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Abstract
Causal inference, at times correct and at times false, is fundamentally intertwined with
the human nature. Humans tend to approach and explain the systems in the world and
every day life via causal reasoning and causal statements, by unconsciously trying to
recover the causal graph that underlies their observations. Nevertheless, causal reasoning
based on observations of the real world is seldom equitable and precise. Particularly
when the method that one uses is based on plain correlations, causal statements can be
far from causal, first, because of the implicit assumption about linear relationships, and
second, due to the major problem of hidden confounding.

One of the most complex and difficult systems for an applied scientist to explain is the
human brain. The reason for that is threefold. First and foremost, because of the daedal
and sophisticated manner that the human brain is constructed. Secondly, because of our
limited means of observing its global functionality, which ultimately leads to the problem
that no causal sufficiency can be assumed in such a system. In other words, hidden
common causes (also termed hidden confounders) in our limited observations will be
omnipresent. Finally, the significant heterogeneity that the human brain exhibits in some
of its physiological functionalities, across subjects, hinders the problem even further.
This, subsequently, justifies the lack of generalization of machine learning methods that
try to predict biomarkers through the traditional approach of a non-causal model, across
different brains. Hence, someone should be particularly careful with the methods that she
or he selects to use and the causal statements that are made, to understand and interpret
the brain functionality.

In this thesis, we focus on constructing theorems and algorithms for causal inference
on real data, trying to understand the relationship between the human brain and mo-
tor function. More specifically, we target the problem of the identification of causes
of a target variable, without assuming causal sufficiency. We tackle both the cases of
non-sequential and of time series data, proving theorems for both cases accordingly. Our
methods’ applications have an immediate focus on the activity of the human motor cortex
at the time it arises, first, naturally, and second, from non-invasive brain stimulation. We
build experimental set-ups and conduct electroencephalographic (EEG) and stimulation
experiments to study the functionality of the motor cortex across different subjects, dur-
ing these two different cases, with an ultimate goal to explain the observed heterogeneity
in the recorded activity.

The work presented in this thesis is both experimental –in its first part– with non
invasive experiments on the human brain, contributing to the better understanding of the
motor cortex, and theoretical, with contributions of four theorems in the field of causal
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inference, and two causal feature selection methods.
We first attempt to approach the brain activity from a purely machine learning perspec-

tive, analysing the data of the brain activity of 27 healthy subjects during an upper-limb
reaching task. We introduce a multi-task regression method to build personalised mod-
els that predict movement stability from limited trials. We do so by taking into account
information from other subjects as prior and updating -when necessary- the weights of
the model with trials from the current subject. Although the original goal of this work
was to show the superiority of this prediction method, a side-observation turned out to
be the most fundamental key to define the next steps of the hereby presented research.
The learnt features by the individual prediction models differed significantly across sub-
jects, and although no causal claim can be made yet -since this is a correlation-based
observation- it is the first hint of existing heterogeneity in the activity of the human mo-
tor cortex. Such a discrepancy, in frequency and location in the learnt features, could
also imply a discrepancy in the response to non-invasive brain stimulation techniques,
over the motor cortex.

To examine this possibility, a new series of electrophysiological experiments, with ap-
plication of transcranial alternating current stimulation at 70 Hz over the motor cortex
–as this has been considered to facilitate movement– , is conducted on twenty healthy
participants. At this point, having observed a significant variability in the behavioural
response, ranging from negative to positive responders, we decided to further investigate
the reasons that could explain it. An incremental method with three steps is introduced
to narrow down the causal model that can explain the aforementioned discrepancy in re-
sponses. With our method, we conclude that the beta oscillatory activity over the motor
cortex could play a mediating role between the gamma stimulation and the motor per-
formance, without being able to exclude the case that GABA activity could be a hidden
common cause.

Having witnessed such a heterogeneity, both during natural movements and under
brain stimulation, we stress the importance of taking steps towards personalisation of
brain stimulation parameters. We conclude the experimental part of this work by con-
structing a pipeline, to predict from resting state EEG data the behavioural response of
each subject to the stimulation treatment. Such a screening could avoid redundant or
even harmful stimulation sessions. With two different stimulation studies, recruiting in
total 42 healthy participants, we identify a biomarker that could be informative about the
response of an individual to the aforementioned motor stimulation.

In the theoretical part of this thesis, we focus on the problem of the identification
of direct and indirect causes of a target (e.g. motor performance) given a collection of
possible candidates (e.g. brain activity in different locations, in different frequencies),
allowing at the same time for latent common causes. First, we propose and prove a theo-
rem which introduces sufficient conditions, under assumptions that can naturally be met,
to decide for the causal role of a feature, with a single conditional independence test, and
a single conditioning variable. Given the hardness of statistical testing of conditional in-
dependences in large and dense graphs (such as the brain), limiting the necessary tests to
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one, significantly boosts the statistical strength of the results. Application of our condi-
tions on the aforementioned neurophysiological data supports further the validity of the
method. Applying the proposed conditions independently on each individual, without
prior knowledge, led to three groups of identified causal features, each one being related
in a consistent manner with different quality of movements across subjects. We discuss
how such a method could contribute in the selection of personalised brain stimulation
parameters.

As a final step, we approach the brain signal as continuous time series data. Although
time series are observed almost everywhere in nature, yet, causal inference on such data,
in the presence of hidden confounders, has been an unsolved problem, with the widely
known Granger Causality being the only approach for almost half a century. The final
contribution of this thesis, are two theorems with which we introduce both necessary and
sufficient conditions for the causal feature selection on time series, under some graph
constraints, and a third theorem that relaxes one of the stricter assumptions of the afore-
mentioned two. We demonstrate the validity of our method both on simulated and real
data.
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Kurzfassung
Kausales Schlussfolgern, manchmal korrekt und manchmal flschlich, ist grundlegend
mit der menschlichen Natur verflochten. Menschen neigen dazu, sich den Systemen in
der Welt und im tglichen Leben durch kausale Argumentation und kausale Aussagen zu
nhern und diese zu erklren, indem sie unbewusst versuchen, den Kausalgraphen zu fin-
den, der ihren Beobachtungen zugrunde liegt. Dennoch ist kausale Argumentation, die
auf Beobachtungen der realen Welt beruht, selten angemessen und akkurat. Insbesondere
wenn die verwendete Methode schlicht auf Korrelationen beruht, knnen die vermeintlich
kausalen Aussagen alles andere als kausal sein, erstens wegen der implizit angenomme-
nen linearen Beziehungen, und zweitens wegen des groen Problems unbercksichtigter
Strfaktoren.

Eines der komplexesten und aus der Sicht eines angewandten Wissenschaftlers am
schwierigsten zu erklrenden Systeme ist das menschliche Gehirn. Dafr gibt es drei Grn-
de. In erster Linie die geschickte und hochentwickelte Weise, in der das menschliche
Gehirn aufgebaut ist. Zweitens, unsere eingeschrnkten Mglichkeiten, die globale Akti-
vitt und Funktionalitt zu beobachten, was letztlich zu dem Problem fhrt, dass fr ein sol-
ches System keine causal sufficiency angenommen werden kann. Mit anderen Worten, in
unseren eingeschrnkten Beobachtungen werden unbeobachtete Konfundierungseffekte
(oder unbercksichtigte Strfaktoren) allgegenwrtig sein. Zuletzt erschwert die erhebliche
Heterogenitt, die das menschliche Gehirn in einigen der physiologischen Funktionen ber
Probanden hinweg aufweist, das Problem noch weiter. Dies begrndet auch die fehlende
Generalisierbarkeit von Methoden des maschinellen Lernens, die versuchen, Biomarker
durch den traditionellen Ansatz eines nicht-kausalen Modells ber verschiedene Gehir-
ne hinweg vorherzusagen. Daher sollte man besonders vorsichtig sein welche Methoden
man verwendet und welche kausalen Aussagen man macht, um die Funktion des Gehirns
zu verstehen und zu interpretieren.

In dieser Arbeit konzentrieren wir uns auf die Erarbeitung von Theoremen und Algo-
rithmen zur kausalen Inferenz auf realen Daten und versuchen, die Beziehung zwischen
dem menschlichen Gehirn und der Motorik zu verstehen. Genauer gesagt zielen wir auf
das Problem ab, Ursachen einer Zielvariablen zu identifizieren ohne dabei von causal
sufficiency auszugehen. Wir gehen sowohl die Flle von I.I.D. als auch von Zeitreihenda-
ten an und beweisen entsprechend Theoreme fr beide Flle. Unser unmittelbarer Fokus fr
die Anwendung unserer Methoden liegt auf der Aktivitt des menschlichen motorischen
Kortex, wie sie erstens natrlich und zweitens durch nicht-invasive Hirnstimulation ent-
steht. Wir bauen Versuchsanordnungen auf und fhren elektroenzephalographische (EEG)
und Stimulationsexperimente durch, um die Funktionalitt des motorischen Kortex bei
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verschiedenen Probanden whrend dieser beiden unterschiedlichen Flle zu untersuchen,
mit dem endgltigen Ziel, die beobachtete Heterogenitt in der aufgezeichneten Aktivitt zu
erklren.

Die in dieser Arbeit vorgestellte Arbeit ist sowohl experimentell - im ersten Teil - mit
nicht-invasiven Experimenten am menschlichen Gehirn, die zum besseren Verstndnis des
motorischen Kortex beitragen, als auch theoretisch, mit Beitrgen von vier Theoremen im
Bereich der kausalen Inferenz und zwei Methoden zur Auswahl kausaler Variablen.

Zunchst versuchen wir, uns der Hirnaktivitt aus einer rein maschinellen Lernperspekti-
ve zu nhern, indem wir die Daten der Hirnaktivitt von 27 gesunden Probanden whrend ei-
ner Greif-Aufgabe analysieren. Wir fhren eine Multi-Task-Regressionsmethode ein, um
personalisierte Modelle zu erstellen, die die Bewegungsstabilitt anhand weniger Versu-
che vorhersagen. Wir tun dies, indem wir Informationen von anderen Versuchspersonen
in einer Priorverteilung bercksichtigen und, wenn ntig, die Gewichte des Modells anhand
Versuche der aktuellen Versuchsperson aktualisieren. Obwohl das ursprngliche Ziel die-
ser Arbeit darin bestand, die berlegenheit dieser Vorhersagemethode zu zeigen, erwies
sich eine Nebenbeobachtung als der grundlegende Schlssel zur Definition der nchsten
Schritte der hier vorgestellten Forschung. Die von den einzelnen Vorhersagemodellen
erlernten Merkmale unterschieden sich signifikant ber Probanden hinweg, und obwohl
noch kein kausaler Anspruch erhoben werden kann, da es sich um eine korrelationsba-
sierte Beobachtung handelt, ist dies der erste Hinweis auf eine bestehende Heterogenitt
in der Aktivitt des menschlichen motorischen Kortex. Eine solche Diskrepanz in Hu-
figkeit und Lokalisation in den erlernten Merkmalen knnte auch eine Diskrepanz in der
Reaktion auf nicht-invasive Hirnstimulationstechniken ber den motorischen Kortex im-
plizieren.

Um diese Mglichkeit zu untersuchen, wird eine neue Serie elektrophysiologischer Ex-
perimente mit der Anwendung transkranieller Wechselstromstimulation bei 70 Hz ber
dem motorischen Kortex - da vermutet wurde, dass dies Bewegung untersttzt - an zwan-
zig gesunden Teilnehmern durchgefhrt. Da wir eine signifikante Variabilitt der Reaktion
auf Stimulation beobachteten, von negativer bis zu positiver Reaktion, untersuchten wir
weiter mgliche Erklrungen hierfr. Eine inkrementelle Methode mit drei Schritten wird
eingefhrt, um das kausale Modell, das die beobachtete Variabilitt der Reaktion erklren
kann, weiter einzugrenzen. Mit der vorgeschlagenen Methode gelingt es uns, eine Hirn-
frequenz zu identifizieren, die die Reaktion auf die Stimulation vermitteln knnte. Mit
unserer Methode kommen wir zu dem Schluss, dass die Beta-Oszillationsaktivitt ber
dem motorischen Kortex eine modulierende Rolle zwischen der Gammastimulation und
der motorischen Leistung spielen knnte, ohne den Fall ausschliessen zu knnen, dass die
GABA-Aktivitt eine versteckte gemeinsame Ursache sein knnte.

Nachdem wir eine solche Heterogenitt sowohl whrend natrlicher Bewegungen als auch
unter Hirnstimulation beobachtet haben, betonen wir, dass es wichtig ist, die Hirnstimu-
lationsparameter zu personalisieren. Wir schliessen den experimentellen Teil dieser Ar-
beit ab, indem wir erarbeiten, wie von EEG Daten im Ruhezustand die Reaktion eines
Probanden auf Stimulation vorhergesagt werden kann. Durch ein solches Screening knn-
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ten berflssige oder sogar schdliche Stimulationssitzungen vermieden werden. Anhand
zweier Stimulationsstudien, mit insgesamt 42 gesunden Teilnehmern, identifizieren wir
einen Biomarker, der ber die Reaktion eines Individuums auf die oben erwhnte motori-
sche Stimulation Aufschluss geben knnte.

Im theoretischen Teil dieser Arbeit konzentrieren wir uns auf das Problem der Identi-
fizierung von direkten und indirekten Ursachen einer Zielgre (z.B. der motorischen Leis-
tung) aus einer Sammlung von mglichen Kandidaten (z.B. Hirnaktivitt an verschiedenen
Orten, in verschiedenen Frequenzen), in Gegenwart von versteckten Strfaktoren. Zunchst
schlagen wir ein Theorem vor und beweisen dieses, das unter Annahmen, die normaler-
weise erfllt werden knnen hinreichende Bedingungen vorstellt, um mit einem einzigen
Bedingte-Unabhngigkeit-Test und einer einzigen bedingenden Variable ber die kausale
Rolle eines Merkmals zu entscheiden. Angesichts der Schwierigkeit bedingte Unabhn-
gigkeit in groen und dichten Graphen (wie dem Gehirn) statistisch zu testen, ist dieser
Beitrag von erheblicher statistischer Bedeutung, da er die Anzahl der notwendigen Tests
auf eins reduziert. Die Anwendung unserer Bedingungen auf die oben genannten neu-
rophysiologischen Daten untersttzt die Gltigkeit der Methode weiter. Die Anwendung
der vorgeschlagenen Bedingungen auf jedem Individuum unabhngig, und ohne weitere
Vorkenntnisse, resultierte in drei Gruppen von identifizierten kausalen Merkmalen, die
in konsistenter Weise mit unterschiedlichen Bewegungs-Qualitten ber Probanden hinweg
einhergehen. Wir diskutieren, wie eine solche Methode zur Auswahl von personalisierten
Hirnstimulationsparametern beitragen knnte.

Im letzten Schritt betrachten wir das Gehirnsignal als kontinuierliche Zeitreihendaten.
Obwohl Zeitreihen fast berall in der Natur beobachtet werden, ist die kausale Inferenz
auf solche Daten in Gegenwart von versteckten Strfaktoren ein ungelstes Problem, wobei
die sogenannte Granger-Kausalitt seit fast einem halben Jahrzehnt der einzige Ansatz ist.
Der letzte Beitrag dieser Arbeit sind zwei Theoreme, mit denen wir sowohl notwendige
als auch hinreichende Bedingungen fr die kausale Merkmalsauswahl bei Zeitreihen unter
einigen graphischen Einschrnkungen einfhren, und ein drittes Theorem, das eine der
strikteren Annahmen der vorgenannten zwei lockert. Wir demonstrieren die Gltigkeit
unserer Methode sowohl auf simulierten als auch auf realen Daten.
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Symbols

X Random variable X (usually used to denote observed variables)
U Random variable U (usually used to denote un-observed variables)
Q Random variable Q (usually used to denote any kind of variables)
x Value of random variable X
PX Probability distribution of X
p Probability mass function or probability density function
p(x) Density of PX calculated at value x
p(y | x) Conditional density of PY |X=x calculated at value y
corr[X ,Y ] correlation of X ,Y
cov[X ,Y ] covariance of X ,Y
Σ Covariance matrix
X = (X1,X2, · · · ,Xd) Random vector of length d
X ⊥⊥ Y Random variables X and Y are independent
X ⊥⊥ Y | Z Random variables X and Y are independent after conditioning on

random variable Z
C Structural causal model
G graph
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Abbreviations

BCI Brain computer interface
CDF Cumulative distribution function
CFS Causal feature selection
DAG Directed acyclic graph
EEG Electroencephalography
FCM Function causal model
FDR False discovery rate
FNR False negative rate
FPR False positive rate
HD-tACS High definition transcranial alternating current stimulation
IGCI Information Geometric Causal Inference
NARJ Normalized average rectified jerk
NIBS Non invasive brain stimulation
RMSE Root mean square error
SCM Structural causal model
SEM Structural equation model
tACS Transcranial alternating current stimulation
tDCS Transcranial direct current stimulation
TES Transcranial electric stimulation
TMS Transcranial magnetic stimulation
TNR True negative rate
TPR True positive rate
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Chapter 1

Introduction

1.1 Why?

The motivation for this thesis comes from the observation that there is a lack of person-
alised treatment methods and, more specifically, lack of personalised brain stimulation
treatment for motor rehabilitation. Although the human motor cortex has been a sub-
ject of intense research for centuries, starting with (Campbell, 1905), modern research
still lacks personalisation of the parameters that are used for facilitation of movement in
brain stimulation sessions. Taking a step back, the need for such personalisation arises
foremost from the encountered heterogeneity in the behavioural response to non-invasive
brain stimulation treatments accross subjects (López-Alonso et al., 2014; Strube et al.,
2015; Yang et al., 2020), ranging from positive, to negative and to no response at all,
and the lack of knowledge of the exact cause of this discrepancy (Ridding and Zie-
mann, 2010). Although many different explanations for inter-subject variability have
been given (Stecher et al., 2017; Vosskuhl et al., 2018), including individual differences
in brain anatomy (Buch et al., 2017; Datta, 2012; Parazzini et al., 2015), brain-state de-
pendent susceptibility to NIBS (Silvanto et al., 2008; López-Alonso et al., 2014; Strube
et al., 2015; Wiethoff et al., 2014), prior activity (Rosenkranz et al., 2007; Iezzi et al.,
2008), age (Moliadze et al., 2015; Fujiyama et al., 2014), attention (Kiers et al., 1993),
sex (Pitcher et al., 2003), pharmacological effects(Ziemann et al., 2008; Grundey et al.,
2012; Nitsche et al., 2004), genetic variations (Voti et al., 2011; Mori et al., 2011), and
time of day (López-Alonso et al., 2014), still there is no known cause that can explain
and predict response to NIBS.

Approaching this problem from a data scientist or mathematician’s perspective, it
seems that the problem could be pointed down to the lack of knowledge of causal brain
factors of the human upper-limb movement. Identification of such causal features could
also indicate targets for intervention, hence contributing to the personalisation of the
stimulation parameters.

Not until very recently, was the importance of causal inference accepted in the field of
neuroscience. In sensitive systems, like the human brain, the possibility of randomized
interventions, as part of the process of the discovery of the causal graph, is limited for
ethical and safety reasons. In such systems causal inference based on observations be-
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Chapter 1 Introduction

comes very important. Of course, as the problem of causal inference itself is very hard,
necessary assumptions need to be made.

Deriving motivation from the aforementioned problem, and as a step towards person-
alised brain stimulation, the work presented in this thesis focuses on the development of
screening and causal methods for the better understanding of the human motor cortex
and for the better explanation of the observed heterogeneity of responses. As the field
of Causality itself is rather young, gradually, we realized, through this process, the lack
of causal methods that could be applied on real, large-scale, complex data, as the brain
signals. For that reason, a large part of this thesis is dedicated in the construction and
proof of theorems that introduce new methods for causal feature selection on real data.

1.2 Problem Statement

The previous section gave the motivation behind the need for causal models that could
lead to causal statements about the brain features and the upper-limb movement. In this
section we try to break the overall question of the identification of causal brain features
and of the personalisation of brain stimulation into sub-problems, which tackle more
technical and precise questions.

PROBLEM 1

Description: Individualized motor-performance EEG-based prediction models.
Input: Observed brain signals from distinct electrode locations, and arm sta-

bility.
Question: Is it possible to build individualized models that predict arm stability

from brain signals, with a limited number of recording trials? Are the
features used by the predictor causal? Can they be used as targets of
brain stimulation? Are they consistent across different subjects?

2



1.2 Problem Statement

PROBLEM 2

Description: 70 Hz transcranial alternating current brain stimulation over contralat-
eral motor cortex to facilitate arm speed.

Input: Observed brain signals from distinct electrode locations before and
after the stimulation blocks, and arm speed.

Question: Is the arm speed facilitated significantly to healthy subjects with 70
Hz contralateral tACS compared to sham? Is the behavioural response
consistent across subjects? If not, what can explain the heterogeneity?

PROBLEM 3

Description: Stratification of behavioural response to transcranial alternating cur-
rent stimulation by resting-state electroencephalography.

Input: Observed brain signals from distinct electrode locations before and
after the stimulation blocks, and arm speed.

Question: Is there any biomarker that can screen off in advance negative-
responders and non-responders to the treatment, in order to avoid re-
dundant and prevent harmful stimulation sessions?

PROBLEM 4

Description: Causal brain feature selection with latent variables
Input: Observed brain signals from distinct electrode locations and arm

speed.
Question: Given the target variable (motor performance) and the brain activity

on i.i.d. trials, is it possible to identify the causal features? If yes, then
under which assumptions?

3
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PROBLEM 5

Description: Causal feature selection on time-series with latent variables.
Input: Time-series data, with a sink node 1 target variable.
Question: Given observed time series and a target time series, is it possible to

identify its causes? Under which assumptions is this possible? Is it
possible to propose both sufficient and necessary conditions for this
problem?

1.3 Thesis outline

The motivation behind the work in this thesis is presented Section 1.1 of the current
chapter. In Section 1.2, the overall question that this thesis aims to answer is broken into
five sub-problems, each one of which is tackled in each of the six manuscripts that this
dissertation is based on.

Chapter 2 addresses the basic concepts of causal inference that are necessary to follow
the theoretical contributions provided by this dissertation. More specifically, Section
2.1 introduces basic graph notations and Section 2.3 focuses on the problem of causal
discovery from observational data 2. Different groups of methods for causal discovery
and their limitations are presented and discussed in Sections 2.3.1, 2.3.2 and 2.3.4. In
Section 2.4 we introduce the causal problem we try to answer in this thesis, a challenging
sub-problem of causal graph discovery - that of causal feature selection. Finally, in
Section 2.5 we introduce the same problem but for sequential (time-series) data, where
we also discuss commonly used methods, such as Granger Causality.

We devote Chapter 3 to relevant basic concepts of motor cortex brain functionality
(sections 3.1 and 3.2), as these will consist the main area of application of the causal de-
tection methods proposed in this dissertation. Section 3.3 provides necessary information
regarding the non-invasive recording technique we use for all of our experiments (Elec-
troencephalography). Finally Section 3.4 provides information about the non-invasive
brain stimulation techniques used in research, and with more detail, basic concepts and
background on the state of the art research with transcranial alternating current stimula-
tion (tACS), which we use in two of our experiments.

Chapter 4 focuses on the problem of motor performance prediction from electroen-
cephalographic data (Problem 1). A multi-task regression based method is proposed
and the algorithm is evaluated on twenty seven healthy participants with leave-one-out
cross validation. The method and the findings of this work are part of the publication

1The term is going to be properly introduced in Section 2.1.1. Here we briefly explain that this means
the target has no descendants

2Without the possibility of running randomized control trial interventional experiments
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(Mastakouri et al., 2017). The outcome of this analysis shed more light on the observed
heterogeneity of the motor cortex activity, across subjects, motivating the non-invasive
stimulation experiments introduced in chapters 5 and 6.

Chapter 5 presents the first of the two stimulation experiments of 70 Hz transcranial
alternating current stimulation, over the contralateral motor cortex, that was performed
in this thesis. This Chapter presents the analysis on the twenty healthy participants’
EEG activity, and proposes a method to narrow down the possible brain factors that can
explain the encountered discrepancy in the behavioural response of the subjects to the
stimulation (Problem 2). The analysis presented here and in the publication (Mastakouri
et al., 2019a), deduces a possible mediating role of the beta oscillations, between the
applied gamma stimulation and the measured motor performance.

The recruiting, stimulation and analysis of the brain activity of twenty two new healthy
participants is presented in Chapter 6. Having encountered a significant variability in the
response once more, this chapter is dedicated to the construction of a pipeline that will
screen responders from non-responders based on their resting brain activity prior to the
application of stimulation. This chapter tackles Problem 3 and includes and discusses
the findings from the work under submission (Mastakouri, 2020).

Chapter 7 introduces and proves a theorem that tackles the problem of causal feature
selection on non-sequential data with latent variables (Problem 4). Moreover, in this
chapter we present the results and conclusions from the application of our method both
to simulated and real EEG data. The theory, the algorithm and the experiments presented
in this chapter are met in the publication (Mastakouri et al., 2019b).

Chapter 8 expands the logic of the methodology presented in Chapter 7 for time series
data. It focuses on the challenge of identifying direct and indirect causes of a target time
series in environments with latent series (Problem 5). Here we propose two novel the-
orems that introduce necessary and sufficient conditions for causal feature selection on
time series data with latent variables. We present the graph constraints and the assump-
tions under which our conditions identify direct and indirect causes, even in the presence
of latent common causes. Furthermore we compare our method against the commonly
used Granger Causality and other state of the art methods. The theory, the algorithm and
the experiments presented here are part of the work under submission (Mastakouri et al.,
2020) and (Mastakouri and Schölkopf, 2020).

We conclude in Chapter 9, summarizing the contribution of this dissertation to causal
inference on real data, and discussing how this could facilitate the personalisation of
brain stimulation. We further discuss future directions that could be extensions of the
work of this thesis.

This dissertation is built upon and provides results from the following publications and
papers under submission:

• Mastakouri, A. A., Weichwald, S., Özdenizci, O., Meyer, T., Schölkopf, B., and
Grosse-Wentrup, M. (2017). Personalized brain-computer interface models for
motor rehabilitation. In 2017 IEEE International Conference on Systems, Man,
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and Cybernetics (SMC), pages 3024–3029. IEEE

• Mastakouri, A. A., Schölkopf, B., and Grosse-Wentrup, M. (2019a). Beta power
may meditate the effect of gamma-tacs on motor performance. In 2019 41st An-
nual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), pages 5902–5908. IEEE

• Mastakouri, A. A., Schölkopf, B., and Janzing, D. (2019b). Selecting causal brain
features with a single conditional independence test per feature. In Advances in
Neural Information Processing Systems, pages 12532–12543

• Mastakouri, A. A., Schölkopf, B., and Janzing, D. (2020). Necessary and sufficient
conditions for causal feature selection in time series with latent common causes.
arXiv preprint arXiv:2005.08543 (under submission)

• Mastakouri, A. A. (2020). Stratification of behavioral response to transcranial
current stimulation by resting-state electrophysiology. bioRxiv (under submission)

• Mastakouri, A. and Schölkopf, B. (2020). Causal analysis of covid-19 spread in
germany. Advances in Neural Information Processing Systems, 33
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Chapter 2

Causal Inference from observational
data

2.1 Graph Terminology and Notations
Here we present the most important terminology and notations on graphs, that are going
to be needed during the studying of this thesis.

2.1.1 Graph notions and concepts
A graph G = (V,E) consists of a finite set of nodes (vertices) V and edges E ⊆ V 2,
with (v,v) 6∈ E for any v ∈ V (Peters et al., 2017). Having defined the graph G, a set of
definitions and properties are associated with it. A graph G1 = (V1,E1) is called a proper
subgraph of G if V1 = V and E1 ⊂ E , and we write G1 ≤ G. For the case that E1 ⊆ E we
say that G1 is a subgraph of G. Two nodes vi and v j are adjacent if either (vi,v j) ∈ E or
(v j,vi) ∈ E . An edge between two adjacent nodes vi and v j is called undirected edge if
(vi,v j) ∈ E and (v j,vi) ∈ E . Accordingly, an edge between two adjacent nodes is called
directed, and we denote this by vi → v j for (vi,v j) ∈ E , if it is not undirected. The
undirected graph ((V ), Ẽ) with (vi,v j) ∈ Ẽ , if (vi,v j) ∈ E , that results if we ignore all the
arrow heads in G is called skeleton of G. G is a fully connected graph if all pairs of
nodes are adjacent. G is called a directed graph if all its edges are directed.

A node vi is called a parent of v j if (vi,v j) ∈ E and (v j,vi) 6∈ E (or schematically if
vi→ v j). If (v j,vi) ∈ E and (vi,v j) 6∈ E then vi is called a child of v j. We denote the set
of parents of a node v j by PAG

j , and the set of its children by CHG
j .

A sequence of distinct vertices v1,v2, · · · ,vn such that (vi,vi+1) ∈ E or (vi+1,vi) ∈ E
for all i = 1, · · · ,n−1 is called a path. A directed path is a path v1,v2, · · · ,vn such that
(vi,vi+1) ∈ E∀i = 1, · · · ,n− 1. For any two nodes vi and v j, if there is a directed path
from vi to v j, then vi is called an ancestor of node v j. Accordingly, a descendant of vi

is any v j such that there is a directed path from vi to v j. We call a source node a node
that has no parents, and a sink node a node without children.

A node vi is called a collider relative to a path, if vi−1→ vi and vi+1→ vi. A path from
vi to vm is called a directed path if vi→ vi+1 for all i.
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A graph G is called a directed acyclic graph (DAG) if all the edges are directed and
there is no directed cycle, that is, if there is no pair (v j,vk) with directed paths from v j to
vk and from vk to v j. Three nodes are called an immorality or a v-structure if one node
is a child of the two others that are not adjacent themselves.

We now present one of the most fundamental definitions that we are going to use
throughout this thesis; Pearl’s d-separation ((Pearl, 2009)).

Definition 1 (Pearl’s d-separation). In a directed acyclic graph (DAG) G, a path between
two nodes v1 and vm is blocked by a set S (v1, vm 6∈ S) whenever there is a node vk,k =
2, · · · ,m−1, such that one of the following two possibilities is true

(i) vk ∈ S and vk−1→ vk→ vk+1 or vk−1← vk← vk+1 or vk−1← vk→ vk+1

(ii) Neither vk nor any of its descendants is in S and vk−1→ vk← vk+1.

In a DAG G, we say that two nodes vi and v j are d-separated by a third node vk if
every path between nodes vi and v j is blocked by vk. We then write vi ⊥⊥ Gv j | vk.

2.1.2 Probability distributions and graphs
Bayesian Networks

Consider a finite set of random variables X = (X1, · · · ,Xd) with index the set of V :=
{1, · · · ,d}, a joint distribution PX and a density p(x), with respect to some product mea-
sure. In a probabilistic graphical model (Bayesian Network (Pearl, 2014)) each node
vi ∈ V represents a random variable X i, and each edge represent probabilistic relations
between the nodes that it connects.

The following definitions are important to connect probability distributions to a DAG.

Definition 2 (Markov property). Given a DAG G and a joint distribution P(X), this
distribution is said to satisfy

(i) the global Markov property with respect to the DAG G if A⊥⊥ GB |C⇒A⊥⊥B |C
for all disjoint vertex sets A,B,C (the symbol ⊥⊥ G denotes d-separation.)

(ii) the local Markov property with respect to the DAG G if each variable is indepen-
dent of its non-descendants given its parents, and

(iii) the Markov factorization property with respect to the DAG G if p(x)= p(x1, · · · ,xd)=

∏
d
j=1 p(x j | paGj ), where we assume that PX has a density p. The factors in the

product are referred to as causal Markov kernels describing the conditional distri-
butions PX j|PAG

j
.

Theorem 3.27 [Equivalence of Markov properties] in (Lauritzen, 1996) proves that if
PX has a density p, then all Markov properties are equivalent.
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Definition 3 (Bayesian Network). A Bayesian Network over X is a pair (G,P(X)) such
that the joint distribution P(X) is Markov with respect to the DAG G.

The Causal Markov Condition relates d-separation statements on the graph to condi-
tional independences. However this mapping is not 1− 1. It is possible that different
graphs encode the exact same set of conditional independences.

Definition 4 (Markov equivalent classes). Two DAGs G1 and G2 are Markov equivalent
(belong to the same Markov equivalence class) if the set of distributions that are Markov
with respect to G1 coincides with the set of distributions that are Markov w.r.t. G2. This
is the case if the Markov condition entails the same set of conditional independences.
This happens if and only if the two graphs have the same skeleton and the same set of
v-structures (Pearl et al., 1991).

For example, the DAGs X → Z→ Y and X ← Z← Y are Markov equivalent.
Causal Markov condition allows us to read off independences between probabilities

from the graph structure. Causal Faithfulness, on the other hand, allows us to infer
dependences from the graph structure.

Definition 5 (Causal Faithfulness). A distribution PX is said to be faithful to the DAG G
if A⊥⊥ B | C⇒ A⊥⊥ GB | C for all disjoint vertex sets A,B,C.

Looking closer to the definition of Causal faithfulness we see that it is the opposite of
the global Markov condition.

Definition 6 (Causal Minimality). A distribution PX is said to satisfy causal minimality
with respect to the DAG G if it is Markovian with respect to G, but not to any proper
subgraph of G.

Causal minimality is a weaker assumption than faithfulness.
An assumption that is often made in causal discovery algorithms, is that of causal

sufficiency, as defined by (Spirtes et al., 2000) in the following definition.

Definition 7 (Causal Sufficiency). X is a causally sufficient set of variables if and only
if there is no variable H 6∈ X such that H is a cause of two or more variables in X.

In other words, when causal sufficiency is assumed, we assume that all the common
causes of X are observed. In Chapters 7 and 8 of this dissertation we propose algorithms
for causal feature selection that do not assume causal sufficiency, as we believe that it is
an assumption hardly met in real datasets.

2.2 Interventions
When we are able to intervene on a variable X , meaning we can set its value to a specific
number, we expect that this will lead to a change of the distribution of the system. By
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intervening on X we force the change of its causal parents, which are no longer the ones
before the intervention. An intervention corresponds to modification of the structural
causal model C and then calculating the new distribution. It is important to emphasize
on the fact that the interventional and the observational distributions are two different
objects.

Definition 8 (Structural Causal Model (SCM)). A structural causal model (SCM) C :=
(S,PN) consists of a collection S of d (structural) assignments

X j := f j(PA j,N j), j = 1, · · · ,d (2.1)

where PA j ⊆ {X1, · · · ,Xd} \X j are called parents of X j ; and a joint distribution PN =
PN1, · · · ,PNd over the noise variables, which we require to be jointly independent; that is,
PN is a product distribution. The graph G of an SCM is obtained by creating one vertex
for each X j and drawing directed edges from each parent in PA j to X j , that is, from each
variable Xk occurring on the right-hand side of equation ((2.1)) to X j. Hence, we assume
this graph to be acyclic.

The elements of PA j sometimes are also called direct causes of X j, and we call X j
a direct effect of each of its direct causes. An SCM entails an observational distribu-
tion (entailed distribution, see definition 9) and additionally, SCMs entail intervention
distributions (see definition 10).

Definition 9 (Entailed distribution). An SCM C defines a unique distribution over the
variables X = (X1, · · · ,Xd) such that X j = f j(PA j,N j), in distribution, for j = 1, · · · ,d.
We refer to it as the entailed distribution PC

X and sometimes write PX.

Definition 10 (Interventional distribution). Consider an SCM C := (S,PN) and its en-
tailed distribution PC

X. We replace one (or several) of the structural assignments to ob-
tain a new SCM C̃. Assume that we replace the assignment for Xk by Xk := f̃ (P̃Ak, Ñk).
We then call the entailed distribution of the new SCM an intervention distribution. We
denote the new distribution by PC̃

X =: PC̃;do(Xk:= f̃ (P̃Ak,Ñk))
X .

The set of noise variables in C̃ now contains both some “new” Ñ’s and some “old”
N’s, all of which are required to be jointly independent. To denote an intervention on a
variable Xk to a real value α we write PC;do(Xk:=α)

X . We call this atomic intervention. We
call an imperfect intervention and denote with P̃Ak =PAk when the direct causes remain
direct after the intervention. Imperfect intervention is a special case of a stochastic
intervention, where the marginal distribution of the intervened variable has positive
variance (Korb et al., 2004). The new SCM C̃ must have an acyclic graph, so that the set
of allowed interventions depends on the graph induced by C.

When there is a possibility to actually intervene on a variable, then there is a possi-
bility in some cases to perform randomized controlled trials experiments (RCTs). We
define RCTs in the next section and we explain why this option for causal inference is a
privileged one.
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Before that, we need to define an important notion, that of total causal effect, as in-
troduced by (Pearl, 2009), which we will also mention in one of our methods in Chapter
8.

Definition 11 (Total causal effect). Given an SCM C, we say that there is a total causal
effect from X to Y if and only if X 6⊥⊥ Y in PC;do(X :=ÑX )

X for some random variable ÑX .
The existence of a directed path between X and Y in the corresponding graph is nec-

essary but not sufficient for a total causal effect.

2.2.1 Randomized controlled trials (RCTs)
According to Cartwright (2010), an ideal RCT is an experiment where “all factors that
can produce or eliminate a probabilistic dependence between cause (C) and effect (E)
are the same in both wings except for C, which each subject in the treatment group is
given and no-one in the control wing is given, and except for factors that C produces in
the course of producing E, whose distribution differs between the two groups only due
to the action of C in the treatment wing. An outcome in an RCT is positive if P(E) in
the treatment wing > P(E) in the control wing.” In practice this means:

• Double-blind experiments: The subjects should be unaware of whether they re-
ceive the cause or the placebo; the attendant physicians should not know;

• Random assignment of subjects to the treatment or control wings, to ensure
that other possible reasons for dependencies and independences between cause
and effect under test will be distributed identically in the treatment and control
wings;

• Careful choice of a placebo 1 to be given to the control, to ensure that any ‘psy-
chological’ effects produced by the recognition that a subject is receiving the treat-
ment will be the same in both wings.

If it is possible to run RCTs experiments, then, depending on the interventional distri-
bution of the effect in the treatment and the control group, someone is possible to make
causal statements.

In many cases, due to ethical constraints or limited resources, it may not be possible
to run randomized trial experiments. For example, someone is not allowed to test all
the possible different stimulation combinations in the human brain to conclude the most
effective one. In such scenarios, it is important to still be able to make causal statements
based on the observational distributions. In this thesis, in Chapters 7 and 8 we propose
theorems and algorithms that tackle the problem of identification of causes of a target
variable, when the SCM is not known, causal sufficiency cannot be assumed and RCTs
experiments are not possible.

1Placebo is an item indistinguishable from the cause, for those associated with the experiment, apart from
the fact that in contrast to the cause, it does not change anything with respect to the targeted effect.
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2.3 Causal Discovery
When the graph is unknown, the procedures of trying to learn the underlying graph from
observational data is called causal discovery (Spirtes et al., 2000). In this section we
make a brief review over the most known causal discovery methods (Glymour et al.,
2019; Peters et al., 2017) and in the subsections 2.4 and 2.5 we introduce a sub-category
of causal discovery, the causal feature selection.

Causal discovery, as it is purely based on observational data, suffers from some issues,
which are characteristics of observational distributions with finite sample sizes. The
most important ones include non-stationarity, missing values and selection bias (Gly-
mour et al., 2019). Non-stationarity is the phenomenon where the underlying mech-
anism that produces the data changes over time, or across different datasets. (Zhang
et al., 2017) and (Huang et al., 2017) have been studying causal discovery under distri-
bution shift and in non-stationary data. Regarding missing data, when missing data are
not completely random but they follow some unknown mechanism then the causal suf-
ficiency is violated in the dataset, and the distribution of the observed data might differ
from the true one. (Tu et al., 2018) proposed an algorithm based on PC (Spirtes et al.,
2000), which performs causal discovery in datasets with missing values, given certain
assumptions. Finally, when the inclusion of a data point in the sample depends on some
of its attributes and it is not random, we say that we have selection bias. (Zhang et al.,
2016) tackle a specific version of selection bias, that of outcome-dependent selection,
however there is still a lot of room for research in this topic.

2.3.1 Constrained-based methods
Constrained-based methods are methods that mostly use conditional independences and
d-separation statements (under the assumption of causal Markov property and of causal
faithfulness that put constraints in the joint distribution) to infer the existence of an edge
between two observed variables. Most of these methods refer to independent point data
(not time-series). Two of the most known methods that aim at full causal graph discovery
are PC and FCI (Spirtes et al., 2000). PC assumes causal sufficiency, while FCI does
not. Both methods have a two-step procedure.

The first step of PC determines the variables X −Y that are adjacent in the graph. To
do this, someone needs to test every pair of variables to check whether they are dependent
given any other set of observed variables. When the graph is not sparse, this approach
can lead to very large conditioning sets in the conditional independence tests (up to
d− 1 variables, for d observed variables in total). The statistical strength of tests with
such large conditioning sets is particularly low and unreliable. The second step of PC
determines for each pair, whether X and Y are independent of each other, given a set
C with an edge connected on either of them. If they are found independent, then the
edge is eliminated. Then they decide for the orientation of the edges based on some
orientation propagation rules (for details see (Spirtes et al., 2000)). Although conditional
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independences are the main key of this algorithm, it should not be confused with the so-
called conditional independence graphs (Lauritzen, 1996), in which two variables are
not adjacent if and only if they are conditionally independent given all the remaining
variables.

One of the most known variation of PC is the Fast Causal Inference (FCI) algorithm.
This method allows for hidden common causes and it is proven to asymptotically con-
verge to the correct causal graph. In the first step, FCI prunes the undirected graph with
conditional independence tests similar to PC. In the second step, it orients edges with a
procedure similar to PC, with the difference that it does not assume that every edge is
necessarily directed the one way or the other. There are many variants of PC and FCI
that try to speed up the computationally very expensive search, such as RFCI (Colombo
et al., 2012).

None of these algorithms is able to distinguish between Markov equivalent graphs (as
these entail the same set of conditional independences).

The causal discovery methods that are based on conditional independencies have the
advantage that they are not limited to linear relationships (non-linear dependence tests
can be used for the detection of a dependence, such as kernel based conditional indepen-
dence tests (Fukumizu et al., 2008; Gretton et al., 2008; Zhang et al., 2012)). However,
causal faithfulness is a very strong assumption, which is not possible to test, and can lead
to false conclusions when it is violated.

2.3.2 Score-based methods
A different family of algorithms tries to infer the causal graph G, given data D from a
vector X of variables, trying to assign a score S(D,G) to each graph G. Following, it
searches over the space of DAGs for the graph with the best score. What the S function
can be differs between the different versions of algorithms. Often a parametric model
is used for S. Depending on whether a Bayesian or a frequentist approach is used, the
score function can be defined as (2.2) and (2.3) accordingly.

S(D,G) = log pprior(G)+ log p(D|G = log pprior(G)+
∫

θ∈Θ

p(D|G,θ · pprior(θ). (2.2)

or
S(D,G) = log p(D | θ̂ ,G)d

2
logn. (2.3)

where n is the sample size.
In the Bayesian approach (equation ((2.2))) the highest-score graph G̃ is the maximum

a posteriori estimator (MAP). The selection of the prior over the parameters is studied
by (Heckerman et al., 1995). In the frequentist approach (equation ((2.3))) the maximum
likelihood estimator θ̂ is used alongside the Bayesian Information Criterion (BIC).

To tackle the problem of the super exponential grown number of DAGs, with the
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number of nodes, Chickering et al. proposed a greedy score-based approach, named
the Greedy Equivalence Search (GES) algorithm (Chickering, 2002). Instead of starting
with a fully connected undirected graph, it starts with no edges and gradually adds the
ones that are currently needed, eliminating in the end the unnecessary ones until a local
maximum is reached. At each iteration of the algorithm, the addition of an edge to the
graph is decided based on whether this increases the score function.

Ogarrio et al. (2016) et al. proposed a combination of GES and FCI, in their algorithm
GFCI, where they are using the first to find a supergraph of the skeleton and the latter
for pruning and for orientation of the edges. This algorithm has been shown to be more
accurate than the original FCI.

Nevertheless, none of the aforementioned algorithms that aims to recover the full
graph can distinguish among Markov equivalent classes.

2.3.3 Methods based on SCMs

Many recent causal discovery methods aim to find the cause-effect direction. These
algorithms are based on SCMs (also mentioned as Functional causal models (FCMs)),
where the target variable Y is a function f of the direct causes X and some noise (that
also includes unobserved variables) which is assumed to be independent from X. Such
methods assume that the transformation from (X,N) to (X,Y ) is invertible, such as the
noise term N can be uniquely recovered form X and Y (Glymour et al., 2019). The
main idea behind these methods is that the noise N is independent from the input X for
only one direction (X → Y or Y → X). Moreover, the main assumption is that there
are no hidden confounders in the data. Under these constraints the methods first fits
an SCM in both directions, and then calculates the independence of the noise in both
cases. (Hyvärinen and Pajunen, 1999) and (Zhang et al., 2016) have proved that under no
further assumptions on the function class, it is impossible to identify the causal direction,
as it will always be possible to find independence between the noise and the input.

Linear non-gaussian additive models

For the bivariate case, restricting the function class to linear functions, the SCM can
be written as Y = bX +N, where as explained above N ⊥⊥ X and additionally X and N
follow a normal distribution. If non-gaussian noise is assumed, then it is possible to
identify the SCM. (?). (Shimizu et al., 2006) proved this theorem for multivariate inputs
as well, using Independent Component Analysis (ICA) (Hyvärinen and Oja, 2000). The
model proposed by (Shimizu et al., 2006) is called linear non-Gaussian acyclic model
(LiNGAM) and was later improved in (Shimizu et al., 2011) (DirectLiNGAM).
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Non-linear methods

(Hoyer et al., 2009) extended the LiNGAM model to a non-linear additive noise model.
A different model (post-nonlinear transformation PNL) is introduced by (Zhang and
Chan, 2006) and (Zhang and Hyvarinen, 2012) where Y = f2( f1(X) +N), and f1, f2
are non linear functions. Furthermore, f2 is assumed to be invertible. In contrast to
LiNGAM, PNL has been shown to be identifiable in the generic case, with exception of
specific cases mentioned in (Zhang and Hyvarinen, 2012). The general conclusion form
the aforementioned models is that non-linear SCMs methods are not computationally as
efficient as in the linear case (Glymour et al., 2019).

2.3.4 Markov blanket detection methods
Here we give the definition of a Markov blanket, as given in (Pearl, 2014) and (Peters
et al., 2017) and discuss algorithms that try to detect it.

Definition 12 (Markov blanket). Consider a DAG G = (V,E) and a target node Y . The
Markov blanket of Y is the smallest set M such that Y ⊥⊥ GV\ ({Y}∪M) given M. If PX
is Markovian with respect to G, then Y ⊥⊥ V\ ({Y}∪M) given M.

According to (Pearl, 2014), for DAGs we know that the Markov Blanket contains not
only the parents of Y , but also children and parents of children M =PAY ∪CHY ∪PACHY .

Having defined this object MB, we can see that it can play a useful role in feature
selection. Markov blanket detection methods take a more local approach on the problem
of caual discovery, trying to identify those variables that are conditionally independent
of a target given the remaining variables (Guyon et al., 2019). Fu and Desmarais (2010)
give a review of algorithms that try to identify the Markov blanket in unknown graphs,
with the goal of optimal feature selection, for the time period 1996 (KS) to 2008 (IPC-
MB). Some of the most known Markov blanket algorithms are IAMB (Tsamardinos and
Aliferis, 2003), HITON-MB (Aliferis et al., 2003) and MMMB (Tsamardinos et al.,
2006) which include a forward selection phase during which variables are required to
display some dependency with the target in order to be included in the conditioning set.
HITON-MB is an algorithm that checks for univariate dependencies between the can-
didate feature and the target, while IAMB and MMMB test the conditional dependency
of the feature and the target Y given a growing conditioning set of previously selected
variables. As we can see, such forward selection methods suffer from two fundamental
drawbacks: first, they fail if causal sufficiency is violated, and, second, they may identify
an existing dependence with the target only when all the variables of the Markov blanket
are added in the conditioning set. Moreover, HITON-MB and MMMB depend of PC and
may also identify wrong variables, because as pointed out by Peña et al. (2005), under
certain conditions variables not in the Markov blanket of Y can enter MB(Y ).

Another category of methods, such as BAHSIC (Song et al., 2007a,b) and K-CDM
(kernel based conditional dependence measures) (Strobl and Visweswaran, 2019) uses a
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different approach, that of backward elimination in combination with the Hilbert Schmidt
Independence Criterion (HSIC) (Gretton et al., 2005a) to measure dependence between
two kernels. In (Song et al., 2007a) the BAHSIC algorithm is proposed, where the target
Y is embedded in the first kernel, and the rest of the variables in the second kernel. In the
second step, backward elimination is used to remove variables from the second kernel
that maximize HSIC.

2.4 Causal feature selection
In Chapter 7 we introduce another sub-problem of causal discovery, which we name
causal feature selection, and we describe a theorem with sufficient conditions to solve
it, under limited assumptions. More specifically, by causal feature selection we refer to
the problem of the identification of the direct and indirect causes of a target variable Y ,
given a pool of candidate features X, that may or may not be dependent with the target,
under no causal sufficiency assumption (Mastakouri et al., 2019b).

Many algorithms mentioned in the Markov Blanket Section 2.3.4 could be used to
solve this problem if Y was a sink node, but all of them will fail if causal sufficiency
is violated. Furthermore, most of the aforementioned methods in Section 2.3.4 will re-
turn a ranked list of the features based on some prediction criterion. In a very naive, yet
very commonly used approach, also Lasso regression (Santosa and Symes, 1986; Tib-
shirani, 1996) and non-linear variations of it (HSIC-Lasso, (Yamada et al., 2014)) have
been used for feature selection (not causal). As these methods introduce a bias due to the
regularization, methods such as Double ML (Chernozhukov et al., 2017) and improve-
ments upon it (Raj et al., 2020) have been proposed to perform causal feature selection
by mitigating this bias. These methods make use of the concept of orthogonalization
to overcome the bias introduced due to regularization. Although these methods do not
require faithfulness they do rely fully on the strong assumption of causal sufficiency.

2.5 Causal discovery on time series
Causal inference from time series is a fundamental problem in data science, with appli-
cations in the fields of economics, biology, earth science and machine monitoring. It is
also a problem that has not overall been solved yet.

In this section we deal with the problem of causal feature selection in time series data,
without causal sufficiency being assumed. What makes this problem different from the
one mentioned in Section 2.4 is the nature of the input data itself. The structure and
time order dependency imposed by a time series creates both an advantage, as it help
us to know the direction, and a challenge to come up with both sufficient and necessary
conditions for the identification of the causes of Y . We define the problem we try to
answer in Chapter 8 as follows (Mastakouri et al., 2020): We are given observations from
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a target time series Y := (Yt)t∈Z whose causes we wish to identify, and observations from
a multivariate time series X := ((X1

t , . . . ,X
d
t ))t∈Z of potential causes (candidate time

series). Moreover, we allow an unobserved multivariate time series Ut := (U1
t , . . . ,U

m
t ),

which may act as common cause of the observed ones. The system consisting of X and
Y is not assumed to be causally sufficient, hence we allow for unobserved variables Ut .

Having defined the problem, we now need to give the definition of one of the most
used methods that tries to tackle this problem: Granger Causality.

Definition 13 (Bivariate Granger Causality). Under the assumption of Causal Suffi-
ciency, X influences Y whenever the past values of X help in predicting Y from its own
past. Formally, we write

XGranger-causesY ⇐⇒ Yt 6⊥⊥ Xpast(t) | Ypast(t) (2.4)

Definition 14 (Multivariate Granger Causality). X j Granger causes Xk if

Xk
t 6⊥⊥ X j

past(t) | X
− j
past(t) (2.5)

Granger emphasized that proper use of Granger causality would actually require to con-
dition on all relevant variables in the world. Nevertheless, Granger causality is often
used in its bivariate version or in situations in which clearly important variables are
unobserved. Such a use can yield misleading statements when interpreting the results
causally. (Peters et al., 2017)

Although Granger Causality has been the most widely used approach for causal infer-
ence in time series for the last fifty years (Wiener, 1956; Granger, 1969, 1980), violations
of its strict assumptions, such as causal sufficiency, and no instantaneous effects, lead to
serious issues and to incorrect causal conclusions (Peters et al., 2017). During the last
decades, several extensions have been proposed to address these issues (Hung et al.,
2014; Guo et al., 2008). Despite the fact that the time order of variables renders it an
easier problem than the typical ‘causal discovery problem’ of inferring the causal DAG
among n variables without any prior knowledge on causal directions (Pearl, 2009; Spirtes
et al., 2000), there is no doubt that causal inference in time series is still a challenging,
non trivial task. Peters et al. (2017) et al. showed that Granger causality can be de-
rived from d-separation (see, e.g., Theorem 10.7 in (Peters et al., 2017)). In addition,
beyond Granger’s method, several authors showed how to conclude that one time series
Granger-causes another one, based on d-separation criteria. For instance, Entner and
Hoyer (2010a) and Malinsky and Spirtes (2018a), were inspired by the FCI algorithm
(Spirtes et al., 2000) and the work from Eichler (2007) aiming at the discovery of the full
causal graph in time series, without assuming causal sufficiency (for an extended review
see (Runge, 2018; Runge et al., 2019b)). As their method can give reuslts up to Markov
Equivalent Classes, their method will not identify all the causal relations. Runge et al.
(2019a) et al. proposed PCMCI as an extension of PC and although lower rates of false
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positives are reported compared to classical Granger causality, the method still relies on
the assumption of causal sufficiency.

Some of the biggest challenges when working with time series data, even outside the
scope of causal inference, include the lack of knowledge of the generating process which
may be non-linear, the missing data, as well as the finite samples that may not be able
to capture slow dynamics, and non stationarity 2. Finally a big problem is that of hidden
confounding, which however, remains a big problem even with i.i.d. measurements.

Having presented a quick overview over the state of the art literature on this topic, we
postpone the presentation of our method (Mastakouri et al., 2020) for Chapter 8, pointing
out that the last mentioned problem (that of hidden confounding) is not an issue for our
method, under proper assumptions.

2The dynamics and the mechanisms of the system may not remain the same over time, which means that
the probability distributions of the variables may change over time.
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Chapter 3

Motor Cortex ,
Electroencephalography and
Non-invasive brain stimulation

3.1 Brain rhythms
Brain rhythms or neural oscillations refer to distinct patterns of massed neuronal activity
that happens in different frequency ranges (or bands) and which is linked with different
behaviours, sleep states, as well as arousal levels (Frank, 2009). Human brain functions
cover a frequency range from 0.1 Hz up to 200 Hz, separated into the following five
canonical bands: “delta” (1–4 Hz), “theta” (4–8 Hz), “alpha” (8–13 Hz), “beta” (13–35
Hz) and “gamma” waves (≥ 35 Hz).

3.1.1 Mechanisms that produce neocortical brain rhythms
Brain rhythms in the neocortex are the product of three mechanisms: first, intrinsic mem-
brane properties of different classes of neurons, second, intracortical and thalamocortical
network interactions, and finally, modulation by arousal circuits (Steriade, 2005). There
are two basic modes of activity that many neurons in the cortex and thalamus are chang-
ing in between; those of tonic firing and intrinsically bursting. This change is caused by
ionic membrane currents that are differentially activated and inactivated due to neuronal
hyperpolarization (Steriade, 2005; Dickson et al., 2000). Therefore, brain rhythms are a
type of brain signal, in contrast with the EEG signals, which, as we will explain later, are
a type of epiphenomenon of the ongoing brain activity.

3.1.2 Basic characteristics of each frequency band
While these neural oscillations can co-exist in different locations in various patterns,
there are some very basic characteristics (not exclusive) which studies have associated
with every frequency range (Miller, 2007). The brain areas in which those rhythms have
been studied extensively are the neocortex, the hippocampus and the thalamus.
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For example, “delta” (δ ) waves are mostly associated with deeper sleep stages, while
even slower signals (<1 Hz) in the neocortex have been found to coordinate de- and
hyper-polarization in intra-cortical and thalamocortical networks (so called “up” and
“down” states) (Destexhe et al., 2007; Steriade, 2005). Surprisingly enough, the same
frequency range in young children, has been found in waking EEG in the occipito-
parietal and occito-temporal cortex with an amplitude < 100 uV (Swaiman et al., 2017).
Finally, it has been suggested that delta waves are part of the homeostatic mechanism
(Benington and Frank, 2003).

“Theta” (θ ) rhythms are normally measured in the frontal and central cortical regions
and have been found to be related to emotions, drowsiness and memory. At the same
time, it has been associated with various clinical conditions such as epilepsy. Theta
oscillations are produced by the hippocampal pyramidal cells which have similar orien-
tations and fire periodically in synchrony (Kropotov, 2010a). It has been reported that
their role is significant for temporal coding and decoding and for the modification of
synaptic weights (Kryger et al., 2017).

“Alpha” (α) activity is most prominent in the occipital regions and tends to decrease
when eyes are open, compared to when they are closed, and during visual attention. Al-
pha rhythms are also known as posterior dominant rhythms (PDR). Their power tends to
systematically decrease with age in healthy subjects, with its highest values around 20
years old. As the frequency of alpha rhythms decreases with age, there is a big contro-
versy about whether alpha activity could be a neuro-marker of cognitive function reg-
ulation (Kropotov, 2016a). Regarding its relation to movement, increased alpha-power
over ipsilateral sensorimotor cortex has been associated with preparation and selection
of movement (Brinkman et al., 2014).

There are two categories of “beta” (β ) rhythms: the Rolandic and the frontal ones.
It has been reported that the Rolandic beta appears when the corresponding neuronal
system in the sensory-motor strip is relaxing after a strong activation phase, and it is
considered a postactivation indication (Kropotov, 2010b). Frontal beta rhythms have
lower amplitude and in contrast to Rolandic rhythms that appear during motor tasks,
they are associated with cognitive functions such as decision making and assessment
of stimulus. Beta power deviates from its normal levels in cases of clinical conditions.
In ADHD beta is decreased in resting state (Kropotov, 2016b), while in Parkinson’s
disease it is elevated. In particular, beta activity has been found significantly elevated in
patients with motor disorders (tremors, slowed movements) such as Parkinson’s disease
(McAllister et al., 2013; Brown, 2007; Khanna and Carmena, 2017). Furthermore, in
healthy subjects, elevated beta power has been found to play an antikinetic role (Khanna
and Carmena, 2017).

Finally, “gamma” (γ) activity due to its relatively low amplitude and the fact that it
can easily be contaminated by muscular artefacts, is very underestimated and not as
much studied as the rest of the frequency bands (Malik and Amin, 2017). It has been
associated with a wide spectrum of functions such as working memory, movement and
attention. Gamma waves in the neocortex have been suggested to play a role in syn-
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chronizing different cortical modules in cognitive tasks and in consciousness (Steriade,
2005). Moreover, hippocampal gamma activity may be important for encoding infor-
mation and memory formation (Axmacher et al., 2006). More importantly regarding
the motor cortex, increased γ activity has been associated with large ballistic movements
(Muthukumaraswamy, 2010; Nowak et al., 2018). It has also been suggested to be proki-
netic, given that it is increased during voluntary movement (Brown, 2003).

In this dissertation we will examine the important role of beta (see Chapter 5), gamma
(see Chapter 6) and alpha (causal findings in Chapter 7) rhythms in the motor cortex
during reaching tasks, as well as before and after non invasive brain stimulation sessions.
Although there is some consensus about the basic role of each band, there is consider-
able controversy about the functional role when it comes to more complex/sophisticated
processes. The role of each brain rhythm is still not fully established.

3.2 Motor cortex

In eutherian mammals (Lillegraven et al., 1987), the large structure in the front of the
cerebral cortex is called motor cortex. According to the definition given by Kandel et al.
(2000), motor cortex “is the main source of motor fibres of the pyramidal tract, which
synapse directly with motor neurons in the brainstem and spinal cord, thus, enabling
voluntary movements”.

This part of the human brain has been a topic of research for centuries, and yet the
exact connection between complex behavioural outputs, such as reaching movements,
and its functionality is elusive (Hatsopoulos and Suminski, 2011). Many research evi-
dence implicate motor cortex in the volitional control of movement (Ebbesen and Brecht,
2017), for both its initiation and its suppression.

3.2.1 First studies on motor cortex

In 1870 Fritsch and Hitzig applied current to specific sites in the frontal cortex of dogs,
observing that they evoked movements that varied with the cortical location of the stim-
ulation (Fritsch, 1870). This was the first modern experiment to result in some kind of
motor cortex mapping. Ferrier (1875) identified a similar cortical motor map in monkeys,
and the stimulation experiments that followed revealed activation of complex motor pat-
terns according to the location. The first mapping of the motor cortex in human brains
was performed by Penfield and Rasmussen (Penfield and Rasmussen, 1950), during cor-
tical stimulations in parallel with surgery in awake patients. This interactive experiments
confirmed that the motor cortex in humans has a somatotopic map (called homunculus).
Furthermore, these experiments lead to the conclusion that the motor cortex stimula-
tion not always excites the activity but also causes movement inhibition and suppression
(Ebbesen and Brecht, 2017).
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3.2.2 Motor cortex functionality and heterogeneity

Motor cortex is part of a set of complex circuits that not only controls movement but also
receives sensory inputs (Hatsopoulos and Suminski, 2011). The neurons of the motor
cortex start firing up to many hundreds of milliseconds before limb movement is initi-
ated (Georgopoulos et al., 1982). Several groups of neurons that act in different stimuli
and tasks have been identified. One of these groups are the “mirror” neurons (Di Pelle-
grino et al., 1992) (Rizzolatti et al., 1996) in the ventral premotor cortex of non human
primates, which are a group of neurons that discharge similarly in response to overt mo-
tor action. Some other groups of neurons fire predominantly during voluntary movement
but not during visual playback or passive movement, and another group does exactly the
opposite. Finally, others respond to combinations of the aforementioned stimuli. Hat-
sopoulos et al. (Hatsopoulos and Suminski, 2011) propose that this heterogeneity may
explain in part the lack of a unified theory of the function of motor cortex.

It has been proposed that as the motor cortex is not solely dedicated in movement but
also in sensory processing, the same way the somatosensory cortex also contributes to
motor control (Matyas et al., 2010). Hatsopoulos and Suminski (2011) report rich hetero-
geneity in motor cortex response properties, including strong visual and somatosensory
effects. They also review the kinematics of human movement and how these are en-
coded by individual motor cortex neurons and how they are related to the motor cortex
activity. Amongst force and torque (Kalaska et al., 1989; Cabel et al., 2001), arm posi-
tion (Georgopoulos et al., 1984; Paninski et al., 2004), acceleration (Stark et al., 2007),
distance (Fu et al., 1993) and velocity (Moran and Schwartz, 1999), the most robust vari-
ables were found to be direction of movement (Georgopoulos et al., 1982) and arm speed
(Moran and Schwartz, 1999).

3.3 Electroencephalography

Electroencephalography –in short EEG– is a non invasive recording technique that is
used to measure the electrical cortical activation, using electrodes affixed to the scalp.
More specifically, EEG measures difference in electrical potential between two points
where electrodes are placed (Bales et al., 2018). EEG is a non-invasive recording tech-
nique with very high temporal resolution (ms) but with poor spatial resolution. As a
result, it prevails other non invasive brain imaging techniques (such as PET, fMRI) in
terms of temporal resolution, but it has a significantly lower spatial resolution. This low
spatial resolution is justified by the fact that the activity recorded by the EEG electrodes
are superposition of underlying brain activity. It is widely believed that the primary
source of the electrical signals that are recorded by EEG is the current flow in the apical
dendrites of pyramidal cells in the cerebral cortex. What is being recorded then, is the
coherent activation of a large number of pyramidal cells in a small area. Such a small
area of the cortex can be modelled as a current dipole (Okada et al., 1997). Because
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of this nature of EEG signals, they are highly sensitive to the conductivity of the brain,
skull, and extracranial tissue.

The EEG equipment consists of a set of scalp electrodes coupled to high-impedance
amplifiers and a digital data acquisition system (Darvas et al., 2004).

In contrast with other brain imaging techniques like fMRI and PET, EEG signals are
the direct extracranial demonstration of neuronal activation; where “direct” refers to the
nature of the signal and not to each exact location.

3.4 Non invasive brain stimulation

3.4.1 Definition of non-invasive brain stimulation
Non invasive brain stimulation (NIBS) is the broader family of methods which aim to
modulate neural activity, behaviour, and brain plasticity through the creation of forced
electrical current flows inside the brain by non-invasive means (Wagner et al., 2007;
Dayan et al., 2013). NIBS modifies brain function through interaction with multiple
neurotransmitters and networks (Obeso et al., 2016). There are two main categories of
NIBS: Transcranial Magnetic Stimulation (TMS), which uses external magnetic fields to
force the creation of electrical potentials in the cortex depolarizing neurons and triggering
action potentials (Di Lazzaro et al., 2004), and Transcranial Electrical Stimulation (TES)
(Bestmann and Walsh, 2017), which applies weak electrical direct (tDCS) or alternating
(tACS) currents on the scalp (Nitsche and Paulus, 2000). In contrast to TMS, only a
fraction of this current enters the brain and causes a membrane potential change of the
affected neurons, which is sufficiently strong to change their probability of generating
action potentials (Antal and Herrmann, 2016).

3.4.2 Applications of NIBS
Although the neural mechanisms of how NIBS modulates brain activity are not yet fully
understood (Vosskuhl et al., 2018), NIBS applications spread in a very broad field of
research and treatment. Applications of NIBS can be divided into three main categories:
studies that probe neurophysiology (e.g., how neural oscillations are causally related)
(Shafi et al., 2012; Polanı́a et al., 2012b; Filmer et al., 2014; Sehm et al., 2012; Keeser
et al., 2011; Hampson and Hoffman, 2010; Anand and Hotson, 2002), studies that in-
vestigate how brain activity gives rise to cognition (Polania et al., 2018; Vosskuhl et al.,
2018; Pogosyan et al., 2009; Joundi et al., 2012; Neuling et al., 2012; Cecere et al., 2015;
Lustenberger et al., 2015; Vosskuhl et al., 2015; Polanı́a et al., 2012a; Santarnecchi et al.,
2013; Sela et al., 2012), and studies that attempt to use NIBS for rehabilitation (Schulz
et al., 2013; Tortella et al., 2014; Fregni et al., 2005; Palm et al., 2014; Veniero et al.,
2019). In all three categories, however, NIBS studies report large variations in effect
sizes across individual subjects, often resulting in small or even statistically insignificant

23



Chapter 3 Motor Cortex , Electroencephalography and Non-invasive brain stimulation

group-level effects (Hashemirad et al., 2016; Pogosyan et al., 2009; Joundi et al., 2012;
Moliadze et al., 2010; Triccas et al., 2016; López-Alonso et al., 2014; Strube et al.,
2015). Large percentages of non-responders (up to 55%) (López-Alonso et al., 2014;
Strube et al., 2015), as well as a large variance in the direction of the response, from sig-
nificantly positive to significantly negative (López-Alonso et al., 2014) in the remaining
population of responders, have been reported as outcome of the same stimulation set-up.

NIBS in neurophysiology

The first category examines network communication through stimulation-based modula-
tion. Shafi et al. (Shafi et al., 2012) gave evidence that tDCS paired with neuroimaging
can be a powerful tool for identifying and describing functional brain networks. Anodal
tDCS over the left motor cortex was found to increase functional connectivity between
the left motor cortex and the ipsilateral thalamus, caudate nucleus, and parietal associa-
tion cortex, whereas cathodal tDCS was found to decrease connectivity between the left
motor cortex and the contralateral putamen (Polanı́a et al., 2012b; Filmer et al., 2014).
Sehm et al. (Sehm et al., 2012) reported that bilateral tDCS of motor cortex induces
widespread changes in functional connectivity, predominantly modulating changes in
primary and secondary motor as well as prefrontal region. Keeser et al. (Keeser et al.,
2011) found that tDCS over prefrontal cortex induces alterations in both the default mode
(DMN) and fronto-parietal networks (FPN). In (Filmer et al., 2014) are reviewed studies
that provided evidence of causal changes in oscillatory activity in the theta, alpha, beta
and gamma ranges, induced by tDCS. In the same field of application of NIBS, several
studies have used TMS for accessing and altering neural dynamics in networks that are
widely distributed anatomically (Hampson and Hoffman, 2010). As a conclusive state-
ment of this category, Anand et al. in (Anand and Hotson, 2002) pointed out that TMS is
an appropriate method for measuring neural conduction and processing time, activation
thresholds, facilitation and inhibition in brain cortex, and neural connections.

NIBS in cognition and behaviour

The second category aims to understand how experimentally altered neural activity causally
affects behaviour (Polania et al., 2018). Vosskuhl et al. in their review (Vosskuhl
et al., 2018) reported the role of NIBS in research of lower and higher cognitive func-
tions. Lower-level cognitive functions like voluntary movement (Pogosyan et al., 2009),
(Joundi et al., 2012), audition (Neuling et al., 2012) and vision (Cecere et al., 2015) have
been successfully modulated by Transcranial Alternating Current Stimulation (TACS).
The same holds for higher cognitive functions, such as creativity (Lustenberger et al.,
2015), memory (Vosskuhl et al., 2015; Polanı́a et al., 2012a), intelligence (Santarnecchi
et al., 2013) and risk taking (Sela et al., 2012).

24



3.4 Non invasive brain stimulation

NIBS studies in rehabilitation

The third category uses NIBS as a clinical treatment tool for higher cognitive func-
tions and motor rehabilitation. More specifically, NIBS has been used in neurological
diseases to enhance adaptive processes and prevent potential maladaptive ones (Schulz
et al., 2013). Representative clinical applications of NIBS include treatment of major
depressive disorders (Tortella et al., 2014), motor deficits after stroke or spinal cord in-
jury (Schulz et al., 2013), Parkinson’s disease (Fregni et al., 2005), therapy of multiple
sclerosis (Palm et al., 2014) and many more (Veniero et al., 2019).

3.4.3 Effect-sizes of NIBS in the various application domains
The variations in effect sizes across individual subjects are a fundamental challenge for
translating NIBS into clinical applications, because consistent positive effects of NIBS
across individual subjects are essential to avoid harm to a patient during a stimulation
treatment (Raffin and Siebner, 2014).

However, this consistency has not yet been established: A large variation is being ob-
served in the reported effects of NIBS in behavioural (Hashemirad et al., 2016; Pogosyan
et al., 2009; Joundi et al., 2012; Moliadze et al., 2010) and treatment studies (Triccas
et al., 2016; López-Alonso et al., 2014; Strube et al., 2015). The aforementioned vari-
ation in NIBS effects has been expressed either as contradictive outcomes from similar
stimulation setups (Moisa et al., 2016; Antal et al., 2008; Joundi et al., 2012) or as small
insignificant effect-sizes (Triccas et al., 2016; Buch et al., 2017). Large percentages of
non-responders (up to 55%) (López-Alonso et al., 2014; Strube et al., 2015), as well as
large variance in the direction of the response, from significantly positive to significantly
negative (López-Alonso et al., 2014) in the remaining population of responders, result in
very small across-subjects average effect-sizes. In either case, the generalisation of NIBS
has not yet been achieved, and particular concern has been expressed about the impor-
tance of addressing the variability across subjects (López-Alonso et al., 2014; Wiethoff
et al., 2014; Lafon et al., 2017). The question whether these small effect-sizes could be
justified due to external factors and not by fundamental neurophysiological differences
across individuals, has lately been a topic of scientific research (Cocchi and Zalesky,
2018; Stecher et al., 2017; Strube et al., 2015; Ridding and Ziemann, 2010).

3.4.4 Reasons for NIBS variability
Several suggestions have been proposed as possible explanations of the observed across-
subjects variability of NIBS effects. One such neurophysiological explanation suggests
that different populations of cortical neurons are stimulated more easily, or are more ex-
citable in different people, at different times (López-Alonso et al., 2014; Strube et al.,
2015; Wiethoff et al., 2014). Therefore, the question “state or trait?” arises. Hence, the
variability might be caused by individual differences in the recruitment of cortical neu-
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rons. Another opinion focuses on the importance of the task-paradigm on the stimulation
response, as it has been shown that hidden confounders in the experimental task can lead
to variations in the brain-networks recruitment (Stecher et al., 2017; Buch et al., 2017;
Vosskuhl et al., 2018). As a result, the observed effects may be highly dependent on
the specific context in which stimulation is applied. Finally, another explanation that has
been proposed, is the fact that studies that include negative findings are not always pub-
lished, because of the existing bias (Vannorsdall et al., 2016). Yet, not always reporting
negative effects of stimulation may mislead the conclusion about it, i.e. a stimulation that
leads to negative effects most of the times, with no published studies that point to it, and,
on the contrary, published studies that point to a few random cases with positive effects,
create a fictitious variability, which wouldn’t exist otherwise. Concluding, the cause of
this heterogeneity is multi-factorial and, to some degree, still unknown (Wiethoff et al.,
2014).
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Chapter 4

Personalised Multi-task Regression
Models for Motor Performance
In this Chapter, we propose a multi-task learning-based method that builds from only a
few EEG trials, personalised decoding models that relate the global EEG configuration
of brain rhythms in individual subjects to their arm movement smoothness during 3D
reaching task. Our models exhibit substantial heterogeneity across subjects, which we
argue that could potentially also reflect limited effect sizes observed in brain stimulation
studies that focus on enhancing motor performance. The problem presented in this Chap-
ter is tackled in the author’s publication (Mastakouri et al., 2017), alongside Sebastian
Weichwald, Timm Meyer, Bernhard Schölkopf and Moritz Grosse-Wentrup.

4.1 Problem statement
We try to answer the question: “Is it possible to build individualised models that predict
arm stability from brain signals, with a limited number of recording trials?” (see Problem
1). If so, are the features used by the predictor consistent across different subjects? Are
they causal and can they be used as targets of brain stimulation?

4.2 Motivation
Motor deficits are one of the most common outcomes of stroke. According to the
World Health Organization, fifteen million people suffer a stroke each year, world-
wide. Five million of them are permanently disabled afterwards. For this percentage
of people, upper limb weakness and loss of hand function are among the most common
types of disabilities, which affect the quality of their daily life (Organization, 2002).
Although there is a wide range of rehabilitation therapies, including medication treat-
ment (Walker-Batson et al., 1995), conventional physiotherapy (Green et al., 2002), and
robotic-assisted physiotherapy (Lum et al., 2002), only ∼ 20% of patients achieve some
form of functional recovery in the first six months (Kwakkel et al., 2003; Nakayama
et al., 1994).
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It has been found that post-stroke alterations of cortical networks are correlated with
the severity of motor deficits (Sharma et al., 2009; Grefkes et al., 2008). For that reason,
current research on novel therapies focuses on neurofeedback training based on brain-
computer interface (BCI) technology and transcranial electrical stimulation (TES) (see
Section 3.4.1). The first approach usually employs a robotic exoskeleton that is congruent
to movement attempts, with the goal to support cortical reorganisation as decoded in
real-time from neuroimaging data, by providing haptic feedback (Grosse-Wentrup et al.,
2011; Gomez-Rodriguez et al., 2011). The latter type of research aims to inhibit or excite
cortical areas in a way that supports motor performance. While initial evidence suggested
that both approaches (Ramos-Murguialday et al., 2013), (Hummel et al., 2005) have a
positive impact, there has not been recorded a consistent significance of these methods
over conventional physiotherapy (Ang et al., 2015), (Ang et al., 2014), (Butler et al.,
2013).

One potential reason for the difficulty in replicating the initially promising findings is
the heterogeneity of stroke patients’ cortical networks. Different stroke-induced struc-
tural changes are likely to result in substantial across-patient variability in the functional
reorganisation of their affected brain areas. As a result, not all patients may benefit from
the same stimulation or neurofeedback protocol. Therefore, in this Chapter, we propose
to learn personalised models that relate the configuration of cortical networks to each
subject’s motor deficits in search of evidence of such heterogeneity.

Using a multi-task learning framework developed in our group (Jayaram et al., 2016),
we build personalised decoding models that relate the EEG of healthy subjects during
a 3D reaching task to their arm movement smoothness in single trials. The resulting
models seem to capture substantial heterogeneity of the relevant features across subjects.
This finding further supports our argument about the need for personalised models. We
conclude by reviewing our findings in the light of brain stimulation studies that aim to
facilitate motor performance in healthy subjects.

4.3 Methods - EEG dataset acquisition

4.3.1 Subjects

Twenty-six healthy, right-handed, male participants (mean age of 28.3 ± years) were
recruited for this study. The study was approved by the ethics committee of the Max
Planck Society, and all subjects gave informed consent after a detailed description of the
experimental task.

4.3.2 Experimental Set-up

The experimental set-up consists of the following parts:
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A real-time motion tracking system

The Impulse X2 Motion Capture System (PhaseSpace, San Leandro, CA, U.S.) was
used for the real-time tracking of the subject’s arm position (x,y,z-coordinates), with a
sampling frequency of 960 Hz. A customised glove with three infrared LEDs was worn
by the subject on their right arm, and the system’s four infrared cameras were positioned
around them.

Visual feedback screen

During the task, subjects are seated approximately 1.5 meters in front of a screen. The
arm position is tracked and presented on the screen as a striped sphere, which the subject
is able to control. A 3D stripe pattern and a visible shadow are assigned to the sphere
object for a better adaptation of the subject to the 3D space on the screen.

EEG acquisition system

The electroencephalogram of the subjects is recoded using an active 121-channel cap
and a BrainAmp DC amplifier (BrainProducts, Gilching, Germany), with 500 Hz sam-
pling frequency. The electrodes were positioned according to the 10-5 system for high-
resolution EEG (Oostenveld and Praamstra, 2001). The reference electrode was placed
at the TPP9h location.

4.3.3 Experimental Paradigm
The experimental paradigm was developed using the BCPY2000 software, an extended
Python version of BCI2000 (Schalk et al., 2004). The experimental phases are described
subsequently.

Calibration phase

At the beginning of each experimental recording, the subjects are instructed to place
their arm in a comfortable position next to their leg. This position is assigned to be the
“starting position” of the sphere on the screen. Afterwards, a calibration period follows.
During this phase, the subject is instructed to move her/his arm in cyclic motions, in
order to store in the system the individualised area of comfortable movements. During
this “exploration” period, possible targets inside the limits of the subject’s reaching area
are computed.

Resting phase

Five minutes of baseline EEG are recorded, during which the participant is asked to relax
focusing on a fixation cross shown on the screen, without moving.
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Visuo-motor experiment phase

This phase consists of two blocks of 50 trials each. Each block is followed by a 5 min
resting-state recording. Each trial begins with a 5 s “task baseline”, during which sub-
jects are asked to relax. During the following “planning” phase (duration was uniformly
chosen between 2.5–4 s) a white and a yellow patterned sphere appears on the screen.
The former reflects the subject’s arm position, and the latter shows the randomly chosen
target position to be reached. Subjects are asked to mentally plan their reaching move-
ment but not yet move. Once the target sphere turns green, the “go” phase starts, and
the subject is expected to move their arm and try to reach the target position. A trial
is considered “failed”, and a black screen with red bar is shown, if subjects move more
than 4 cm during the “planning” phase, or if the subject does not manage to reach the
target (to overlap the end-effector sphere and the target by less than 3.5 cm) within the
10 seconds “go” phase. If the trial is successful, a score that reflects their motor per-
formance appears on the screen (cf. Section 4.3.4). Finally, the “return” phase begins.
During this period, there is no time constraint, and the subjects should move their arm
back to their starting position, which is now indicated by a green sphere. Once their arm
sphere position overlaps by less than 1 cm with the green sphere, the trial is considered
completed. The whole trial sequence which is depicted in Figure . 4.1.

Figure 4.1: Trial sequence of the visuo-motor reaching task.

4.3.4 Index of Motor Performance

The normalised averaged rectified jerk (NARJ) (Cozens and Bhakta, 2003) was used as
an index of motor performance. This metric reflects the smoothness of a movement and
has been shown to correlate with the Fugl-Meyer Assessment of Motor Recovery after
Stroke (FMA) (Wade et al., 2011).

One NARJ value is calculated for each trial. First, we compute the jerk value Jerk·,t
(the second derivative of the speed), at each time step t in each of the three dimensions
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x,y,z as follows.

NARJ = T 3 1
T ∑

t

√
Jerk2

x,t +Jerk2
y,t +Jerk2

z,t

where T is the duration of the reaching movement. The score feedback that was presented
to the subjects by the end of every successful trial was the inverted NARJ value, fitted
between 0 and 100, so that a higher score can be interpreted by the subjects as a “better”
movement.

4.4 Methods - EEG Analysis

4.4.1 Preprocessing

After removing the “failed” trials, the remaining ones range between 89 and 98 per sub-
ject. We restrict our analysis to the 118 channels that were consistently recorded with low
noise for all subjects, excluding those that were noisy in at least one of the recordings.
The remaining channels were re-referenced to common average reference. The period of
the trial that corresponds to the maximum arm movement duration is kept for all channels
(the time window 7.5–17.5 s of each trial, where 7.5 corresponds to the earliest possi-
ble start of the “go” signal). In order to attenuate non-cortical artefacts, we perform an
Independent Component Analysis (ICA) and only reproject those components that, by
visual inspection of the topographies and source frequency spectra, correspond to corti-
cal sources (cf. Section 2.3 of (Grosse-Wentrup and Schölkopf, 2012) for a description
of this procedure).

4.4.2 Feature computation

For each trial and EEG channel we compute the log-bandpower in the following five
frequency bands: delta (δ , 1–4 Hz), theta (θ , 4–8 Hz), alpha (α , 8–13 Hz), beta (β ,
13–30 Hz) and high gamma (γ , 60–90 Hz) (the frequency range 30–60 Hz is excluded
because of the 50 Hz power line noise). This results in 118 channels × 5 logarithmic
bandpowers × number of trials feature space for each subject.

4.4.3 Multi-task learning regression

We want to predict the logarithmic NARJ value from the log-bandpower features of the
“Go” phase of the same trial, for each trial individually. We adapt the multi-task learning
algorithm presented in (Jayaram et al., 2016) in order to perform linear regression, as
follows:

ws = argmin
ws

1
λ
‖Xsws−ys‖2 +

1
2
[(ws−µ)T

Σ
−1(ws−µ)] (4.1)
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where λ is the variance of the original noise model of subject s and in the loss function
it controls the ratio of the importance assigned to the prior probability of the learned
weight vector versus how well the learned vector can predict the labels in the training
data. Therefore, the higher the variance of the noise in the model the less we can trust
our training data. Σ, µ are the covariance matrix and the mean of the weight vectors of
the prior subjects. The regularizer term is modelled as a Gaussian distribution with mean
and variance the mean and variance of the prior weights. This way it punishes overfitting
on the current subject’s s data. Σ and µ are initialized as I and 0, and following ws,Σ and
µ are updated in parallel until convergence. For more details see Jayaram et al. (2016).
Xs are the input brain features for subject s, ws are the weights for model we want to
learn and ys are the targets (NARJ index) that we want to predict from brain activity.

This enables us to leverage the data of 25 subjects when training a model for the 26th

subject. More specifically, for every subject s we train a predictive model with features
from all the trials of the remaining 25 subjects. This is the prior (also called generic)
model of subject s. Then, we update the prior model’s weights with the data from the
first 20 trials of subject s. We call this model the updated or personalised model for
subject s. This personalised model is then used to predict the remaining trials of this
subject. We use leave-one-subject-out cross validation in order to evaluate our model.

4.4.4 Statistical Tests
To evaluate the predictive power of our models, first, we assess their ability to predict
the average NARJ value in the final 50 trials of each subject. To do this, we compute the
across-subject correlation coefficient between the predicted average NARJ values and
the observed ones. To estimate the p-value under the null hypothesis that the predicted
and observed average NARJ values are uncorrelated, we permute the subject-order of the
predicted average NARJ values 104 times and count how many times the modulus of the
resulting correlation coefficient exceeds the modulus of the correlation coefficient with
the subject-order intact.

To evaluate the performance of single-trial NARJ predictions, we use the magnitude
square coherence between the predicted and the observed NARJ values for each subject.
Coherence is commonly used to estimate the power transfer between the input and the
output of a linear system; it quantifies the extent to which one signal can be predicted
from another by an optimum linear least squares function (Bendat and Piersol, 2011). We
then randomly permute, within-subjects, the trial-order of the predicted NARJ values 104

times and compare the resulting magnitude square coherence with the one measured for
the correct trial-order. This yields a p-value for each subject.

By definition, the p-values are drawn from a standard uniform distribution if the null-
hypothesis is true. To quantify the deviation of the empirical cumulative distribution
function (CDF) of the above p-values from the CDF of a standard uniform distribution
we create 100 equally sized bins between 0 and 1, and then sum, across all bins, the
absolute differences between the empirically observed CDF and the one generated by
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drawing the same number of samples from a standard uniform distribution. Sampling
this test statistic 103 times gives us a p-value that reflects how likely it is that the subjects’
p-values are drawn from a standard uniform distribution.

4.5 Results

4.5.1 Adaptation of Motor Performance over Time
As it can be seen in Figure 4.2 (left), there is a strong adaptation period during the first
20 trials regarding the stability of the arm movement, as this is measured by the NARJ.
After about 50 trials, the mean NARJ values have almost converged to their final value.
The distribution of the movement smoothness towards the end of the task (averaged over
the last 50 trials) exhibits a substantial heterogeneity across subjects (see Fig. 4.2, right).
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Figure 4.2: Left: Average across subjects arm NARJ over time (mean ± one standard
deviation). Right: Histogram of the arm movement smoothness (NARJ) towards the end
of the experiment (averaged over last 50 trials).

4.5.2 Model Validation
Prediction of subjects’ final mean motor performances

Using leave-one-subject-out cross validation, we predicted the movement smoothness
on a single trial level. In this section, we present the predicted movement smoothness
towards the end of the task. Figure 4.3 depicts the observed vs the predicted average
NARJ values in the final 50 trials, for the personalised (left column) and the prior model
(right column). A significant correlation between the model predictions and the observed
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true NARJ values is observed only for the updated (personalised) models (ρ = 0.52, p =
0.008). On the contrary, no sufficient evidence to reject the null-hypothesis of chance-
level performance is measured for the prior (generic) models (ρ = 0.31, p = 0.139).
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Figure 4.3: Predicted and observed average logarithmic NARJ across the last 50 trials for
the 26 subjects with (p = 0.0084, left plot) and without (p = 0.1366, right plot) the use
of transfer learning regression. Each point corresponds to one subject.

Prediction of motor performance in individual trials

We assess the ability of the personalised models - built with the multi-task regression
framework- to predict movement smoothness for individual trials, calculating the mag-
nitude square coherence (cf. Section 4.4.4) as shown in Figure 4.4 for every subject and
model type (personalised and generic). While both models achieve a similar mean coher-
ence across subjects—0.36 and 0.35 for the updated and prior model respectively—the
comparison of the distribution of p-values across subjects with the CDF of a standard
uniform distribution reveals a notable difference. The p-value under the null-hypothesis
of standard uniformly distributed subject p-values is marginally significant for the up-
dated model (p = 0.06), while the prior model returns a p-value of 0.63.
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Figure 4.4: Magnitude-squared coherence between observed and predicted NARJ values
for each subject.

Pe
rs

on
ali

ze
d 

m
od

el
Pr

ior
 m

od
el

Trial #

Sub: 3

20 40 60
-8.5

-8

-7.5

-7

-6.5

-6

Sub: 15

Trial #
20 40 60

-8

-7.5

-7

-6.5

-6

Sub: 17

Trial #
20 40 60

-8

-7.5

-7

-6.5

-6

-5.5

Sub: 22

Trial #
20 40 60

-9

-8.5

-8

-7.5

-7

-6.5

Sub: 25

20 40 60
-8.5

-8

-7.5

-7

-6.5

-6

20 40 60

-8

-7.5

-7

-6.5

-6

20 40 60

-8

-7.5

-7

-6.5

-6

-5.5

20 40 60
-9

-8.5

-8

-7.5

-7

-6.5

20 40 60

-8

-7.5

-7

-6.5

Trial #
20 40 60

-8

-7

-6

-5

Observed
Predicted

N
A

R
J

N
A

R
J

Figure 4.5: Predicted (red) and true (blue) arm NARJ values across trials for five rep-
resentative subjects. Top row: predictions using the personalised model. Bottom row:
predictions using the prior model.
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Figure 4.5 shows the observed and predicted NARJ values across trials for five rep-
resentative subjects for the personalised (top row) and the prior model (bottom row).
As it can be seen, only the updated model captures meaningful variations in movement
smoothness across trials.

4.5.3 Model Interpretation

Figure 4.6: Correlation of each feature with the predicted NARJ values for the personal-
ized models, for five representative subjects (first five rows), for the five frequency bands
(five columns). The last row shows the correlation model averaged over all subjects for
each frequency bands. Similar results are observed for the rest of the subjects. As we
can see, gamma power seems to be dominant across a large cortical area in some sub-
jects. Hadn’t we performed the artefact correction step, we would be sceptical about the
source of this activity. However, having removed all the muscular artefacts and all the
non-cortical source signals, we can be optimistic that this is a cortical signal.
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To better understand the cortical processes used for prediction, we compute the corre-
lation coefficients between the personalised models’ predictions (ŷs) and the individual
electrode bandpower features Xs (also called by Haufe et al. (2014) an encoding model
derived from the decoding model). This way, we quantify how much each channels’
bandpower contributes to the prediction.

Figure 4.6 shows the resulting correlation topographies (5 representative subjects and
mean topography) are shown. Red/blue colour indicates a positive/negative correla-
tion between electrode bandpower and the logarithmic NARJ, i. e., bandpower at blue
coloured electrodes is positively associated with smoother movements. Notice that there
is a qualitative difference between the average model and the personalised correlation
models. Moreover, notice that the personalised models exhibit substantial heterogeneity.
Same features in same location for some subjects correlate positively and for some sub-
jects negatively in the predicted smoothness. Alpha, beta and high gamma ranges exhibit
strongest correlations —but with inconsistent signs— across subjects, while correlations
in the delta and theta range are comparably small.

4.6 Discussion

4.6.1 Personalised Models with low sample size
In this Chapter, we showed a way to build “personalised” models that relate the global
configuration of EEG rhythms to motor performance using multi-task learning. Such
models allow us to cope with the heterogeneity of motor activity across subjects, as
well as, to extend previous work (Meyer et al., 2014) to the harder task of single-trial
prediction (Meinel et al., 2016). Because of the high dimensionality (590-D) of the
feature space, building personalised models based on subject-specific training data would
require several hundreds of training trials, resulting in a calibration time of several hours.
Using the multi-task linear regression framework enabled us to learn each individual
model from only 20 trials of that very subject.

4.6.2 TES and Model Heterogeneity
While most TES motor studies consistently focus on the contralateral motor cortex M1,
not all reported findings are consistent with each other, inasmuch as they exhibit contra-
dicting roles for the different frequency bands: Some studies report an inhibiting effect
of 20 Hz tACS over the contralateral motor cortex on movement, but no significant effect
of stimulation in the γ-range (Pogosyan et al., 2009; Joundi et al., 2012; Moliadze et al.,
2010). Others, at the same time describe significant effects in the γ-range, but they do
not find significant evidence for inhibiting effects of stimulation in the β -range (Moisa
et al., 2016). In frontoparietal areas, γ oscillations have been found to correlate with
reaction times in a motor task (Gonzalez Andino et al., 2005), in contrast to stimulation
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studies that found improvements in implicit motor learning only after applying 10 Hz
AC (α range stimulation) but for neither 1, 15, 30 or 45 Hz (Antal et al., 2008).

The heterogeneity in the organisation of subjects’ cortical networks could explain such
inconsistent results. One of the most important findings of this study support this line
of argument by evidencing a substantial heterogeneity amongst subjects: Features in the
α,β , and γ range, used by the predictors, turn out to correlate sometimes negatively
and sometimes positively with the measured motor performance. This line of thought
could be extended in a stimulation setting, as lack of personalised stimulation parame-
ters could lead to inconsistent group-level effects and non-significantly improved motor
performance, due to the network differences across subjects.

Decoding models like the ones trained in this study do not reflect causal relationships
immediately, and as such, they are not meant to directly indicate optimal stimulation
parameters for each subject (Haufe et al., 2014; Weichwald et al., 2015) (see also inter-
pretation rules R3 and R4 in (Weichwald et al., 2015)). However, although association
maps as the ones computed in Figure 4.6 cannot indicate causes of behavioural response,
they do allow us to rule out EEG features that are not causal (cf. rule R2 in (Weich-
wald et al., 2015)). Hence, we argue that a decoding model that is able to predict well
and efficiently single-trial motor performance is a necessary prerequisite for personalised
stimulation protocols as it can rule out subject specific irrelevant stimulation areas. At the
same time, such models revealed a considerable across-subject heterogeneity in feature
relevance which constituted the main motivation for the four following chapters, where
we will conduct tACS studies and will propose new causal feature selection methods,
towards the personalisation of brain stimulation protocols.
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Chapter 5

Beta activity may mediate the response
to 70Hz contralateral tACS

This Chapter is dedicated to a series of combined EEG with tACS visuomotor exper-
iments that were conducted by the author, as part of the studying of the relation be-
tween motor cortex and motor performance, from a causal inference perspective. In this
Chapter, we apply 70 Hz tACS over the contralateral motor cortex of twenty healthy
participants, expecting to facilitate arm speed, according to the literature. Observing a
significant variability in the behavioural response of each subject, we try to identify po-
tential causes that could explain it, using only data of brain activity from before and after
the stimulation blocks. We propose three statistical tests applied stepwise, with which
we show that beta power could be a potential causal factor that explains the discrepancy
in response across subjects. The analysis and the results presented in this Chapter come
from the author’s publication (Mastakouri et al., 2019a), alongside Bernhard Schölkopf
and Moritz Grosse-Wentrup.

5.1 Problem statement

First, we try to validate research studies that recommend 70 Hz contralateral tACS for
the facilitation of movement, by replicating the spatial and amplitude parameters, incor-
porating them in our crossover experimental set up. So we ask whether the arm speed
is facilitated significantly with 70 Hz contralateral tACS compared to sham. In other
words, is the behavioural response to stimulation consistent across subjects (see Problem
2)? Finally, if that is not the case, what can explain the heterogeneity?

5.1.1 Physical limitation

One fundamental physical limitation is imposed by the signal of the tACS itself. The
injected current creates a voltage signal which is orders of magnitude higher than the
level of the EEG signals. As a result, during the stimulation blocks, it is impossible so
far to recover the ongoing brain oscillations, due to the saturation of the amplifier. This
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problem limits the possible information to the brain activity right before and right after
the stimulation.

5.2 Motivation

TACS gradually becomes more and more prominent as a motor rehabilitation method,
because of its ability to influence non-invasively the ongoing brain oscillations at arbi-
trary frequencies and intensities. However, many studies report substantial variations in
its effect across individuals, rendering tACS currently unreliable as a treatment tool. One
reason that could explain this variability is the lack of knowledge about the exact way
with which tACS interacts with ongoing brain activity. A reason that explains the latter
is the difficulty in acquiring contemporaneous brain oscillations during stimulation. The
present crossover stimulation study tries to shed light on the way that tACS entails the
ongoing brain oscillations, by contributing to the understanding of the cross-frequency
effects of gamma tACS - 70 Hz - over the contralateral motor cortex. Performing stim-
ulation and EEG recording to 20 healthy participants, we provide empirical evidence
which is consistent with a mediating role of low- (12–20 Hz) and high- (20–30 Hz) beta
power between gamma-tACS and motor performance.

TACS modulates the neural activity and the behaviour through the creation of an elec-
tric field inside the brain (Herrmann et al., 2013; Bestmann and Walsh, 2017). More
specifically, a weak electrical alternating current is applied on the scalp (Nitsche and
Paulus, 2000), which has been reported to cause changes to the membrane potential of
the affected neurons (Antal and Herrmann, 2016), at least at non-human primates. TACS
has been used widely in behavioural studies (López-Alonso et al., 2014; Strube et al.,
2015) as well as for the treatment of neurological disorders (Schulz et al., 2013; Fregni
et al., 2005), although its exact neurophysiological effect on brain networks has not yet
been fully understood (Vosskuhl et al., 2018).

TACS studies that target the motor cortex have reported considerable variability in
stimulation response across individual subjects, with large percentages of non-responders
(López-Alonso et al., 2014; Strube et al., 2015). Although it has been proposed that
tACS in the γ- (∼ 70 Hz) and β - (∼ 20 Hz) range facilitates and respectively inhibits
the movement (Joundi et al., 2012; Pogosyan et al., 2009; Moliadze et al., 2010; Wach
et al., 2013), there have been reported contradictory findings regarding the significance
of these effects (Moisa et al., 2016; Gonzalez Andino et al., 2005; Antal et al., 2008).
A lot of researchers have focused on the role of physiological γ- (Nowak et al., 2018;
Muthukumaraswamy, 2010) and β -oscillations in movement (Espenhahn, 2018; Gulberti
et al., 2015; McAllister et al., 2013). However, the exact mechanism that tACS entrains
these ongoing brain oscillations is not yet fully understood (Davis and Koningsbruggen,
2013; Helfrich et al., 2016).
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5.2.1 Role of physiological beta and gamma oscillations

In order to construct our main argument, it is essential to first give a short overview of
the role of the physiological β - and γ- brain rhythms in movement. The brain activ-
ity in the γ-range has been associated with cued and self-paced transient finger move-
ments (Muthukumaraswamy, 2010). Furthermore, relatively large ballistic movements
of higher movement amplitude were associated with increased motor cortex γ-power
(Muthukumaraswamy, 2010). Furthermore, (Gaetz et al., 2013) gave evidence for a mo-
tor γ-band network that is associated with response selection and maintenance of planned
behaviour. The selection of 70 Hz for stimulation of the contralateral motor cortex in the
present study is based on the aforementioned findings and reports.

β activity, on the other hand, has been found to be significantly elevated in patients
with motor disorders, such as Parkinsons disease, with symptoms like tremors, slowed
movements, trouble initiating movements, (McAllister et al., 2013; Brown, 2007; Khanna
and Carmena, 2017). Furthermore, in studies with healthy subjects, it was reported that
movements preceded by a reduction in β -power exhibited significantly faster reaction
times than movements preceded by an increase in β -power (Khanna and Carmena, 2017).
Two other studies have also proposed that β -activity represents the status quo (Engel and
Fries, 2010), suggesting that enhanced β -activity prevents change from the current state
(Schnitzler and Gross, 2005; Davis et al., 2012). Moreover, evidence has been given that
β -oscillations are the summed output of principal cells temporally aligned by GABAer-
gic interneuron rhythmicity (Yamawaki et al., 2008), (McAllister et al., 2013). The
power of both spontaneous and movement-related oscillatory β -activity in human M1
has been shown to be GABA-A dependent (Jensen et al., 2005), (Hall et al., 2011).

5.2.2 Our hypothesis

Taking into account the existing knowledge about the role of β -oscillations in the inhibi-
tion of movement speed (McAllister et al., 2013), and about the effect of high stimulation
frequencies on the decrease of β -power (Gulberti et al., 2015), we hypothesise that the
modulation of the ongoing β -activity may mediate the effect of γ-tACS on the observed
behavioural motor response. This hypothesis consists of two empirically testable im-
plications: First, we expect that the arm speed will be affected by the stimulation. We
examine the effect of γ-tACS on movement response in Section 5.4.2. Second, we ex-
pect that the recorded β -power will be affected by the stimulation. In this regard, we
examine if this is true and, if so, in which brain areas a modulation of β -power can be
observed (cf. Section 5.4.5). We expect that any changes in β -power induced by γ-tACS
will be significant only for the subjects that exhibit a significant behavioural response to
the stimulation.

Having found evidence about the above points, as a final step we want to approach
the relation between the modulation of beta activity and the motor response through a
cause-effect perspective (Methods section 5.4.6). We thus perform an additional causal
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analysis, using three pairwise cause-effect tests, to examine the effect of β -power change
on motor performance (Section 5.4.6). The results of these tests support further a poten-
tially causal role of β -power in the response to γ-tACS, given the necessary assumptions.
In Section 5.6.3, we discuss a plausible neurophysiological mechanism that could explain
our findings. As an additional corroboration of our statement, we present evidence that
the subjects that respond with faster arm movements to stimulation are the ones whose
high-β -power significantly decreases during the γ stimulation.

5.3 Methods - EEG/tACS dataset acquisition
The study conformed to the regulations of the Declaration of Helsinki. The experimental
procedures involving human subjects described in this Chapter were approved by the
Ethics Committee of the Medical Faculty of the Eberhard Karls University of Tübingen.

5.3.1 Experimental Setup

Subjects

In this study, twenty healthy, right-handed subjects were recruited. One of the subjects
(ID 10) did not participate in the second session of recordings, hence was excluded from
the analysis. The remaining 19 healthy participants (nine female, ten male) were 28.36±
8.57 years old.

Stimulation parameters

We designed a crossover study in which both real- and sham stimulation were deliv-
ered to each subject in a randomised order. High-definition-tACS (HD-tACS) set-up was
used for the stimulation (DC Stimulator Plus, Neuroconn). More specifically, the HD
4×1 montaging was preferred over the common two-electrode setup, in order to increase
the focality of the current flow delivered by the stimulation, on the preferred motor area
(Dmochowski et al., 2011). The 4×1 set up was accomplished using the equalizer exten-
sion box of the same company, which extended the bipolar setting into five round rubber
electrodes of 20 mm diameter, with one electrode on the region to be stimulated and four
electrodes in a square around it. Each electrode was placed at 7.5 cm from the central
one (Sreeraj et al., 2018). Following the instructions described in (Sreeraj et al., 2018),
the central electrode was placed on channel C3 (primary motor cortex – M1) and the four
surrounding ones on Cz, F3, T7, and P3. Both real- and sham stimulation was delivered
in two blocks, 15 min each (Strüber et al., 2015).

For the real stimulation, a 70 Hz sinusoidal signal, 1 mA peak-to-peak amplitude was
used. For the sham stimulation, a sinusoidal signal at 85 Hz with 1 uA peak-to-peak was
selected.
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Paradigm

Each participant attended two sessions, separated by a one-day break. The task was
the same on both days: participants performed a visuomotor target-reaching task with
their right arm, consisting of three blocks of trials. The subject was seated on a chair in
the middle of four infrared motion tracking cameras (PhaseSpace), in front of a screen,
wearing a customized glove with three LEDs in order to track on real time their arm
position, which was depicted in real-time as a 3D sphere, as shown in Fig. 5.1. The
motor task on each trial was similar to the one we described in section 4.3.3.

On the first session (day 1) only their brain activity was recorded with EEG during
the task. Each block was separated by a 5-minutes resting-state period, during which
the participant had been asked to focus on a white cross shown on the black screen in
front of them, trying to relax. On the second session (day 2), either real or sham tACS
was applied in a randomised order in a single-blind fashion, during the second and third
block. The order of the application of the real-/sham stimulation was randomised across
subjects to compensate for unknown factors such as learning effects or tiredness over
time. In the second session, a 20-minute break was introduced between the second and
the third block to avoid carry-over effects between the two blocks. Each block consisted
of as many random reaching–trials as the subject could complete in 15 minutes.

(a) (b) (c) (d)

Figure 5.1: Paradigm: The white sphere represents the real-time position of the subject’s
right arm. Phases of a trial: a) Subjects wait for the next target. b) A yellow target appears
at a random location. Subjects wait for the go signal, with their current hand position
indicated by a white ball. c) A change of target colour to green instructs subjects to
initiate the reaching movement. d) After the subject successfully reaches the target, a
green sphere appears back to their starting arm position, indicating to return their hand
there to complete the trial.

Experimental data

The experimental data consist of motion tracking data of the subjects’ arm position,
recorded with fs = 960 Hz, and EEG data from high-density EEG (128 channels, fs =
500 Hz, Brain Products GmbH).
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5.3.2 Motor Response to γ-tACS
Here we focused on the analysis of the data recorded in the stimulation day (day 2).
We further analyse the data of both days in Chapter 6. We choose the arm speed to
quantify the behavioural response to tACS. We discuss the reasons for selecting this
metric in Section 6.5.2. Therefore, for each trial of each subject, we calculate the mean
arm velocity. The trials in which arm speed exceeded three standard deviations were
excluded from the analysis as outliers.

5.4 Methods - Statistical analysis

5.4.1 Problem formalization
The variables of our problem are the following.

• S: the 70Hz tACS event

• ∆βx: the difference in beta log bandpower after and before the x block of stimula-
tion, where x may denote real stimulation block or sham block.

• P: behavioural response (arm speed)

• h: a hidden non-measured variable

We assume that there cannot exist backwards arrows in time ( 6← P). In addition, be-
cause S is a randomised treatment, we can infer the direction S→ .... Finally, we assume
Causal Markov Condition (see definition 2) and Causal Faithfulness (see definition 5),
in order to be able to relate probabilistic relationships with the causal graph. According
to causal graph theory, if loops are not allowed, n vertices can result into

( (n
2)

n−1

)
∗ 2n−1

possible graphs with n−1 edges. For n = 4⇒ 128 possible graphs. To reduce the graphs
further, we propose and perform 3 tests, as described below in detail.

5.4.2 Division into responders and non-responders based on arm
speed

Based on the behavioural response (arm speed) of each subject to tACS, the subjects
were categorised into two groups. To do so, for each subject the null hypothesis that
the average arm speed over the stimulation block is the same as the arm speed during
the sham block was tested, with a permutation t-test. To build the null-distribution,
we concatenated the arm speeds of the two blocks and permuted them 10000 times,
calculating the average velocity of each of the two blocks after every permutation. The
p-value was calculated as the frequency at which the absolute difference between the
mean velocity during real- and sham stimulation was found larger than when drawing

44



5.4 Methods - Statistical analysis

from the null-distribution (two-sided test). Setting a threshold α = 0.05, we categorised
subjects into two groups: responders if p < α and the average arm speed during the
stimulation block was greater than during the sham block, and non-responders otherwise,
i.e., subjects who did not show a significant increase or who exhibited a decrease in arm
speed during the real tACS.

5.4.3 Effect size

We quantified the effect size of γ-tACS over contralateral M1 for each subject i as the
difference between the average arm speed during the real and during the sham stimulation
block, normalized by the standard deviation during the sham block.

Effect size(i) =
µstimulation(i)−µsham(i)

σsham(i)
, (5.1)

where

µstimulation(i) =
∑

Ntrials stimulation(i)
nstim=1 |vel(i,nstim)|

Ntrials stimulation
(5.2)

µsham(i) =
∑

Ntrials sham
nsham=1 |vel(i,nsham)|

Ntrials sham
(5.3)

5.4.4 Effect of γ-tACS on β -power

To attenuate non-cortical artefacts in the EEG data we followed a common pre-processing
step for EEG signal artefact removal (McMenamin et al., 2010). The EEG signals of each
subject’s resting state were concatenated and then high-pass filtered with a Butterworth
filter with cut-off frequency at 3Hz. Then, a common-average reference filter was ap-
plied, followed by SOBI Independent Component Analysis (ICA) and manual rejection
of non-cortical components (McMenamin et al., 2010). The reason why we set a cut off
at 3 Hz, instead of lower, was because we were not interested in keeping information
from lower than beta rhythms (such as delta).

To examine the effect of γ-stimulation on β -activity, and the relation between β -power
and arm speed response, we calculated the log-bandpower of the 116 z-scored EEG chan-
nels for each subject (after having removed the channels used for stimulation) for the
low- (12–20) Hz and high- (20–30) Hz β -range. For visualization purposes, we calcu-
lated the group averages of the difference between β -log-bandpower after and before the
stimulation for the real- as well as for the sham tACS block.
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5.4.5 Statistical analysis of β -power modulations

To test within each response group (responders and non-responders) whether the changes
observed in β -power are statistically significant, we performed a permutation, paired,
two-sided t-test with 10000 permutations: For each channel, we tested the null hypoth-
esis that the neurophysiological changes in β -log-bandpower during the real stimulation
come from the same distribution (across subjects) as those during sham. FDR-correction
for multiple testing at significance level α = 0.05 was applied (Benjamini and Hochberg,
1995). For further analysis, we kept only the channels that were found significant after
the FDR correction.

For the kept channels, we performed two tests: first, a within-group statistical test (per-
mutation mean test, one-sided) to examine the null hypothesis that the β -log-bandpower
at these channels come from the same distribution before and after the stimulation (Fig.5.5).
Second, we performed an across-group statistical test (permutation mean-test, one-sided),
to examine the null hypothesis that for these channels the neurophysiological changes
happening in β -range as a result of the tACS, come from the same distribution for the
groups of “responders” and “non-responders” (fig. 5.6).

5.4.6 Causal-effect relationship between β -power and arm speed

At this point, making some necessary assumptions, we wanted to test if and which chan-
nels of each group exhibit a causal relationship between the recorded neurophysiological
changes in β -power and the observed behavioural response 1. To do so, we tested three
different pairwise cause-effect tests: 1. IGCI assuming deterministic relationships Da-
niusis et al. (2012), 2. Additive noise models for non-linear causal relationships Hoyer
et al. (2009), and 3. Pairwise LINGAM Hyvärinen and Smith (2013) assuming that cause
and effect are non-Gaussian. More specifically, we examined which channels express the
causal relationship

∆βBPstimulation → Effect size

where
∆βBPstimulation = βBPafter stimulation−βBPbefore stimulation

2

For the IGCI test, we assumed a deterministic relationship between the beta activity
and the motor performance, although most likely this assumption is violated, and as such
we should be careful on how much we trust the outcome of the specific test. The IGCI
inference algorithm is based on the assumption that if X → Y , then the distribution of X
and the function f that maps X to Y are independent, i.e., it assumes that the mechanism
and the data that it processes are not co-adapted. It is not a very unrealistic assumption

1Note that in case that exists the h node shown in Fig. 5.9, if h is GABA, then we can exclude the
possibility that the relationship between h and β is deterministic, because from the litterature we know
that there is a correlation coefficient of 0.6-0.7 between them.

2βBP is an abbreviation we use for beta log band power.
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to make that the mechanism that produces the beta brain activity is independent of the
mechanism that uses part of this frequency range for motor purposes. In the real noisy
dataset we have here, we should be very careful with the interpretation of the results
from the IGCI method, as it was shown in Mooij et al. (2016) that the method had poorer
performance in the real data benchmarking. To quantify the independence between the
function f and the distribution of X , the relative entropy distance D(., .) is used. Then
the following difference is calculated:

CX→Y = D(pX ||EX)−D(pY ||EY ).

Based on the sign of CX→Y , the IGCI algorithm decides which causal direction is more
likely. If CX→Y > 0, then X is inferred as the cause of Y .

The additive noise models-based (ANM) test and the pairwise LINGAM test are ex-
plained in detail in Sections 2.3.3 and 2.3.3. As explained there, for the ANM we had
to assume independent Gaussian noise, and for the LINGAM that the cause and effect
variables are non-Gaussian.
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5.5 Results

5.5.1 Motor response to γ-tACS

Out of the original population of 19 subjects, only six responded significantly positively
to γ-tACS over contralateral M1. Figure 5.2 shows the effect size of each subject, with
the colour indicating whether the subject was a responder or a non-responder. Although
contralateral M1 γ-tACS has been proposed as a stimulation setup that facilitates move-
ment, our findings exhibit a quite small overall effect size (0.2366). This small effect
size can be justified by the co-existence of responders and non-responders with effect
sizes 0.9073 and −0.1547, respectively. Based on these observations, we next examined
the effect of γ-tACS on β -power for each of the two groups individually.

Table 5.1 shows the p-value and the difference in mean velocity between the blocks of
stimulation and sham, which were used for categorizing the participants into the groups
of responders and non-responders.

Figure 5.2: Effect size of real 70Hz tACS vs sham for the 19 recruited subjects, as mea-
sured by changes in movement velocity. The p-value (rounded up to two decimals) for
each subject is shown on top of each bar (cf. 5.4.2). Green bars: Subjects that performed
significantly better during stimulation (responders). Brown bars: Subjects who either did
not respond to the tACS, or who performed significantly worse compared to sham (non-
responders). Green line: Average effect size of responders. Red line: Average effect size
of non-responders. Yellow line: Overall effect size of the whole population.
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Table 5.1: Division of subjects into “responders” and “non-responders”

Subject P-value ∆Velocity > 0 Response
1 0.0005 1 Responder
2 0.6217 1 Non-Responder
3 0.0902 1 Non-Responder
4 0.0121 0 Non-Responder
5 0.0000 1 Responder
6 0.9318 1 Non-Responder
7 0.3979 1 Non-Responder
8 0.1628 1 Non-Responder
9 0.9220 0 Non-Responder
11 0.0154 0 Non-Responder
12 0.0251 1 Responder
13 0.0384 0 Non-Responder
14 0.0800 0 Non-Responder
15 0.8484 1 Non-Responder
16 0.0000 1 Responder
17 0.0000 0 Non-Responder
18 0.0077 1 Responder
19 0.0370 1 Responder
20 0.0455 1 Responder

5.5.2 Effect of γ-tACS on β -power

Our hypothesis was that subjects who exhibit a larger decrease in β -log-bandpower over
the contralateral motor cortex are those that respond positively to the stimulation, i.e.,
with faster movements. In Figure 5.3, we see that indeed the group of subjects that re-
sponded positively to the γ-stimulation, exhibited a larger decrease of β -power, mostly in
the high β -range [20 30] Hz and spread out over the contralateral motor cortex, compared
to the group of non-responders.

Moreover, for the sham condition in the group of responders, lower as well as non-
significant change of β -log-bandpower over contralateral motor cortex was measured. In
contrast, as we can see from Figure 5.3, the group of non-responders exhibited a bilateral
increase of β -power.
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Figure 5.3: Group-average difference in β -power levels between after and before the real
(left) and sham (right) block, in the low- (12–20) Hz and high- (20–30) Hz β -range, for
the groups of responders and non-responders.

Figure 5.4: Difference of β -power after and before stimulation for the real- and sham
condition, in the low (12–20 Hz) and high- (20–30 Hz) β -range, for the group of re-
sponders, for the channels that were found to exhibit significant difference between the
two conditions (sham and real). FDR-corrected channels, that do not exhibit significant
neurophysiological differences, are set to zero.

Figure 5.4 depicts the channels that exhibit FDR-corrected significant difference in
β -power, between the conditions of real- and sham stimulation. For the responders
group, these channels are found to be located over the contralateral motor cortex, ‘FC1’,
‘C1’ and ‘CCP3h’ for the high β -range and ‘FC1’ for the low β -range. For the non-
responders, in contrast, we found no channel with a significant difference between the
two conditions.

50



5.5 Results

FC1
Signifficant Channels

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

Lo
g-

ba
nd

po
w

er

p=0.02

Low beta [12 20]Hz,
Responders

Before stimulation
After stimulation

FC1 C1 CCP3h
Signifficant Channels

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

Lo
g-

ba
nd

po
w

er

p=0.02 p=0.10 p=0.03

High beta [20 30] Hz,
Responders

Before stimulation
After stimulation

FC1
Signifficant Channels

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

Lo
g-

ba
nd

po
w

er

p=0.51

Low beta [12 20]Hz, 
Non-responders

Before stimulation
After stimulation

FC1 C1 CCP3h
Signifficant Channels

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

Lo
g-

ba
nd

po
w

er
p=0.16 p=0.21 p=0.17

High beta [20 30] Hz, 
Non-responders

Before Stimulation
After stimulation

Figure 5.5: β activity after versus before stimulation, in low [12 20]Hz and high
[20 30]Hz β range for the significant channels above. Left: for the group of “respon-
ders”, and right: for the group of “non-responders”.

For the channels found to be significant above, we examine for the groups of “re-
sponders” and “non-responders” whether they also exhibit significant neurophysiological
changes because of the real stimulation. As shown in fig. 5.5, in the group of “respon-
ders”, β log-bandpower has significantly decreased after stimulation for the channels
’FC1’ (p = 0.02), ’CCP3h’ (p = 0.03) for the high β range, and ’FC1’ (p = 0.02) for
low β . In contrast, in the group of “non-responders”, no significant decrease of β log-
bandpower is observed (p = 0.16, p = 0.21, p = 0.17 for high β , p = 0.51 for low β ).

5.5.3 Across-groups difference in neurophysiological changes on low
and high β band during 70 Hz tACS

Finally, for the same channels, we examine whether the neurophysiological changes in
the β power ∆βBPstimulation due to tACS, are significantly different between the two groups.
High β range was found to be significantly lower in the group of “responders” compared
against the groups of “non-responders’, for the channels of left motor cortex (’FC1’,
p = 0.03 and ’CCP3h’, p = 0.03). No significant difference between the two groups was
found for the low β range (p = 0.08).
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Figure 5.6: Neurophysiological changes for the groups of “responders” vs “non-
responders”, in low (12 20) Hz and high (20 30) Hz β range, for the significant channels
found above. For each channel, the significance of the difference between the two groups
is depicted with the p-value of the corresponding test.

5.5.4 Identification of channels that exhibit the cause-effect
relationship ∆βBPstimulation → Effect size

At this point, we wanted to examine which electrodes in each group exhibit the causal re-
lationship ∆βBPstimulation→ Effect size. To examine this, we tested three different pairwise
cause-effect tests: 1. IGCI assuming deterministic relationships Daniusis et al. (2012),
2. Additive noise models for non-linear causal relationships Hoyer et al. (2009), and
3. Pairwise LINGAM Hyvärinen and Smith (2013). From the above methods, the addi-
tive noise model did not conclude to a single direction of the causal relationship. IGCI
found that in the group of non-responders fewer channels satisfied the above relationship
compared to the non-responders. The channels that did not satisfy the condition were
set to zero for visualization purposes. Figure 5.7 shows the channels that were found to
exhibit the above relationship as measured with the IGCI test. The channels are shown
colour-coded according to the difference between high β -log-bandpower after and before
stimulation. We observe that for the group of responders the left motor cortex exhibits
in its majority the above causal relationship. In contrast, for the group of non-responders
the majority of the EEG channels were not identified to satisfy the aforementioned rela-
tionship by the IGCI test.

Finally, pairwise LINGAM, which does not assume deterministic relationships - which
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is more likely to not be the case in such noisy environments- found very similar results
to the IGCI. Figure 5.8 depicts that more electrodes both in the high- and low- beta range
were found to exhibit this causal relationship in the group of responders, compared with
the group of non-responders.

Figure 5.7: Difference of β -power after and before stimulation, in the low- (left) and
high (right) β -range. The channels that were not found to satisfy the causal relationship
∆βBPstimulation → Effect size by the IGCI test were set to zero.

Responders Non-responders

High beta [20 30] Hz

Responders Non-responders
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Figure 5.8: Difference of β -power after and before stimulation, in the low- (left) and
high (right) β -range. The channels that were not found to satisfy the causal relationship
∆βBPstimulation → Effect size by the pairwise LINGAM were set to zero.

IGCI and LINGAM tests, although they do not eliminate the possibility of hidden
confounders and rely on some strong assumptions, show that contralateral motor cortex
exhibits a path between ∆βBPstimulation and P.

The above statistical tests indicate two things: first, that there is a path which connects
the S and P, and, second, that exists a path that connects ∆βBPstimulation and P. Note, these
paths do not imply direct cause and it is possible to contain other h variables.

In combination with the above findings, the two possible graphs that describe the set
of our variables are shown in fig. 5.9.
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S h ∆β P
(a)

S h

∆β

P (b)

Figure 5.9: The two possible DAGs that describe the set of our variables, after the elim-
ination of the rest with the statistical tests and the IGCI test. Hidden variable h may or
may not exist in the paths.

Figure 5.9 depicts the two possible DAGs that describe the variables in our system. In
graph (a), ∆β is a mediator of γ tACS to motor performance. In graph (b), γ tACS is a
common parent of ∆β and motor performance, meaning that ∆β and P are dependent
only because of their common parent and not otherwise. In the simple case, where there
is no hidden variable in the path, the way to eliminate the possibility of graph (b) is by
examining if conditioning on the common parents makes ∆β and motor performance P
independent. However, in order to be confident that the (b) possibility can be excluded,
the above should be explicitly tested from a causal inference point of view, in a future
work. It has been shown (McAllister et al., 2013) that there is a close dependency of
beta activity and motor performance –therefore between ∆β and P–, even without stim-
ulation. In the next Section we discuss why both models (a) and (b) could be supported
by the neuroscientific literature if the role of the node h was played by the GABAergic
activity. At this point, we can only be cautiously optimistic that (b) may not be the case,
based on the extended literature about

5.6 Discussion

5.6.1 Background of hypothesis
Application of 70 Hz HD-tACS over the contralateral motor cortex on 19 healthy sub-
jects, led to increase of arm speed in 36% of the original population. Our findings of
a large number of non-responders was in line with the results in (López-Alonso et al.,
2014). Considering that γ-stimulation is believed to facilitate movement (Joundi et al.,
2012; López-Alonso et al., 2014), as well as that an increase of γ-oscillatory activ-
ity has been associated with large ballistic movements (Muthukumaraswamy, 2010),
we decided to investigate the underlying modulation of the antikinetic β -oscillations
(Brinkman et al., 2014) as a potential cause of this variability. We hypothesised that if
γ-stimulation is affecting the ongoing β -activity, then the subjects that exhibit a larger
decrease in β -power should be those that respond positively to the stimulation. The
findings from our EEG analysis support this hypothesis.
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5.6.2 Findings
Our findings provide evidence for a potential role of β -power as a mediator of γ-tACS
on motor performance. In particular, the results reported in Section 5.5.1 establish that
γ-tACS (S) has an effect on movement (P), in terms of arm speed. Because S was
delivered in a randomized order (sham/real), it can be considered as a randomised treat-
ment. Therefore, we can infer the direction of this relation as S→ P. The results in
Section 5.5.2, on the other hand, demonstrate an effect of γ-tACS on β -power, i.e., a
causal path S → ∆β . It then remains to distinguish between the two causal models
S→ ∆β → P (with potentially an additional path S→ P that does not pass through ∆β )
and ∆β ← S→ P, both of which are consistent with our evidence to this point. The
results of the IGCI and LiNGAM in Section 5.5.4 indicate that in the stimulation condi-
tion ∆β → P, which is consistent with the former and not with the latter causal model.
Nevertheless, the result of these two tests should be treated with caution as the first as-
sumes deterministic relationships and the second causal sufficiency and non-Gaussian
variables. Assuming we can trust the last two test, we argue that our empirical results
are in favour of the causal model S→ ∆β → P, i.e., that β -power may mediate the ef-
fect of γ-tACS on motor performance. We stress, however, that the analysis presented
here can not prove but only provide empirical results consistent with causal relationships.

5.6.3 Plausible neurophysiological explanation
Here we discuss why, even though we cannot conclude to a single graphical model, both
(a) and (b) models are neurophysiologically plausible. In the context of neurophysiolog-
ical mechanisms underlying the effect of γ-tACS on β -power and on the observed mo-
tor behaviour, a possible explanatory factor could be the modulation of γ-aminobutyric
acid (GABA) concentration. We support this claim with the following argument: First,
β -oscillations have been shown to be the summed output of principal cells temporally
aligned by GABAergic interneuron rhythmicity (Yamawaki et al., 2008). Specifically,
GABA levels have been found to strongly correlate with β -power and to exhibit elevated
values in bradykinesia and in Parkinson’s disease (McAllister et al., 2013). Secondly,
high-γ deep brain stimulation in motor cortex has been reported to cause a significant
decrease in β -power (Gulberti et al., 2015), supporting our finding of the inhibitory
effect of γ-stimulation on the ongoing β -oscillations. Combining these two pieces of
knowledge from the literature, we argue that the behavioural response to γ-tACS may
be explained by a decrease of the GABA levels modulated by the stimulation and hence
of β -power. Therefore, it is conceivable that whenever γ-tACS leads to the inhibition
of human movements, this may be caused by an increase in GABAergic drive, which
hinders the decrease of β -power.
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Chapter 6

High gamma activity over motor
cortices for screening gamma tACS
response
The content of this Chapter deals with the detection of a brain-biomarker that could be
used for an early screening of non-responders to motor cortex stimulation treatments. As
it has become obvious from the previous chapters, the problem of the large discrepancy
in response to tACS over motor cortex is prominent. Although the attributes of tACS
have rendered it into a widely used technique in cognitive neuroscience, the considerable
heterogeneity of its behavioural effects hinders its conversion into a safe treatment tool.

In this Chapter, we present a machine learning pipeline for predicting the behavioural
response to 70 Hz contralateral motor cortex-tACS from EEG activity, recorded dur-
ing a resting period preceding the stimulation. Using the EEG/tACS data from our
crossover study on 20 healthy participants in Chapter 5, we show that high-gamma (90–
160 Hz) resting-state activity predicts arm-speed response to the stimulation in a con-
current reaching task. Moreover, we perform another EEG/tACS crossover stimulation
study with 22 new healthy participants on whom we validate our screening tool. Finally,
a plausible neurophysiological mechanism is presented and discussed, that links high
resting-state gamma power in motor areas to the response to stimulation. Therefore, a
method is proposed that can distinguish responders from non-responders to tACS, prior
to the stimulation treatment. This contribution could help to render tACS a safe and ef-
fective clinical treatment tool. The work presented in this Chapter is part of the author’s
manuscript (Mastakouri, 2020).

6.1 Problem statement
Having encountered significant variability in the behavioural response to motor- cor-
tex tACS on our previous experiment, we want to learn a model that can screen off
the non-responders. Therefore, the question we try to tackle in this Chapter is the fol-
lowing: Given resting-state EEG activity preceding and following the real and sham
stimulation blocks (see limitation imposed by the nature of the stimulation signal in
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subsection 5.1.1), is it possible to identify a biomarker that can screen off in advance
negative-responders and non-responders to the treatment? (see Problem 3) If so, does
this biomarker generalize properly on newly recruited subjects?

6.2 Motivation
As we have extensively presented in Section 3.4.2, although the neural mechanisms of
NIBS are not yet fully understood (Vosskuhl et al., 2018), NIBS applications spread in
research and treatment in the fields of neurophysiology (Shafi et al., 2012; Polanı́a et al.,
2012b; Filmer et al., 2014; Sehm et al., 2012; Keeser et al., 2011; Hampson and Hoff-
man, 2010; Anand and Hotson, 2002), behavioural and cognitive neuroscience (Polania
et al., 2018; Vosskuhl et al., 2018; Pogosyan et al., 2009; Joundi et al., 2012; Neuling
et al., 2012; Cecere et al., 2015; Lustenberger et al., 2015; Vosskuhl et al., 2015; Polanı́a
et al., 2012a; Santarnecchi et al., 2013; Sela et al., 2012), and the field of rehabilitation
(Hashemirad et al., 2016; Pogosyan et al., 2009; Joundi et al., 2012; Moliadze et al.,
2010; Triccas et al., 2016; López-Alonso et al., 2014; Strube et al., 2015).

In all the aforementioned categories, NIBS studies report substantial variations in
stimulation response across individuals (López-Alonso et al., 2014; Strube et al., 2015).
While non-responders decrease the statistical power of NIBS studies, this sub-group is
unproblematic from an ethical point of view. Given the reported variances in effect sizes,
however, it is not unreasonable to assume that there also exist subjects with negative
stimulation responses (Hashemirad et al., 2016; Moliadze et al., 2010; Triccas et al.,
2016; López-Alonso et al., 2014; Strube et al., 2015). Subjects with negative stimulation
responses would be highly problematic, because their existence would imply that NIBS
studies may violate the principle of doing no harm. This ethical concern is particularly
relevant in clinical settings, where NIBS is used to cause possibly permanent changes
(Di Pino et al., 2014; Cirillo et al., 2017). In related work, Yang et al. (2020) and Kasten
et al. (2019) emphasize the importance of pre-stimulation screening and of individual-
izing stimulation protocols. In addition, Kong et al. (2019) has reported the existence
of individual-specific cortical networks and their importance in the prediction of human
cognition. These reports emphasize even more that serious consideration of potential
negative stimulation effects in individual subjects is required, to assure the ethical use of
NIBS. Finally, if such adverse effects are noticed, an implementation of a screening pro-
cedure that reliably identifies negative responders before the stimulation treatment could
be the first step towards the personalisation of NIBS treatments.

While there is a large body of literature on negative side-effects (Kadosh et al., 2012;
Davis and Koningsbruggen, 2013; Matsumoto and Ugawa, 2017; Yang et al., 2020),
NIBS studies typically only report variability across subjects in terms of positive and
non-responders, without focusing on the negative responders. This is a strong indication
of the limited understanding of the causes of inter-subject variability in NIBS. Factors
that have been studied as potential causes of the encountered inter-subject variability are
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discussed in detail in Section 1.1. Nevertheless, up to now, there is no known set of
factors that could enable a reliable screening of subjects, who do not respond to or may
even be harmed by NIBS (Ridding and Ziemann, 2010).

6.3 Methods - EEG/tACS dataset acquisition

The study conformed to the Declaration of Helsinki, and the experimental procedures
involving human subjects described in this Chapter were approved by the Ethics Com-
mittee of the Medical Faculty of the Eberhard Karls University of Tübingen. Informed
consent was obtained by all participants, prior to their participation in the study.

6.3.1 Experimental paradigm and data

The experimental paradigm is the same 3D-reaching task, as described in Chapter 5.3.1.
Nevertheless, for clarity here, we briefly describe it one more time, with more detailed di-
agrams (see Figure 6.1 and 6.2) for each session. Each participant attended two sessions,
to which we also refer as days, separated by a one-day break. On each day, participants
were seated on a chair in the middle of four infrared motion tracking cameras (Phase
Space, San Leandro, California, USA), 1.5 meters away from a visual feedback screen
(35′′), while wearing a customized glove with three LEDs on its top for real-time track-
ing of their arm location. The position of the arm was depicted on the screen in real-time
as a 3D sphere (cf. Figure 5.1).

In the beginning of each trial, a target sphere appeared at a random location in the
simulated 3D space depicted on the screen. The subject was instructed to move their arm
in order to reach and overlap with the target. Each trial started with a baseline of 5 s,
followed by 2.5–4 s preparation period during which the target appeared on the screen
as a yellow sphere. During this period, subjects had been instructed to plan but not yet
initiate their movement. From the moment the target sphere turned to green, the subjects
had 10 s to reach the target. After a successful reach, a score indicating the movement’s
quality, appeared for 2 s on the screen. This score was computed as an inverse mapping
of their movement’s normalized averaged rectified jerk score to a scale from 0 to 100
(Cozens and Bhakta, 2003; Meyer et al., 2014), as explained in 4.3.4. Finally, in the
last part of each trial, the target sphere appeared at the original starting position of the
subjects’ wrist. The trial was considered completed when subjects returned their wrist to
the original starting position. If the accidentally subject moved before the sphere turned
green, or if the target was not reached within 10 s, the trial was excluded from further
analysis.
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Session 1

During the first day of the experiment, only electroencephalographic (EEG) (124 active
electrodes at 500 Hz sampling rate, BrainAmp DC, Brain Products, Gilching, Germany)
and motion tracking (sampling rate of 960 Hz) data were recorded during the reaching
task. The detailed phases of this session are depicted in Figure 6.1, showing the three
blocks of 50 trials that consisted the first day. Before and after each block, 5 min of
resting-state EEG was recorded, during which subjects were asked to relax, focus their
eyes on a cross on the screen, and keep their arm in a comfortable position on top of their
leg without moving.

Resting state 5min Resting state 5min

Block 1 
50 trials 

EEG

Block 2 
50 trials 

EEG

Block 3 
50 trials 

EEG

Resting state 5min Resting state 5min

Day 1

Figure 6.1: Experimental setup for the first recording session (no stimulation).

Session 2

The second recording day consisted of three blocks of reaching trials of 15 min each
(cf. Figure 6.2). During the first block, EEG and motion tracking data were recorded,
but subjects were not yet stimulated. During the second and third block real and sham
high-definition (HD) transcranial alternating current stimulation (tACS) was applied in
a single-bind randomized order. Between the two stimulation blocks, a break of 20 min
was introduced in order to avoid carry-over effects. Each trial was similar to the ones de-
scribed in Session 1. At the end of the session, the participant completed a questionnaire
to evaluate the sensation of the stimulation and potential side effects. Before and after
each block, a 5 min resting-state EEG was recorded, as described in Session 1.
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Resting state 5 min

Resting state 5 min Resting state 5 min

Block 1 
15 min
EEG

Block 3
15 min

Stimulation/ Sham

Resting state 5 min Resting state 5 minResting state 5 min

Break 20 min

Day 2

Block 2
15 min

Stimulation/ Sham

Figure 6.2: Experimental setup for the second recording session (with stimulation).

Stimulation setup

The stimulation parameters were the same as the ones we described in Chapter 5.3.1.

Subjects

The recordings/stimulations for the first part of this study (experiments of the first three
months) were performed in Chapter 5 and the characteristics of the twenty recruited
subjects are presented in Section 5.3.1. In the second part of the study (experiments of
the last three months) twenty-two new subjects were recruited and stimulated following
the exact same protocol. The second group of participants was only used for validation
of our screening procedure, as described in detail in subsection 6.3.5].

6.3.2 Analysis of behavioural data
To quantify the behavioural effect size of γ-tACS over contralateral M1, we calculate the
difference between the average reaching speed during the real and the sham stimulation
block (see equation (5.1)). The reason for the selection of 70 Hz for the real stimulation
was the fact that γ-tACS over motor cortex has been reported to influence the movement
velocity (Joundi et al., 2012; López-Alonso et al., 2014; Muthukumaraswamy, 2010).
Regarding our behavioural metric, we decided to focus on the arm velocity, as it has
been considered one of the most stable variables related to the motor cortex activity
(Moran and Schwartz, 1999; Hatsopoulos and Suminski, 2011).

To compute the effect sizes on the level of individual subjects, we first computed, for
every trial and subject, the trial-averaged reaching speed. This was done by extracting
the x, y and z coordinates of the subject’s arm, from the frames of the camera during
the moving period of the trial (from the “Go” phase until the reaching of the target), and
then calculating the mean velocity as the amplitude of the discrete positional derivative
(Meyer et al., 2014). For each subject, we computed the block-average arm velocities by
averaging the trial-averaged velocities within the real and the sham stimulation block. If
a trial-averaged velocity deviated from the block-averaged velocity by more than three
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standard deviations, the trial was excluded as an outlier. Finally, to obtain the subject-
level behavioural effect sizes, we computed the difference between the block-average
velocities of the real and the sham stimulation blocks and normalized the difference by
the standard deviation of each subject’s sham stimulation block. To compute the group-
level behavioural effect size, we averaged the subject-level effect sizes and normalized
by their standard deviation.

To test for a statistically significant behavioural stimulation effect on the level of indi-
vidual subjects, we performed, for each subject, a two-sided t-test on the trial-averaged
arm velocities of the real and the sham stimulation block. To built the null-distribution,
we randomly permuted 10.000 times the assignment of trials to the real and sham stim-
ulation block. After every permutation, we re-computed the subject’s average arm speed
difference between the real and the sham stimulation block. The p-value was calculated
as the frequency at which samples from the null-distribution exceeded the original abso-
lute average speed difference between the real and the sham stimulation block. Subjects
with p < 0.05 and larger average speed during the real compared to sham block were
subsequently termed responders. The subjects with non-significant p-values and those
with a significant reduction of arm speed combined were termed non-responders.

Finally, to test for a statistically significant behavioural stimulation effect on the group-
level, we performed a two-sided, paired t-test on the single-subject effect sizes. The
null-distribution was built by randomly flipping 10.000 times every subject’s block-
average velocities between the real and sham blocks. After every random flipping, we
re-computed the group-level behavioural effect size as described above. The p-value
was calculated as the frequency at which samples from the null-distribution exceeded
the original absolute group-level effect size.

6.3.3 Analysis of EEG data
As a typical pre-processing step in EEG analysis, first, each subject’s EEG data were
“cleaned” from non-cortical artefacts using Independent Component Analysis (ICA)
(McMenamin et al., 2010). For each subject and session, we concatenated the raw data
of all resting-state recordings (the stimulation blocks were removed as the amplifier was
saturated by the stimulation current), high-pass filtered the data with a Butterworth filter
at 3 Hz, and re-referenced the data to common-average reference. We then used the SOBI
algorithm (Belouchrani et al., 1993) to extract 64 independent components (ICs). The
extracted 64 IC topographies were manually inspected, discarding those ICs that did not
exhibit a cortical topography according to the rules by (McMenamin et al., 2010). The
remaining cortical ICs were re-projected to the scalp level, and the individual resting-
state recordings were reconstructed. For each subject, resting-state, and electrode, the
data were normalized by z-scoring. The reason for the few kept ICs (between four and
eighteen) was that during the manual artefact cleaning we were particularly cautious to
exclude any component that could have the slightest contamination. Therefore, we were
conservative by keeping only IC components that looked cortical, rejecting all ambigu-
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ous ones.
After this step, the logarithmic bandpower of each of the following canonical EEG

frequency bands (θ (4–8 Hz), α (8–12 Hz), β (12–25 Hz), γ1 (25 –45 Hz), γ2 (45 –65
Hz), γ3 (65 –90 Hz), and γ4 (90–160 Hz)) was calculated for the resting-state periods.
For the bandpower calculation, a Hamming window was applied on the data, computing
the Discrete Fourier Transform, taking the average of the absolute values of all frequency
components within each of the eight frequency bands, and finally taking the natural log-
arithm.

6.3.4 Training of the stimulation response predictor

The development of our screening pipeline was based on the dataset that was collected
from the first 19 healthy participants. A linear discriminant analysis (LDA) classifier
was trained to predict subjects’ response group (responder vs non-responders) from
their resting-state EEG. Due to the small sample size, only three channels were selected
as input features. The position of those channels was selected, such they are on top of
key brain regions. Therefore, two channels were selected over left (CCP3h) and right
motor cortex (CCP4h) and one channel over parietal cortex (Pz) (channel C3 directly
over left motor cortex was blocked by the stimulation electrodes, hence for symmetry
we did not use C4 as well). For each of the eight frequency bands (cf. Section 6.3.3)
and the three resting-state EEG recordings preceding the stimulation on the second day,
the prediction accuracy of the classifier was evaluated by leave-one-subject-out cross-
validation. The statistical significance of each of the 24 settings (eight frequency bands
times three resting-states) was tested by a permutation test with 1000 permutations. To
build the null-distribution, we randomly permuted the labels on the training set of each
cross-validation fold, retrained the classifier, and classified the subject in the test set.
The p-value was calculated as the frequency at which samples from the null-distribution
exceeded the original prediction accuracy. Then, the best performing combination of
frequency-band and resting-state was selected in order to train the final stimulation re-
sponse predictor (SRP) on all 19 subjects.

6.3.5 Validation of the stimulation response predictor

To validate the SRP, 22 new subjects (eleven female, average age of 26.81 years with
a standard deviation of 6.32 years) were recruited. The same EEG processing pipeline
as for the first group of subjects (cf. Section 6.3.3) was employed, except that the man-
ual artefact cleaning was only performed on the EEG data of the first session (recorded
on day one). To clean the EEG of the stimulation session (recorded on day two) from
non-cortical artefacts, we applied the spatial filters derived on day one to the EEG data
of day two, and re-projected only those ICs that corresponded to cortical sources on day
one. This minimal-intervention pre-processing on the data that would be used for the
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validation of SRP was chosen in order to minimize the probability that any manual se-
lection of ICs on day two confounds the predictions of the SRP. Then, the trained SRP, as
described in Section 6.3.4, was applied to the first resting-state recording of every sub-
ject in the validation group. The predicted classes were then compared against the true
response group derived from the behavioural analysis described in Section 6.3.2. The
true response group (responders and non-responders) of the subjects from the validation
recording period is shown in Table 6.2.

To test for a statistically significant difference in the behavioural stimulation effect
between the predicted responder and non-responder group, a one-sided permutation-
based t-test was employed: The predicted assignments of subjects to the responders-
and non-responders groups were randomly permuted 10.000 times. After every permu-
tation, the group-level effect size within each group (responders vs non-responders) was
re-computed, as described in Section 6.3.2. Finally, the p-value was calculated as the
frequency at which the permuted difference in effect sizes exceeded the original one.

6.3.6 Association of stimulation response with external factors
To examine the possibility that our findings are confounded by some external factor other
than the brain activity, we tested the stimulation response of individual subjects (respon-
ders vs non-responders, cf. Section 6.3.2) for associations with four external factors:
gender, order of the sham and real stimulation block, block of the strongest reported sen-
sation reported by the subjects, and baseline motor performance during the first session.
For all analyses, we pooled all 41 subjects from the training- and the validation group.

To test for an association of the stimulation response with sex (female, male) and with
the order of the stimulation block, respectively, we used Fisher’s exact test. To test for an
association of the stimulation response with the block of the strongest reported sensory
sensation, a Chi-squared test was used. Finally, to test for an association between the
average reaching speed during the first session with subsequent stimulation response in
the second session, we performed an ANOVA test for the average movement speed across
all three blocks on day one. For the tests, a significance level of α = 0.05 was chosen.

6.3.7 Signal to noise ratio of EEG in high gamma range
As high gamma frequency has been considered a heavily noisy brain band, we examined
the possibility that our findings in the high gamma range are coincidental or mostly
noise. To exclude this scenario, we performed the following analysis: To make sure that
we do not introduce any bias during the manual artefact correction process, we tested the
statistical association between the number of kept IC components and the true response
group. Finally, we compared the spectrograms of the three channels used by the SRP
with a noise floor which we recorded by submerging the electrodes in a saline solution
for the same time length as the EEG resting-state period that was used for the prediction
(5 min). Results are presented in Figure 6.9 and discussed in subsection 6.5.3.
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6.4 Results

6.4.1 Positive- and negative stimulation effects in tACS

The predictability of the behavioural response to tACS based on the resting-state elec-
troencephalographic activity preceding the stimulation was examined through a crossover
study. During the first group of recordings, nineteen healthy subjects performed 15-
minute blocks of 3D reaching movements with their right arm (Figure 5.1).

Figure 6.3 depicts the histogram and estimated probability density function (Gaus-
sian kernel density estimate with a kernel width of 0.5 (Turlach, 1993; Scott, 2015)) of
the individual effect sizes. While the group-level effect size of 0.33 is not statistically
significant (p = 0.1018, subject-level permutation-based paired t-test assuming normal
distribution of the effect sizes, cf. Section 6.3.2), a substantial variation in the effect sizes
of individual subjects was observed, ranging from −1.12 to 1.51 with a standard devi-
ation of 0.72. Statistical tests for significant effect sizes at the individual subject level
revealed seven subjects with a statistically significant positive and four subjects with
a statistically significant negative effect size (at significance level α = 0.05, two-sided
trial-level permutation-based t-test). The remaining eight subjects did not show a statis-
tically significant effect at the individual subject level (individual p-values are shown in
Table 6.1.

These findings indicate that γ-tACS can have positive- as well as negative behavioural
effects on motor performance, which poses an ethical challenge to tACS studies 1. The
following results demonstrate how to address this challenge by predicting individual sub-
jects’ stimulation response from their resting-state configuration of brain rhythms.

1Even after multiple test correction on the p-values there are subjects in both positive and negative re-
sponders. After performing a holm-sidak multiple test correction and threshold 0.05, on the 19 p-values
reported in Table I, there are still subjects with significant positive (subjects 1, 5, 16) and significant
negative response (subject 17). The remaining subjects did not have significant difference between
sham and real stimulation. The corrected p-values: 0.0079 0.9795, 0.4867, 0.1567, 0.0018, 0.9965,
0.9208, 0.6556, 0.9965, 0.1827, 0.2629, 0.3394, 0.4867, 0.9965, 0.0018, 0.0018, 0.1094, 0.3394,
0.3423.
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Table 6.1: Categorization of subjects into responders and non-responders, first group of
recordings. ∆Velocity > 0 refers to subjects with a higher movement speed in the real vs
the sham stimulation block.

Subject p-value ∆Velocity > 0 Category
1 0.0005 1 responder
2 0.6217 1 non-responder
3 0.0902 1 non-responder
4 0.0121 0 non-responder
5 <0.0001 1 responder
6 0.9318 1 non-responder
7 0.3979 1 non-responder
8 0.1628 1 non-responder
9 0.9220 0 non-responder

11 0.0154 0 non-responder
12 0.0251 1 responder
13 0.0384 0 non-responder
14 0.0800 0 non-responder
15 0.8484 1 non-responder
16 <0.0001 1 responder
17 <0.0001 0 non-responder
18 0.0077 1 responder
19 0.0370 1 responder
20 0.0455 1 responder
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Figure 6.3: Histogram and estimated probability density function of stimulation re-
sponse.
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6.4.2 Resting-state EEG predicts tACS stimulation response

As described in detail in Section 6.3.2, the subjects were separated based on their be-
havioural response to the tACS into two groups: those with a statistically significant pos-
itive stimulation response, subsequently called the responders, and the remaining sub-
jects (both negative responders and subjects with no significant response), subsequently
termed the non-responders. The reason why we did not use three different groups in our
prediction pipeline (“positive”, “negative” and “non-responders”) was the limited num-
ber of subjects for training such a classifier 2. Therefore, the analysis was based on the
aforementioned two groups.

The group-average topography of the bandpower in the γ-range (90–160 Hz), recorded
prior to the first (real or sham) stimulation block, revealed strong resting-state γ activity
over the contralateral motor cortex in the responders but not in the non-responders (Fig-
ure 6.4). This result suggests that only those subjects, who already had strong γ-power
over contralateral motor cortex before the start of the stimulation, showed a subsequent
positive behavioural response to contralateral γ-tACS. To systematically evaluate the
predictive value of this frequency range for stimulation response, we trained a machine
learning algorithm to predict individual subjects’ responses to γ-tACS from their resting-
state brain rhythms. The predictability of all the canonical brain bands is depicted in
Figure 6.5, where also the different resting-states are presented.

Figure 6.4: Group-averages for responders (a) and non-responders (b) of high γ (90–160
Hz) log-bandpower during the resting-state recorded at the end of the first block of the
second session (prior to stimulation blocks).

The details of the prediction pipeline are described in Section 6.3.4. We found the
prediction accuracy to increase with frequency, peaking at 89.47% in the band from 90–
160 Hz (p < 0.001, permutation test, cf. Section 6.3.4 for details).

2In a preliminary analysis we did not manage to reach satisfactory classification accuracy for three
groups, for none of the frequency bands.
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Figure 6.5: Leave-one-subject-out cross-validated prediction accuracy of stimulation re-
sponse in the first group of subjects across canonical frequency bands and resting-states,
cf. Section 6.3.4 for details. Stimulation day (day 2). From the δ -band only the range
[3–4]Hz was tested because the data are high-pass filtered at 3 Hz. The band 45–60 Hz
is not tested because we wanted to avoid the strong contamination from the line power
(50 Hz).

To test the robustness of the prediction pipeline, we repeated the machine learning
procedure for all three resting-state recordings preceding the first stimulation block. We
found that all resting-state recordings enabled above chance level prediction in the 90–
160 Hz band. Prediction accuracies of the remaining bands varied across the different
resting-states. These results establish that distribution of γ-power across motor areas, as
shown in Figure 6.4, is an accurate predictor of subjects’ behavioural response to γ-tACS
over contralateral motor cortex.

6.4.3 Validation group - Subject stratification by resting-state EEG
enhances effect sizes

Here we present the application of the response stratification pipeline described in the
previous section, on the new 22 healthy participants (validation group). Based on the
results described in the previous section, the classifier that was trained on the resting-
state recorded after the first block in the 90–160 Hz frequency band was chosen, as it
exhibited the best accuracy in the training set. This classifier was trained on the first
group of subjects and then used out-of-the-box to predict the stimulation response for
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each subject in the validation group from a resting-state EEG recorded prior to the first
block of trials (see Section 6.3.5 for details).

In the validation group, group-level behavioural effect size of 0.12 was calculated
(p= 0.2847, subject-level permutation paired t-test, assuming normal distributions), with
subject-level effect sizes ranging from −0.94 to 1.19, as shown in Figure 6.6. The true
response groups of the validation subjects based on their performance can be found in
Table 6.2.

Table 6.2: Categorization of subjects into responders and non-responders, second (val-
idation) group of recordings. ∆Velocity > 0 refers to subjects with a higher movement
speed in the real vs the sham stimulation block.

Subject p-value ∆Velocity > 0 Category
21 0.0001 0 non-responder
22 0.0004 1 responder
23 0.0119 1 responder
24 0.0093 1 responder
25 0.0353 1 responder
26 0.5704 1 non-responder
27 0.0001 1 responder
28 <0.0001 0 non-responder
29 0.5334 0 non-responder
30 0.5449 0 non-responder
31 0.6537 1 non-responder
32 0.8046 0 non-responder
33 0.8770 1 non-responder
34 0.0055 0 non-responder
35 0.0678 0 non-responder
36 0.6119 1 non-responder
37 0.2996 0 non-responder
38 0.0048 1 responder
39 0.4444 1 non-responder
40 0.7515 1 non-responder
41 0.5464 0 non-responder
42 0.0075 0 non-responder
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Figure 6.6: Histogram and estimated probability density function of stimulation response
in the validation group.

The EEG-based stratification of subjects resulted in group-level effect sizes of 2.46
and −0.17 for the predicted responders and non-responders, respectively, a statistically
(p = 0.0048, one-sided permutation-based t-test, assuming normal distributions) and
practically highly significant difference.

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
Subjects

1.0

0.5

0.0

0.5

1.0

E
ff

ec
t s

iz
e

Average
Average predicted responders
Average predicted non-responders
Predicted responders
Predicted non-responders

Figure 6.7: Individual effect-sizes and predicted stimulation responses in the validation
group. Green colour depicts the effect sizes of the subjects that were predicted as “re-
sponders”, and the red colour depicts the effect sizes of the subjects that were predicted
as “non-responders”. Subjects with id 22 and 24 were mis-classified.

In particular, all four subjects with a statistically significant negative- and all 12 sub-
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jects with no statistically significant stimulation response were correctly assigned to the
group of non-responders. Further, only two subjects with a statistically significant pos-
itive stimulation response were misclassified as non-responders. These behavioural re-
sults are summarized in Figure 6.7.

The group-averaged topographies of log-bandpower in the γ-range of the predicted
responders and non-responders, which closely resemble those observed in the training
group shown in Figure 6.4, are displayed in Figure 6.8.

Figure 6.8: Group-averages for predicted responders (a) and non-responders (b) in the
validation group of high γ (90–160 Hz) log-bandpower during the resting-state recorded
at the beginning of the stimulation day (prior to stimulation blocks).

6.4.4 Stimulation response is contingent on brain state

Here the validated prediction pipeline was employed to test whether stimulation response
is a state or a trait, i.e., whether subjects’ response to γ-tACS changes or remains invari-
ant over time. To test this, all 41 subjects were pooled and used to train the proposed
prediction pipeline on the γ-power (90–160 Hz) of each of the four EEG resting-states of
their first session, i.e., two days before the stimulation session, and predicted the stimula-
tion response in the second session with leave-one-subject-out cross-validation (all other
settings were identical to those described in Sections 6.3.3 and 6.3.4). A statistically sig-
nificant prediction accuracy in this setting would imply that the configuration of subjects’
brain rhythms is also predictive for their stimulation response two days later. However,
no evidence in favour of this conclusion was found. Instead, training on brain activity of
the first recording session resulted in statistically non-significant prediction accuracies
between 62.5% and 68.3% (p-values of 0.23, 0.24, 0.27 and 0.73 for the four resting-
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states of day one). This observation could be an indication that stimulation response is
contingent on subjects’ brain-state directly prior to the stimulation, i.e., subjects’ stimu-
lation response is a state and not a trait.

Figure 6.9: Mean SNR plus, minus one standard deviation across subjects’ raw resting-
state data (i.e., no common average and no ICA cleaning) during the 5 min of resting-
state used by our SRP classifier (beginning of 2nd block, Session 2), with respect to the
noise floor measured for the same time length, by submerging the electrodes in a saline
solution. The three different colours/textures refer to the three channels used by the SRP
classifier (CCP3h, CCP4h and Pz). The bold lines refer to the mean SNR across subjects,
while the faded lines depict one standard deviation. As we can see, the actual EEG has
more power than the noise floor in the high gamma range, which is another indication
that our classifier is not based on noise.

Applying the original stimulus-response predictor, as described in Section 6.3.5, to the
resting-state recordings of the first day, we estimate that out of the 28 subjects, who did
not respond positively to the stimulation on day two, five subjects would have responded
positively on day one (prediction results for individual subjects are shown in Table 6.3).
As such, the percentage of subjects who can benefit from tACS may increase if they are
stimulated at the right time.
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Table 6.3: Subjects’ predicted behavioural response from resting-state EEG data recorded
on day one versus actual behavioural response measured on day two.

Subjects predicted as responders on day
one

15, 18, 19, 22, 23, 24, 27, 33, 34, 36,
38, 42

Actual non-responders on day two 2, 3, 4, 6, 7, 8, 9, 11, 13, 14, 15, 17, 21,
26, 28, 29, 30, 32, 33, 34, 35, 36, 37,
39, 40, 41, 42

Intersection 15, 33, 34, 36, 42

6.5 Discussion

6.5.1 Screening of non-responders to motor tACS from resting EEG

Our results demonstrate that resting-state human brain activity in the high gamma range,
recorded prior to NIBS, can distinguish responders from non-responders with high accu-
racy. This screening is of high importance for a safe and ethical application of NIBS in
research and treatment. As NIBS has been shown to have behavioural effects of oppo-
site polarity relative to the intended stimulation effect in individual subjects (cf. Section
6.4.1), a reliable exclusion criterion for subjects with a negative or non-significant stim-
ulation response ensures that no subjects are harmed and that no redundant stimulation
sessions are performed. This issue is of particular relevance in clinical settings, where
NIBS is employed to cause long-term and, possibly, permanent changes.

6.5.2 The motor task

Here the rationale for the selection of the specific task is briefly discussed. The se-
lected visuo-motor task allows for a free 3D arm movement that mimics natural reaching
movements, which we would like eventually to enhance and facilitate through stimula-
tion. We focused on the arm speed to be our behavioural metric, because this metric has
been found to be the most robust variable related to the motor cortex (Hatsopoulos and
Suminski, 2011), with Moran and Schwartz (1999) having even proposed a canonical
model for it. In addition to the aforementioned reason, we preferred the arm speed over
the normalized average rectified jerk, which we report as a score to the subjects, because
NARJ is the second derivative of the speed, which already accumulates a lot of error in
the measurement, starting from the position recorded from the infrared cameras. There-
fore, this experimental set up was selected as it could help us measure the arm speed in
a 3D movement that seems natural. For the present study, we are not interested in the
performance of the subjects in terms of successfully reached targets as a metric, as this
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would potentially include a more complex cognitive procedure. This is the reason why
we focus on the relation between the motor cortex activity and the arm speed.

6.5.3 High frequency band carries information about the response to
gamma motor stimulation

At first, we were sceptical to find that such a high frequency (90–160 Hz) power was the
most predictive of tACS response. Here we discuss, based on our analysis, why we can
be optimistic that this findings are not artefact-driven. First, a particularly conservative
artefact rejection procedure was employed, following the recommendations by McMe-
namin et al. (2010), to minimize the probability of retaining artifactual sources in the
measurements. This approach also explains the small number of kept components per
subject. To ensure that no bias was introduced during this manual process, we tested the
statistical association between the number of kept ICs and the response group of each
subject. Kruskal-Wallis test yielded no significant association (p = 0.23). Moreover, no
association was found between the type of the kept ICs (i.e. exhibiting a horizontal or
vertical dipole) and the response group. In the group-average topoplots of Figure 6.4, the
power of [90–160] Hz is mostly located over the contralateral motor cortex. Neverthe-
less, our prediction algorithm uses the channels over left (CCP3h) and right motor cortex
(CCP4h) and one channel over parietal cortex (Pz) as input to the classifier, to avoid
focusing only on the stimulation area and to limit the possibility of picking stimulation
artefacts.

In addition, we compared the spectrograms of the three channels used by the classifier
with a noise floor which we recorded with the electrodes on a salty water solution as
described in subsection 6.3.7. Figure 6.9 depicts the mean ± one standard deviation
signal-to-noise ratio (SNR) across subjects’ raw resting-state data during the 5 min of
resting-state used by our SRP classifier, with respect to the noise floor measured for the
same time length, by submerging the electrodes in a saline solution. Figure 6.9 indicates
an average SNR between 6 and 7 dB in the 90 to 160 Hz range, i.e., the recorded signal
in the high gamma range is at least four times stronger than the inherent measurement
noise. This observation is in line with recent work that indicates that the feasibility to
measure human gamma power in scalp EEG is not limited by recording hardware but
rather depends on subjects’ morphology (Butler et al., 2019).

Another point that eliminates the probability that our findings are confounded by stim-
ulation artefacts, is the fact that the periods used for the training and the testing of
the classifier are resting-state periods. No stimulation, neither real nor sham, was ap-
plied during the resting-state periods, which also limits the possibility that the EEG data
are contaminated with stimulation artefacts. Stimulation was delivered only during the
reaching blocks, as shown in Figure 6.2. Therefore, it seems plausible that high gamma
range indeed carries such significant information.
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6.5.4 Plausible neurophysiological mechanism
In our experiments a strong resting-state γ-power over the contralateral motor cortex
was found to be indicative of a positive stimulation response to tACS (in terms of arm
speed). This finding is in line with our current understanding of the neurophysiological
effects of γ-tACS and the role of γ-power in fronto-parietal networks for motor perfor-
mance (Gonzalez Andino et al., 2005). Resting-state γ-power in primary motor cortex
has been shown several times to positively correlate with γ-aminobutyric acid (GABA)
levels (Chen et al., 2014; Muthukumaraswamy et al., 2009; Bartos et al., 2007; Wang
and Buzsáki, 1996; Brunel and Wang, 2003). Because γ-tACS over motor cortex de-
creases GABA levels (Nowak et al., 2017), and decreases in motor cortex GABA levels
correlate with increased motor performance (Stagg et al., 2011), high resting-state γ-
power may signal a brain state in which motor performance can be improved through
tACS-induced reduction of GABA levels. In contrast, low resting-state γ-power would
indicate a brain state in which GABA levels are already low, thus limiting the extent of
potential further reduction by γ-tACS. We note that this explanation is also in line with
our finding that stimulation response is contingent on the current brain state (cf. Section
6.4.4). While our argument is consistent with the neurophysiological GABA activity, it
is worth mentioning that there are studies on macaques, that exhibit enhancing of the
ongoing gamma activity by gamma tACS (Krause et al., 2019; Johnson et al., 2019).
Nevertheless, the protocols of these studies differ significantly from ours. Krause et al.
(Krause et al., 2019) do not target the motor cortex, but the hippocampus and visual
cortex of anaesthetized animals, which could explain the discrepancy with our findings.
Finally, Johnshon et al. (Johnson et al., 2019) place the bipolar electrodes over the left
and right temples, which could also induce different effects from our setup.

6.5.5 Evaluation of external factors’ role in behavioural response to
stimulation

To further probe the state vs trait hypothesis, and to examine the possibility that be-
havioural response might be affected by possible differences in sensation between sham
and real stimulation, we tested a range of factors, including sex, order of real/sham stim-
ulation, block of strongest-reported stimulation sensation and behavioural performance
on the first day of the experiment, for associations with stimulation response. None of
these factors reached a statistically significant association (see Section 6.3.6). Of course,
besides the gamma activity there could be other unobserved factors that play a hidden
confounding role. Methods that will focus on this particular problem are presented in
Chapters 7 and 8. Without being able to exclude this possibility now, we can be confi-
dent that the measured behavioural response is not confounded by the different sensation
levels between the two conditions for the following reason: Subjects evaluated a range
of possible sensations, such as tingling, burning, phosphates, itching etc., for both condi-
tions, without knowing which condition was applied, and the statistical analysis showed
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no significant association of the response group neither with the block of strongest re-
ported sensation nor with any of the reported types of sensations.

6.5.6 Outlook
The results presented here indicate that the percentage of subjects who can benefit from
NIBS, may be increased when subjects are stimulated at the right time. Concurrently, the
neurophysiological interpretation of our results raises the question whether the effects of
stimulation lie within the range of normal variations in behavioural performance, i.e.,
whether NIBS induces a beneficial state of mind that can also occur spontaneously, or
whether NIBS can enhance behavioural performance beyond subjects’ natural limits.
Either way, a natural extension of our stimulation response prediction pipeline would
be to consider multiple stimulation settings that vary in parameters such as spatial and
spectral focus, paving the way for personalised NIBS. Being motivated by the exhibited
difference in gamma power between the two groups – as depicted in Figures 6.4 and 6.8–
another future extension would be to combine this pipeline with a pre-stimulation step of
gamma-modulation, to study whether a self-modulated rise of the gamma activity could
ensure a positive response to the tACS.

6.6 Conclusion
The identification of responders and non-responders prior to the application of stimula-
tion treatment is a considerable first step towards personalised brain stimulation. This
Chapter showed evidence that resting-state high-gamma power prior to stimulation en-
ables this differentiation. Specifically, this was demonstrated in a first experimental
group of 19 participants that subjects’ resting-state EEG predicts their motor response
(arm speed) to gamma tACS over the contralateral motor cortex. It was then ascer-
tained in a prospective stimulation study with twenty-two new subjects that our predic-
tion pipeline achieves a reliable stratification of subjects into a responder and a non-
responder group.
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Chapter 7

Selecting causal brain features of motor
performance

This chapter is dedicated to the development of a theory and its corresponding algorithm
for causal feature selection (see definition given in Section 2.4) even under no causal
sufficiency assumption (see definition 7). More specifically, inspired by settings where a
temporal parent of each candidate cause is known, we develop conditions which we prove
to be sufficient for the detection of direct and indirect causes of a target variable. We
prove that if we can observe a cause for each candidate cause, then a single conditional
independence test with only one conditioning variable is sufficient to decide whether a
candidate associated with the target is indeed its cause. Thus, we improve upon existing
methods by significantly simplifying statistical testing and requiring a weaker version
of causal faithfulness. We demonstrate the successful application of our method to sim-
ulated graphs and in encephalographic data of twenty-one participants. The detected
brain causes of motor performance are in accordance with the latest consensus about the
neurophysiological mechanisms and can provide new insights into personalised brain
stimulation. The theory and the findings presented in this chapter belong to the publi-
cation (Mastakouri et al., 2019b) of the author of this dissertation, alongside Bernhard
Schölkopf and Dominik Janzing.

7.1 Problem statement

Here, first, we tackle the generic problem of causal feature selection with latent vari-
ables in i.i.d. nodes, and subsequently, we focus on the more specific problem of causal
brain feature selection (see Problem 4). Given the target response variable (motor perfor-
mance) and the brain activity from distinct electrode locations, is it possible to identify
the causes of the observed motor performance? If so, what are the necessary assump-
tions?
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7.2 Motivation from the causal perspective

Conditional independence relations have been an important tool in the field of computa-
tional statistics (Shah and Peters, 2018), (Koller and Friedman, 2009) and play a signif-
icant role in causal inference (Pearl, 2009). However, conditional independence-based
causal inference in real datasets is a challenging task, since testing them is (Shah and Pe-
ters, 2018), particularly when the number of conditioning variables is large. PC (Spirtes
et al., 2000), FCI (Spirtes et al., 2000) and CPC (Ramsey et al., 2012) are three of the
most prominent conditional independence-based causal discovery methods (see Section
2.3.1 of Chapter 2 for descriptions of these methods). To discover the underlying causal
graph from the data, they require some assumptions, which, however, are often violated.
These include the causal Markov condition, faithfulness and, in addition for PC method,
also causal sufficiency (def. 7). Although the FCI algorithm (Spirtes et al., 2000) does
not need this assumption, it becomes unreliable due to the many statistical tests that it re-
quires, if the connections between the features are not sparse. Moreover, faithfulness is a
rather problematic assumption, as in causal models with many variables, typical param-
eter values may yield distributions that are close to being unfaithful (Uhler et al., 2013).
For all the aforementioned reasons, we focus on developing a causal feature selection
method with a minimum number of conditioning sets and tests.

7.3 Motivation from the neuroscientific perspective

The field of non-invasive neuroimaging, such as Electroencephalography (EEG), is one
typical case where the discovery of causal features is required. In such setups the activity
of billions of neurons is recorded as noisy mixtures of underlying activity, traversing
several layers of cortex, skull and skin. Therefore, it is not realistic to assume causal
sufficiency. In addition, the dimensionality of the data is large, often comparable with or
even larger than the sample size. Despite these limitations in such datasets, the need for
causal inference often arises, in order to differentiate a set of causal brain features from
a large number of correlations between the brain activity and the observed behavioural
response (Weichwald et al., 2015).

The motivation for the proposed method emanates from the field of non-invasive brain
stimulation, which aims, among others, at the rehabilitation of motor functions, for pa-
tients with motor deficits. As we have mentioned before, one fundamental problem is the
lack of exact knowledge of the mechanism that the stimulation entrains the ongoing brain
oscillations (Davis and Koningsbruggen, 2013; Helfrich et al., 2016). Subsequently, un-
til now, the selection of the exact stimulation parameters (frequency, intensity and target
location) is based on collected observations, instead of the patterns of the individual’s
brain activity. For instance, stimulation at γ-range frequencies (70Hz) has been pro-
posed to facilitate movement (Nowak et al., 2018; Muthukumaraswamy, 2010), while
frequencies in β -range have been reported to inhibit it (Espenhahn, 2018; Gulberti et al.,
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2015; McAllister et al., 2013). However, similar stimulation parameters that focus par-
ticularly on motor tasks have resulted in very heterogeneous responses across subjects,
which span from positive to negative (Mastakouri et al., 2019a; Wiethoff et al., 2014).
In our previous studies (Mastakouri et al., 2017), we have argued that the reason for this
discrepancy of responses to NIBS may originate from the extensive variability of each
brain’s activity during movement, and as such, personalised stimulation parameters may
be beneficial to ensure a positive response. A better understanding of the motor cortex
activity during voluntary movements, for each individual independently, could contribute
to the identification of such personalised parameters.

7.4 Methods

7.4.1 Definitions and notations
For the understanding of this chapter, the studying of Chapter 2 is required first. Here, we
briefly recap some fundamental definitions in Causal Bayesian Networks (Pearl, 2009),
which we will use to present our methodology and prove our theorem below. The notions
of faithfulness (see def. 5) and of causal Markov condition (see def. 2) are fundamental,
in order to be able to relate properties of the distributions of interest to the causal graph.
Markov condition enables us to read off independences from the graph structure, while
faithfulness allows us to infer dependences from the graph (Peters et al., 2017). In other
words, a distribution P is faithful to a directed acyclic graph (DAG) G if there are no
other conditional independence relations other than the ones entailed by the Markov
property. Another important notion for causal discovery is the confounding path between
two variables. Here, we define that a variable is a confounder (observed or unobserved)
if it is a common ancestor of two other variables.

The following notation is going to be used from now on for the description of our
mehtod:

• 99K: denotes a directed path with observed variables or a direct link.

• →: denotes a direct link.

Now we will briefly introduce the environment of our methodology. The problem of
causal features selection was inspired from brain datasets, where the candidate causes are
brain features i; i.e. activity in different brain locations and frequencies, and the target
variable R is some behavioural response metric that we measure on the subject. We
also assume that each candidate feature i has an observed previous state Pi and a current
Mi state. The variables’ names read as “Plan”, “Move” and “Response” respectively.
An example of such a structure is given in Figure 7.1, where (brain) feature M1 has an
ancestor P1 and is a cause of R, while feature M2 does not cause R but connects with a
confounding path that includes M1. Without knowing the structure, our theorem is able
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to differentiate the true causes (M1,Mn) from the ones that are dependent to the target
due to confounding paths (M2,M3).

7.4.2 Formal problem description

Given the random variables Pi, Mi i = 1,2...n and R, we assume the class of DAGs in
which there can exist instantaneous acyclic effects between the Pi variables, between the
Mi variables, as well as forward effects between the Pi, Mi and R. Section 7.5 provides
further explanation about how the assumptions described below are commonly met in
real datasets where candidate causes can be measured in two consecutive time stamps,
and as such, a causal arrow from the previous to the current state can be assumed. Such
a case is a brain dataset. Below we present the assumptions of our methodology.

.

.

.

.

.

.

Figure 7.1: An example of a possible DAG that includes the random variables Pi, Mi

i = 1,2...n and R, assuming As1-As5. Each candidate causal feature Mi has a cause Pi

and may have other acyclic edges with the other candidates. Some of the Mi features
cause the target R.

7.4.3 Assumptions

As1 Causal Markov condition

As2 Causal Faithfulness

As3 P 6L99M 6L99R : There can be no backwards arrows in time. Variable R is measured
after M, which is measured after P.

As4 Pi 99K Mi exists: Variables Pi and Mi represent two consecutive states of the same
brain feature i. We assume that the state P is always a cause of state M for the
same feature i.

As5 (R,Mi,Pi) are independently drawn from some distribution (i.i.d).
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7.4.4 Theorem

Theorem 2. Given the variables Pi, Mi i = 1,2...n and R, and assuming As1-As5,
if

Mi 6⊥⊥ R (1)

and
Pi ⊥⊥ R |Mi (2)

then
Mi 99K R

Proof. We prove the claim by contradiction. Assume As1-As5 and that Mi and R are
dependent (condition 1), but there is no directed path from Mi to R. Then there is a con-
founding path p1 := Mi L99C 99K R with some common cause C (hidden or observed).
Now consider some path p2 := Pi 99K Mi (it exists due to Assumption As4). If p1 and p2
have only Mi in common, Mi is a collider and thus Pi and R are not d-separated by Mi. If
p1 and p2 share more nodes, assume first they have Pi in common, that is, Pi lies on p1.
Then Pi and R are not d-separated by Mi because the sub-path of p1 connecting Pi and R
does not contain Mi and p1 is collider-free. Assume now that Pi does not lie on p1, and
p1 and p2 share some node X other than Mi and Pi. Then either (i) X =C, or (ii) X is a
node between C and R, or (iii) X is a node between C and Mi. For (i) and (ii), we have
a directed path from Pi to R (that does not contain Mi). In case (iii), X is a collider and
Mi a descendent of this collider, hence Mi unblocks the path from Pi to R. In all three
cases, Mi does not d-separate Pi and R, which contradicts Pi ⊥⊥ R |Mi (cond. 2) due to
faithfulness. Hence there must be a directed path Mi 99K R.

Based on Theorem 2 we build an algorithm, which, given the previous (P) and the
current state (M) of each candidate feature, as well as the target variable (R) for each
independent observation (trial), returns a vector with the indices of the input features
that were found to be causes of R. Note that our algorithm requires only one conditional
independence test for each node. Therefore, it accelerates the causal feature selection as
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it scales linearly with the number of nodes in the graph; hence its complexity is O(n).
Algorithm 1: Find causes of R

Input: Pi,Mi,R,∀i = 1, ...,n.
Output: CausesR
for i← 1 to n do

pvalue1← ind test(Mi,R)
if pvalue1 < threshold1 then

pvalue2← cond ind test(Pi,R,Mi)
if pvalue2 > threshold2 then

CausesR← [CausesR,Mi]
end

end
end

Note that Theorem 2 provides sufficient but not necessary conditions for Mi to be
a cause of R. That means that some of the causes of R may not be identified. Note
that our assumptions do not include causal sufficiency. Therefore, even in the case of
unobserved common causes, if the conditions described in 2 are met, then we know that
the dependency between the Mi and R is because of a directed path and not due to a
confounder variable. 1

7.5 Experiments
We apply our method on data produced from simulated graphs, as well as on an EEG
dataset consisting of twenty-one healthy participants. All EEG experiments and record-
ings were performed in the Max Planck Institute for Intelligent Systems and were ap-
proved by the Committee of the Eberhard Karls University of Tübingen. Informed con-
sent was given by all participants, prior to their participation to the study. For the imple-
mentation, to make sure that in practice Assumption As4 in the data is not violated, we
check the dependence between Pi and Mi for the same i, with an independence test, and
in case it is not significant we reject the candidate without further checking. Both for the
simulated graphs described below and for the EEG data, an HSIC (Gretton et al., 2005b)
and a conditional HSIC (Fukumizu et al., 2008; Zhang et al., 2012) test was used to
check for the independencies and conditional independences. A Gaussian kernel and the
usual heuristic bandwidth was used in (Gretton et al., 2005b). Thus, our algorithm also
accounts for non-linear relationships between the features. For the statistical testing we
examine the null hypothesis H01 : Mi ⊥⊥ R. We consider to have rejected the null hypoth-
esis (hence consider to have found Mi and R to be dependent) if p < αD = 0.05. Then,

1Someone needs to check that the relationship between Mi and Pi is not too deterministic. Obviously this
would amount to the conditional independence Pi ⊥⊥ R |Mi even in the presence of counfounding. If
Mi and Pi are too close in time it could result in violation of faithfulness.
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we examine the null hypothesis H02 : Pi ⊥⊥ R | Mi and accept it (hence the conditional
independence) if p > αCI = 0.25 (usual values for accepting conditional independence
in EEG datasets include thresholds above 0.25 (Grosse-Wentrup et al., 2016)).

7.5.1 Simulated graphs
Given the variables Pi, Mi i= 1,2...n and R as described in 7.4.2, and assuming As1-As5,
we build simulations of possible DAGs and apply our Theorem 2.

Construction of simulated graphs: We sample the noise terms of P, M and R vari-
ables from a Gaussian distribution whose variance is randomly sampled from a Uniform
distribution. We then define the adjacency matrix of the subgraph that consists of all
Pi variables as an n× n matrix AP, whose elements are independently drawn from a
Bernoulli(p) distribution, denoting the existence of an edge between the different Pi

variables, forbidding any self-cycles (aPi= j = 0). We update the Pi values by adding a
function f1 of each parent P j variable:

Pi = Pi +
kP

∑
j=1

f1(P
j

aPi j==1) (7.1)

for the kP parent P j variables of Pi. Then, we define the adjacency matrix of the subgraph
that consists of all Pi and Mi variables as a n×n matrix APM, whose elements are values
independently drawn from a Bernoulli(p), indicating the existence of an edge between
the different Pi and Mi variables, making sure that for i = j the edge exists (aPMi= j = 1).
We update the Mi values by adding a function f2 of each parent P j variable:

Mi = Mi +
kPM

∑
j=1

f2(P
j

aPMi j==1) (7.2)

for the kPM parent P j variables of Mi. To avoid creation of cycles, we only generate the
following types of arrows: (1) Pi → M j for i ≤ j, (2) Pi → P j for i < j, (3) Mi → M j

for i < j, (4) Pi→ R and (5) Mi → R. As a third step, we create the adjacency matrix
of the subgraph that consists of all Mi variables as a n× n matrix AM, whose elements
are values independently drawn from a Bernoulli(p), denoting the existence of an edge
between the different Mi variables, forbidding any self-cycles (aMi= j = 0). We update the
Mi values by adding a function f3 of each parent M j variable:

Mi = Mi +
kM

∑
j=1

f3(M
j
aMi j==1) (7.3)

for the kM parent M j variables of Mi. Finally, we create the vectors AMR and APR with
n elements independently drawn from a Bernoulli(p), denoting the existence of an edge
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from M to R and from P to R. We update the R values by adding a function f4 of each
Mi that is a parent and a function f5 of each Pi that is a parent:

R = R+
kMR

∑
i=1

f4(Mi
aMRi==1)+

kPR

∑
i=1

f5(Pi
aPRi==1) (7.4)

for the kMR parent variables Mi and the kPR parent variables Pi of R. We sample the
coefficients for the five linear functions f1, f2, f3, f4, f5 from a Gaussian distribution. We
test the performance of our algorithm for different number of nodes n for the P and M
variables, varying sparsity of edges and sample sizes. For each combination, we examine
20 random graphs and report the percentage of the false positives and false negatives,
calculated on the number n of features i.

Comparison with Markov Blanket methods and LASSO: LASSO or Markov Blan-
ket (MB) discovery methods require causal sufficiency, let alone the curse of dimension-
ality. Furthermore, with high dimensional data, any algorithm using conditional indepen-
dence tests has to condition on large variable sets. In that case, conditional independence
testing is hard (Shah and Peters, 2018) and cannot be reliable unless sample sizes are
huge. Finally, even if causal sufficiency was to hold, the known MB detection algorithms
as well as LASSO do not detect variables but they rank them, and gradually evaluate the
prediction accuracy by including more variables, according to the ranked order the al-
gorithm returned. This requires a heuristic hyperparameter to define what is the right
acceptable number of variables to be included in the MB, which subsequently affects
the false positive and the false negative rates. For completeness, however, we provide
comparison results of our method against the following three available algorithms (aver-
age for 10 random graphs): HSIC LASSO (Yamada et al., 2014), Backwards elimination
with HSIC, and Forward selection with HSIC for MB discovery (Song et al., 2007b). We
present the most optimistic for the other algorithms case, that of large sample size (800)
and two cases of small (20) and large graphs (125 nodes), for sparse (0.2) and dense (0.5,
more true causes) edges. We report the % of false positives and false negatives in the
number of variables.

7.5.2 Identifying brain causes of motor performance from EEG data
Our motivation behind the development of this method was the identification of causal
brain features of upper limb movement from brain activity during a reaching task. Such
a detection could eventually help to identify targets of personalised non-invasive brain
stimulation. Here, we apply our method to EEG data (no brain stimulation applied), in-
dependently for each subject. Our causal candidate variables are bandpower in different
frequency bands and electrode locations.

Twenty-one healthy participants were recorded with high density EEG (128 elec-
trodes, Brain Products), during a motor task. Our paradigm consisted of 150 trials and is
described in detail in Section 6.3.1.
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Each trial k consisted of a planning phase (pi
k) followed by a moving phase (mi

k). Tri-
als in which the subject did not reach the target within the 10s-window are excluded from
the analysis. As an input to our causal discovery algorithm, we examine the bandpower
of four brain frequency bands (α : (8−12)Hz, β : (12−25)Hz, low-γ : (25−45)Hz and
γ : (60−80)Hz) and thirty-eight electrodes over the left and right primary motor cortices,
the supplementary motor areas and the central sulcus. That results in n = 4×38 = 142
features. We calculate each feature i as the log-bandpower during a window of 1 s in
the end of the planning phase (Pi) and in the beginning of the moving phase (Mi) for the
aforementioned four canonical brain frequency bands (larger interval between the period
of Pi and Mi calculation was also examined, which led to less detected causes). Finally,
we quantify the response R as the natural logarithm of duration of the reaching move-
ment in seconds (see Figure 7.1). Assumption A3 and As4 arise in a natural way from an
EEG set-up: There is a time ordering between the brain states Pi, Mi and R; that is why
the measured response R cannot affect the preceding brain state (Assumption A3). In
addition, we assume that the previous state of brain feature i (Pi) is a cause of its current
brain state Mi (Assumption As4).

Preprocessing of EEG data: Before the bandpower calculation, to attenuate non-
cortical artifacts in the EEG data we followed a standardised procedure often applied
in this field (Grosse-Wentrup and Schölkopf, 2012; Frølich and Dowding, 2018). We
filtered the EEG signal with a Butterworth 3 Hz high-pass filter, performed common av-
erage reference filtering on all electrodes, and then performed SOBI (Belouchrani et al.,
1993) Independent Component Analysis (ICA) followed by manual rejection of non-
cortical sources (McMenamin et al., 2010), which then we re-projected on the raw signal.

7.6 Results

7.6.1 Simulated data

Figures 7.2 and 7.3 depict the percentage of false positives and false negatives over
twenty random graphs, for each combination of number of Mi nodes n, samples and
sparsity of edges. The existence of an edge between the nodes of our simulated graphs is
defined by a Bernoulli distribution with probability p = 0.2,0.3,0.4 and 0.5 respectively.
As shown in detail in Fig. 7.2, the false positives occurring due to statistical error in
the computation of the dependencies and conditional independences are very few (never
exceeds 4%), tending to decrease with more samples. Clearly, the probability of false
positives increases with the number of nodes. The number of false negatives (Fig. 7.3)
appears inflated because we consider as true causes both the direct and the indirect ones.
Therefore, if only the direct cause is correctly identified by our algorithm, then its ances-
tors which are indirect causes will be counted as false negatives. That explains why the
number of false negatives increases with the number of features n and the density of the
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graph.

Figure 7.2: Percentage of false positives calculated on the number of n candidate fea-
tures, over 20 random simulated graphs, for different number of i candidate features
(n = 5,20,50,125,200), different Bernoulli probability to define sparsity and different
number of samples (100, 200, 300, 400, 600, 800, 1000).

Figure 7.3: Percentage of false negatives calculated on the number of n candidate fea-
tures, over 20 random simulated graphs, for different number of i candidate features
(n = 5,20,50,125,200), different Bernoulli probability to define sparsity and different
number of samples (100, 200, 300, 400, 600, 800, 1000).

Comparison with Markov Blanket methods and LASSO non-linear regression:
In the simulated data, in sparse large graphs Forward Selection gave more false positives
(table 7.1). LASSO non-linear regression and Forward Selection gave more false posi-
tives in small sparse and dense graphs. Backward Elimination performed worse in small
sparse graphs. Overall, our method managed to keep the false positive rate very low
(∼ 2.1%) for all dense/sparse, small/large graphs, while other algorithms’ performance
varied with the case. Optimal parameters based on the true number of causes was se-
lected for LASSO. In terms of computational time, Backward Elimination and Forward
Selection took significantly long. Furthermore, we stress that in these simulations no
hidden variables exist, which is an extra advantage for the algorithms with which we
compare our methods.
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Table 7.1: Comparison of false positive and false negative rates calculated in 10 random
simulated graphs, among our method and Forward Selection, Backward elimination for
Markov blanket detection and HSIC LASSO.

FP(%) FN(%) FP(%) FN(%) FP(%) FN(%) FP(%) FN(%)
(nodes, sparse) Our method Hsic LASSO BE hsic FS hsic

(20,.2) 3.5 31.5 9.5 22.5 11 23 6 25
(20,.5) 2 80 5.5 47.5 1.5 79 7.5 26
(125,.2) 2.9 70.3 1.1 77.4 1.4 77.9 7.8 47.4
(125,.5) 0 80.8 0 84.8 0 97.6 1.1 14.5

7.6.2 Electroencephalographic data

Table 7.2: Detected causes for six representative subjects; two subjects for each of the
three categories of detected causes: 1. β -range detected causal electrodes for inhibition
of performance (AB and DC), 2.γ-range detected causal electrodes for improvement of
performance (KK and II), 3. α-range detected causal electrodes over ipsilateral hemi-
sphere (HH and JJ).

Subject Alpha Beta Low
Gamma

Gamma Above
Group
Average

Performance

AB - FC2, CCP1h,
CPP1h, CP6

- - False Full inhibition

DC FCC5h CPP2h, CP5,
CPz

C2, CCP2h FC5, CCP2h False Inhibited but
then improved

KK C6, CP2 CCP4h,
CCP3h,
FCC3h,
FCC5h,
FCC6h, CP3

FCC2h,
CP3, CP1,
CP2

FC5, CCP4h,
C6, CCP6h,
FC6, FCC3h

False Full
improvement

II - - - FC2, FC4 False Full
improvement

HH FC2,
FCz

- - - False Improvement
but then
inhibited

JJ FC4,
FC6

- - FCC5h, CP1 False Full
improvement

We applied our method on the preprocessed EEG data described in 7.5.2, individually
for each subject. In total, our algorithm identified causes in seventeen out of twenty-
one subjects. Here we present results for six representative subjects in Table 7.2 and
visualisation for three subjects in Figures 7.4, 7.5 and A.4.

Our causal findings are consistent across all subjects and form three categories that
couple detected causes with subjects’ performance: 1. γ-power is detected when sub-
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jects improve their performance, 2. β -power is detected when subjects worsen or do not
improve their performance, and finally 3. α-power is detected in the ipsilateral hemi-
sphere. The three groups are discussed in Section 7.7.

Subject AB (Fig. 7.4) and DC in Table 7.2 are two representative subjects who wors-
ened or did not improve their movement duration throughout the sequence of trials (they
needed longer times for completing the trial). Subject AB performed on average (green
line) worse than the median performance of all subjects (pink line). Our algorithm de-
tected causes over motor channels in the β -range (2nd head-plot), as well as a few in
gamma range (for subject DC in table). Subjects KK and II (Fig. 7.5) improved their
performance, decreasing the duration of their reaching movements throughout the trials.
Our algorithm detected causes over motor channels in the γ-range (4th head-plot), for
both subjects. Finally, HH and JJ (see fig. A.4) are two representative subjects for whom
our algorithm detected causes over ipsilateral motor channels in the α-range. Results for
each subject are presented and explained based on their performance in Section A.2 in
Appendix A.

ID

Figure 7.4: Electrodes over contralateral motor and parietal cortex in the β -range (col-
ored red, 2nd plot) are detected as causal features from our algorithm, for subject AB,
who worsened her movement duration during the reaching trials. Findings are in line
with literature about the inhibitory role of beta power. Grey color depicts the motor
channels we examine. The y-axis is in logarithmic scale.
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ID

Figure 7.5: Electrodes over motor cortex in the γ-range (colored pink, 4th plot) are de-
tected as causal features from our algorithm, for subject II, who improved her movement
duration over the trials. Findings are in line with literature, as alpha activity particularely
over the ipsilateral hemisphere has been associated with preparation of movement. The
y-axis is in logarithmic scale.

ID

Figure 7.6: Electrodes mainly over ipsilateral motor cortex in the α-range (coloured blue,
1st plot), are detected as causal features from our algorithm in some subjects. Findings
are in line with literature about the prokinetic role of gamma power. Grey color depicts
the motor channels we examine. Y-axis is in logarithmic scale.
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7.7 Discussion

7.7.1 Improvements upon previous methods

To the best of our knowledge, this is the first constraint based algorithm that scales lin-
early with the number of candidate features. Previous methods which are based on condi-
tional independences grow exponentially in time with the number of variables, (if sparse
data, then they grow polynomially), as they require more than one conditional inde-
pendence test per variable. Therefore, we greatly reduce the computational complexity.
Moreover, our algorithm requires only one variable as a conditioning set for each test.
With this improvement, the statistical strength of our inference is superior compared to
algorithms with larger conditioning sets. Furthermore, due to this improvement, we re-
quire a weaker notion of faithfulness (Uhler et al., 2013), as we only assume one triplet
of variables per candidate cause. Finally, our method does not assume causal sufficiency
- a common assumption which is, however, often violated in real datasets.

7.7.2 Sufficient conditions for fast causal feature selection in large
datasets

Our causal discovery theorem imposes assumptions that can easily be met in real datasets
where candidate variables have one known cause. We proved that our proposed condi-
tions, under Assumptions As1-As5, are sufficient for the identification of direct or indi-
rect causes of a target variable. Thus, we can rule out the possibility that the measured
dependency between the causal variable and the response is due to a confounding path,
even due to a hidden variable. However, our procedure may not identify all causes (see
Fig. A.1 in Section A.1 of Appendix A). Simulations yielded successful application of
our algorithm with very low percentages of false positives in dense and large graphs.
The robustness of our algorithm against confounders, alongside the linear scaling of
complexity, renders it suitable for causal feature selection in large datasets, where false
acceptance is considered much more harmful compared to false rejection.

7.7.3 Not an instrumental variable approach

Note that although our assumption about the existence of a path from P to M (Assump-
tion As4) resembles part of the definition for instrumental variables (IV) (Pearl, 2013;
Greenland, 2000), it is not. To apply our method, in contrast to IV, we do not assume
any independence of variable P from unobserved variables that may affect M and R as
hidden confounders, nor do we assume the lack of a directed path from P to R that does
not include M (“exclusion restriction”).
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7.7.4 Neurophysiological validity of results

In the following paragraph, we discuss how our proposed method yields neurophysio-
logically plausible results in real-world data. These conclusions are derived a posteri-
ori, and do not constitute an a-priori phrased complex hypothesis about the role of the
three frequency ranges. The application of our proposed method on our EEG data gave
performance-specific causes across subjects, which are consistent with the known roles
of physiological α , β and γ brain rhythms in upper-limb movements. In particular, β

activity has been found significantly elevated in patients with motor disorders (tremors,
slowed movements) such as Parkinsons disease (McAllister et al., 2013; Brown, 2007;
Khanna and Carmena, 2017). Furthermore, in healthy subjects, elevated β -power has
been found to play an anti kinetic role (Khanna and Carmena, 2017). Our findings sup-
port this conclusion, as we found channels in the β power to play a causal role for sub-
jects that did not improve their motor performance. On the other hand, increased γ activ-
ity over the motor cortices has been associated with large ballistic movements (Muthuku-
maraswamy, 2010; Nowak et al., 2018). It has also been suggested to be prokinetic, given
that it is increased during voluntary movement (Brown, 2003). Our findings appear to be
in accordance with this conclusion, since our method detected causal motor channels in
the γ band, in subjects who managed to reduce the time length of their reaching move-
ment. Moreover, our detected causal channels in the ipsilateral hemisphere at α-band
are consistent with neurophysiological studies that report increased α-power over ipsi-
lateral sensorimotor cortex during selection of movement (Brinkman et al., 2014). Yet,
no association of α-power and motor performance has been reported. Although there
is no ground truth for comparing our neurophysiological results, the findings appear at
least plausible given the current understanding of the aforementioned physiological brain
rhythms in movement. Therefore, our method contributes to the more precise localisation
of causal cortical electrode-areas.

Finally, we want to emphasise on the appropriate way of interpreting the neurophysi-
ological results after the application of our causal feature selection method. Since EEG
electrodes record mixtures of the underlying neuronal activity coming from neighbour
sources, and, therefore, are macro-variables, one could argue about their adequacy for
causal inference (Rubenstein et al., 2017). In order to consider EEG electrodes appropri-
ate causal candidates, we assume that the power recorded on the electrode level mostly
depicts the cortical activity right underneath. We can then interpret our causal findings
as the brain activity, which plays a causal role for the motor performance we observe.
This causal feature detection sheds more light on the underlying cortical mechanism that
acts during upper-limb movements. However, it is crucial to point out that there is not a
one-to-one mapping between the causal brain features and the stimulation targets, as it
is not yet fully understood how the stimulation current in a specific frequency interacts
with ongoing brain oscillations. For example, as it has been shown in (Mastakouri et al.,
2019a) β -rhythms may act as a mediator of γ stimulation to motor performance. We
can consider the problem of selecting personalised stimulation targets and frequencies
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as a two-step procedure: first, understand the effect of stimulation on brain activity, and
second, detect the link between brain activity and motor response. In the logical graph-
ical chain stimulation parameters→ brain activity→ behavioural response, our causal
method contributes to the second link. Thus, it narrows the original question of person-
alised stimulation to the new problem: stimulation parameters→ detected causal brain
activity. Hence, the search for personalised stimulation parameters can now be reduced
to the detection of those that up- or down-modulate accordingly, the causal brain features
which our algorithm identifies.

7.7.5 Contribution
In this chapter, a new algorithm is proposed, alongside its theoretical foundation, that
allows identifying direct or indirect causes of a response variable, tailored to problems
in which a cause of a candidate cause is known. This can naturally happen in setups
where two nodes constitute consecutive timestamps of a variable’s state in a system, and
an edge from the previous to the present state can be assumed. The number of required
conditional independence tests is reduced to one targeted conditional independence test
per variable with one conditioning variable. Therefore, the complexity of the proposed
algorithm scales linearly with the number of variables. Finally, applying our algorithm
on EEG data exhibited results with rigid consistency with current neuroscientific conclu-
sions, helping to step closer towards personalised stimulation.
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Chapter 8

Systematic Path Isolation (SyPI):
Causal feature selection on time series

In this chapter, we present a new method for causal inference on time series. We focus
on the problem of causes identification in setups where each variable is a time series, and
propose both necessary and sufficient conditions for causal feature selection, in datasets
with latent variables. Time series are a particular type of data due to their temporal struc-
ture, which although dominate almost every real dataset (EEG signals are one example),
they have not been deeply studied from the causal point of view. Our theoretical results
and estimation algorithm require two conditional independence tests for each observed
candidate causal time series to decide whether it is a cause of an observed target time se-
ries or not. We provide experimental results in simulated graphs, where the ground truth
is known, as well as in real datasets. Our results show that our method yields essentially
no false positives and relatively low false negative rates, even in confounded environ-
ments, outperforming the widely used method of Granger causality (see Definition 14
and Section 2.5) and two more methods. Finally, we propose and prove a theorem that
relaxes one of the stricter assumptions of our method, rendering it more easily applicable
on real datasets. The theorems and the results presented in this chapter belong to the
publication (Mastakouri et al., 2020) of the author of this dissertation, alongside Bern-
hard Schölkopf and Dominik Janzing, and to the publication (Mastakouri and Schölkopf,
2020) of the author alongside Bernhard Schölkopf.

8.1 Problem statement

Here we work on the generic problem of causal feature selection in time series datasets
(see description in Section 2.5). We try to propose and prove conditions that are neces-
sary as well as sufficient to identify direct and indirect causal time series of a target sink
node (see definition in Subsection 2.1.1) time series. We search under which assumptions
this is possible (see Problem 5).
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8.2 Motivation
Causal inference on time series is a fundamental problem in data science, with appli-
cations in many fields, such as economics, machine monitoring, biology and climate
research. It is also a problem for which no overall solution has been found yet.

While Granger causality (Wiener, 1956; Granger, 1969, 1980) (see definition in 14)
has been the standard approach to causal analysis of time series data during the last fifty
years, several issues caused by violations of its assumptions, including causal sufficiency
and no instantaneous effects, have been described in the literature (Peters et al. (2017)
and references therein). Several approaches (Hung et al., 2014; Guo et al., 2008) ad-
dressing these problems have been proposed during the last decades. Nevertheless, it is
fair to say that causal inference in time series is still a challenging problem – despite the
fact that the time order of variables provide an additional information about the causal
direction (Pearl, 2009; Spirtes et al., 2000). Causal discovery is largely based on the
graphical criterion of d-separation by formalizing the set of conditional independences
to be expected based on causal faithfulness and the causal Markov condition (Spirtes
et al., 2000), see definition 1. Theorem 10.7 in (Peters et al., 2017) shows how Granger
causality can be derived from d-separation. Furthermore, several authors showed how
to derive d-separation based causal conclusions in time series beyond Granger’s work.
Entner and Hoyer (2010a) and Malinsky and Spirtes (2018a), for instance, are inspired
by the FCI algorithm (Spirtes et al., 2000) and the work from Eichler (2007) without
assuming causal sufficiency, aiming at the full graph causal discovery (for an extended
review see (Runge, 2018; Runge et al., 2019b)). However these methods can become
unreliable in large graphs due to the heavy statistical testing with large conditioning sets.
In (Runge et al., 2019a) the PCMCI method is proposed and, although lower rates of
false positives are reported compared to classical Granger causality (see definition 14 in
Appendix B), the method still relies on the assumption of causal sufficiency. We give
an extensive comparison of the aforementioned methods, as well as the more relevant
(Pfister et al., 2019) one in Section 8.6.2.

In the current chapter the problem of causal feature selection in time series is being
studied. By this term, we mean the detection of direct and indirect causes of a given target
time series. We construct and present conditions which, subject to appropriate graph
connectivity assumptions, we prove to be sufficient for the identification of direct and
indirect causes and necessary for direct causal time series of a target, even in the presence
of latent variables. In contrast to approaches inspired by conditional independence based
algorithms for causal discovery (like PC and FCI (Spirtes et al., 2000)), our method
directly constructs the right conditioning sets of variables, without searching over a large
set of possible combinations. This is achieved by a pre-processing step that identifies the
nodes of the time series that enter the previous time step of the target node. This way it
avoids statistical issues of multiple hypothesis testing.

We provide experiments with simulated data, examining scenarios with different num-
ber of time series, density of edges, number of hidden variables, noise levels and sample
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sizes. Our results demonstrate that our method leads to essentially no false positives and
relatively low false negative rates, even in confounded environments, thus outperform-
ing Granger causality. We refer to our method as SyPI as it performs a Systematic Path
Isolation approach for causal feature selection in time series.

8.3 Methods

8.3.1 Formal problem description
We are given observations from a target time series Y := (Yt)t∈Z whose causes we wish to
find, and observations from a multivariate time series X := ((X1

t , . . . ,X
d
t ))t∈Z of potential

causes (candidate time series). Moreover, we allow an unobserved multivariate time
series Ut := (U1

t , . . . ,U
m
t ), which may act as common cause of the observed ones. The

system consisting of X and Y is not assumed to be causally sufficient, hence we allow for
unobserved variables Ut. We introduce the following terminology to describe the causal
relations between these variables:

8.3.2 Terminology & Notation

T1 “full time graph”: the infinite DAG having X i
t ,Yt and U j

t as nodes.

T2 “summary graph” is the directed graph with nodes (X1, ...,Xd,U1, ...,Ud,Y ) =: Q
containing an arrow from Q j to Qk for j 6= k whenever there is an arrow from Q j

t
to Qk

s for t ≤ s ∈ Z. (Peters et al., 2017)

T3 “Qi
t → Q j

s” for t ≤ s ∈ Z means a directed path that does not include any interme-
diate observed nodes in the full time graph (confounded or unconfounded).

T4 “Qi
t 99K Q j

s” for t ≤ s ∈ Z in the full time graph means a directed path from Qi
t to

Q j
s .

T5 “confounding path”: A confounding path between Qi
t and Q j

s in the full time graph
is a path of the form Qi

t L99 Qk
t ′ 99K Q j

s , t ′ ≤ t,s ∈ Z consisting of two directed
paths and a common cause of Qi

t and Q j
s .

T6 “confounded path”: an arbitrary path between two nodes Qi
t and Q j

s in the full time
graph which co-exists with a confounding path between Qi

t and Q j
s .

T7 “sg-unconfounded” (summary-graph-unconfounded) causal path: A causal path in
the full time graph that does not appear as a confounded path in the summary graph

T8 “pb-unconfounded” (past-blocked-unconfounded) causal path: A causal path be-
tween two nodes Qi

t and Q j
s in the full time graph for which all confounding paths

that do not contain more than one time step (nodes) from each of the Qk,k 6= i, j
time series, are blocked by Qi

t ′ or Q j
s′, t
′ < t,s′ < s.
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T9 “lag”: v is a lag for the ordered pair of a time series X i and the target Y (X i,Y ) if
there exists a collider-free path X i

t - - -Yt+v that does not contain a link of this form
Qr

t ′→Qr
t ′+1, with t ′ arbitrary, for any r 6≡ i, j, nor any duplicate node, and any node

in this path does not belong to X i,Y . See explanatory Figure 8.1.

T10 “single-lag dependencies”: We say that a set of time series (X,Y ) have “single-lag
dependencies” if all the X i ∈ X have only one lag v for each pair X i,Y . Otherwise
we refer to “multiple-lag dependencies”.

As we define in T9, an integer v is a lag for the ordered pair of a time series X i and the
target Y (X i,Y ) if there exists a collider-free path X i

t - - -Yt+v that does not contain a link
of this form Qr

t ′ → Qr
t ′+1 with t ′ arbitrary, for any r 6≡ i, j, nor any duplicate node, and

no other node in this path other than X i
t , Yt+v belongs in X i,Y . Figure 8.1 shows some

example graphs and the lags between the candidate and the target time series, based
on the definition T9. The integers defined by the highlighted green path between X i

and Y in graphs (a) and (b) are example lags for the singla-lag (a) and multi-lag graph
(b) accordingly, while the path in (c) does not define a lag because it contains a link
Qr

t+1→ Qr
t+2. If the links between the time series were direct links, then the correct lag

for (X i,Y ) in (c) would be 2.

3 is not a lag

(a) (b) (c)

Figure 8.1: In (a) we have a single lag depedendency graph, and the integer 2 is the lag
for (X i,Y ). (b) shows a multi-lag dependency graph where both integers 1 and 2 are lags
for (X i,Y ). On the contrary, the red coloured path in (c) that corresponds to the integer 3
is not a lag, because it contains the link Qr

t+1→ Qr
t+2.

Having introduced the necessary terminology, we assume that the graph satisfies the
following assumptions. Note that the first four are standard assumptions of time series
analysis and causal discovery, while assumptions A5 - A9 impose some kind of restric-
tions on the connectivity of the graph.

8.3.3 Assumptions
A1 Causal Markov condition 1 in the full time graph

1see definition 2
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A2 Causal Faithfulness in the full time graph 2

A3 No backward arrows in time X i
t ′ 6→ X j

t ,∀t ′ > t

A4 Stationary full time graph: the full time graph is invariant under a joint time shift
of all variables

A5 The full time graph is acyclic.

A6 The target time series is a sink node in the summary graph; it does not affect any
other variables in the graph.

A7 There is an arrow X i
t−1→ X i

t ,Yt−1→Yt∀i, t ∈Z. Note that arrows U i
t−1→U i

t need
not exit, we then call U memoryless.

A8 There are no arrows Qi
t−s→ Qi

t for s > 1.

A9 Every variable U i that affects Y directly (no intermediate observed nodes in the
path in the summary graph) or that is connected with an observed collider in the
summary graph should be memoryless (U i

t−1 6→ U i
t ) and should have single-lag

dependencies with Y in the full time graph.3

Below, we present three theorems for detection of causes in the full time graph. Theo-
rem 2a provides sufficient conditions for direct and indirect sg-unconfounded causes
in single-lag dependency graphs. Theorem 2b provides sufficient conditions for di-
rect and indirect causes in multi-lag dependency graphs. Theorem 3 provides neces-
sary conditions for identifying all the direct sg-unconfounded causes of a target time
series, assuming the imposed graph constraints.

8.3.4 Intuition for proposed Theorems
Intuition for proposed conditions in Theorems 2a/2b and 3: The idea is to isolate
the path X i

t−1→ X i
t - -Q j

t ′ 99KYt+wi,wi ∈ Z, t ′< t+wi in the full time graph, in order to be
able to examine similar conditions proposed in (Mastakouri et al., 2019b). In this path “-
-” means L99 or 99K and Q j

t ′ (if observed) in addition to any other intermediate variable in
the path X i

t - -Q j
t ′ 99KYt+wi must 6∈ {X i,Y}. Mastakouri et al. (2019b) proposed sufficient

conditions for causal feature selection in a DAG with non-sequential data, where a cause
of a potential cause was known or could be assumed due to time-ordered pair of variables.

Here the goal is to propose necessary and sufficient conditions that will differentiate
between Q j

t ′ being a common cause or - -Q j
t ′ 99K being a (in)direct edge to Yt+wi in the

full time graph.
2see definition 5
3Note that this assumption is only required for the completeness of the algorithm against direct false

negatives (Theorem 3). The violation of this assumption does not spoil Theorem 2a/2b. The existence
of a latent variable with memory affecting the target time series Y directly, or of a latent variable
affecting directly the target with multiple lags renders impossible the existence of a conditioning set
that could d-separate the future of the target variable and the past of any other observed variable.
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Figure 8.2: Visualization of a simple full time graph of two observed, one potentionally
hidden and one target time series. The summary graph is presented to emphasize that
the notions of “pb-confounded” and “sg-confounded” are different and to point out the
challenge of identifying sg-unconfounded causal relations in time series, where the past
of each time series introduces dependencies that are not obvious in the summary graph.

Figure 8.2 visualizes why time-series raise an additional challenge for identifying sg-
unconfounded causal relations. While the influence of X j on Y is unconfounded in the
summary graph, the influence X j

t → Yt+1(≡ Yt+w j) is confounded in the full time graph
due to its own past; for example X j

t and Yt are confounded by X j
t−1. Therefore we need

to condition on Yt(≡ Yt+w j−1) to remove past dependencies. If no other time series were
present, that would be sufficient. However, in the presence of other time series affecting
the target Y , Yt+w j−1 becomes a collider that unblocks dependencies. If for example we
want to examine X i as a candidate cause, we need first to condition on Yt+wi−1 ≡ Yt+1,
the past of the Yt+wi . Following, we need to condition on node from each time series
X \X i that enter Yt+wi−1 ≡ Yt+1 (which is a collider) to avoid all the dependencies that
might be created by conditioning on it. It is enough to condition only on these nodes
for the following reason: If a node X j 6=i has a w j lag-dependency with Y , then there is
an (un)directed path from X j

t+wi j−1 to Yt+wi−1. If this path is a confounding one, then

conditioning on X j
t+wi j−1 is not necessary, but also not harmful because the future of this

time series in the full graph is still independent of Yt+wi . This independence is forced by
the fact that the X j

t+wi j
is a collider because of the stationarity of graphs and this collider

is by construction not in the conditioning set. If X j, j 6= i is connected with Yt+wi−1 via
a directed link (as in Figure 8.2), then conditioning on X j

t+wi j−1 is necessary to block the

parallel path created by its future values X j
t+wi j−1→ X j

t+wi j
99K Yt+v. Based on this idea

of isolating the path of interest, we build the conditioning set as described in Theorem
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2a/2b and its converse Theorem 3, where we prove the necessity and sufficiency of our
conditions.

8.3.5 Theorems

Theorem 2a. [Sufficient conditions for a direct or indirect sg-unconfounded cause of Y
in single-lag dependency graphs] Assuming A1-A5 and single-lag dependency graphs,
let wi be the minimum lag (see T9) between X i and Y . Further, let wi j := wi −w j.
Then, for every time series X i ∈X we define a conditioning set Si = {X1

t+wi1−1,X
2
t+wi2−1,

...,X i−1
t+wi j−1,X

i+1
t+wi j−1, ...,X

n
t+win−1}.

If
X i

t 6⊥⊥ Yt+wi | {S
i,Yt+wi−1} (1)

and
X i

t−1⊥⊥ Yt+wi | {S
i,X i

t ,Yt+wi−1} (2)

are true, then
X i

t 99K Yt+wi

and the path between the two nodes is sg-unconfounded.

Proof. (Proof by contradiction)
We need to show that in single-lag dependency graphs, if X i

t 699K Yt+wi or if the path
X i

t 99K Yt+wi is sg-confounded then at least one of the conditions (1) and (2) is violated.
First assume that there is no directed path between X i

t and Yt+wi: X i
t 699K Yt+wi . Then,

there is a confounding path X i
t L99 Q j

t ′ 99K Yt+wi, t
′ ≤ t without any colliders. (Colliders

cannot exist in the path by the definition of the lag T9.) In that case we will show that
either condition (1) or (2) is violated. If all the existing confounding paths X i

t L99 Q j
t ′ 99K

Yt+wi, t
′ ≤ t contain an observed confounder Q j

t ′ ≡ X j
t ′ ∈ {S

i,Yt+wi−1} (there can be only
one confounder since in this case there are no colliders in the path), then condition (1) is
violated, because we condition on X j

t ′ which d-separates X i
t and Yt+wi . If in all the existing

confounding paths the confounder node Q j
t ′ 6∈ {S

i,Yt+wi−1}, t ′ ≤ t but some observed
non-collider node is in the path and this node belongs to {Si,Yt+wi−1}, then condition
(1) is violated, because we condition on Si which d-separates X i

t and Yt+wi . If there is
at least one confounding path and its confounder node does no belong in {Si,Yt+wi−1}
and no other observed (non-collider or descendant of collider) node which is in the path
belongs in {Si,Yt+wi−1} then condition (2) is violated for the following reasons: Let’s
name p1 : X i

t L99 Q j
t ′ 99KYt+wi, t

′ ≤ t. We know the existence of the path p2 : X i
t−1→ X i

t ,
due to assumption A7.

(1I) If p1 and p2 have X i
t in common, then X i

t is a collider. Thus, adding X i
t in the

conditioning set would unblock the path between X i
t−1 and Yt+wi .
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(1II) If p1 and p2 have X i
t−1 in common, that means X i

t−1 lies on p1. Thus X i
t is not in

the path from X i
t−1 to Yt+wi and hence adding X i

t to the conditioning set could not
d-separate X i

t−1 and Yt+wi .

In both cases condition (2) is violated.
Now, assume that there is a directed path X i

t 99K Yt+wi but it is “sg-confounded” (there
exist also a parallel confounding path p3 : X i

t L99 Q j
t ′ 99K Yt+wi, t

′ ≤ t. Then, if p3 and
p2 have X i

t in common, then condition (2) is violated due to (1I). If p3 and p2 have X i
t−1

in common, then condition (2) is violated due to (1II). In all the above cases we show
that if conditions (1) and (2) hold true in single-lag dependency graphs, then X i

t is an
“sg-unconfounded” direct or indirect cause of Yt+wi .

Theorem 2b. [Sufficient conditions for a (possibly confounded) direct or indirect cause
of Y in multi-lag dependency graphs] Assuming A1-A5, and allowing multi-lag de-
pendency graphs, let wi be the minimum lag (see T9) between X i and Y . Further,
let wi j := wi −w j. Then, for every time series X i ∈ X we define a conditioning set
Si = {X1

t+wi1−1,X
2
t+wi2−1, ...,X

i−1
t+wi j−1,X

i+1
t+wi j−1, ...,X

n
t+win−1}.

If conditions (1) and (2) of Theorem 2a hold true for the pair X i
t ,Yt+wi , then

X i
t 99K Yt+wi

We can think of Si as the set that contains only one node from each time series X j and
this node is the one that enters the node Yt+wi−1 due to a directed or confounded path (if
w j exists then the node is the one at t +wi j−1).

Proof. (Proof by contradiction)
We need to show that in multi-lag dependency graphs, if X i

t 699KYt+wi then at least one of
the conditions 1 and 2 is violated.

First assume that there is no directed path between X i
t and Yt+wi: X i

t 699K Yt+wi . Then,
there is a confounding path X i

t L99 Q j
t ′ 99K Yt+wi, t

′ ≤ t without any colliders. (Colliders
cannot exist in the path by the definition of the lag T8.)In that case we will show that
either condition 1 or 2 is violated. If all the existing confounding paths X i

t L99 Q j
t ′ 99K

Yt+wi, t
′ ≤ t contain an observed confounder Q j

t ′ ≡ X j
t ′ ∈ {S

i,Yt+wi−1} (there can be only
one confounder since in this case there are no colliders in the path), then condition 1 is
violated, because we condition on X j

t ′ which d-separates X i
t and Yt+wi . If in all the existing

confounding paths the confounder node Q j
t ′ 6∈ {S

i,Yt+wi−1}, t ′ ≤ t but some observed
non-collider node is in the path and this node belongs to {Si,Yt+wi−1}, then condition
1 is violated, because we condition on Si which d-separates X i

t and Yt+wi . If there is
at least one confounding path and its confounder node does no belong in {Si,Yt+wi−1}
and no other observed (non-collider or descendant of collider) node which is in the path
belongs in {Si,Yt+wi−1} then condition 2 is violated for the following reasons: Let’s
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name p1 : X i
t L99 Q j

t ′ 99KYt+wi, t
′ ≤ t. We know the existence of the path p2 : X i

t−1→ X i
t ,

due to assumption A7.

(1I) If p1 and p2 have X i
t in common, then X i

t is a collider. Therefore, adding X i
t in the

conditioning set would unblock the path between X i
t−1 and Yt+wi .

(1II) If p1 and p2 have X i
t−1 in common, that means X i

t−1 lies on p1. In this case X i
t

is not in the path from X i
t−1 to Yt+wi and hence adding X i

t to the conditioning set
could not d-separate X i

t−1 and Yt+wi .

In both cases condition 2 is violated.

Remark 1. Theorem 2b conditions hold for any lag as defined in T9; not only for the
minimum lag. The reason why we refer to the minimum lag in 2b is to have conditions
closer to its converse Theorem 3.

Theorem 3. [Necessary conditions for a direct sg-unconfounded cause of Y in single-lag
dependency graphs]

Let the assumptions and the definitions of Theorem 2a hold, in addition to Assumptions
A6-A9.

If X i
t is a direct, “sg-unconfounded” cause of Yt+wi (X i

t → Yt+wi), then conditions (1)
and (2) of Theorem 2a hold.

Proof. (Proof by contradiction)
Assume that the direct path X i

t → Yt+wi exists and it is unconfounded. Then, condition
(1) is true. Now assume that condition (2) does not hold. This would mean that the
set {Si,X i

t ,Yt+wi−1} does not d-separate X i
t−1 and Yt+wi . Note that a path p is said to be

d-separated by a set of nodes in Z if and only if p contains a chain or a fork such that
the middle node is in Z, or if p contains a collider such that neither the middle node
nor any of its descendants are in the Z. Hence, a violation of condition (2) would imply
that (a) there is some middle node or descendant of a collider in {Si,X i

t ,Yt+wi−1} and no
non-collider node in this path belongs to this set, or (b) that there is a collider-free path
between X i

t−1 and Yt+wi that does not contain any node in {Si,X i
t ,Yt+wi−1}.

(a) There is some middle node or descendant of a collider in {Si,X i
t ,Yt+wi−1} and no

non-collider node in this path belongs to this set:
(a1:) If there is at least one path p1 : X i

t−1 - -99K Yt+wi−1 L99 - - Yt+wi where
Yt+wi−1 is a middle node of a collider and none of the non-collider nodes in the
path belongs to {Si,X i

t }: Such a path could be formed only if in addition to X i some
Q j

t ′ directly caused Y . Then p1 : Xt−1 - -99K Yt+wi−1 L99 Q j
t ′ → Yt+wi, t

′ ≤ t +wi.
(Due to our assumption for single-lag dependencies (see T10) a path of the form
Xt−1 - -99K Yt+wi−1 L99 X i

s−−Yt+wi could not exist). Then, due to stationarity of
graphs the node Q j

t ′−1 will enter Yt+wi−1. If this Q j
t ′ is hidden (Q j

t ′ ≡U j
t ′), then due

to assumption A9 this time series will be memoryless (U j
t ′−1 6→U j

t ′). Therefore, the
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collider Yt+wi−1 in the conditioning set will not unblock any path between X i
t−1 and

Yt+wi that could contain U j
s ,s > t ′. If Q j

t ′ is observed (Q j
t ′ ≡ X j, j 6= i) then due to

assumption A7 the path p1 will be X i
t−1 - -99K Yt+wi−1 L99 X j

t+wi j−1→ X j
t+wi j

99K

Yt+wi . However, this path is always blocked by X j
t+wi j−1 ∈ Si due to the rule we

use to construct Si. That means a non-collider node in the conditioning set will
necessarily be in the path p1, which contradicts the original statement.

(a2:) If there is at least one path p2 : X i
t−1 - -99K X i

t L99- - Yt+wi where X i
t is a

middle node of a collider and none of the non-collider nodes in the path belongs to
{Si,Yt+wi−1}: This could only mean that there is a confounder between the target
Yt+wi and X i

t . However this contradicts that X i
t → Yt+wi is “sg-unconfounded”.

(a3:) If there is at least one path p3 : X i
t−1 - -99K X j

t ′ L99- - Yt+wi where X j
t ′ ∈ Si

with t ′ ≤ t +wi−1 is a middle node of a collider and no non-collider node in the
path belongs to {Si \X j

t ′ ,X
i
t ,Yt+wi−1}: In this case, t ′ ≡ t+wi j−1 because X j

t ′ ∈ Si.
By construction of Si all the observed nodes in X \X i that enter the node Yt+wi−1

belong in Si. That means that X j
t ′ enters the node Yt+wi−1. Hence, in the path p3

Yt+wi−1 will necessarily be a non-collider node which belongs to the conditioning
set. This contradicts the original statement “and no non-collider node in the path
belongs to {Si \X j

t ′ ,X
i
t ,Yt+wi−1}”.

(a4:) If a descendent D of a collider G in the path p4 : X i
t−1 - -99K G L99 - -

C 99K Yt+wi belongs to the conditioning set {Si,X i
t ,Yt+wi−1} and no non-collider

node in the path belongs to it: Due to the single-lag dependencies assumption,
wC ≡ wi otherwise there are multiple-lag effects from C to Y . That means that,
independent of C being hidden or not, the C in the collider path will enter the node
Yt+wi−1. If C ∈ X then because C enter the node Yt+wi−1, C ∈ {Si,X i

t ,Yt+wi−1}. In
the first case Yt+wi−1 only and in the latter case also C are a non-collider variable in
the path p4 that belongs to the conditioning set, which contradicts the statement of
(a4). If the collider G ∈X, as explained in (a3) at least one non-collider variable in
the path will belong in the conditioning set, which contradicts the statement (a4).
Finally, if G and C are hidden, if wD ≡ wC then the node Yt+wi−1 is necessarily in
the path as a pass-through node, which contradicts the statement (a4). If wD 6≡ wC
then the single-lag assumption is violated.

(b) There is a collider-free path between X i
t−1 and Yt+wi that does not contain any node

in {Si,X i
t ,Yt+wi−1}:

Such a path would imply the existence of a hidden confounder between X i
t−1 and

Yt+wi or the existence of a direct edge from Xt−1 to Yt+wi . The former cannot exist
because we know that Xt is an sg-unconfounded direct cause of Yt+wi . The latter
would imply that there are multiple lags of direct dependency between Xt and Yt+wi

which contradicts the assumption of single-lag dependencies.
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Therefore we showed that whenever X i
t →Yt+wi is an sg-unconfounded causal path, con-

ditions (1) and (2) are necessary.

Since it is unclear how to identify the lag in T9, we introduce the following lemmas
for the detection of the minimum lag that we require in the theorems. We provide the
proofs of the lemmas in Appendix B Section B.1).

Lemma 1. If the paths between X j and Y are directed then the minimum lag w j as defined
in T9 coincides with the minimum non-negative integer w′j for which X j

t 6⊥⊥Yt+w′j
| X j

past(t).

The only case where w′j 6≡ w j is when there is a confounding path between X j and Y that
contains a node from a third time series with memory. In this case w′j = 0.

Lemma 2. Theorems 2a/2b and 3 are valid if the minimum lag w j as defined in T9 is
replaced with w′j obtained in lemma 1.

At this point, we relax the assumption A6 with the following Theorem 4, by stating
that the above two theorems still apply even if the target time series is not a sink node,
but instead none of its descendants belongs in its candidate causes.

Theorem 4 (Theorems 2a and 3 still apply). Given the target time series Y and the
candidate causes X, assuming A1 - A9, if the target Y is not a sink node, but, instead,
none of each direct or indirect descendants belongs in X: DEG

Y 6∈X, then Theorem 2a and
3 still apply. That means the conditions of Theorem 2a are still sufficient for identifying
direct and indirect causes, and conditions of Theorem 3 are still necessary for identifying
all the direct unconfounded causes in single-lag dependencies.

Proof. The proof of Theorem 2a applies without changes. Regarding Theorem 3 Assume
that the direct path X i

t → Yt+wi exists and it is unconfounded. Then, condition 1 of
Theorem 3 is true. Now assume that condition 2 of Theorem 3 does not hold. This
would mean that the set {Si,X i

t ,Yt+wi−1} does not d-separate X i
t−1 and Yt+wi . (Recall

that a path p is said to be d-separated by a set of nodes in Z if and only if p contains
a chain or a fork such that the middle node is in Z, or if p contains a collider such that
neither the middle node nor any of its descendants are in the Z.) Hence, a violation of
condition 2 would imply that (a) there is some middle node or descendant of a collider
in {Si,X i

t ,Yt+wi−1} and no non-collider node in this path belongs to this set, or (b) that
there is a collider-free path between X i

t−1 and Yt+wi that does not contain any node in
{Si,X i

t ,Yt+wi−1}.

(A) There is some middle node or descendant of a collider in {Si,X i
t ,Yt+wi−1} and

no non-collider node in this path belongs to this set ⇒ the proof given in 8.3.5
remains unaffected if all DEG

Y 6∈X, because any collider D or descendent of collider
between some X j

t and Yt+wi will be unobserved, therefore will not be possible to
belong in the conditioning set {Si,X i

t ,Yt+wi−1}.
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(B) There is a collider-free path between X i
t−1 and Yt+wi that does not contain any node

in {Si,X i
t ,Yt+wi−1} ⇒ the proof given in 8.3.5 remains unaffected.

Using the condition in Lemma 1 via LASSO regression and the two conditions in
Theorems 2a/2b and 3 we build an algorithm to identify direct and indirect causes on time
series. The input is a 2D array X (candidate time series) and a vector Y (target), and the
output a set with indices of the time series that were identified as causes. The complexity
of our algorithm is O(n) for n candidate time series, assuming constant execution time
for the conditional independence test.

Algorithm 2: SyPI Algorithm for Theorems 2a/2b and 3.
Input: X,Y .
Output: causes of R
nvars = shape(X,1); causes of R= []
w = min lags(X,Y )
for i = 1 to nvars do

Si =
nvars⋃

j=1, j 6=i
{X j

t+w[i]−w[ j]−1}

pvalue1 = cond ind test(X i
t ,Yt+w[i], [Si,Yt+w[i]−1])

if pvalue1 < threshold1 then
pvalue2 = cond ind test(X i

t−1,Yt+w[i], [Si,X i
t ,Yt+w[i]−1])

if pvalue2 > threshold2 then
causes of R = [causes of R,X i

t ]
end

end
end

8.4 Experiments

8.4.1 Simulated experiments: time series construction
To test our method, we build simulated full time graphs with a varying number of hidden
variables, respecting the aforementioned assumptions. We sample 100 random graphs
for the following tuples of hyperparameters: (# samples, # hidden variables, # observed
variables, density of edges between candidate time series, density of edges between time
series and target series, noise variance). Then we report the false positive (FPR) and
false negative rates (FNR) for the 100 graphs. The values that are tested for each hyper-
parameter in the tuple are the following: # samples ∈ (500,1000,2000,3000), # hidden
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variables ∈ (0,1,2), # observed variables ∈ (1,2,3,4,5,6,7,8), Bernoulli(p) existence
of edge between candidate time series ∈ (0.1,0.15,0.2,0.25), Bernoulli(p) existence of
edge between candidate time series and target series ∈ (0.1,0.2,0.3) and noise variance
∈ (10%,20%,30%). To construct the time series, every time step is calculated as the
weighted sum of the previous step of all the incoming time series with the previous step
of the current time series. The weights between two time series are either set to zero or
they are drawn from a uniform distribution in the range [0.7,0.95] (this way we prevent
too weak edges, which would result in almost non-faithfulness distributions that render
the problem of detecting causes impossible).

The two conditional independence tests are calculated with partial correlation, since
our simulations are linear, but there is no restriction for non-linear systems (see extension
in 8.6.2). For the “lag” calculation step of our method, we use LASSO in a bivariate form
between each node in X in the summary graph and Y (for the non-linear case LASSO
could be replaced with a non-linear regressor). After some exploratory search across
different values for the regularization parameter and the threshold on the coefficients of
this step, we conclude that for regularization λ = 0.001 and any threshold in the region
0.1 to 0.15 for the returned coefficients of LASSO, the results are mostly stable. Thus,
we fixed these two parameters once before running the experiments, without re-adjusting
them for the different types of graphs.

All the aforementioned experiments were implemented with unique direct lag of 1.
Although our theory is complete against false negatives only for single-lag dependencies,
we wanted to test the performance of SyPI in the graphs with multiple lags. Therefore
we examined the performance for four and five observed, one additional hidden and one
target time series, for two, three and four coexisting lag direct effects. We decide for the
existence of a lag sampling from a Bernoulli distribution with p = 0.5.

SyPI vs LASSO-Granger

For the final part of our simulated experiments, we compare our algorithm to LASSO-
Granger (Arnold et al., 2007) for two hidden and three, four and five observed time
series. SyPI operates with two thresholds for the p values of the two tests, one (thresh-
old1) for rejecting independence in the first condition, and a second (threshold2) for
accepting dependency in the second condition. LASSO-Granger (Arnold et al., 2007)
operates with one hyper-parameter: the regularization parameter λ . To ensure a fair
comparison of the two methods, we tuned the λ regularizer for LASSO-Granger (not our
method) to allow for at least the same FNR as our method, for the same type of graphs.
For all the aforementioned experiments apart from the comparison of the two methods,
we used threshold1= 0.01 and threshold2= 0.2. Finally, we produced ROC curves for
the two methods as follows: for LASSO-Granger, we varied the λ parameter across
{0.00001,0.0001,0.001,0.0025,0.005,0.01, 0.025,0.05, 0.1,0.5,0.6,0.7,0.8,0.9}. For
our method (SyPI), we varied only threshold1 and threshold2, keeping their ratio equal
to 1, using values in {0.01,0.02, . . . ,0.12}. Note that in our simulations we allow for
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cycles among the candidate time series, as long as they do not include the target node.

SyPI vs seqICP and PCMCI

We performed ten experiments with twenty random graphs each, with two to six observed
and one to two hidden series, for sample size 2000 and medium density. For our method
we kept the same thresholds, as we defined above: threshold1= 0.01 and threshold2=
0.2.

8.4.2 Experiments on real-data
Finally, we examine the performance of SyPI on real data, where there is no guarantee
that the required assumptions hold true. The official records of dairy product prices in
Europe are used (EU, 2019) (data provided in Appendix B). In this datasets, the product
’Butter’ was assigned as the target variable. According to the manufacturing process of
dairy products, as described in Soliman and Mashhour (2011), the source material for
butter production is ’Raw Milk’. Moreover, according to the same source, butter is not
used as an ingredient for the other dairy products in the list. Thus, we can hypothesize
that the direct cause of the Butter prices is the price of Raw Milk, and that the remaining
nodes in the graph (other cheese, WMP, SMP, Whey Powder) do not cause butter’s price.
We examine three countries, two of which provide data for the “Raw Milk” (Germany
’DE’ (8 time series) and Ireland ’IE’ (6 time series)) and one for which the “Raw Milk”
prices are not provided (United Kingdom ’UK’ (4 time series)). This last dataset was
selected on purpose, as this could represent a realistic scenario of a hidden confounder.
In this latter case, our method must not identify any cause in the dataset. Due to the
extremely low sample sizes (< 180) that are provided, the identification of dependencies
is particularly hard. For this reason, we adjust the threshold on the lag detector at zero
and the threshold1 at 0.05 for accepting dependence in the first condition. We leave
anything else unchanged as in the simulation experiments.

8.5 Results

8.5.1 FPR and FNR for various densities and graph size
First, we wanted to examine the performance of our method for various density of edges
among the candidate series, and between the candidates and the target time series (see
8.4.1). In Figure 8.3a-8.2c we present results for a medium noise level (20%) and for
sample sizes 500, 1000, 2000 and 3000. Above sample size 500 the results are similar for
larger or smaller noise levels (see Section B.2 in Appendix B). Lacking space, we present
results for one, four and eight observed time series, one additional hidden and one target,
to show how the graph size affects the rates. With red colour in each cell we present the
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percentage of the FNR that corresponds to the direct causes that were missed since our
method is complete for direct only. Since our claims refer to complete conditions for
unconfounded direct causes, we also encounter as false positives the confounded direct
causes. Overall, we see that our algorithm performs with almost zero FPR independent
of the noise, the density or the size of the graphs. FNR are low for the direct causes
starting from 16% for small and sparse graphs and not exceeding 45% for very large and
dense graphs.

(a)

(b)
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(c)

Figure 8.2: FPR and FNR for varying numbers of observed, 1 additional hidden and 1
target series, for different sample size (columns) and sparsity of edges among the candi-
date causes (x-axis) and between the candidate causes and the target (y-axis). The total
FNR (for indirect and direct causes) is depicted by the gray scale, where black means 0%
and white means 100%. The FNR that refers to the direct causes (for which our method
is proven to be complete) is written in red in the middle of each cell. (a) 1 observed time
series. The FPR are practically zero, and the total FNR 20% for dense graphs. Notice
that the FNR of the direct causes is always low, starting from just 16% for dense up to
26% for sparse graphs. (b) 4 observed time series. As we can see, for sample sizes > 500
the FPR remain practically zero, and the FNR for direct causes 22% for sparse and 45%
for dense graphs. (c) 8 observed time series. For sample sizes > 500 the FPR still remain
practically zero. The FNR of the direct causes is just 31% for sparse graphs and up to
38% for large and very dense ones.

The results for different number of observed time series and noises are presented in
the supplementary B.2.

8.5.2 FPR and FNR for varying # of hidden nodes

Figure 8.3 presents the behaviour of our algorithm in moderately dense graphs, for 2000
sample size, 20% noise variance and a varying number of hidden variables. As it can
be seen, the false positive rate is close to zero, independent of the number of hidden
variables. Although the false negative rate that refers to both direct and indirect causes
increases with the number of time series, the percentage that corresponds to direct causes
ranges just from 30 to 40%. Results are similar for different densities of edges (see
subsection B.2.2 in Appendix B).
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Figure 8.3: FPR and FNR for different number of coexisitng lags. Notice that the FPR is
very low as expected by Theorem 2a/2b. Since our method is complete only for single-
lag dependencies, we notice that the FNR both for direct causes (dashed lines) for which
our method is complete, and for indirect causes increases.

Figure 8.3: FPR and FNR for varying numbers of hidden and observed series, noise
variance and sample size 2000, for moderate edge density. FPR is very low (max 1.2%
for high noise) for any number of hidden series. Notice that although the total FNR
increases with the graph size, the FNR for the direct causes (dashed lines), for which our
method is complete, does not exceed 40%.

8.5.3 FPR and FNR for “multiple-lag dependencies”

We examine the false positive and false negative rates for varying number of lags be-
tween pairs of time series. To test that, we vary the Bernoulli probability that defines the
existence of an edge between the time series (p1= {0.1,0.2, 0.3,0.4})), and between the
time series and the target (p2 = {0.1,0.2,0.3,0.4})). We fix the sample size at 2000, the
noise variance at 20%, for two, three and four lags. We examine the above combination
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for a moderate density of graphs with one hidden, one target and five observed time se-
ries. As depicted in Figure 8.3, our method seems to perform very well in terms of FPR,
independent of the number of coexisting lags among the time series. As the proposed
method is complete only for single-lag dependencies, a larger number of missed targets
is expected in multiple-lag settings. However, we see that the FNR that refer to direct
causes only does not exceed 40%.

8.5.4 Comparison against LASSO-Granger causality

Figure 8.4: Comparison of our method against LASSO-Granger, for sample size 2000,
2 hidden variables, 20% noise variance, for varying number of observed time series and
sparsity of edges. As we can see, we tuned the regulariser for the LASSO-Granger to
achive similar FNR for similar graphs as SyPI. Nevertheless, SyPI still performs with
lower or equal FNR and with a stable almost zero FPR. In contrast, LASSO-Granger
reaches up to 16% FPR. Not tuning λ for LASSO-Granger led to even larger FPR.

Figure 8.5: Yellow: ROC curve of LASSO-Granger for different values of the λ param-
eter. Red: ROC curve of our method for different values of threshold1 and threshold2
with fixed ratio of 1. The ROC curves were calculated over 100 random graphs, for dif-
ferent density of edges (three columns) and a moderate number of observed series with
additional two hidden ones. Our method’s ROC curve is always above the Granger’s
ROC.

As a final step, we compare the performance of SyPI against the widely used LASSO-
Granger algorithm. We test the performance of the two methods for relatively dense
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graphs, for two hidden, one target and three, four and five observed time series. Figure
8.4 shows that even in such confounded graphs, SyPI always performs with almost zero
FPR, while LASSO-Granger yields up to 16%, for similar or even larger FNR. Finally,
Figure 8.5 depicts the ROC curve for the performance of SyPI and LASSO-Granger for
the same graphs. Since SyPI consists of two conditions and, as such, two p-values, we
did not manage to find logical pairs of thresholds that increase further the FPR. As it can
be seen, SyPI outperforms LASSO-Granger at all operating points.

8.5.5 Comparison against seqICP and PCMCI

As it can be seen in figure 8.6, our method SyPI outperforms both methods for all type
of full time graphs, yielding FPR < 1.5% and FNR between 20% and 40%. SeqICP
yielded up to 12% FPR and around 95% FNR for almost all the graphs. This result is not
surprising, as with hidden confounders seqICP will detect only a subset of the ancestors
AN(Y)), and in addition, it assumes that interventions exist in the input dataset. PCMCI
yielded up to 25% FPR and oscillated around 25% FNR. In terms of performance times,
SyPI was the fastest, followed by PCMCI; seqICP was rather slow for more than 5 time
series.

Figure 8.6: Comparison of SyPI against seqICP and PCMCI, for the same full time
graphs. False positive and false negative rates are reported over 20 random graphs of
similar type (# observed, # hidden time series) for each of the 10 types. Our method
SyPI outperforms both methods, with FPR < 1.5% and FNR 20−40%. SeqICP yielded
12% FPR and 95% FNR (this is not surprising, as with hidden confounders seqICP will
detect only a subset of the ancestors AN(Y)). PCMCI yielded 25%4 FPR with 25% FNR.
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8.5.6 Experiments on real data: Dairy product prices

We applied our algorithm on datasets with the prices of the dairy products in Europe.
More specifically, we used the datasets for ’DE’ (8 time series), ’IE’ (6 time series) and
’UK’ (6 time series). The sample sizes were 178, 113 and 168 accordingly. Data are
depicted in figure 8.6.

SyPI successfully identified ’Raw Milk’ as the direct cause of ’Butter’ in the ’IE’
dataset and correctly rejected all the remaining 4 nodes (100 % TPR, 100% TNR). In
the ’DE’ dataset, ’Raw Milk’ was also correctly identified and there was only one false
positive (’Edam’); all the remaining 6 nodes were successfully rejected (100 % TPR and
84% TNR). Notably, in the ’UK’ dataset where no measurements for ’Raw Milk’ prices
were provided (hidden confounder), SyPI did not identify any cause (100% TNR).

(a) Dairy product prices for Germany. Raw Milk prices provided in the dataset.

(b) Dairy product prices for Ireland. Raw Milk prices provided in the dataset.
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(c) Dairy product prices for the United Kingdom. Notice that Raw Milk prices are no provided in the
dataset. This dataset was on purpose selected, as it would represent a realistic case of a hidden confounder
between butter and the rest dairy products.

Figure 8.6: Dairy product prices provided by the EU for a span of 8.5-14.5 years (one
price recording per month). Here we provide the ground truth time-series from the dairy
product prices for each of the three countries ’DE’, ’IE’ and ’UK’. For UK Raw Milk
prices are not provided.

8.6 Discussion

8.6.1 Efficient conditioning set in terms of minimum asymptotic
variance

In contrast to other approaches, our method does not search over a large set of possible
combinations to identify the right conditioning sets. Instead, for each potential cause X i

it directly constructs its ‘separating set’ for the nodes X i
t−1 and Yt+wi (condition 2), from

a pre-processing step that identifies (Si) the nodes of the time series that enter Yt+wi−1.
Therefore, the resulting set {Si,Yt+wi−1,X i

t } contains covariates that enter the outcome
node Yt+wi , and not the potential cause X i

t−1. Adjustment sets that include parents of
the potential cause node are considered inefficient in terms of asymptotic variance of the
causal effect estimate (Henckel et al., 2019), as they can reduce the variance of the cause
if they are strongly correlated with it, and thus reduce the signal. On the other hand,
adding nodes that explain variance in the outcome node can contribute to a better signal
to noise ratio for the dependences under consideration. According to Theorem 3.1. of
(Henckel et al., 2019) our conditioning set yields a more accurate causal effect estimate,
compared to a set that would include incoming nodes to X i

t−1 or X i
t . Therefore, our set

could strengthen the statistical outcome of the conditional independence test.
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8.6.2 Linear and non-linear systems

The proposed method can be used for both linear and non-linear relationships among
the time series. For the linear case a partial correlation test is sufficient to examine the
conditional dependencies. The algorithm can easily be adapted for the non-linear case,
with the KCI (Zhang et al., 2012), KCIPT (Doran et al., 2014) or FCIT (Chalupka et al.,
2018) test for the conditional independence testing.

8.6.3 Comparison with related work

Pfister et al. (2019) also aim at causal feature selection. However, their method (seqICP)
requires sufficient interventions in the dataset, which are required to affect only the in-
put and not the target. In the presence of hidden confounders, seqICP will detect only
a subset of the ancestors of target Y , and only if the dataset contains sufficient interven-
tions on the predictors. Given the assumptions presented in Section 8.3.3, we proved
that our method will detect all the parents of Y (not only a subset), even in the pres-
ence of latent confounders, without requiring interventions in the dataset. Our method’s
complexity (O(n)) is also smaller than seqICP (O(n logn)). A method with a greater
goal - that of full graph causal discovery - which however could easily be adjusted for
our narrower goal is PCMCI by Runge et al. (2019a). Nevertheless, PCMCI relies on
causal sufficiency, which is often violated in real datasets. As shown in Figure 8.6, our
method outperforms both seqICP and PCMCI. Finally, a method that focuses on the full
graph causal discovery on time series is SVAR-FCI by Malinsky and Spirtes (2018b).
Although our method focuses on the narrower goal of causal feature selection, and there
is no direct way of comparison between the two methods, it is still worth mentioning
some techincal differences on a high level. SVAR-FCI is computationally intensive be-
cause it performs exhaustive conditional independence tests for all lags and conditioning
sets. On the contrary, SyPI calculates in advance both the lag and the conditioning set
for each conditional independence. Therefore SyPI significantly reduces the required
statistical testing.

8.6.4 Technical assumptions of SyPI

Although our technical assumptions are many, we do not consider them extreme, given
the hardness of the problem of hidden confounding. (Entner and Hoyer, 2010b) or (Ma-
linsky and Spirtes, 2018b) do not need these assumptions, as they exhaustively perform
CI tests for all lags and time series. Assumptions A7 and A8 assure that X are time
series with dependency from their previous time step. By assuming memoryless hidden
confounders (A9), we avoid the problem that auto-lag hidden confounders create by in-
ducing infinite-lag associations; a case in which also (Malinsky and Spirtes, 2018b) do
not find causal relationships as stated there.
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8.6.5 Multiple-lag effects
Although our algorithm performs equally well in terms of false positive rate in simu-
lations with “multiple-lag dependencies”, our theory is necessary only for “single-lag
dependencies” (see T10). We could allow for “multiple-lag dependencies” if we were
willing to condition on larger sets of nodes. However, we do not find this acceptable for
statistical reasons. For the conditioning sets of the proposed conditions, we require one
node the most, from each observed time series. In a naive extension for multiple lags, n
coexisting time lags would require n nodes from each time series to be added in the con-
ditioning set, but the theory is getting cumbersome. As a future work, in Section 9.2.2 in
Chapter 9 we show how only in the multi-lag bivariate case (one candidate, one target),
with memoryless hidden confounders, it is still possible to have sufficient and necessary
conditions, subject to some extensions in the theory.

8.7 Conclusion
In this chapter, we presented necessary and sufficient conditions for a time series to
causally influence a target one, even when causal sufficiency is violated, subject to some
connectivity assumptions that we impose on the full time graph, which seemed hard to
avoid. Other methods that are based on similar ideas as the FCI algorithm are often unre-
liable, because they require multiple testing and large conditioning sets. On the contrary,
the proposed method restrict the problem to the narrower task of the causal feature selec-
tion, with the advantage that it requires only two conditional independence tests per can-
didate cause, with a relatively small conditioning set. SyPI is the first complete and sound
algorithm (subject to appropriate graphical assumptions) for direct causal feature selec-
tion in time series, that does not require causal sufficiency. Therefore, it overcomes the
shortcomings of the widely used Granger Causality. Our simulated experiments demon-
strated that for varying graph size and densities, SyPI outperforms LASSO-Granger,
seqICP and PCMCI. Finally, in experiments on real data SyPI yielded almost 100% TPR
and TNR, despite the potential violation of our assumptions and the low sample size.
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Chapter 9

Conclusions & Future work

9.1 Conclusions

Trying to infer causal relationships among real observations has always been a charac-
teristic of human thinking and behaviour. Since the science of Causal Inference was
founded, 50 years ago, this procedure of construction of causal statements based on ob-
servational data has been formalised with theorems and methods that impose conditions,
in order to infer the existence and the direction of causal relationships. Such a task is
especially hard, when based on observations alone, due to the hidden confounding fac-
tor, which is particularly prominent in real datasets. Many methods try to discover the
underlying causal graph, which can be a computationally intensive task. Furthermore,
these methods cannot differentiate among Markov equivalent classes, if additional as-
sumptions are not imposed. This thesis focuses on the narrower, yet challenging and
non-trivial sub-problem of causal feature selection: the detection of direct and indirect
causes of a given target. Our motivation behind this sub-problem arose by the need for
detection of causal brain features for the human upper limb movements, and from the
gap that has been observed in the literature regarding techniques for causal feature selec-
tion in the presence of latent variables. Furthermore, the observed heterogeneity across
subjects’ behavioural response to brain stimulation protocols revealed a need for person-
alisation of brain stimulation targets and a lack of a systematic causal detection method,
that could causally relate the activity of the human motor cortex to the observed motor
performance.

This dissertation, through electrophysiological and non-invasive brain stimulation ex-
periments on humans, as well as through novel theoretical methods for causal feature
selection, contributes in a twofold manner in the scientific community: First, via the
incremental neuroscientific findings that help in the better understanding of the function-
ality of human motor cortex, and, second, via two novel causal feature selection methods
from observational data, for independent and sequential data, which tackle problems that
occur in causal inference on real datasets.

Overall, the work presented in this thesis aims to emphasize the caution that someone
should practise when making causal claims and proposing causal methods for complex
systems, like the human brain.
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9.1.1 Neuroscientific findings

At first, a transfer-learning-based pipeline is proposed in order to build “personalised”
regression models that relate the global configuration of EEG rhythms to motor per-
formance, using only a few trials. These single-trial predictive models showed initial
evidence for considerable heterogeneity in the activity of motor cortex across different
subjects, during similar 3D-reaching movements. This heterogeneity was found to be in
accordance with the observed variability in response to non-invasive brain stimulation,
over the contralateral motor cortex. Our findings further support this line of argument by
evidencing a substantial heterogeneity amongst subjects: Features in the alpha, beta, and
gamma range, used by the predictors, turn out to be sometimes negatively and sometimes
positively correlated with motor performance. In line with previous findings, our models
reveal the alpha, beta and (high) gamma frequency ranges as decisive for motor perfor-
mance. These initial results are an indication that a one-for-all stimulation approach is
unlikely to consistently improve motor performance. Of course, decoding models as the
ones trained in this initial study do not immediately reflect causal relationships, and as
such, they do not allow to directly read off optimal stimulation parameters for each sub-
ject (Haufe et al., 2014; Weichwald et al., 2015). Nevertheless, they do allow to reject
non-relevant and hence non-causal features. Thus, a decoding model, which is able to
predict well single-trial motor performance, is a necessary prerequisite for personalised
stimulation protocols.

Being motivated and inspired by this initially observed heterogeneity in motor cortex
activity across subjects, we proceeded with a crossover non-invasive brain stimulation
study on 20 healthy participants. We applied real 70 Hz and sham transcranial alter-
nating current stimulation over the contralateral motor cortex, during a visuo-motor 3D
reaching task, in a randomized order, in parallel with EEG recordings. Our goal was to
examine potential causes of the observed variability in the behavioural response to the
stimulation. Our findings supported a potential role of β -power as a mediator of γ-tACS
on motor performance. In particular, our empirical results were in favour of a causal
model in which β -power may mediate the effect of γ-tACS on motor performance. It
is important to stress, however, that up to this point, inference methods as applied here
cannot prove causal relationships due to the hidden confounding factor that cannot be
excluded. Nevertheless, in the context of neurophysiological procedures underlying the
effect of γ-stimulation on β -power and on the observed motor behaviour, a possible ex-
planatory factor that supports the proposed causal model could be the modulation of
γ-aminobutyric acid (GABA) concentration: Firstly, β -oscillations have been shown to
be the summed output of principal cells temporally aligned by GABAergic interneuron
rhythmicity (Yamawaki et al., 2008). GABA levels have been found to strongly cor-
relate with β -power and to exhibit elevated values in bradykinesia and in Parkinson’s
disease (McAllister et al., 2013). In addition, high-γ deep brain stimulation in motor
cortex has been reported to significantly decrease β -power (Gulberti et al., 2015). This
argument supports our finding of the inhibitory effect of γ-stimulation on the ongoing
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β -oscillations. Combining these two points, the behavioural response to γ-tACS may be
explained by a decrease of β -power and hence of GABA levels, modulated by the stim-
ulation. Therefore, it is plausible that whenever γ-tACS leads to the inhibition of human
movements, this may be caused by an increase in GABAergic drive, which hinders the
decrease of β -power.

The aforementioned encountered heterogeneity in response to tACS on this crossover
study, validated related sparse findings from other stimulation studies, pointing out one
more time the need for personalisation of brain stimulation parameters. A first step to-
wards this personalisation is the differentiation of responders and non-responders prior to
the application of stimulation treatment. Such an early screening of the non-responders
could help avoid unnecessary or even harmful stimulation treatments. To that end,
twenty-two more healthy participants were recruited, to whom the same visuo-motor
EEG/tACS experiment was performed. Resting-state high-gamma power prior to stim-
ulation was found to enable the differentiation of a newly coming subject between a
responder and a non-responder. Specifically, we demonstrated in the first experimen-
tal group that subjects’ resting-state EEG predicts their motor response (arm speed) to
gamma (70 Hz) tACS over the contralateral motor cortex. We then validated in a prospec-
tive stimulation study with the twenty-two new subjects that the proposed screening
pipeline achieves a reliable stratification of subjects into a responder and a non-responder
group. Strong resting-state γ-power over contralateral motor cortex was found to be in-
dicative of a positive stimulation response to tACS (in terms of arm speed). The finding
about the predictive role of high-gamma power is in line with our current understanding
of the neurophysiological effects of γ-tACS and the role of γ-power in fronto-parietal
networks for motor performance (Gonzalez Andino et al., 2005). The explanation is the
following: Resting-state γ-power in primary motor cortex positively correlates with γ-
aminobutyric acid (GABA) levels (Chen et al., 2014; Muthukumaraswamy et al., 2009;
Bartos et al., 2007; Wang and Buzsáki, 1996; Brunel and Wang, 2003). Because γ-tACS
over motor cortex decreases GABA levels (Nowak et al., 2017), and decreases in motor
cortex GABA levels correlate with increased motor performance (Stagg et al., 2011),
high resting-state γ-power may signal a brain state in which motor performance can be
improved through tACS-induced reduction of GABA levels. Low resting-state γ-power,
in contrast, would signal a brain state in which GABA levels are already low, thus limit-
ing the extent of potential further reduction by γ-tACS. We note that this explanation is
also in line with our finding that stimulation response is contingent on the current brain
state.

Finally, applying the novel causal inference method presented in Chapter 7 on EEG
resting state periods from the aforementioned experiments resulted in findings very much
in line with established neuroscientific conclusions. This was the first time that such
conclusions were also found through a purely causal method. More specifically, the ap-
plication of our proposed method on our EEG data gave performance-specific causes
across subjects, which are consistent with the known roles of physiological α , β and γ

brain rhythms in upper-limb movements. In particular, channels in the β power were
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found to be causal by our CFS method for subjects that did not improve their motor per-
formance. This is in line with established neuroscientific conclusions that have reported
β activity to be significantly elevated in patients with motor disorders (tremors, slowed
movements) such as Parkinson’s disease (McAllister et al., 2013; Brown, 2007; Khanna
and Carmena, 2017). Furthermore, in healthy subjects, elevated β -power has been found
to play an anti-kinetic role (Khanna and Carmena, 2017). On the other hand, our method
detected causal motor channels in the γ band, in subjects who managed to reduce their
reaching times and improved their motor performance. This appears in accordance with
the literature, as increased γ activity over the motor cortices has been suggested to be
prokinetic and has been associated with large ballistic movements (Muthukumaraswamy,
2010; Nowak et al., 2018). Finally, our detected causal channels in the ipsilateral hemi-
sphere at α-band are consistent with neurophysiological studies that report increased
α-power over ipsilateral sensorimotor cortex during selection of movement (Brinkman
et al., 2014). Although there is no ground truth for our neurophysiological results, the
findings appear plausible and meaningful, given the current understanding of the afore-
mentioned physiological brain rhythms in movement. Therefore, our method contributes
to the more precise localisation of causal cortical electrode-areas.

It is crucial to point out that there is not a one-to-one mapping between the causal brain
features detected here and the stimulation targets, as it is still unknown how the stimula-
tion current in a specific frequency entrains the ongoing brain oscillations. For example,
as it is shown and discussed in detail in Chapter 5, β -rhythms may play a mediating role
between γ stimulation and motor performance. Someone can consider the problem of
selecting personalised stimulation targets and frequencies as a two-step procedure: first,
understand the effect of stimulation on brain activity, and second, detect the link be-
tween brain activity and motor response. In the graphical chain stimulation parameters
→ brain activity→ behavioural response, the proposed causal method contributes to the
second link. Thus, it narrows the original problem of personalised stimulation to the new
question: stimulation parameters→ detected causal brain activity. Hence, the search for
personalised stimulation parameters can now be reduced to the detection of those that up-
or down-modulate accordingly, the causal brain features which our algorithm identifies.

9.1.2 Theoretical contributions & Methods
The theoretical contributions of this thesis focus on the field of causal feature selection,
both from independent random variable settings and from sequential data.

In Chapter 7 a novel causal feature selection method for independent random variables
was presented. Given a pool of features and a target random variable, we proved that
assuming a cause of each feature is known, a single conditional independence test with a
single conditioning variable is sufficient to identify the target’s direct and indirect causes,
even in the presence of latent confounders. This assumption can naturally be met in
set-ups where two nodes constitute consecutive timestamps of a variable’s state in a
system, and an edge from the previous to the present state can be assumed. With one

120



9.2 Future work

targeted conditional independence test per variable and only one conditioning variable,
the complexity of the algorithm scales linearly with the number of features, substantially
strengthening the statistical power of our tests, and allowing us for a weaker assumption
of faithfulness. Excluding the assumption of causal sufficiency and speeding up the
process of causal feature selection are two key points that facilitate the application of
causal inference on real datasets.

Causal feature selection in time series data is a fundamental problem in several fields,
when the causes of a time series of interest (i.e. revenue, temperature) need to be iden-
tified, while latent variables cannot be excluded. In Chapter 8 a novel causal feature
selection method for sequential data was presented. Two theorems were proposed and it
was proved that their conditions are necessary for direct causes in single-lag dependency
graphs, even in the presence of latent variables, and sufficient for direct and indirect
causes in multi-lag dependency graphs. To the best of our knowledge, this novel causal
method (SyPI) is the first complete and sound algorithm (subject to appropriate graph-
ical assumptions) for direct causal feature selection in time series that does not assume
causal sufficiency, thus overcoming the shortcomings of Granger Causality and the state
of the art methods. In contrast to approaches inspired by conditional independence based
algorithms for causal discovery, SyPI directly constructs the ‘adjustment set’ for each po-
tential cause X i, from a pre-processing step that identifies the nodes of the time series
that enter the previous node of the target Yt+wi . Therefore, the resulting conditioning
set contains covariates that enter the outcome node Yt+wi−1, and not the potential cause
X i

t−1. According to Henckel et al. (2019) the proposed conditioning set has a smaller
asymptotic variance compared to a set that would include incoming nodes to the candi-
date causes X i

t−1 or X i
t . Therefore, this choice also contributes to a reasonable signal to

noise ratio for the dependences under consideration. This could strengthen the statistical
outcome of the conditional independence test.

9.1.3 Experimental datasets
During the experimental work presented in Chapters 5 and 6, we recorded an extended
dataset with EEG recordings from 41 healthy participants, during a visuomotor reaching
task in a crossover study, with alternating blocks of real and sham tACS applied over the
contralater motor cortex of the subjects. In parallel, the coordinates of the arm trajectory
were also recorded. This dataset will become public to the scientific community, respect-
ing all the personal data according to the DSGVO regulations, aiming at contributing in
shortening the lack of open real datasets.

9.2 Future work
The methods and neuroscientific contributions presented in this dissertation can become
the basis for improvements in future work that can bring personalised brain stimulation a
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step closer to its realization. We split the possible directions of future work into (a) new
stimulation experiments, and (b) methodological, technical extensions.

9.2.1 New stimulation experiments
More specifically, the findings in Chapter 7 that were derived by the proposed causal
method, can be validated in a prospective stimulation study, under the guidance of a
trained doctor that can exclude potentially harmful stimulation targets, which due to
ethical reasons should not be tested on humans. Such experiments would be priceless for
the validation of our methods, but at the same time could become dangerous for humans,
as they include an exploratory procedure on the human brain. In general, ground truth in
the human brain is a particularly hard thing to derive, and the closest possible approach is
through brain stimulation. Furthermore, the second causal method for time series that is
presented in Chapter 8 can be applied in neuroscientific data, preferably from intracranial
recordings for less noise and better focality, to examine directly the causal role of brain
time series in different frequencies and areas in continuous response signals.

9.2.2 Methodological technical extensions
Here we propose some possible extensions on the novel causal feature selection method
SyPI proposed in Chapter 8.

Expansion of SyPI for multiple lags

The conditions of the proposed theorems in Section 8.3 are necessary only for “single-
lag dependencies” (see T10). We could allow for “multiple-lag dependencies” if we were
willing to condition on larger sets of nodes, which we do not find acceptable for statistical
reasons. Right now we require one node the most from each observed time series for the
conditioning set. In a naive approach, n coexisting time lags would require n nodes from
each time series in the conditioning set, but the theory is getting cumbersome.

The reason why our conditions are not necessary for “multiple-lag dependencies” is
the difficulty in identifying just one lag from each time series to look at and to add
in the conditioning set. If we did not put a lot of weight on keeping the conditioning
set to a minimum size for assuring a decent statistical strength, we could still construct
a conditioning set with as many nodes per time series as the multiple lags and have
necessary conditions. In single-lag effects we describe why a single node from each time-
series is necessary and sufficient and we show why this single lag can be the minimum
lag as defined in 1. Without making any strong claims about the multi-lag case as it is
out of the scope of this thesis, the following point could be used as a basis for extension:
If we use the following condition, instead of the one defined in lemma 1, as max(v) 6=
inf s.t. At 6⊥⊥ Bt+v | {Apast(t),Afuture(t),Bpast(t+v),Bfuture(t+v)}, then in the bivariate case
described below it is enough to use the maximum integer v as the wi in the theorems
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and still have necessary and sufficient conditions. Only in a bivariate (2 observed series)
full-time graph with one candidate time series and one target time series, where hidden
confounders are memoryless and with unique lag, given the above condition, max v as
defined could be enough for differentiating between the time series causing the target
with multiple lags and the time-series being confounded. If a node X i

t has a direct edge
both to Yt+1 and Yt+2, then the “maximum” v would be equal to 2. If we used this as wi
in our conditions then, Yt+wi ≡ Yt+2. Then conditioning on X i

t , which is wi steps back,
and on Yt+1 ≡ Yt+wi−1, would render X i

t−1 and Yt+wi independent, so the two conditions
of our theorems would hold. Of course this extension does not hold beyond the bivariate
case.

Therefore, future work could potentially expand the proposed conditions of Theorems
2a/2b and 3 or modify the way the conditioning set is built, in order to account for
multiple-lag dependencies in multi-variate settings.

Expansion of SyPI for non-linear relationships

A straightforward extension that should be made as a future work, is the identification
of the lag for non-linear causal mechanisms. In Chapter 8 we take into account linear
relationships and we use Lasso-Granger to identify the lag between pairs of time series.
An easy and important extension is to use a non-linear version of Granger Causality for
the lag-identification step.

Less assumptions for the target variable

Finally, a direction that could become a topic of future work is the modification of the
necessary conditions of Theorem 3 so that they do not require any connectivity restriction
regarding the target, such as A6, or such as the relaxed one we propose in Theorem 4. In
Theorem 4 we relaxed the strict assumption A6 that required the target not to have any
descendants of its own, by proving that Theorems 2a/2b and 3 still hold true, if none of
the targets’ descendants belongs to its candidate causes. Although this already relaxes
the connectivity restrictions, further work could be done in the direction of allowing the
target node to have similar properties as the candidates. Assuming that the target does
not cause any of its candidate causes, basically, reassures that there are no cycles in
the summary graph. Our method is tolerant in cycles among the candidate causes alone,
which means that even so, it will still detect all and only all the direct causes. However, it
will no longer be complete if there are cycles that include nodes of the target time series,
which is the reason for the aforementioned assumptions. Getting rid of this restriction
and still maintaining necessary conditions is still an open question, which will definitely
require at least modifications in the way that the conditioning set is constructed.
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Appendix A

Supplementary material for chapter 7

A.1 Sufficient but not necessary

We present an example where both direct causes are rejected. In this example although
both M1 and M2 nodes are causes of R, both are rejected. P1 and R are not d-separated
by M1 due to the path including P2 and M2 or because M1 acts as a collider. On the other
hand, P2 and R are not d-separated by M2 due to the path including P1 and M1.

P1 M1

R

P2 M2

Figure A.1: Example of DAG where causes are rejected because our theorem is sufficient
but not necessary. Here, if all direct edges are equally strong, then both M1 and M2 are
not identified by our theorem, due to the confounding path formed by the P variables.

A.2 Detected causal features for all subjects - Grouping
based on motor performance

Here we present the detected causes for all subjects we processed with our causal method.
In total, our algorithm detected causal brain features in seventeen out of twenty-one
subjects. Our findings group subjects in three main categories that couple detected causes
with subject’s performance: those that γ power is detected when subjects improve their
performance (Figure A.3), those that β power is detected when subjects worsen or do
not improve their performance (Figure A.2), and finally those that α power is detected
in the ipsilateral hemisphere (Figure A.4).
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Figure A.2
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A.2 Detected causal features for all subjects - Grouping based on motor performance

ID

(c)

ID

(d)

Figure A.2: Electrodes over contralateral motor cortex in the beta power at subjects that
remain stable or worsen during the reaching trial, are detected as causal features from
our algorithm. Y-axis is in logarithmic scale.

Figure A.2 depicts the subjects that did not improve their movement duration through-
out the sequence of reaching trials or who got worse (larger durations for completing
the trial). We observe that our algorithm detects causes over motor channels in the beta
range (second headplot), which is consistent with the literature findings about the pre-
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dominant role of beta power in slow or unstable movements. In addition, we observe that
among these subjects, for those who in general had performances better than the average,
our algorithm detects also some electrodes in the gamma range (fourth headplot), which
complies with the facilitatory role of gamma from the literature.

ID

(a)

ID

(b)

Figure A.3
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Figure A.3
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Figure A.3
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Figure A.3
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ID

(i)

Figure A.3: Electrodes over contralateral motor cortex in the low and high gamma power
at subjects that improve their reaching movement duration over the trials, are detected as
causal features from our algorithm. Y-axis is in logarithmic scale.

Figure A.3 depicts the subjects that improved their movement, decreasing the duration
of their reaching movements throughout the sequence of the trials. We observe that our
algorithm detects causes over motor channels in the gamma range (3rd and 4th headplot),
which is in accordance with the facilitatory role of cortical gamma power in motor per-
formance. For subjects whose average performance is far below the median performance
despite their improvement, also some electrodes in beta range arise.

Figure A.4 depicts the subjects for who our algorithm detected causes over ipsilateral
motor channels in the alpha range (1st headplot). For subject JJ, who slightly improves
her duration times towards the end, gamma power also arises as a causal feature on the
contralateral motor cortex. Finally on subject HG, channels both on contralateral and
ipsilateral cortex were detected as causal. Our causal findings in the ipsilateral motor
cortex at α-band are consistent with neurophysiological studies that report evidence of
increased α-band power over ipsilateral sensorimotor cortex during selection of move-
ment Brinkman et al. (2014). Yet, no association of alpha power and arm speed has been
reported.
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Figure A.4
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Figure A.4: Electrodes mainly over ipsilateral motor cortex in the alpha power, are de-
tected as causal features from our algorithm in some subjects. Y-axis is in logarithmic
scale.

134



A.2 Detected causal features for all subjects - Grouping based on motor performance

ID

(a)

ID

(b)

Figure A.5: For subjects AA and KL with very slight improvement of reaching move-
ments either in the middle or in the end of the experiment, our algorithm detected one
electrode at the gamma range. Y-axis is in logarithmic scale.

Finally in Figure A.5, for subjects AA and KL with very slight improvement of reach-
ing times, which they don’t manage to maintain, our algorithm detected one electrode at
the gamma range, which may imply again the facilitatory role of gamma, which however
is not strong enough to result in improved times.
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Supplementary material for chapter 8

B.1 Proof of lemmas 1, 2
Lemma 1. If the paths between X j and Y are directed then the minimum lag w j as defined
in T9 coincides with the minimum non-negative integer w′j for which X j

t 6⊥⊥Yt+w′j
| X j

past(t).

The only case where w′j 6≡ w j is when there is a confounding path between X j and Y that
contains a node from a third time series with memory. In this case w′j = 0.

Proof. This is obvious by the fact that in the first two cases and when a memoryless
confounder exists in the path X j

t - - -Yt+w′j
, the path does not contain horizontal arrows of

the type Qr
s→ Qr

s+1.

Lemma 2. Theorems 2a/2b and 3 are valid if the minimum lag w j as defined in T9 is
replaced with w′j obtained in lemma 1.

Proof. Claims of theorem 2a/2b remain unaffected because the conditions of theorem
2a/2b hold for any lag according to remark 1. According to lemma 1 the only occasion
that the minimum non-negative integer w′j identified by its simple condition, does not
coincide with the minimum lag w j of the definition in T9 is when there exist confounding
paths X j

t - - -Yt+w j in which the confounder or any intermediate node in the path has
memory. In this case w′j will always be 0. If the confounder in the paths is hidden, then,
due to assumption A9 it will be memoryless. In this case the w′j will coincide with the
minimum lag and therefore according to the proof of theorem 3 the appropriate node of
X j will be in the conditioning set and no cause will be rejected. Therefore, it is enough
to show that theorem 3 is valid using w′j = 0 when there is an observed confounder in the
path.

Assume that condition (2) is violated. Then this will mean that the set {X i
t ,S

i,Yt+wi−1}
does not d-separate X i

t−1 and Yt+wi . This would mean that there is a path X i
t−1 - - -

Yt+wi in which one of the elements of this set is a collider or descendent of collider and
there is no non-collider node in the conditioning set. The proof for the cases (a1), (a2),
(a4) and (b) remain the same for the proof of theorem 3. Assume that X j

t+wi j′−1 is a
collider and no non-collider node in the path belong to the conditioning set. However
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the observed common causes of X j
t+wi j′−1 and Yt+wi−1 are always in the path. Because

all these observed common causes are connected via a directed path with Yt+wi−1, their
minimum lag will be correctly identified and so by construction they will be added in the
conditioning set. This contradicts the statement “and there is no non-collider node in the
path that belongs in the conditioning set”. Therefore, we showed that condition (2), thus
theorem 3 is not violated.

B.2 Additional results for simulations with varying noise
levels, # observed and hidden time-series

For completeness, here we provide results for all the different number of observed time
series that were tested during the simulations.

In practice for our simulations where our models are linear with weights < 1 we as-
sume that a shorter indirect edge will have a stronger indirect effect compared to a longer
indirect edge. Therefore, we assume that the minimum integer that corresponds to the
shortest lag between X i and Y will also correspond to the maximum coefficient given by
the LASSO regression.

B.2.1 FPR and FNR for various densities
Here we provide additional heatmaps for all the noise variance levels and for all various
number of observed time series that were simulated, for one hidden time series. The false
positive and false negative rates are calculated over 100 random graphs created for each
combination tested here.

Overall, the noise in the data does not seem to affect the results for sample sizes
≥ 1000. The false positive rate (FPR) is constantly close to zero for sample size > 500,
and is not affected by the density and the size of the graph. The total false negative rate
that refers to both direct and indirect missed causes (FNR) seem to gradually increase
with the size and the density of the graph. On the other hand, the FNR that refers to
the direct causes, for which we proved that our method is complete and sound, does not
increase above 50% in very dense and large simulated graphs.
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B.2 Additional results for simulations with varying noise levels, # observed and hidden time-series

Results for low noise (0.1 noise variance):

(a) 1 observed, 1 hidden and 1 target time-series, for low noise (variance 0.1).

(b) 2 observed, 1 hidden and 1 target time-series, for low noise (variance 0.1).

(c) 3 observed, 1 hidden and 1 target time-series, for low noise (variance 0.1).

Figure B.1
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(d) 4 observed, 1 hidden and 1 target time-series, for low noise (variance 0.1).

(e) 5 observed, 1 hidden and 1 target time-series, for low noise (variance 0.1).

(f) 6 observed, 1 hidden and 1 target time-series, for low noise (variance 0.1).

Figure B.1
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B.2 Additional results for simulations with varying noise levels, # observed and hidden time-series

(g) 7 observed, 1 hidden and 1 target time-series, for low noise (variance 0.1).

(h) 8 observed, 1 hidden and 1 target time-series, for low noise (variance 0.1).

Figure B.1: FPR and FNR for low noise, various observed, 1 additional hidden and 1
additional target time-series, for different sample size (columns) and sparsity of edges
among the candidate causes (x-axis) and between the candidate causes and the target
(y-axis). The total FNR (for indirect and direct causes) is depicted by the heatmap color.
The FNR that refers to the direct causes (for which our method is proved to be complete)
is depicted with red in the middle of each cell. Overall we see tat for sample size above
500 the false positives are very low and they keep decreasing as the number of examples
increase. False negatives for both direct and indirect causes increase with the number of
nodes and the density of the graph, however the FNR that refers only to the direct causes
for which our method provides necessary conditions (red coloured numbers) ranges just
from 12% up to 52% for dense large graphs.
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Results for medium noise (0.2 noise variance):

(a) 1 observed, 1 hidden and 1 target time-series, for medium noise (variance 0.2).

(b) 2 observed, 1 hidden and 1 target time-series, for medium noise (variance 0.2).

(c) 3 observed, 1 hidden and 1 target time-series, for medium noise (variance 0.2).

Figure B.2
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B.2 Additional results for simulations with varying noise levels, # observed and hidden time-series

(d) 4 observed, 1 hidden and 1 target time-series, for medium noise (variance 0.2).

(e) 5 observed, 1 hidden and 1 target time-series, for medium noise (variance 0.2).

(f) 6 observed, 1 hidden and 1 target time-series, for medium noise (variance 0.2).

Figure B.2
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(g) 7 observed, 1 hidden and 1 target time-series, for medium noise (variance 0.2).

(h) 8 observed, 1 hidden and 1 target time-series, for medium noise (variance 0.2).

Figure B.2: FPR and FNR for medium noise, various observed, 1 additional hidden and
1 additional target time-series, for different sample size (columns) and sparsity of edges
among the candidate causes (x-axis) and between the candidate causes and the target
(y-axis). Similar to the rest of the noise levels, the total FNR (for indirect and direct
causes) is depicted by the heatmap color. The FNR that refers to the direct causes (for
which our method is proved to be complete) is depicted with red in the middle of each
cell. Overall we see tat for sample size above 500 the false positives are very low and
they keep decreasing as the number of examples increase. False negatives for both direct
and indirect causes increases with the number of nodes and the density of the graph,
however the FNR that refers only to the direct causes for which our method provides
necessary conditions (red coloured numbers) ranges just from 15% up to 52% for dense
large graphs.
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B.2 Additional results for simulations with varying noise levels, # observed and hidden time-series

Results for high noise (0.3 noise variance):

(a) 1 observed, 1 hidden and 1 target time-series, for high noise (variance 0.3).

(b) 2 observed, 1 hidden and 1 target time-series, for high noise (variance 0.3).

(c) 3 observed, 1 hidden and 1 target time-series, for high noise (variance 0.3).

Figure B.3
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(d) 4 observed, 1 hidden and 1 target time-series, for high noise (variance 0.3).

(e) 5 observed, 1 hidden and 1 target time-series, for high noise (variance 0.3).

(f) 6 observed, 1 hidden and 1 target time-series, for high noise (variance 0.3).

Figure B.3
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B.2 Additional results for simulations with varying noise levels, # observed and hidden time-series

(g) 7 observed, 1 hidden and 1 target time-series, for high noise (variance 0.3).

(h) 8 observed, 1 hidden and 1 target time-series, for high noise (variance 0.3).

Figure B.3: FPR and FNR for high noise, various observed, 1 additional hidden and 1
additional target time-series, for different sample size (columns) and sparsity of edges
among the candidate causes (x-axis) and between the candidate causes and the target
(y-axis). Similar to the rest of the noise levels, the total FNR (for indirect and direct
causes) is depicted by the heatmap color. The FNR that refers to the direct causes (for
which our method is proved to be complete) is depicted with red in the middle of each
cell. Overall we see tat for sample size above 500 the false positives are very low and
they keep decreasing as the number of examples increase. False negatives for both direct
and indirect causes increases with the number of nodes and the density of the graph,
however the FNR that refers only to the direct causes for which our method provides
necessary conditions (red coloured numbers) ranges just from 11% up to 51% for dense
large graphs.
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B.2.2 FPR and FNR with varing number of hidden variables and
various densities

In the presence of zero hidden variables our method has practically 0 false positives,
which reaches up to 0.7% for large noise, which again is practically zero.

Figure B.4: FPR and FNR for various number of hidden and observed series, noise vari-
ance and sample size 2000, for sparse edges among the X and Y (0.1, 0.1). As we can
see, FPR is very low (max 1%) for any number of hidden series. Although the total FNR
is gradually increasing with the graph size, notice that the FNR that corresponds to direct
causes (dashed lines, for which our method is complete) does not exceed 35%.

Figure B.5: FPR and FNR for various number of hidden and observed series, noise vari-
ance and sample size 2000, for dense edges among the X and Y (0.3, 0.3). As we can
see, FPR remains very low (max 1.5% for high noise) for any number of hidden series.
Although the total FNR is gradually increasing with the graph size, notice that the FNR
that corresponds to direct causes (dashed lines, for which our method is complete) does
not exceed 45%.
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H.-J., Reiser, M., and Padberg, F. (2011). Prefrontal transcranial direct current stim-
ulation changes connectivity of resting-state networks during fmri. Journal of Neuro-
science, 31(43), 15284–15293.

Khanna, P. and Carmena, J. M. (2017). Beta band oscillations in motor cortex reflect
neural population signals that delay movement onset. Elife, 6, e24573.

Kiers, L., Cros, D., Chiappa, K., and Fang, J. (1993). Variability of motor potentials
evoked by transcranial magnetic stimulation. Electroencephalography and Clinical
Neurophysiology/Evoked Potentials Section, 89(6), 415–423.

Koller, D. and Friedman, N. (2009). Probabilistic graphical models: principles and
techniques. MIT press.

Kong, R., Li, J., Orban, C., Sabuncu, M. R., Liu, H., Schaefer, A., Sun, N., Zuo, X.-N.,
Holmes, A. J., Eickhoff, S. B., et al. (2019). Spatial topography of individual-specific
cortical networks predicts human cognition, personality, and emotion. Cerebral cor-
tex, 29(6), 2533–2551.

Korb, K. B., Hope, L. R., Nicholson, A. E., and Axnick, K. (2004). Varieties of causal
intervention. In Pacific Rim International Conference on Artificial Intelligence, pages
322–331. Springer.

Krause, M. R., Vieira, P. G., Csorba, B. A., Pilly, P. K., and Pack, C. C. (2019). Tran-
scranial alternating current stimulation entrains single-neuron activity in the primate
brain. Proceedings of the National Academy of Sciences, 116(12), 5747–5755.

Kropotov, J. D. (2010a). Quantitative EEG, event-related potentials and neurotherapy,
pages 77–95. Academic Press.

Kropotov, J. D. (2010b). Quantitative EEG, event-related potentials and neurotherapy,
pages 59–76. Academic Press.

Kropotov, J. D. (2016a). Functional neuromarkers for psychiatry: Applications for di-
agnosis and treatment, pages 89–105. Academic Press.

Kropotov, J. D. (2016b). Functional neuromarkers for psychiatry: Applications for di-
agnosis and treatment, pages 291–321. Academic Press.

Kryger, M. H., Roth, T., Dement, W. C., et al. (2017). Principles and practice of sleep
medicine, pages 335–347. Elsevier.

158



Bibliography

Kwakkel, G., Kollen, B. J., van der Grond, J., and Prevo, A. J. (2003). Probability of
regaining dexterity in the flaccid upper limb: impact of severity of paresis and time
since onset in acute stroke. Stroke, 34(9), 2181–2186.

Lafon, B., Henin, S., Huang, Y., Friedman, D., Melloni, L., Thesen, T., Doyle, W.,
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Strüber, D., Rach, S., Neuling, T., and Herrmann, C. S. (2015). On the possible role
of stimulation duration for after-effects of transcranial alternating current stimulation.
Frontiers in cellular neuroscience, 9, 311.

Swaiman, K. F., Ashwal, S., Ferriero, D. M., Schor, N. F., Finkel, R. S., Gropman,
A. L., Pearl, P. L., and Shevell, M. (2017). Swaiman’s Pediatric Neurology E-Book:
Principles and Practice, pages 87–96. Elsevier Health Sciences.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1), 267–288.

Tortella, G., ML Selingardi, P., L Moreno, M., P Veronezi, B., and R Brunoni, A. (2014).
Does non-invasive brain stimulation improve cognition in major depressive disorder?
a systematic review. CNS & Neurological Disorders-Drug Targets (Formerly Current
Drug Targets-CNS & Neurological Disorders), 13(10), 1759–1769.

166



Bibliography

Triccas, L. T., Burridge, J., Hughes, A., Pickering, R., Desikan, M., Rothwell, J., and
Verheyden, G. (2016). Multiple sessions of transcranial direct current stimulation
and upper extremity rehabilitation in stroke: a review and meta-analysis. Clinical
Neurophysiology, 127(1), 946–955.

Tsamardinos, I. and Aliferis, C. F. (2003). Towards principled feature selection: rele-
vancy, filters and wrappers. In AISTATS.

Tsamardinos, I., Brown, L. E., and Aliferis, C. F. (2006). The max-min hill-climbing
bayesian network structure learning algorithm. Machine learning, 65(1), 31–78.

Tu, R., Zhang, C., Ackermann, P., Mohan, K., Glymour, C., Kjellström, H., and
Zhang, K. (2018). Causal discovery in the presence of missing data. arXiv preprint
arXiv:1807.04010.

Turlach, B. A. (1993). Bandwidth selection in kernel density estimation: A review. In
CORE and Institut de Statistique. Citeseer.
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Vosskuhl, J., Strüber, D., and Herrmann, C. S. (2018). Non-invasive brain stimulation: a
paradigm shift in understanding brain oscillations. Frontiers in human neuroscience,
12, 211.

Voti, P. L., Conte, A., Suppa, A., Iezzi, E., Bologna, M., Aniello, M., Defazio, G.,
Rothwell, J., and Berardelli, A. (2011). Correlation between cortical plasticity, motor
learning and bdnf genotype in healthy subjects. Experimental brain research, 212(1),
91–99.

Wach, C., Krause, V., Moliadze, V., Paulus, W., Schnitzler, A., and Pollok, B. (2013).
Effects of 10 hz and 20 hz transcranial alternating current stimulation (tacs) on motor
functions and motor cortical excitability. Behavioural brain research, 241, 1–6.

167



Bibliography
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Wang, X.-J. and Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a
hippocampal interneuronal network model. Journal of neuroscience, 16(20), 6402–
6413.
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