler Ansatz ist systemisch immunvermittelt Tumorkontrolle zu erreichen und sie empfiehlt sich so für die Anwendung im klinischen Setting.

5 Zusammenfassung

Patienten, bei denen ein Rhabdomyosarkom (RMS) festgestellt wird, sind mit einer schlechten Prognose konfrontiert. Standardtherapien (Radiochemotherapie und chirurgische Tumorresektion) können keine langfristige Tumorkontrolle induzieren. Das 5-Jahresüberleben liegt unter 25%.

Vielversprechend sind multimodale immunstimulierende Behandlungskonzepte die eine langlebige adaptive Anti-Tumor-Immunität etablieren kann. Tumorkontrolle durch ein IL-12 T_H1-polarisiertes Immunkompartiment wurde als Monotherapie bereits beim RMS gezeigt. In der vorliegenden Arbeit wurde untersucht ob die Kombination aus IL-12 und lokaler Bestrahlung als Kombinationstherapie des disseminierten RMS wirksam ist.

IL-12 wurde um die Halbwertszeit zu erhöhen und die Toxizität zu eliminieren als Fusionsprotein gegeben, das aus einem Antikörper besteht, der Histon erkennt und an die funktionellen Domänen des IL-12 fusioniert wurde. So bindet dieses Konstrukt über den Antikörper an die nekrotischen Areale des Tumors, wo nukleäre DNA freigesetzt wird.

In NSG Mäuse, die über CD34⁺ Stammzellen ein humanes Immunsystem erhalten hatten, wurden ipsilateral und contralateral humane RMS Zellen (A204) appliziert. Nach *in vivo* Behandlung mit lokaler Bestrahlung (unilateral) und/oder systemischer Gabe von tumorgerichtetem IL-12 wurden die Tumore präpariert und das intratumoral induzierte Immunkompartment molekular untersucht.

Die Analysedaten zeigen zweifelsfrei, dass

- nur die Kombination aus systemischer NHS-IL12-Gabe und lokaler Radiotherapie eines intratumoralen Immunkompartiments mit massiver αβ T-Zellinfiltration und breitem TCR-Repertoire induzieren kann, das systemische Klone aufweist sowie eine starke Infiltration durch NK-Zellen und γδ T-Zellen aufzeigt.
- 2. die kontralateral nichtbestrahlten Tumore, interessanterweise sogar etwas mehr als die bestrahlten Tumore, Infiltration von Immunzellen des T-

Zellkompartiments und NK Zellen zeigten.

- Tumorkontrolle durch Induktion von terminalem Wachstumsarrest (Seneszenz) und Enddifferenzierung der malignen Rhabdomyozyten in quergestreifte Muskelzellen nur durch die neue immuntherapeutische Kombinationstherapie von NHS-IL12 und lokaler Radiotherapie erzielt wurde, nicht aber durch eine der beiden Therapieverfahren als Monotherapie.
- Wir konnten schließlich zeigen, dass Tumorregression und ein verbessertes Gesamtüberleben mit vermehrter T-Zell-Infiltration sowie myogener Enddifferenzierung korrelieren.

Damit qualifiziert sich die Kombination aus lokaler Radiotherapie mit systemischer NHS-IL12-Gabe als ein herausragend effizienter Therapieansatz, der über ein TH1 polarisiertes Immunsystem vollständige Tumorkontrolle erzielt.

6 Literaturverzeichnis

- 1. Qualman SJ, Coffin CM, Newton WA, et al. Intergroup Rhabdomyosarcoma Study: Update for Pathologists. *Pediatr Dev Pathol*. 1998;1(6):550-561. doi:10.1007/s100249900076
- 2. Sulser H. Das Rhabdomyosarkom. *Virchows Arch A*. 1978;379(1):35-71. doi:10.1007/BF00432781
- 3. Hiniker SM, Donaldson SS. Recent advances in understanding and managing rhabdomyosarcoma. *F1000Prime Rep*. 2015;7. doi:10.12703/P7-59
- 4. Donaldson SS, Meza J, Breneman JC, et al. Results from the IRS-IV randomized trial of hyperfractionated radiotherapy in children with rhabdomyosarcoma—a report from the IRSG1 1For a complete list of the members of the Children's Oncology Group Soft Tissue Sarcoma Committee (formerly Intergroup Rhabdomyosarcoma Group) representing the Children's Oncology Group and the Quality Assurance Review Center, see the Appendix. *Int J Radiat Oncol.* 2001;51(3):718-728. doi:10.1016/S0360-3016(01)01709-6
- Stevens MCG, Rey A, Bouvet N, et al. Treatment of Nonmetastatic Rhabdomyosarcoma in Childhood and Adolescence: Third Study of the International Society of Paediatric Oncology—SIOP Malignant Mesenchymal Tumor 89. *J Clin Oncol*. 2005;23(12):2618-2628. doi:10.1200/JCO.2005.08.130
- Donaldson SS, Anderson JR. Rhabdomyosarcoma: Many Similarities, a Few Philosophical Differences. J Clin Oncol. 2005;23(12):2586-2587. doi:10.1200/JCO.2005.11.909
- Smith LM, Anderson JR, Qualman SJ, et al. Which Patients With Microscopic Disease and Rhabdomyosarcoma Experience Relapse After Therapy? A Report From the Soft Tissue Sarcoma Committee of the Children's Oncology Group. *J Clin Oncol.* 2001;19(20):4058-4064. doi:10.1200/JCO.2001.19.20.4058
- Crist W, Gehan EA, Ragab AH, et al. The Third Intergroup Rhabdomyosarcoma Study. J Clin Oncol. 1995;13(3):610-630. doi:10.1200/JCO.1995.13.3.610
- Burke M, Anderson JR, Kao SC, et al. Assessment of Response to Induction Therapy and Its Influence on 5-Year Failure-Free Survival in Group III Rhabdomyosarcoma: The Intergroup Rhabdomyosarcoma Study-IV Experience—A Report From the Soft Tissue Sarcoma Committee of the Children's Oncology Group. J Clin Oncol. 2007;25(31):4909-4913.

doi:10.1200/JCO.2006.10.4257

- Ferrari A, Miceli R, Meazza C, et al. Comparison of the Prognostic Value of Assessing Tumor Diameter Versus Tumor Volume at Diagnosis or in Response to Initial Chemotherapy in Rhabdomyosarcoma. *J Clin Oncol.* 2010;28(8):1322-1328. doi:10.1200/JCO.2009.25.0803
- Oberlin O, Rey A, Lyden E, et al. Prognostic Factors in Metastatic Rhabdomyosarcomas: Results of a Pooled Analysis From United States and European Cooperative Groups. *J Clin Oncol.* 2008;26(14):2384-2389. doi:10.1200/JCO.2007.14.7207
- 12. Hodi FS, O'Day SJ, McDermott DF, et al. Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. *N Engl J Med*. 2010;363(8):711-723. doi:10.1056/NEJMoa1003466
- Postow MA, Callahan MK, Barker CA, et al. Immunologic Correlates of the Abscopal Effect in a Patient with Melanoma. *N Engl J Med.* 2012;366(10):925-931. doi:10.1056/NEJMoa1112824
- 14. Vansteenkiste J, Craps J, De Brucker N, Wauters I. Immunotherapy for non-small-cell lung cancer: the past 10 years. *Future Oncol Lond Engl*. Published online May 20, 2015:1-15.
- Silvestri I, Cattarino S, Aglianò, Anna Maria, Collalti G, Sciarra A. Beyond the Immune Suppression: The Immunotherapy in Prostate Cancer. BioMed Research International. doi:10.1155/2015/794968
- Preusser M, Lim M, Hafler DA, Reardon DA, Sampson JH. Prospects of immune checkpoint modulators in the treatment of glioblastoma. *Nat Rev Neurol.* 2015;11(9):504-514. doi:10.1038/nrneurol.2015.139
- 17. De Felice F, Marchetti C, Palaia I, et al. Immunotherapy of Ovarian Cancer: The Role of Checkpoint Inhibitors. Journal of Immunology Research. doi:10.1155/2015/191832
- 18. Roberts SS, Chou AJ, Cheung N-KV. Immunotherapy of Childhood Sarcomas. *Front Oncol.* 2015;5:181. doi:10.3389/fonc.2015.00181
- Mackall CL, Rhee EH, Read EJ, et al. A Pilot Study of Consolidative Immunotherapy in Patients with High-Risk Pediatric Sarcomas. *Clin Cancer Res Off J Am Assoc Cancer Res*. 2008;14(15):4850-4858. doi:10.1158/1078-0432.CCR-07-4065
- Eckert F, Jelas I, Oehme M, et al. Tumor-targeted IL-12 combined with local irradiation leads to systemic tumor control via abscopal effects in vivo. *Oncolmmunology*. 2017;0(0):e1323161. doi:10.1080/2162402X.2017.1323161

- Schilbach K, Alkhaled M, Welker C, et al. Cancer-targeted IL-12 controls human rhabdomyosarcoma by senescence induction and myogenic differentiation. *Oncoimmunology*. 2015;4(7). doi:10.1080/2162402X.2015.1014760
- 22. Kawamoto H. A close developmental relationship between the lymphoid and myeloid lineages. *Trends Immunol*. 2006;27(4):169-175. doi:10.1016/j.it.2006.02.004
- 23. Kaufmann SHE, Sher A, Ahmed R. Immunology of infectious diseases. Immunol Infect Dis.
 Published online 2002. Accessed July 27, 2017. https://www.cabdirect.org/cabdirect/abstract/20023087710
- 24. Fridman WH, Remark R, Goc J, et al. The Immune Microenvironment: A Major Player in Human Cancers. *Int Arch Allergy Immunol*. 2014;164(1):13-26. doi:10.1159/000362332
- 25. W Haas, P Pereira, Tonegawa and S. Gamma/Delta Cells. *Annu Rev Immunol*. 1993;11(1):637-685. doi:10.1146/annurev.iy.11.040193.003225
- 26. Rosa SCD, Andrus JP, Perfetto SP, et al. Ontogeny of γδ T Cells in Humans. *J Immunol*. 2004;172(3):1637-1645. doi:10.4049/jimmunol.172.3.1637
- Flament C, Benmerah A, Bonneville M, Triebel F, Mami-Chouaib F. Human TCR-gamma/delta alloreactive response to HLA-DR molecules. Comparison with response of TCR-alpha/beta. *J Immunol.* 1994;153(7):2890-2904. Accessed August 11, 2017. http://www.jimmunol.org/content/153/7/2890
- 28. Litt M, Patel B, Li Y, Qiu Y, Huang S. Molecular Morphogenesis of T-Cell Acute Leukemia. Published online 2013. doi:10.5772/55144
- Adolfsson J, Månsson R, Buza-Vidas N, et al. Identification of Flt3+ Lympho-Myeloid Stem Cells Lacking Erythro-Megakaryocytic Potential. *Cell*. 2005;121(2):295-306. doi:10.1016/j.cell.2005.02.013
- Scimone ML, Aifantis I, Apostolou I, Boehmer H von, Andrian UH von. A multistep adhesion cascade for lymphoid progenitor cell homing to the thymus. *Proc Natl Acad Sci*. 2006;103(18):7006-7011. doi:10.1073/pnas.0602024103
- 31. Boehm T, Bleul CC. Thymus-homing precursors and the thymic microenvironment. *Trends Immunol*. 2006;27(10):477-484. doi:10.1016/j.it.2006.08.004
- 32. Gray DH, Ueno T, Chidgey AP, et al. Controlling the thymic microenvironment. *Curr Opin Immunol*. 2005;17(2):137-143. doi:10.1016/j.coi.2005.02.001

- 33. Raviola E, Karnovsky MJ. EVIDENCE FOR A BLOOD-THYMUS BARRIER USING ELECTRON-OPAQUE TRACERS. J Exp Med. 1972;136(3):466-498. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2139259/
- 34. Anderson G, Jenkinson EJ. Lymphostromal interactions in thymic development and function. *Nat Rev Immunol*. 2001;1(1):31-40. doi:10.1038/35095500
- 35. Ef L, Se P, He P, Ht P. Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development., Mapping Precursor Movement through the Postnatal Thymus Reveals Specific Microenvironments Supporting Defined Stages of Early Lymphoid Development. *J Exp Med J Exp Med*. 2001;194, 194(2, 2):127, 127-134. doi:10.1084/jem.194.2.127
- 36. Boehmer H von, Fehling HJ. Structure and Function of the Pre-T Cell Receptor. *Annu Rev Immunol*. 1997;15(1):433-452. doi:10.1146/annurev.immunol.15.1.433
- 37. Starr TK, Jameson SC, Hogquist KA. Positive and Negative Selection of T Cells. *Annu Rev Immunol*. 2003;21(1):139-176. doi:10.1146/annurev.immunol.21.120601.141107
- 38. Murphy K, Travers P. Janeway-Immunologie. 7. Auflage.
- 39. Rothenberg EV, Moore JE, Yui MA. Launching the T-cell-lineage developmental programme. *Nat Rev Immunol.* 2008;8(1):9-21. doi:10.1038/nri2232
- 40. Bhandoola A, Sambandam A. From stem cell to T cell: one route or many? *Nat Rev Immunol*. 2006;6(2):117-126. doi:10.1038/nri1778
- Rodewald HR, Kretzschmar K, Takeda S, Hohl C, Dessing M. Identification of pro-thymocytes in murine fetal blood: T lineage commitment can precede thymus colonization. *EMBO J*. 1994;13(18):4229-4240. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC395350/
- 42. Harman BC, Jenkinson WE, Parnell SM, Rossi SW, Jenkinson EJ, Anderson G. T/B lineage choice occurs prior to intrathymic Notch signaling. *Blood*. 2005;106(3):886-892. doi:10.1182/blood-2004-12-4881
- 43. Boehmer HV. The Developmental Biology of T Lymphocytes. *Annu Rev Immunol*. 1988;6(1):309-326. doi:10.1146/annurev.iy.06.040188.001521
- Muñoz-Ruiz M, Ribot JC, Grosso AR, et al. TCR signal strength controls thymic differentiation of discrete proinflammatory γδ T cell subsets. *Nat Immunol*. 2016;17(6):721-727. doi:10.1038/ni.3424

- 45. Ciofani M, Zúñiga-Pflücker JC. Determining γδ versus αβ T cell development. *Nat Rev Immunol*. 2010;10(9):657-663. doi:10.1038/nri2820
- 46. Hayes SM, Shores EW, Love PE. An architectural perspective on signaling by the pre-, αβ and γδ T cell receptors. *Immunol Rev.* 2003;191(1):28-37. doi:10.1034/j.1600-065X.2003.00011.x
- Fayard E, Moncayo G, Hemmings BA, Holländer GA. Phosphatidylinositol 3-Kinase Signaling in Thymocytes: The Need for Stringent Control. *Sci Signal*. 2010;3(135):re5-re5. doi:10.1126/scisignal.3135re5
- Hernández-Munain C, Sleckman BP, Krangel MS. A Developmental Switch from TCRδ Enhancer to TCRα Enhancer Function during Thymocyte Maturation. *Immunity*. 1999;10(6):723-733. doi:10.1016/S1074-7613(00)80071-0
- 49. Boehmer H von. Positive selection of lymphocytes. *Cell*. 1994;76(2):219-228. doi:10.1016/0092-8674(94)90330-1
- 50. Germain RN. T-cell development and the CD4–CD8 lineage decision. *Nat Rev Immunol*. 2002;2(5):309-322. doi:10.1038/nri798
- Fugmann SD, Lee AI, Shockett PE, Villey IJ, Schatz DG. The RAG Proteins and V(D)J Recombination: Complexes, Ends, and Transposition. *Annu Rev Immunol*. 2000;18(1):495-527. doi:10.1146/annurev.immunol.18.1.495
- 52. Diagnostic role of tests for T cell receptor (TCR) genes [J]. ResearchGate. doi:http://dx.doi.org/10.1136/jcp.56.1.1
- 53. Locus maps and genomic repertoire of the human T-cell receptor genes. ResearchGate. Accessed August 14, 2017. https://www.researchgate.net/publication/290791641_Locus_maps_and_genomic_repertoir e_of_the_human_T-cell_receptor_genes
- Charles A Janeway J, Travers P, Walport M, Shlomchik MJ. T-cell receptor gene rearrangement. Published online 2001. Accessed March 16, 2016. http://www.ncbi.nlm.nih.gov/books/NBK27145/
- Ezquerra A, Cron RQ, McConnell TJ, Valas RB, Bluestone JA, Coligan JE. T cell receptor delta-gene expression and diversity in the mouse spleen. *J Immunol*. 1990;145(5):1311-1317. Accessed August 14, 2017. http://www.jimmunol.org/content/145/5/1311
- 56. Jorgensen JL, Esser U, Groth BF de S, Reay PA, Davis MM. Mapping T-cell receptor-peptide
contacts by variant peptide immunization of single-chain transgenics. *Nature*. 1992;355(6357):224-230. doi:10.1038/355224a0

- 57. Poster: T cells: the usual subsets. Accessed September 5, 2017. http://www.nature.com/nri/posters/tcellsubsets/index.html?foxtrotcallback=true
- Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. Pillars Article: A Novel Transcription Factor, T-bet, Directs Th1 Lineage Commitment. Cell. 2000. 100: 655–669. J Immunol. 2015;194(7):2961-2975. Accessed September 5, 2017. http://www.jimmunol.org/content/194/7/2961
- 59. Murphy KM, Reiner SL. The lineage decisions of helper T cells. *Nat Rev Immunol*. 2002;2(12):933-944. doi:10.1038/nri954
- 60. Ho I-C, Glimcher LH. Transcription. *Cell*. 2002;109(2):S109-S120. doi:10.1016/S0092-8674(02)00705-5
- 61. Gessner A, Röllinghoff M. Biologic Functions and Signaling of the Interleukin-4 Receptor Complexes. *Immunobiology*. 2000;201(3):285-307. doi:10.1016/S0171-2985(00)80084-4
- Crome SQ, Wang AY, Levings MK. Translational Mini-Review Series on Th17 Cells: Function and regulation of human T helper 17 cells in health and disease. *Clin Exp Immunol*. 2010;159(2):109-119. doi:10.1111/j.1365-2249.2009.04037.x
- Ivanov II, McKenzie BS, Zhou L, et al. The Orphan Nuclear Receptor RORγt Directs the Differentiation Program of Proinflammatory IL-17+ T Helper Cells. *Cell*. 2006;126(6):1121-1133. doi:10.1016/j.cell.2006.07.035
- Lexberg MH, Taubner A, Albrecht I, et al. IFN-γ and IL-12 synergize to convert in vivo generated Th17 into Th1/Th17 cells. *Eur J Immunol*. 2010;40(11):3017-3027. doi:10.1002/eji.201040539
- Maggi L, Santarlasci V, Capone M, et al. CD161 is a marker of all human IL-17-producing Tcell subsets and is induced by RORC. *Eur J Immunol*. 2010;40(8):2174-2181. doi:10.1002/eji.200940257
- Sakaguchi S, Ono M, Setoguchi R, et al. Foxp3+CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. *Immunol Rev.* 2006;212(1):8-27. doi:10.1111/j.0105-2896.2006.00427.x
- 67. Josefowicz SZ, Lu L-F, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. *Annu Rev Immunol.* 2012;30:531-564.

doi:10.1146/annurev.immunol.25.022106.141623

- 68. Bevan MJ. Helping the CD8+ T-cell response. *Nat Rev Immunol*. 2004;4(8):595-602. doi:10.1038/nri1413
- Lertmemongkolchai G, Cai G, Hunter CA, Bancroft GJ. Bystander Activation of CD8+ T Cells Contributes to the Rapid Production of IFN-γ in Response to Bacterial Pathogens. *J Immunol*. 2001;166(2):1097-1105. doi:10.4049/jimmunol.166.2.1097
- 70. CD8+ T Cells: Foot Soldiers of the Immune System: Immunity. Accessed September 5, 2017. http://www.cell.com/immunity/fulltext/S1074-7613(11)00303-7
- Chávez-Galán L, Arenas-Del Angel MC, Zenteno E, Chávez R, Lascurain R. Cell Death Mechanisms Induced by Cytotoxic Lymphocytes. *Cell Mol Immunol.* 2009;6(1):15-25. doi:10.1038/cmi.2009.3
- 72. Farber DL, Yudanin NA, Restifo NP. Human memory T cells: generation, compartmentalization and homeostasis. *Nat Rev Immunol.* 2014;14(1):24-35. doi:10.1038/nri3567
- 73. Bio-Rad. Macrophage Polarization Mini-review. Bio-Rad. Accessed August 28, 2017. https://www.bio-rad-antibodies.com/macrophage-polarization-minireview.html
- 74. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. *Nat Rev Immunol*. 2008;8(12):958-969. doi:10.1038/nri2448
- 75. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 Macrophages and the Th1/Th2 Paradigm. *J Immunol*. 2000;164(12):6166-6173. doi:10.4049/jimmunol.164.12.6166
- 76. Rő, Szer T, s. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediators of Inflammation. doi:10.1155/2015/816460
- Anthony RM, Urban JF, Alem F, et al. Memory TH2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. *Nat Med*. 2006;12(8):955-960. doi:10.1038/nm1451
- 78. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. *J Clin Invest*. 2012;122(3):787-795. doi:10.1172/JCI59643
- Davis MJ, Tsang TM, Qiu Y, et al. Macrophage M1/M2 Polarization Dynamically Adapts to Changes in Cytokine Microenvironments in Cryptococcus neoformans Infection. *mBio*. 2013;4(3):e00264-13. doi:10.1128/mBio.00264-13

- 80. Varol C, Mildner A, Jung S. Macrophages: Development and Tissue Specialization. *Annu Rev Immunol*. 2015;33(1):643-675. doi:10.1146/annurev-immunol-032414-112220
- Movahedi K, Laoui D, Gysemans C, et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. *Cancer Res.* 2010;70(14):5728-5739. doi:10.1158/0008-5472.CAN-09-4672
- Allavena P, Sica A, Solinas G, Porta C, Mantovani A. The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. *Crit Rev Oncol Hematol*. 2008;66(1):1-9. doi:10.1016/j.critrevonc.2007.07.004
- 83. Komohara Y, Jinushi M, Takeya M. Clinical significance of macrophage heterogeneity in human malignant tumors. *Cancer Sci.* 2014;105(1):1-8. doi:10.1111/cas.12314
- 84. Mills CD, Lenz LL, Harris RA. A Breakthrough: Macrophage-Directed Cancer Immunotherapy. *Cancer Res.* 2016;76(3):513-516. doi:10.1158/0008-5472.CAN-15-1737
- Wu Y-L, Ding Y-P, Tanaka Y, et al. γδ T Cells and Their Potential for Immunotherapy. Int J Biol Sci. 2014;10(2):119-135. doi:10.7150/ijbs.7823
- Beetz S, Wesch D, Marischen L, Welte S, Oberg H-H, Kabelitz D. Innate immune functions of human γδ T cells. *Immunobiology*. 2008;213(3):173-182. doi:10.1016/j.imbio.2007.10.006
- Mangan BA, Dunne MR, O'Reilly VP, et al. Cutting Edge: CD1d Restriction and Th1/Th2/Th17 Cytokine Secretion by Human Vδ3 T Cells. *J Immunol.* 2013;191(1):30-34. doi:10.4049/jimmunol.1300121
- 88. Pf B, Js A, S L, Pa S, Th R, RI M. Patterns of cytokine production by mycobacterium-reactive human T-cell clones., Patterns of cytokine production by mycobacterium-reactive human T-cell clones. *Infect Immun Infect Immun.* 1993;61, 61(1, 1):197, 197-203. Accessed August 23, 2017. http://europepmc.org/abstract/MED/8418042, http://europepmc.org/articles/PMC302705/?report=abstract
- Li H, Luo K, Pauza CD. TNF-α Is a Positive Regulatory Factor for Human Vγ2Vδ2 T Cells. J Immunol. 2008;181(10):7131-7137. doi:10.4049/jimmunol.181.10.7131
- Poccia F, Battistini L, Cipriani B, et al. Phosphoantigen-Reactive Vγ9Vδ2 T Lymphocytes Suppress In Vitro Human Immunodeficiency Virus Type 1 Replication by Cell-Released Antiviral Factors Including CC Chemokines. *J Infect Dis.* 1999;180(3):858-861. doi:10.1086/314925
- 91. I T, Co D, R P, et al. Human Vgamma2Vdelta2 T cells contain cytoplasmic RANTES., Human

Vγ2Vδ2 T cells contain cytoplasmic RANTES. *Int Immunol Int Immunol*. 2006;18, 18(8, 8):1243, 1243-1251. doi:10.1093/intimm/dxl055, 10.1093/intimm/dxl055

- 92. Spada FM, Grant EP, Peters PJ, et al. Self-Recognition of Cd1 by γ/δ T Cells. J Exp Med. 2000;191(6):937-948. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2193122/
- 93. Brandes M, Willimann K, Moser B. Professional Antigen-Presentation Function by Human γδ T Cells. Science. 2005;309(5732):264-268. doi:10.1126/science.1110267
- 94. H L, Cd P. Rapamycin increases the yield and effector function of human γδ T cells stimulated in vitro., Rapamycin increases the yield and effector function of human γδ T cells stimulated in vitro. *Cancer Immunol Immunother CII Cancer Immunol Immunother CII*. 2011;60, 60(3, 3):361, 361-370. doi:10.1007/s00262-010-0945-7, 10.1007/s00262-010-0945-7
- 95. Moser B, Eberl M. γδ T-APCs: a novel tool for immunotherapy? *Cell Mol Life Sci CMLS*. 2011;68(14):2443-2452. doi:10.1007/s00018-011-0706-6
- Sharp LL, Jameson JM, Cauvi G, Havran WL. Dendritic epidermal T cells regulate skin homeostasis through local production of insulin-like growth factor 1. *Nat Immunol*. 2005;6(1):73-79. doi:10.1038/ni1152
- 97. Kabelitz D, Marischen L, Oberg H-H, Holtmeier W, Wesch D. Epithelial Defence by γδ T Cells. Int Arch Allergy Immunol. 2005;137(1):73-81. doi:10.1159/000085107
- 98. V gamma 2V delta 2 T Cell Receptor Recognition of Prenyl Pyrophosphates Is Dependent on All CDRs. Accessed August 22, 2017. https://www.researchgate.net/publication/44612604_V_gamma_2V_delta_2_T_Cell_Recept or_Recognition_of_Prenyl_Pyrophosphates_Is_Dependent_on_All_CDRs
- Wk B, M KA, RI O. Diversity of γδ T-cell antigens., Diversity of γδ T-cell antigens. *Cell Mol Immunol Cell Mol Immunol*. 2013;10, 10(1, 1):13, 13-20. doi:10.1038/cmi.2012.45, 10.1038/cmi.2012.45
- Agea E, Russano A, Bistoni O, et al. Human CD1-restricted T cell recognition of lipids from pollens. *J Exp Med*. 2005;202(2):295-308. doi:10.1084/jem.20050773
- 101. Kong Y, Cao W, Xi X, Ma C, Cui L, He W. The NKG2D ligand ULBP4 binds to TCRγ9/δ2 and induces cytotoxicity to tumor cells through both TCRγδ and NKG2D. *Blood*. 2009;114(2):310-317. doi:10.1182/blood-2008-12-196287
- 102. Ribot JC, debarros A, Silva-Santos B. Searching for "signal 2": costimulation requirements of γδ T cells. *Cell Mol Life Sci CMLS*. 2011;68(14):2345-2355.

doi:10.1007/s00018-011-0698-2

- Bauer S, Groh V, Wu J, et al. Activation of NK Cells and T Cells by NKG2D, a Receptor for Stress-Inducible MICA. Science. 1999;285(5428):727-729. doi:10.1126/science.285.5428.727
- 104. Todaro M, D'Asaro M, Caccamo N, et al. Efficient Killing of Human Colon Cancer Stem Cells by γδ T Lymphocytes. *J Immunol*. 2009;182(11):7287-7296. doi:10.4049/jimmunol.0804288
- 105. Schilbach KE, Geiselhart A, Wessels JT, Niethammer D, Handgretinger R. Human gammadelta T lymphocytes exert natural and II-2-induced cytotoxicity to neuroblastoma cells. *J Immunother Hagerstown Md* 1997. 23(5):536-548. Accessed July 18, 2017. https://insights.ovid.com/pubmed?pmid=11001547
- 106. Aq G, Dv C, Ar G, et al. Identification of a panel of ten cell surface protein antigens associated with immunotargeting of leukemias and lymphomas by peripheral blood gammadelta T cells., Identification of a panel of ten cell surface protein antigens associated with immunotargeting of leukemias and lymphomas by peripheral blood γδ T cells. *Haematol Haematol.* 2010;95, 95(8, 8):1397, 1397-1404. doi:10.3324/haematol.2009.020602, 10.3324/haematol.2009.020602
- Human intestinal Vdelta1+ lymphocytes recognize tumor cells of epithelial origin. J Exp Med. 1996;183(4):1681-1696. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192504/
- 108. Kunzmann V, Bauer E, Wilhelm M. γ/δ T-Cell Stimulation by Pamidronate. *N Engl J Med*.
 1999;340(9):737-738. doi:10.1056/NEJM199903043400914
- 109. Liotta LA, Kohn EC. The microenvironment of the tumour-host interface. *Nature*. 2001;411(6835):375-379. doi:10.1038/35077241
- Natural killer cell deficiency Europe PMC Article Europe PMC. Accessed August 28, 2017. http://europepmc.org/articles/PMC3917661
- 111. Min-Oo G, Kamimura Y, Hendricks DW, Nabekura T, Lanier LL. Natural killer cells: walking three paths down memory lane. *Trends Immunol.* 2013;34(6):251-258. doi:10.1016/j.it.2013.02.005
- 112. Janeway CA. Natural killer cells: a primitive immune system. *Nature*. 1989;341(6238):108. doi:10.1038/341108a0
- 113. Caligiuri MA. Human natural killer cells. Blood. 2008;112(3):461-469. doi:10.1182/blood-

2007-09-077438

- 114. Human natural killer cell deficiencies. PubMed NCBI. Accessed August 28, 2017. https://www.ncbi.nlm.nih.gov/pubmed/17088643
- 115. Galy A, Travis M, Cen D, Chen B. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. *Immunity*. 1995;3(4):459-473. doi:10.1016/1074-7613(95)90175-2
- 116. Freud AG, Caligiuri MA. Human natural killer cell development. *Immunol Rev.* 2006;214(1):56-72. doi:10.1111/j.1600-065X.2006.00451.x
- Chan A, Hong D-L, Atzberger A, et al. CD56bright Human NK Cells Differentiate into CD56dim Cells: Role of Contact with Peripheral Fibroblasts. *J Immunol*. 2007;179(1):89-94. doi:10.4049/jimmunol.179.1.89
- 118. Fehniger TA, Cooper MA, Nuovo GJ, et al. CD56bright natural killer cells are present in human lymph nodes and are activated by T cell–derived IL-2: a potential new link between adaptive and innate immunity. *Blood*. 2003;101(8):3052-3057. doi:10.1182/blood-2002-09-2876
- 119. Cooper MA, Fehniger TA, Fuchs A, Colonna M, Caligiuri MA. NK cell and DC interactions. *Trends Immunol.* 2004;25(1):47-52. doi:10.1016/j.it.2003.10.012
- 120. Mocikat R, Braumüller H, Gumy A, et al. Natural Killer Cells Activated by MHC Class ILow Targets Prime Dendritic Cells to Induce Protective CD8 T Cell Responses. *Immunity*. 2003;19(4):561-569. doi:10.1016/S1074-7613(03)00264-4
- 121. Bryceson YT, March ME, Ljunggren H-G, Long EO. Activation, coactivation, and costimulation of resting human natural killer cells. *Immunol Rev.* 2006;214(1):73-91. doi:10.1111/j.1600-065X.2006.00457.x
- 122. Bottino C, Castriconi R, Pende D, et al. Identification of PVR (CD155) and Nectin-2 (CD112) as Cell Surface Ligands for the Human DNAM-1 (CD226) Activating Molecule. *J Exp Med.* 2003;198(4):557-567. doi:10.1084/jem.20030788
- Aldemir H, Prod'homme V, Dumaurier M-J, et al. Cutting Edge: Lectin-Like Transcript 1
 Is a Ligand for the CD161 Receptor. *J Immunol.* 2005;175(12):7791-7795.
 doi:10.4049/jimmunol.175.12.7791
- 124. Parham P. MHC class I molecules and kirs in human history, health and survival. *Nat Rev Immunol*. 2005;5(3):201-214. doi:10.1038/nri1570

- 125. Ljunggren H-G, Kärre K. In search of the 'missing self': MHC molecules and NK cell recognition. *Immunol Today*. 1990;11:237-244. doi:10.1016/0167-5699(90)90097-S
- 126. Lanier LL. Nk Cell Recognition. *Annu Rev Immunol*. 2005;23(1):225-274. doi:10.1146/annurev.immunol.23.021704.115526
- 127. Fang M, Shamsedeen A, Orr M, Lanier L, Sigal L. The activating receptor CD94-NKG2E is required for protective NK cell responses to a lethal viral infection (39.26). *J Immunol.* 2010;184(1 Supplement):39.26-39.26. Accessed August 31, 2017. http://www.jimmunol.org/content/184/1_Supplement/39.26
- 128. Martinet L, Smyth MJ. Balancing natural killer cell activation through paired receptors. *Nat Rev Immunol.* 2015;15(4):243-254. doi:10.1038/nri3799
- 129. Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. *Nat Med*. 2000;6(4):443-446. doi:10.1038/74704
- Arase N, Arase H, Park SY, Ohno H, Ra C, Saito T. Association with FcRγ Is Essential for Activation Signal through NKR-P1 (CD161) in Natural Killer (NK) Cells and NK1.1+ T Cells. *J Exp Med*. 1997;186(12):1957-1963. Accessed January 31, 2019. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2199168/
- 131. Cartron G, Dacheux L, Salles G, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. *Blood*. 2002;99(3):754-758. doi:10.1182/blood.V99.3.754
- 132. Mj S, J S, E C, N Z, Wm Y, Y H. NKG2D function protects the host from tumor initiation., NKG2D function protects the host from tumor initiation. *J Exp Med J Exp Med*. 2005;202, 202(5, 5):583, 583-588. doi:10.1084/jem.20050994, 10.1084/jem.20050994
- Doubrovina ES, Doubrovin MM, Vider E, et al. Evasion from NK Cell Immunity by MHC Class I Chain-Related Molecules Expressing Colon Adenocarcinoma. *J Immunol.* 2003;171(12):6891-6899. doi:10.4049/jimmunol.171.12.6891
- 134. Castriconi R, Cantoni C, Della Chiesa M, et al. Transforming growth factor β1 inhibits expression of NKp30 and NKG2D receptors: Consequences for the NK-mediated killing of dendritic cells. *Proc Natl Acad Sci U S A*. 2003;100(7):4120-4125. doi:10.1073/pnas.0730640100
- Fuchs A, Colonna M. The role of NK cell recognition of nectin and nectin-like proteins in tumor immunosurveillance. *Semin Cancer Biol.* 2006;16(5):359-366. doi:10.1016/j.semcancer.2006.07.002

- 136. Shibuya A, Campbell D, Hannum C, et al. DNAM-1, A Novel Adhesion Molecule Involved in the Cytolytic Function of T Lymphocytes. *Immunity*. 1996;4(6):573-581. doi:10.1016/S1074-7613(00)70060-4
- 137. Castriconi R, Dondero A, Corrias MV, et al. Natural Killer Cell-Mediated Killing of Freshly Isolated Neuroblastoma Cells: Critical Role of DNAX Accessory Molecule-1–Poliovirus Receptor Interaction. *Cancer Res.* 2004;64(24):9180-9184. doi:10.1158/0008-5472.CAN-04-2682
- 138. Pende D, Spaggiari GM, Marcenaro S, et al. Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112). *Blood*. 2005;105(5):2066-2073. doi:10.1182/blood-2004-09-3548
- 139. Tahara-Hanaoka S, Shibuya K, Kai H, et al. Tumor rejection by the poliovirus receptor family ligands of the DNAM-1 (CD226) receptor. *Blood*. 2006;107(4):1491-1496. doi:10.1182/blood-2005-04-1684
- 140. Ruggeri L, Aversa F, Martelli MF, Velardi A. Allogeneic hematopoietic transplantation and natural killer cell recognition of missing self. *Immunol Rev.* 2006;214:202-218. doi:10.1111/j.1600-065X.2006.00455.x
- 141. Uhrberg M, Valiante NM, Shum BP, et al. Human Diversity in Killer Cell Inhibitory Receptor Genes. *Immunity*. 1997;7(6):753-763. doi:10.1016/S1074-7613(00)80394-5
- 142. Farag SS, Fehniger TA, Ruggeri L, Velardi A, Caligiuri MA. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. *Blood*. 2002;100(6):1935-1947. doi:10.1182/blood-2002-02-0350
- Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of Donor Natural Killer Cell Alloreactivity in Mismatched Hematopoietic Transplants. *Science*. 2002;295(5562):2097-2100. doi:10.1126/science.1068440
- Schreiber RD, Old LJ, Smyth MJ. Cancer Immunoediting: Integrating Immunity's Roles in Cancer Suppression and Promotion. *Science*. 2011;331(6024):1565-1570. doi:10.1126/science.1203486
- 145. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. *Nat Immunol.* 2002;3(11):991-998. doi:10.1038/ni1102-991
- 146. Burnet FM. The concept of immunological surveillance. Prog Exp Tumor Res. 1970;13:1-

27.

- 147. Smyth MJ, Thia KYT, Street SEA, et al. Differential Tumor Surveillance by Natural Killer (Nk) and Nkt Cells. J Exp Med. 2000;191(4):661-668. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2195840/
- 148. Smyth MJ, Thia KYT, Street SEA, MacGregor D, Godfrey DI, Trapani JA. Perforin-Mediated Cytotoxicity Is Critical for Surveillance of Spontaneous Lymphoma. J Exp Med. 2000;192(5):755-760. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2193269/
- 149. Shankaran V, Ikeda H, Bruce AT, et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. *Nature*. 2001;410(6832):1107-1111. doi:10.1038/35074122
- 150. Girardi M, Oppenheim DE, Steele CR, et al. Regulation of Cutaneous Malignancy by γδ T Cells. *Science*. 2001;294(5542):605-609. doi:10.1126/science.1063916
- 151. Penn I. Malignant melanoma in organ allograft recipients. *Transplantation*. 1996;61(2):274-278.
- 152. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. *Nature*. 1998;396(6712):643-649. doi:10.1038/25292
- Becht E, Giraldo NA, Dieu-Nosjean M-C, Sautès-Fridman C, Fridman WH. Cancer immune contexture and immunotherapy. *Curr Opin Immunol*. 2016;39(Supplement C):7-13. doi:10.1016/j.coi.2015.11.009
- 154. Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. *Nat Rev Cancer*. 2012;12(4):298-306. doi:10.1038/nrc3245
- 155. Palucka AK, Coussens LM. The Basis of Oncoimmunology. *Cell*. 2016;164(6):1233-1247. doi:10.1016/j.cell.2016.01.049
- 156. Coussens LM, Zitvoge L, Palucka AK. Neutralizing Tumor-Promoting Chronic Inflammation: A Magic Bullet? *Science*. 2013;339(6117):286-291. doi:10.1126/science.1232227
- 157. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. *Nat Immunol*. 2010;11(10):889-896. doi:10.1038/ni.1937
- 158. Appay V, Douek DC, Price DA. CD8+ T cell efficacy in vaccination and disease. Nat Med.

2008;14(6):623-628. doi:10.1038/nm.f.1774

- 159. Finn OJ. Cancer Immunology. *N Engl J Med*. 2008;358(25):2704-2715. doi:10.1056/NEJMra072739
- 160. Müller-Hermelink N, Braumüller H, Pichler B, et al. TNFR1 Signaling and IFN-γ Signaling Determine whether T Cells Induce Tumor Dormancy or Promote Multistage Carcinogenesis. *Cancer Cell.* 2008;13(6):507-518. doi:10.1016/j.ccr.2008.04.001
- 161. Wiegering V, Eyrich M, Rutkowski S, Wölfl M, Schlegel PG, Winkler B. TH1 predominance is associated with improved survival in pediatric medulloblastoma patients. *Cancer Immunol Immunother*. 2011;60(5):693-703. doi:10.1007/s00262-011-0981-y
- 162. Perez-Diez A, Joncker NT, Choi K, et al. CD4 cells can be more efficient at tumor rejection than CD8 cells. *Blood*. 2007;109(12):5346-5354. doi:10.1182/blood-2006-10-051318
- 163. Braumüller H, Wieder T, Brenner E, et al. T-helper-1-cell cytokines drive cancer into senescence. *Nature*. 2013;494(7437):361-365. doi:10.1038/nature11824
- 164. Dieu-Nosjean M-C, Antoine M, Danel C, et al. Long-term survival for patients with nonsmall-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(27):4410-4417. doi:10.1200/JCO.2007.15.0284
- 165. Koebel CM, Vermi W, Swann JB, et al. Adaptive immunity maintains occult cancer in an equilibrium state. *Nature*. 2007;450(7171):903-907. doi:10.1038/nature06309
- 166. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural Innate and Adaptive Immunity to Cancer. *Annu Rev Immunol*. 2011;29(1):235-271. doi:10.1146/annurev-immunol-031210-101324
- 167. de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. *Nat Rev Cancer*. 2006;6(1):24-37. doi:10.1038/nrc1782
- 168. Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. *Cell*. 2011;144(5):646-674. doi:10.1016/j.cell.2011.02.013
- Dannenberg AJ, Subbaramaiah K. Targeting cyclooxygenase-2 in human neoplasia. Cancer Cell. 2003;4(6):431-436. doi:10.1016/S1535-6108(03)00310-6
- Plaks V, Boldajipour B, Linnemann JR, et al. Adaptive Immune Regulation of Mammary Postnatal Organogenesis. *Dev Cell*. 2015;34(5):493-504. doi:10.1016/j.devcel.2015.07.015
- 171. Raman D, Baugher PJ, Thu YM, Richmond A. Role of chemokines in tumor growth.

Cancer Lett. 2007;256(2):137-165. doi:10.1016/j.canlet.2007.05.013

- Goel HL, Mercurio AM. VEGF targets the tumour cell. *Nat Rev Cancer*. 2013;13(12):871-882. doi:10.1038/nrc3627
- 173. Cremer I, Fridman WH, Sautès-Fridman C. Tumor microenvironment in NSCLC suppresses NK cells function. *Oncoimmunology*. 2012;1(2):244. doi:10.4161/onci.1.2.18309
- 174. Ohm J, Carbone D. Ohm JE, Carbone DP. VEGF as a Mediator of Tumor-Associated Immunodeficiency. Immunol Res 23: 263-272. Vol 23.; 2001. doi:10.1385/IR:23:2-3:263
- 175. Chomarat P, Banchereau J, Davoust J, Karolina Palucka A. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. *Nat Immunol.* 2000;1(6):510-514. doi:10.1038/82763
- 176. Chen DS, Mellman I. Oncology Meets Immunology: The Cancer-Immunity Cycle. *Immunity*. 2013;39(1):1-10. doi:10.1016/j.immuni.2013.07.012
- 177. Abès R, Gélizé E, Fridman WH, Teillaud J-L. Long-lasting antitumor protection by anti-CD20 antibody through cellular immune response. *Blood*. 2010;116(6):926-934. doi:10.1182/blood-2009-10-248609
- 178. Galluzzi L, Vacchelli E, Fridman WH, et al. Trial Watch. *Oncoimmunology*. 2012;1(1):28-37. doi:10.4161/onci.1.1.17938
- 179. Kalos M, Levine BL, Porter DL, et al. T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia. *Sci Transl Med*. 2011;3(95):95ra73-95ra73. doi:10.1126/scitranslmed.3002842
- Palucka K, Banchereau J. Dendritic-Cell-Based Therapeutic Cancer Vaccines. *Immunity*. 2013;39(1):38-48. doi:10.1016/j.immuni.2013.07.004
- Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus Ipilimumab in Advanced Melanoma. N Engl J Med. 2013;369(2):122-133. doi:10.1056/NEJMoa1302369
- Nastala CL, Edington HD, McKinney TG, et al. Recombinant IL-12 administration induces tumor regression in association with IFN-gamma production. *J Immunol*. 1994;153(4):1697-1706. Accessed September 27, 2017. http://www.jimmunol.org/content/153/4/1697
- 183. Franke V, Berger DMS, Klop WMC, et al. High Response Rates for T-VEC in Early Metastatic Melanoma (Stage IIIB/C-IVM1a). *Int J Cancer*. Published online January 29, 2019. doi:10.1002/ijc.32172

- 184. Ma Y, Adjemian S, Mattarollo SR, et al. Anticancer Chemotherapy-Induced Intratumoral Recruitment and Differentiation of Antigen-Presenting Cells. *Immunity*. 2013;38(4):729-741. doi:10.1016/j.immuni.2013.03.003
- 185. Fridman WH, Teillaud JL, Sautès-Fridman C, et al. The ultimate goal of curative anticancer therapies: inducing an adaptive anti-tumor immune response., The Ultimate Goal of Curative Anti-Cancer Therapies: Inducing an Adaptive Anti-Tumor Immune Response. *Front Immunol Front Immunol*. 2011;2, 2:66-66. doi:10.3389/fimmu.2011.00066, 10.3389/fimmu.2011.00066
- 186. Vincent J, Mignot G, Chalmin F, et al. 5-Fluorouracil Selectively Kills Tumor-Associated Myeloid-Derived Suppressor Cells Resulting in Enhanced T Cell–Dependent Antitumor Immunity. *Cancer Res.* 2010;70(8):3052-3061. doi:10.1158/0008-5472.CAN-09-3690
- Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of Action of Conventional and Targeted Anticancer Therapies: Reinstating Immunosurveillance. *Immunity*. 2013;39(1):74-88. doi:10.1016/j.immuni.2013.06.014
- Gatenby RA. A change of strategy in the war on cancer. *Nature*. 2009;459(7246):508-509. doi:10.1038/459508a
- 189. Gatenby RA, Silva AS, Gillies RJ, Frieden BR. Adaptive Therapy. *Cancer Res.* 2009;69(11):4894-4903. doi:10.1158/0008-5472.CAN-08-3658
- 190. Br A, Br on K, Science on K. To Survive Cancer, Live With It. WIRED. Accessed July 24, 2017. https://www.wired.com/2009/05/cancercompromise/
- 191. Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. *Nat Rev Immunol.* 2003;3(2):133-146. doi:10.1038/nri1001
- 192. Trinchieri G. Interleukin-12: A Proinflammatory Cytokine with Immunoregulatory Functions that Bridge Innate Resistance and Antigen-Specific Adaptive Immunity. *Annu Rev Immunol.* 1995;13(1):251-276. doi:10.1146/annurev.iy.13.040195.001343
- 193. Kerkar SP, Goldszmid RS, Muranski P, et al. IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors., IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. *J Clin Investig J Clin Investig*. 2011;121, 121(12, 12):4746, 4746-4757. doi:10.1172/JCI58814, 10.1172/JCI58814
- 194. Wigginton JM, Kuhns DB, Back TC, Brunda MJ, Wiltrout RH, Cox GW. Interleukin 12 Primes Macrophages for Nitric Oxide Production in Vivo and Restores Depressed Nitric Oxide Production by Macrophages from Tumor-bearing Mice: Implications for the Antitumor

Activity of Interleukin 12 and/or Interleukin 2. *Cancer Res.* 1996;56(5):1131-1136. Accessed October 10, 2017. http://cancerres.aacrjournals.org/content/56/5/1131

- 195. Prochazkova J, Pokorna K, Holan V. IL-12 inhibits the TGF-β-dependent T cell developmental programs and skews the TGF-β-induced differentiation into a Th1-like direction. *Immunobiology*. 2012;217(1):74-82. doi:10.1016/j.imbio.2011.07.032
- 196. Fallon J, Tighe R, Kradjian G, et al. The immunocytokine NHS-IL12 as a potential cancer therapeutic. Oncotarget. 2014;5(7):1869-1884. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039112/
- 197. Sgadari C, Angiolillo AL, Tosato G. Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. *Blood*. 1996;87(9):3877-3882. Accessed October 10, 2017. http://www.bloodjournal.org/content/87/9/3877
- 198. Strasly M, Cavallo F, Geuna M, et al. IL-12 Inhibition of Endothelial Cell Functions and Angiogenesis Depends on Lymphocyte-Endothelial Cell Cross-Talk. *J Immunol*. 2001;166(6):3890-3899. doi:10.4049/jimmunol.166.6.3890
- 199. Leonard JP, Sherman ML, Fisher GL, et al. Effects of Single-Dose Interleukin-12 Exposure on Interleukin-12–Associated Toxicity and Interferon-γ Production. *Blood*. 1997;90(7):2541-2548. Accessed October 10, 2017. http://www.bloodjournal.org/content/90/7/2541
- 200. Gollob JA, Mier JW, Veenstra K, et al. Phase I Trial of Twice-Weekly Intravenous Interleukin 12 in Patients with Metastatic Renal Cell Cancer or Malignant Melanoma: Ability to Maintain IFN-γ Induction Is Associated with Clinical Response. *Clin Cancer Res.* 2000;6(5):1678-1692. Accessed September 27, 2017. http://clincancerres.aacrjournals.org/content/6/5/1678
- 201. Lechner MG, Russell SM, Bass RS, Epstein AL. Chemokines, costimulatory molecules and fusion proteins for the immunotherapy of solid tumors., Chemokines, costimulatory molecules and fusion proteins for the immunotherapy of solid tumors. *Immunother Immunother*. 2011;3, 3(11, 11):1317, 1317-1340. doi:10.2217/imt.11.115, 10.2217/imt.11.115
- 202. Sharifi J, Khawli LA, Hu P, King S, Epstein AL. Characterization of a Phage Display-Derived Human Monoclonal Antibody (NHS76) Counterpart to Chimeric TNT-1 Directed Against Necrotic Regions of Solid Tumors. *Hybrid Hybridomics*. 2001;20(5-6):305-312. doi:10.1089/15368590152740707
- 203. Eckert F, Schmitt J, Zips D, et al. Enhanced binding of necrosis-targeting immunocytokine NHS-IL12 after local tumour irradiation in murine xenograft models. *Cancer Immunol*

Immunother CII. 2016;65(8):1003-1013. doi:10.1007/s00262-016-1863-0

- 204. Ascierto ML, Melero I, Ascierto PA. Melanoma: From Incurable Beast to a Curable Bet. The Success of Immunotherapy. *Front Oncol.* 2015;5:152-152. doi:10.3389/fonc.2015.00152
- 205. Gettinger S, Rizvi NA, Chow LQ, et al. Nivolumab Monotherapy for First-Line Treatment of Advanced Non–Small-Cell Lung Cancer. *J Clin Oncol*. 2016;34(25):2980-2987. doi:10.1200/JCO.2016.66.9929
- 206. Thomas A, Giaccone G. Why has active immunotherapy not worked in lung cancer? *Ann Oncol.* 2015;26(11):2213-2220. doi:10.1093/annonc/mdv323
- 207. Müller P, Kreuzaler M, Khan T, et al. Trastuzumab emtansine (T-DM1) renders HER2+ breast cancer highly susceptible to CTLA-4/PD-1 blockade. *Sci Transl Med*. 2015;7(315):315ra188. doi:10.1126/scitranslmed.aac4925
- 208. Reynders K, Illidge T, Siva S, Chang JY, De Ruysscher D. The abscopal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant. *Cancer Treat Rev.* 2015;41(6):503-510. doi:10.1016/j.ctrv.2015.03.011
- 209. Perez CA, Fu A, Onishko H, Hallahan DE, Geng L. Radiation induces an antitumour immune response to mouse melanoma. *Int J Radiat Biol.* 2009;85(12):1126-1136. doi:10.3109/09553000903242099
- 210. Gameiro SR, Jammed ML, Wattenberg MM, Tsang KY, Ferrone S, Hodge JW. Radiationinduced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. *Oncotarget*. 2013;5(2):403-416. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964216/
- 211. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. *Nat Rev Cancer*. 2012;12(12):860-875. doi:10.1038/nrc3380
- 212. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic Cell Death in Cancer Therapy. *Annu Rev Immunol.* 2013;31(1):51-72. doi:10.1146/annurev-immunol-032712-100008
- Reits EA, Hodge JW, Herberts CA, et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. *J Exp Med.* 2006;203(5):1259-1271. doi:10.1084/jem.20052494
- 214. Sharma A, Bode B, Wenger RH, et al. γ-Radiation Promotes Immunological Recognition of Cancer Cells through Increased Expression of Cancer-Testis Antigens In Vitro and In Vivo.

PLOS ONE. 2011;6(11):e28217. doi:10.1371/journal.pone.0028217

- Chakraborty M, Abrams SI, Camphausen K, et al. Irradiation of Tumor Cells Up-Regulates Fas and Enhances CTL Lytic Activity and CTL Adoptive Immunotherapy. *J Immunol*. 2003;170(12):6338-6347. doi:10.4049/jimmunol.170.12.6338
- 216. Lim JYH, Gerber SA, Murphy SP, Lord EM. Type I Interferons Induced by Radiation Therapy Mediate Recruitment and Effector Function of CD8+ T Cells. *Cancer Immunol Immunother CII*. 2014;63(3):259-271. doi:10.1007/s00262-013-1506-7
- Burnette B, Liang H, Lee Y, et al. The Efficacy of Radiotherapy Relies Upon Induction of Type I Interferon-Dependent Innate and Adaptive Immunity. *Cancer Res.* 2011;71(7):2488-2496. doi:10.1158/0008-5472.CAN-10-2820
- 218. Mole RH. Whole Body Irradiation—Radiobiology or Medicine? *Br J Radiol*. 1953;26(305):234-241. doi:10.1259/0007-1285-26-305-234
- Hendry J, V. Moore J. The Radiobiology of Human Cancer Radiotherapy. *Br J Cancer*. 1979;40:175-175. doi:10.1038/bjc.1979.161
- 220. Hutchinson L. Radiotherapy: Abscopal responses: pro-immunogenic effects of radiotherapy. *Nat Rev Clin Oncol.* 2015;12(9):504-504. doi:10.1038/nrclinonc.2015.127
- 221. Park B, Yee C, Lee K-M. The Effect of Radiation on the Immune Response to Cancers. Int J Mol Sci. 2014;15(1):927-943. doi:10.3390/ijms15010927
- 222. Shahabi V, Postow MA, Tuck D, Wolchok JD. Immune-priming of the Tumor Microenvironment by Radiotherapy: Rationale for Combination With Immunotherapy to Improve Anticancer Efficacy. Am J Clin Oncol. 2015;38(1):90-97. doi:10.1097/COC.0b013e3182868ec8
- 223. Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. *Nat Rev Immunol.* 2007;7(2):118-130. doi:10.1038/nri2017
- 224. Cao X, Shores EW, Hu-Li J, et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. *Immunity*. 1995;2(3):223-238.
- 225. Shultz LD, Lyons BL, Burzenski LM, et al. Human Lymphoid and Myeloid Cell Development in NOD/LtSz-*scid IL2R*γ^{null} Mice Engrafted with Mobilized Human Hemopoietic Stem Cells. *J Immunol*. 2005;174(10):6477-6489. doi:10.4049/jimmunol.174.10.6477
- 226. Shultz LD, Schweitzer PA, Christianson SW, et al. Multiple defects in innate and adaptive

immunologic function in NOD/LtSz-scid mice. *J Immunol*. 1995;154(1):180-191. Accessed July 19, 2017. http://www.jimmunol.org/content/154/1/180

- 227. Takenaka K, Prasolava TK, Wang JCY, et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. *Nat Immunol*. 2007;8(12):1313-1323. doi:10.1038/ni1527
- 228. Greiner DL, Hesselton RA, Shultz LD. SCID mouse models of human stem cell engraftment. *Stem Cells Dayt Ohio*. 1998;16(3):166-177. doi:10.1002/stem.160166
- 229. Blunt T, Finnie NJ, Taccioli GE, et al. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. *Cell*. 1995;80(5):813-823.
- Hinson ARP, Jones R, Crose LES, Belyea BC, Barr FG, Linardic CM. Human Rhabdomyosarcoma Cell Lines for Rhabdomyosarcoma Research: Utility and Pitfalls. *Front* Oncol. 2013;3. doi:10.3389/fonc.2013.00183
- 231. Giard DJ, Aaronson SA, Todaro GJ, et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. *J Natl Cancer Inst.* 1973;51(5):1417-1423.
- 232. Romano P, Manniello A, Aresu O, Armento M, Cesaro M, Parodi B. Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines. *Nucleic Acids Res.* 2009;37(suppl 1):D925-D932. doi:10.1093/nar/gkn730
- 233. Han M, Harrison L, Kehn P, Stevenson K, Currier J, Robinson MA. Invariant or Highly Conserved TCR α Are Expressed on Double-Negative (CD3+CD4-CD8-) and CD8+ T Cells. *J Immunol*. 1999;163(1):301-311. Accessed October 17, 2016. http://www.jimmunol.org/content/163/1/301
- 234. Déchanet J, Merville P, Lim A, et al. Implication of γδ T cells in the human immune response to cytomegalovirus. *J Clin Invest*. 1999;103(10):1437-1449. doi:10.1172/JCI5409
- 235. Labor Dr. Gärtner: Nested PCR. Accessed May 12, 2020. https://www.laborgaertner.de/labor/abteilungen/molekularbiologie/informationen-zu-molekularbiologischenmethoden/nested_pcr/
- Kepler TB, He M, Tomfohr JK, Devlin BH, Sarzotti M, Markert ML. Statistical analysis of antigen receptor spectratype data. *Bioinformatics*. 2005;21(16):3394-3400. doi:10.1093/bioinformatics/bti539,

- 237. Chen X, Knowles J, Barfield R, et al. A novel approach for quantification of KIR expression in healthy donors and pediatric recipients of hematopoietic SCTs. *Bone Marrow Transplant*. 2009;43(7):525-532. doi:10.1038/bmt.2008.352
- 238. Regression of non-irradiated metastases after extracranial stereotactic radiotherapy in metastatic renal cell carcinoma: Acta Oncologica: Vol 45, No 4. Accessed February 21, 2019. https://www.tandfonline.com/doi/full/10.1080/02841860600604611
- 239. Shen MJ, Xu LJ, Yang L, et al. Radiation alters PD-L1/NKG2D ligand levels in lung cancer cells and leads to immune escape from NK cell cytotoxicity via IL-6-MEK/Erk signaling pathway. *Oncotarget*. 2017;8(46):80506-80520. doi:10.18632/oncotarget.19193
- 240. Mortara L, Frangione V, Castellani P, Barbaro ADL, Accolla RS. Irradiated CIITA-positive mammary adenocarcinoma cells act as a potent anti-tumor-preventive vaccine by inducing tumor-specific CD4+ T cell priming and CD8+ T cell effector functions. *Int Immunol.* 2009;21(6):655-665. doi:10.1093/intimm/dxp034
- 241. Wang S-J, Haffty B. Radiotherapy as a New Player in Immuno-Oncology. *Cancers*. 2018;10:515. doi:10.3390/cancers10120515
- 242. Chiang C-S, Fu SY, Wang S-C, et al. Irradiation Promotes an M2 Macrophage Phenotype in Tumor Hypoxia. *Front Oncol.* 2012;2. doi:10.3389/fonc.2012.00089
- Venkatesulu BP, Mallick S, Lin SH, Krishnan S. A systematic review of the influence of radiation-induced lymphopenia on survival outcomes in solid tumors. *Crit Rev Oncol Hematol*. 2018;123:42-51. doi:10.1016/j.critrevonc.2018.01.003
- 244. Wang S-J, Haffty B. Radiotherapy as a New Player in Immuno-Oncology. *Cancers*. 2018;10(12):515. doi:10.3390/cancers10120515
- 245. Takahashi A, Ohtani N, Yamakoshi K, et al. Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. *Nat Cell Biol*. 2006;8(11):1291-1297. doi:10.1038/ncb1491
- 246. Lee SK, Kim JY, Jang BW, et al. Foxp3high and Foxp3low Treg cells differentially correlate with T helper 1 and natural killer cells in peripheral blood. *Hum Immunol*. 2011;72(8):621-626. doi:10.1016/j.humimm.2011.03.013
- 247. Roy S, Barnes PF, Garg A, Wu S, Cosman D, Vankayalapati R. NK Cells Lyse T Regulatory Cells That Expand in Response to an Intracellular Pathogen. *J Immunol.* 2008;180(3):1729-1736. doi:10.4049/jimmunol.180.3.1729

- 248. Walzer T, Dalod M, Robbins SH, Zitvogel L, Vivier E. Natural-killer cells and dendritic cells: "I'union fait la force." *Blood*. 2005;106(7):2252-2258. doi:10.1182/blood-2005-03-1154
- 249. Vitale M, Chiesa MD, Carlomagno S, et al. NK-dependent DC maturation is mediated by TNFα and IFNγ released upon engagement of the NKp30 triggering receptor. *Blood*. 2005;106(2):566-571. doi:10.1182/blood-2004-10-4035
- 250. Human Dendritic Cells Activate Resting Natural Killer (NK) Cells and Are Recognized via the NKp30 Receptor by Activated NK Cells. Accessed February 24, 2020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2193591/
- 251. Takahashi T, Dejbakhsh-Jones S, Strober S. Expression of CD161 (NKR-P1A) Defines Subsets of Human CD4 and CD8 T Cells with Different Functional Activities. *J Immunol*. 2006;176(1):211-216. doi:10.4049/jimmunol.176.1.211
- 252. Fergusson JR, Fleming VM, Klenerman P. CD161-Expressing Human T Cells. *Front Immunol.* 2011;2. doi:10.3389/fimmu.2011.00036
- 253. Vitale M, Bottino C, Sivori S, et al. NKp44, a Novel Triggering Surface Molecule Specifically Expressed by Activated Natural Killer Cells, Is Involved in Non–Major Histocompatibility Complex–restricted Tumor Cell Lysis. J Exp Med. 1998;187(12):2065-2072. Accessed January 9, 2019. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212362/
- 254. Cantoni C, Bottino C, Vitale M, et al. NKp44, A Triggering Receptor Involved in Tumor Cell Lysis by Activated Human Natural Killer Cells, Is a Novel Member of the Immunoglobulin Superfamily. J Exp Med. 1999;189(5):787-796. Accessed January 9, 2019. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192947/
- 255. Bottino C, Moretta L, Moretta A. NK cell activating receptors and tumor recognition in humans. *Curr Top Microbiol Immunol*. 2006;298:175-182.
- 256. Kitayama S, Zhang R, Liu T-Y, et al. Cellular Adjuvant Properties, Direct Cytotoxicity of Re-differentiated Vα24 Invariant NKT-like Cells from Human Induced Pluripotent Stem Cells. *Stem Cell Rep.* 2016;6(2):213-227. doi:10.1016/j.stemcr.2016.01.005
- 257. Ngwa W, Irabor OC, Schoenfeld JD, Hesser J, Demaria S, Formenti SC. Using immunotherapy to boost the abscopal effect. *Nat Rev Cancer*. 2018;18(5):313-322. doi:10.1038/nrc.2018.6
- 258. Lee Y, Auh SL, Wang Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. *Blood*. 2009;114(3):589-595. doi:10.1182/blood-2009-02-206870

- 259. Kaminski JM, Shinohara E, Summers JB, Niermann KJ, Morimoto A, Brousal J. The controversial abscopal effect. *Cancer Treat Rev.* 2005;31(3):159-172. doi:10.1016/j.ctrv.2005.03.004
- 260. Twyman-Saint Victor C, Rech AJ, Maity A, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. *Nature*. 2015;520(7547):373-377. doi:10.1038/nature14292
- Slone HB, Peters LJ, Milas L. Effect of Host Immune Capability on Radiocurability and Subsequent Transplantability of a Murine Fibrosarcoma. JNCI J Natl Cancer Inst. 1979;63(5):1229-1235. doi:10.1093/jnci/63.5.1229
- 262. Becht E, Giraldo NA, Germain C, et al. Immune Contexture, Immunoscore, and Malignant Cell Molecular Subgroups for Prognostic and Theranostic Classifications of Cancers. *Adv Immunol.* 2016;130:95-190. doi:10.1016/bs.ai.2015.12.002
- 263. Scheper W, Kelderman S, Fanchi LF, et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. *Nat Med*. 2019;25(1):89. doi:10.1038/s41591-018-0266-5
- 264. Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. *Nat Rev Immunol*. 2017;17(2):97-111. doi:10.1038/nri.2016.107
- 265. Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Reply: Immunosuppressive cell death in cancer. *Nat Rev Immunol*. 2017;17(6):402. doi:10.1038/nri.2017.48
- 266. Vatner RE, Cooper BT, Vanpouille-Box C, Demaria S, Formenti SC. Combinations of Immunotherapy and Radiation in Cancer Therapy. *Front Oncol.* 2014;4. doi:10.3389/fonc.2014.00325
- Barker HE, Paget JTE, Khan AA, Harrington KJ. The Tumour Microenvironment after Radiotherapy: Mechanisms of Resistance and Recurrence. *Nat Rev Cancer*. 2015;15(7):409-425. doi:10.1038/nrc3958
- 268. Perussia B, Chan SH, D'Andrea A, et al. Natural killer (NK) cell stimulatory factor or IL-12 has differential effects on the proliferation of TCR-alpha beta+, TCR-gamma delta+ T lymphocytes, and NK cells. *J Immunol*. 1992;149(11):3495-3502. Accessed April 5, 2019. http://www.jimmunol.org/content/149/11/3495

6.1 Nutzungslizenzen für verwendete Abbildungen

Abb. 1.1.: Reprinted from *Kawamoto H. A close developmental relationship between the lymphoid and myeloid lineages. Trends Immunol.* 2006;27(4):169-175. doi:10.1016/j.it.2006.02.004 with permission from Elsevier.

Abb. 1.2.A: Reprinted from *Litt M, Patel B, Li Y, Qiu Y, Huang S. Molecular Morphogenesis of T-Cell Acute Leukemia. Published online 2013. doi:10.5772/55144* with permission though open access.

Abb. 1.2.B: Reprinted from Fayard E, Moncayo G, Hemmings BA, Holländer GA. Phosphatidylinositol 3-Kinase Signaling in Thymocytes: The Need for Stringent Control. Sci Signal. 2010;3(135):re5-re5. doi:10.1126/scisignal.3135re5 with permission from AAAS.

Abb. 1.3: Reprinted from *Charles A Janeway J, Travers P, Walport M, Shlomchik MJ. T-cell receptor gene rearrangement. Published online 2001. Accessed March 16, 2016. http://www.ncbi.nlm.nih.gov/books/NBK27145/* with permission from Springer Nature.

Abb. 1.4: Reprinted from Schreiber RD, Old LJ, Smyth MJ. Cancer Immunoediting: Integrating Immunity's Roles in Cancer Suppression and Promotion. Science. 2011;331(6024):1565-1570. doi:10.1126/science.1203486 with permission from AAAS.

Abb. 1.5: Reprinted from Chen DS, Mellman I. Oncology Meets Immunology:TheCancer-ImmunityCycle.Immunity.2013;39(1):110.doi:10.1016/j.immuni.2013.07.012 with permission from Elsevier.

Abb. 1.6: Reprinted from *Palucka AK, Coussens LM. The Basis of Oncoimmunology. Cell.* 2016;164(6):1233-1247. doi:10.1016/j.cell.2016.01.049 with permission from Elsevier.

153

Abb. 2.5: Reprinted from *Labor Dr. Gärtner: Nested PCR. Accessed May 12, 2020.https://www.laborgaertner.de/labor/abteilungen/molekularbiologie/ informationen-zu-molekularbiologischen-methoden/nested_pcr/* with permission from Labor Gärtner Ravensburg.

Abb. 2.6: Reprinted from *Kepler TB, He M, Tomfohr JK, Devlin BH, Sarzotti M, Markert ML. Statistical analysis of antigen receptor spectratype data. Bioinformatics.* 2005;21(16):3394-3400. doi:10.1093/bioinformatics/bti539 with permission from Oxford University Press.

Abb.3.1 bis Abb. 3.6: Adopted and reprinted from *Eckert F, Jelas I, Oehme M, et al. Tumor-targeted IL-12 combined with local irradiation leads to systemic tumor control via abscopal effects in vivo. Oncolmmunology.* 2017;0(0):e1323161. *doi:10.1080/2162402X.2017.1323161* with permission from Co-author PD Dr. F. Eckert and publisher Francis & Taylor.

7 Erklärung zum Eigenanteil der Dissertationsschrift

Die Arbeit wurde in der Universitätsklinik für Kinder- und Jugendmedizin Tübingen unter Betreuung von Frau Prof. Dr. rer. nat. Karin Schilbach durchgeführt.

Die Konzeption der Studie erfolgte durch Frau Prof. Dr. rer. nat. Karin Schilbach in Zusammenarbeit mit Frau PD Dr. med. Franziska Eckert.

Sämtliche Versuche zur molekularbiologischen Untersuchung des Tumormaterials (PCR-Untersuchungen und Spectratyping) wurden nach Einarbeitung durch die Labormitglieder Frau Prof. Dr. rer. nat. Karin Schilbach, Friederike Müller, Katja Sonntag und Christian Welker von mir eigenständig mit Unterstützung durch die genannten Labormitglieder durchgeführt. Sämtliche Ergebnisse und Darstellung zu molekularbiologischen Untersuchung des Tumormaterials (PCRs und Spectratyping) wurden durch mich angefertigt und Veröffentlichung teilweise in u.g. übernommen. Die Methoden zur Immunhistochemie und Histologie (Immunhistochemische Färbungen, Mikroskopieren), sowie die Untersuchungen zum Tumorwachstum und Überleben der Versuchstiere wurden durch Frau PD Dr. med. Franziska Eckert und durch mich mit Unterstützung der genannten Labormitgleider durchgeführt. Die aus diesen Methoden entstandenen Ergebnisse und Darstellungen wurden durch Frau PD Dr. med. Franziska Eckert produziert und teilweise nach Modifkation durch mich aus der u.g. Veröffentlichung in diese Arbeit übernommen (Abbildungen 3.1 bis 3.6). Die Vorbereitung (Bestrahlung, Transplantation und Tumorinokulation) und Therapie an den Versuchstieren (Bestrahlung und Injektion der Immuntherapie) wurden allein durch Frau PD Dr. med. Franziska Eckert unter Anleitung durch Frau Prof. Dr. rer. nat. Karin Schilbach und mit Unterstützung der Versuchstiereinrichtung der Kinder- und Jugendmedizin

Tübingen durchgeführt.

Die statistische Auswertung erfolgte nach Beratung durch das Institut für Biometrie Tübingen durch mich.

Ich versichere, das Manuskript selbständig nach Anleitung durch Frau Prof. Dr. rer. nat. Karin Schilbach verfasst zu haben und keine weiteren als die von mir angegebenen Quellen verwendet zu haben.

Tübingen, den

Moritz Oehme

8 Veröffentlichung

Teile der vorliegenden Dissertationsschrift wurden bereits in den folgenden Publikationen veröffentlicht:

Eckert F., Jelas I, Oehme M. et al. *Tumor-targeted IL-12 combined with local irradiation leads to systemic tumor control via abscopal effects in vivo* Oncolmmunology, April 2017, doi:10.1080/2162402X.2017.1323

Danksagung

Mein Dank gilt allen voran Frau Professor Dr. Karin Schilbach dafür, dass sie sich bereit erklärt hat, meine Dissertation zu betreuen und mich trotz des langen Weges und der zuletzt großen Distanz stets mit großem Enthusiasmus und hilfreicher Kritik unterstützt hat.

Ich danke Frau PD Franziska Eckert für die Einführung in die Arbeit mit Versuchstieren und die Zusammenarbeit und den Austausch, an deren Ende ich Teil an o.g. Publikation haben konnte.

Frau Friederike Müller danke ich für die Einarbeitung und Betreuung im Labor.

Ich möchte Frau Katja Sonntag für die Einarbeitung und stetige Unterstützung in allen technischen Fragen danken. Weiterhin danke ich Harun Cin und Christian Welker für die Unterstützung sowie dem Chimärismuslabor des Universitätsklinikums Tübingen für Kinder und Jugendmedizin für die Bereitstellung und Unterstützung bei einigen Experimenten. Dem gesamten Team der Arbeitsgruppe Schilbach danke ich für die freundliche Aufnahme und das stets offene Ohr für jedwede Frage.

Mein Dank gilt Professor Dr. M. Eichner des Instituts für Klinische Epidemiologie und angewandte Biometrie Tübingen für die statistische Beratung.

Ich möchte zuletzt meiner Familie und meinen Freunden, insbesondere Nils und Nadine und Tim danken, für Rat, Tat und Tipps.