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1 Abbreviations 
 

AAV – Adeno-associated Virus 

ACAID – Anterior-chamber-associated Immune deviation 

AMD – Age related Macular Degeneration 

a-MSH – a-melanocyte stimulating hormone 

APC – Antigen presenting cell 

CGRP – calcitonin gene-related peptide 

EAU – Experimental autoimmune uveoretinitis 

EMA – European Medical Agency 

FC – Fold change 

GFAP – Glial fibrillary acidic protein 

GFP – Green fluorescent protein 

INF – interferon  

ITR – inverted terminal repeat 

LCA – Lebers Congenital Amaurosis 

NHP – non human primate 

NK cell – natural killer cell 

NKT cell – natural killer T cell 

NOD – nucleotide-binding oligomerization domain 

OCT – optical coherence tomography 

PAMP – pathogen-associated molecular pattern 

PE cell – pigment epithelium cell 

PFA - paraformaldehyde 

PRR – pattern recognition receptors 

RIG – retinoic acid inducible gene 1 

RP – Retinits Pigmentosa 

TGFb - transforming growth factor b 

TSP - thrombospondin 

VIP – vasoactive intestinal peptide 

XLRS – X-linked retinoschisis
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2 Introduction 
 

 

 Aim of the study 
 

Adeno-associated viral vector (AAV) have established themselves as powerful tools for 

retinal gene therapy. Multiple clinical trials have shown that AAV mediated gene 

therapies can be safely administered to the subretinal space, efficiently deliver the 

therapeutic gene to the cells of the retina and ultimately improve the visual function of 

the patient. 

The safety of the AAV mediated ocular gene therapy has been attributed to the non-

immunogenic properties of AAV and the special anti-inflammatory mechanisms that 

constitute the immune privilege of the eye. 

This assumption is recently being challenged by an increasing number of clinical trials 

reporting cases of intraocular inflammation following AAV mediated gene therapy 

treatment. These findings suggest that the immune privilege mechanisms of the eye can 

be overstressed and evoke the question whether the immunogenic potential of AAV has 

been underestimated. Although the inflammation was in most cases manageable under 

steroid treatment, in some cases the local immune response not only impaired the 

treatment effect but lead to a decline of visual function of the patient1, 2.  

Preventing these serious adverse events is of highest interest to patients and researches 

alike. To do this, a profound understanding of the immune response is essential. However, 

although the ocular immune privilege has been studied intensively, many questions 

remain unanswered and little is known about how the retinal immune system reacts upon 

the contact with AAV. It is unclear which part of the vector particle leads to inflammation, 

how the vector is sensed by the innate immunity and which cells are involved in the 

immune reaction.  

It was therefore the aim of this dissertation to shed a light on the mechanisms of the ocular 

immune response to subretinal AAV8. 

To elucidate the mechanisms involved in AAV immunity, we used the data and the 

material of a study that was primarily designed as a good laboratory practice (GLP) 

conform toxicology and biodistribution study for an investigational new drug (IND) 

application with the national competent authority (Paul Ehrlich Institute). Data from 
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nonhuman primates that were treated with different doses of subretinal und intravitreal 

AAV8 were compared to clinical data from three patients treated with the same vector. 

In order to approach different aspects of AAV immunity, several assays were used: 

Systemic humoral immunity was assessed by capsid-antigen ELISA and the local 

immune response was investigated by immunohistochemistry. To study the local immune 

response on a molecular level, an expression profile of whole retinal tissue was 

conducted. This gene assay included receptor molecules as well as downstream proteins 

of the different signaling pathways.  

In this study we present data suggesting that AAV8 is sensed by innate antiviral receptors 

and activates immune competent cells of the innate and adaptive immune system in the 

retina. This study will guide future investigators in conducting studies to enhance safety 

and efficacy of AAV vector mediated gene therapies.  

 

 

 Gene therapy overview and short history 
 

The general concept of gene therapy is to deliver a therapeutic nucleic acid into a target 

cell in order to treat the genetic condition that is causing the disease.  

This concept promises a very elegant treatment solution for many genetic diseases. 

Moreover, it offers a one-shot treatment option for diseases where otherwise no treatment 

option is at hand or only extensive and time-consuming treatments are available. As 

appealing as this concept is, as many difficulties are there to face in order to develop such 

a treatment option. Challenges in gene therapy are the immune response to foreign bodies 

like viral vectors, the (limited) transduction efficiency, the (limited) specificity to the 

target cells and the need for a long-lasting treatment effect.  

These multiple obstacles require a spectrum of different approaches comprised in the term 

“gene therapy”.  

For example, gene therapy concepts can be divided into in vivo and ex vivo concepts. In 

vivo gene therapy is a concept where vector particles are injected into the blood stream 

or directly into to the diseased tissue. In ex vivo gene therapy the target cells are treated 

in vitro and afterwards reinfused into the patient’s body.  

Other differences exist in the function of the nucleic acid. Currently, most gene therapy 

strategies in the clinical setting introduce a healthy copy of the affected gene into the 
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target cell, a strategy dubbed gene augmentation therapy. This works well for recessive 

gene mutations with a reduced or complete loss of function of the affected gene. For 

dominant or more complex genetic diseases new concepts exist that use nucleic acids for 

silencing or editing genetic expression.  

A third category by which gene therapies can be divided by is the delivery system of the 

therapeutic nucleic acid into the target cell. With respect to the delivery system, two broad 

categories exist: Nonviral physico-chemical approaches and recombinant viral vectors. 

Viral vectors like AAV are currently the most popular approach and account for more 

than two thirds of all gene therapy trials today.3 The popularity of viral vectors derives 

from their superior stability and efficacy in transducing target cells compared to nonviral 

vectors. The most commonly used viral vectors are adenoviral, retroviral and adeno-

associated viral vectors (AAV).3 Synthetical nonviral vectors, on the other side, offer 

lower risk of immunogenicity, no risk of mutagenesis, easier synthesis and greater 

capacities in packaging large molecules.4 Nonviral vectors are most often naked plasmids 

or less often liposomal molecules.  

All these different approaches have evolved in a period of around 40 years5. The 

translation to patient care came in 1990 when the FDA approved the first viral vector 

mediated gene therapy trial in humans. Two children with adenosine desaminase 

deficiency (ADA-SCID) were treated effectively and without severe adverse effects with 

a retroviral vector.6 

The euphoria that these results created led to an expansion of the field. In the following 

years trials followed for other primary immune deficiencies7, for lipoprotein-lipase-

deficiency8, hemophilia B9 and Beta-hemoglobinopathy.10 By 2018, 2300 gene therapy 

trials have been completed, are ongoing or approved worldwide.3 The first commercially 

available gene therapy was approved for therapy by the EMA in 2012: an AAV based 

gene therapy for lipoprotein-lipase-deficiency, called Glybera, was the first gene therapy 

that made the way from bench to bedside.11  

However, the optimism of the field was also repeatedly dampened by disappointing 

clinical trial results. The following 2 events of uncontrolled immune responses and 

carcinogenesis were major setbacks in gene therapy development.  

10 years after the FDA had approved the therapy for ADA-SCID, another study using a 

retroviral vector for a similar disease, X-linked severe combined immunodeficiency 
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(SCID-X1) was enrolled and initially presented sustained correction of the 

immunodeficiency. In the 2-year follow-up though, the group had to report that the risk 

of insertional mutagenesis by the retroviral vector had been underestimated and 2 out of 

the 10 treated children had developed a leukemia-like syndrome.12  

In a similar way, the risk of viral vectors eliciting a vigorous immune response was 

underestimated with tragic effects, when the 18-year-old patient Jesse Gelsinger died of 

systemic inflammatory response syndrome after adenoviral (AdV) gene transfer.13  

These examples illustrate the importance of further research to ensure safety in viral 

vector mediated gene therapy development. Although recombinant AAV (rAAV) carries 

a dramatically decreased risk of insertional mutagenesis than retroviral vectors and is less 

immunogenic than adenovirus (AdV) the broad use of rAAV in multiple clinical studies 

and accumulating reports of inflammatory responses1, 2 highlight the relevance of this 

research area. 

 

 

  Ocular gene therapy  
 

The eye has been at the forefront of gene therapy development for the following reasons: 

a) for blinding disorders like inherited retinal degenerations no or only insufficient 

medical treatment is at hand b) the eye as a bilateral organ offers a perfect internal control 

and is easily accessible for therapeutics and diagnostics c) the eye is immune-privileged, 

described first by Medawar in 194814 and therefore regarded as a relatively safe space to 

administer a foreign body like a virus.  

The need for treatment options for inherited retinal degenerations is highlighted by the 

fact that, although the individual diseases are quite rare, as a group of disorders they affect 

over 2 million people worldwide.15 In contrast to multigenic and multifactorial diseases 

like AMD, inherited retinal diseases are of monogenetic origin and therefore the optimal 

basis for gene replacement therapies. Another precondition for the advancement of ocular 

gene therapy development was the pace of scientific discovery of the underlying genetic 

mechanisms, made possible by the enormous technical development in genetic 

sequencing. In 1990, for the first time a point mutation in the rhodopsin gene for a form 

of retinitis pigmentosa (RP) was described.16 Today the number of genes known to cause 

retinal diseases has risen to over 300 (RetNet: https://sph.uth.edu/retnet/) 
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Targeted monogenetic diseases include Leber’s congenital amaurosis (LCA), 

Choroideremia, Achromatopsia, juvenile X-linked Retinoschisis, Stargardt disease, and 

other forms of RP.17 

Since all of these diseases affect the retina, basically two different options exist for the 

application of ocular gene therapies: The vector solution can either be delivered to the 

retina by a subretinal or an intravitreal injection. For the subretinal delivery, a pars plana 

vitrectomy is performed, followed by the injection of around 200µl of volume into the 

subretinal space where a small bleb is created by the injection. The intravitreal injection 

on the other side is performed like the common intravitreal injection of medications for 

diseases like AMD. However, it was shown in the animal model that when cells of the 

outer retina are targeted, intravitreal injections are not as successful in restoring retinal 

function.18 As reviewed by Gupta et al.17, with one exception, all active and completed 

gene therapy trials for retinal degeneration by the end of 2017, used the subretinal 

approach.  

The advantage of the subretinal approach is the intraoperatively vision-guided selection 

of treatment area and the proximity of vector solution to RPE and outer retina. 

Nevertheless, subretinal injections are the more complicated procedure with the inherent 

risks of temporary retinal detachment19. Complications like a macular hole formation, 

unresolved retinal detachment, choroidal effusions and the loss of foveal thickness have 

been described by the RPE65 trials20-22. Methods like the two-step procedure originally 

described by Bainbridge et al.23, or intraoperative OCT24 help to minimize the trauma of 

subretinal injections. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Gene therapy application through pars-plana injection into A the subretinal space between 

photoreceptors and the RPE and B into the intravitreal cavity.  

Figure from Ochakovski et al.25 
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The first promising results for retinal gene therapy came from the RPE65 studies targeting 

Leber’s congenital amaurosis (LCA). This condition was first described by Theodor 

Leber in the 19th century as a severe blinding disorder that accounts for 5% of all inherited 

retinal dystrophies. The mutation in the gene RPE65 was identified in humans suffering 

of LCA in 199726. Veske et al.27 discovered only two years later that the blinded Briard 

dog28 was also carrying a mutation in the canine homologue of RPE65. After it had been 

demonstrated that the Rpe65 mutated Briard dog could effectively be treated with an 

AAV2 virus carrying the healthy RPE65 gene18, in 2008 three groups published initial 

reports of clinical trials in LCA patients using the same strategy. While functional gain 

in the treated patients was limited, no serious adverse events or systemic side effects were 

observed. 20, 22, 23, 29 The excitement that these results provoked gave the basis for future 

studies to follow. The scientific progress culminated in the first phase 3 study being 

successfully completed in 2017 and the approval of the first ocular gene therapeutic 

product for LCA by the FDA in 2018.30 

However, the long-term follow-up of the LCA patients1, 21, 31 also revealed the challenges 

of ocular gene therapies. Major challenges are efficacy and the longevity of the effect. 

The immune response was in general mild and manageable and will be discussed in more 

detail in the section “Immune response to AAV”. In terms of efficacy the results 

somewhat varied. Whereas one group could report a gain in visual acuity for up to three 

years32, the other groups could not show beneficial treatment effects in visual acuity but 

improved outcome measures of retinal sensitivity like microperimetry or pupillary 

responses1, 21. Concerning the longevity of effect, in the long-term follow up, the 

observation was made by several groups, that although function can be improved after 

injection, the degeneration of the retina is not necessarily abated and continues over the 

following years.1, 33, 34 Functional benefits were found to decline after 4.5-6 years34.  

When looking into new target genes, a more general challenge of gene therapy which is 

not restricted to diseases of the eye, are the limitations imposed by the gene itself. The 

clinical trials of today rely on gene replacement of a nonfunctional protein. In cases where 

a mutation leads to a truncated protein with a negative effect on the functional protein, 

simple gene augmentation or replacement strategies may be insufficient. Here, new 

techniques of genome editing come into play that might be able to provide a solution for 

the treatment of these mutations in the future.  
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Secondly, the selection of target genes is limited through the packaging size of the 

delivery system. The AAV capsid is able to accommodate a 4.7kb genome. Techniques 

to overcome this problem are the use of viral vectors with larger capacity like lentiviruses, 

the minimization of promotors35 or the simultaneous co-transduction with dual AAVs36 

with the aim of homologous recombination of overlapping nucleotide sequences. 

 

 

   Adeno-associated virus as vector 
 

In order to introduce DNA into the host cell, the DNA molecule has to be protected from 

degradation before reaching the cell, then cross the cell membrane and escape the cells 

internal defense mechanisms to successfully advance into the cell nucleus. Synthetic 

nonviral particles are able to effectively transfect cells in-vitro but show minor efficiency 

in in-vivo experiments. Viruses, like AAV, have evolutionally perfected their capability 

to introduce their genome into the host cell over millions of years and are therefore 

regarded as highly effective and promising vectors for gene therapy.37 

AAV was discovered in 1965 as a virus particle that can be found in the presence of an 

adenovirus but is itself replication defective.38, 39 Because of its dependency on 

adenovirus to replicate, it was titled Adeno-associated virus. AAV belongs to the family 

of Parvoviridae, has a small non-enveloped icosahedral capsid and is about 25nm in 

diameter. In the last 50 years AAV became more and more experimentally characterized: 

different serotypes were identified40, the 4.7 kb ssDNA was identified as the genome of 

AAV41 and the two palindromic sequences flanking the genome, called inverted terminal 

repeats (ITR), were identified as the origin of genome replication.42-44 Apart from the 

ITRs, the wildtype AAV genome encodes for four proteins required for replication called 

Rep Proteins, three capsid proteins (VP1-3) and the assembly-activating protein (AAP)45. 

In the absence of Adenovirus, AAV can persist in the cell in a latent stage.46 This 

discovery led to the idea for the use of AAV in gene therapy. 

For gene therapy the Rep and Cap genes are removed from the AAV genome and replaced 

by what is called a “transgene expression cassette” flanked only by the ITRs on each 

side.47 The transgene expression cassette contains a promotor sequence and the open 

reading frame defined by the transgene. The selection of the promotor is carefully done 
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by the investigator, as the expression varies according to the different host cell types and 

its size impacts on the space left for the therapeutic gene.  

A common production process for a recombinant AAV vector is to transfect HEK293 

cells with three plasmids, one containing the transgene expression cassette flanked by the 

ITRs, one containing the rep and cap genes and another plasmid containing genes from 

adenovirus necessary for replication. 

The cap genes define the capsid protein structure and the resulting serotype. The 

definition of a unique serotype is a virus that cannot be recognized by neutralizing 

antibodies generated against another serotype of the virus.48 Pioneering work for the use 

of AAV in gene therapy was done with the serotype 2.49 

Until today at least 13 different serotypes have been described and each of these serotypes 

presents a specific cell tropism.50 The serotype can be purposefully selected to enhance 

transduction efficiency in the target cells. For example, AAV2, is very efficient in 

transducing RPE cells of the retina, a reasons for which it is used by the initial ocular 

gene therapy trials for RPE65 - LCA.51 When targeting photoreceptors though, at least in 

the monkey retina, AAV8 for example was shown to be superior to AAV2.51  

Further on, the efficiency and the tissue tropism can be enhanced by combining the 

genome from one serotype with the capsid from another, a process called 

“pseudotyping”.52, 53 Pseudotyped vector AAV2/5 for example is composed of the 

genome from AAV2 and the capsid from AAV5 and has been found to be very specific 

to the outer nuclear layer of the human retina.54  

The uptake of AAV into the cells is mediated by various receptor molecules. The first to 

be described was heparan sulfat proteoglycan. This membrane-bound glycan facilitates 

the uptake of AAV255. Different glycans were found to be responsible for other serotypes 

and various co-receptors were described.56 In 2016 a universal AAV receptor (AAVR) 

was identified to serve multiple serotypes.57 The relationship between all these receptors 

remains unknown.56 After binding, AAV is internalized by endocytosis. This can happen 

in a clathrin-dependent or -independent manner58, 59.  

In the next step, endosomal escape is mediated by endosomal processing that involves 

conformational changes where the N-terminal domains of the VP1 and VP2 capsid 

protein are externalized.60, 61 The complete vector particle then passes the nucleus 

membrane, followed by uncoating and genome release.62  
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Once in the nucleus the genome uses the host cells translational machinery to produce the 

viral proteins or in the case of rAAV, the transgenic protein. This process does not 

demand an integration into the host cells genome. Only approximately 0.1% of wild type 

AAV genomes integrate63, 64, whereas the rest persists as double stranded episomal 

concatamers.65 This integration rate is much lower in case of recombinant AAV particles 

utilized for clinical gene therapy as explained below.  

In the case of dividing target cells, non-integration constitutes the disadvantage of 

genomic dilution as each daughter cell only inherits half of the non-integrated transgene 

copies. At the same time, lack of integration reduces the risk of mutagenic insertions. All 

available data show that the carcinogenic potential of recombinant AAV is extremely 

low, but is probably not zero. It is known that wildtype AAV integrates preferably on the 

AAVS1 site on chromosome 19 by an active Rep binding element of AAVS163, 64. 

Recombinant AAV vectors, which are not provided with the Rep gene, can not integrate 

via the Rep binding element of AAVS1 but are able to integrate via non-homologous 

integration at sites of DNA damage or very specifically at homologous locations66. It has 

been shown in the mouse model that in some situations recombinant AAV can induce 

hepatocellular carcinoma by integrational mutagenesis, although this has never been 

observed in other animal models or humans67.  

 

 

  Innate and adaptive immune response 
 

Our immune system is a complex network of different defence mechanisms against 

pathogenic organisms like viruses, bacteria, fungi and parasites. Two broad categories of 

defence lines can be theoretically distinguished from another although they interact over 

multiple ways.  

The innate immune response acts quickly, non-specific and does not generate 

immunological memory. It consists of anatomical barriers, antimicrobial proteins, the 

complement system and non-specific immune cells. The cells, mostly from the myeloid 

lineage, comprise macrophages, granulocytes, mast cells and dendritic cells. They are 

important sensor cells that express pattern recognition receptors (PRRs) which recognize 

foreign structures on the molecular surface of invading pathogens, also called pathogen-

associated molecular patterns (PAMPs). Members of the PRRs are the transmembrane 
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proteins like the Toll-like receptors (TLRs) that sense extracellular or endo-vesicular 

foreign pathogens, or cytoplasmic proteins like the retinoic acid inducible gene 1 (RIG)-

like and the nucleotide-binding oligomerization domain (NOD) -like receptors which 

have the ability to detect intracellular invasion of pathogens. The recognition of PAMPs 

by the PRRs leads over various signalling pathways to the activation of NFkB (nuclear 

factor kB) and interferon regulatory factors (IRFs) which are essential for the release of 

mediators like pro-inflammatory cytokines and chemokines. Cytokines are a way of 

communication between different immune cells and a connecting element to the adaptive 

immune response. Chemokines act as chemoattractants, guiding cells from the 

bloodstream to the infected tissue. Viral infection induces the production of cytokines 

called interferons (INF). Interferons can be distinguished into Type 1 (INF-a, INF-b) and 

Type 2 (INF-g). Type 1 Interferons are released by many cell types after viral infection 

and lead to the induction of antiviral host cell activity, increased MHC class I expression 

and antigen presentation, activation of dendritic cells, macrophages and NK-cells. The 

antiviral host cell activity is mediated by Interferon-stimulated genes (ISG). Known 

antiviral ISGs are for example the Mx protein, which sequesters viral ribonucleoproteins, 

the proteinkinase R, which inhibits viral protein translation and OAS proteins that 

degrade viral RNA via the activation of Rnase L68.  

The presentation of viral antigens via MHC class I makes the infected cells susceptible to 

being killed by CD8 cytotoxic T cells of the adaptive immune response. 

The adaptive immune response needs time to develop but is more efficient in eliminating 

a specific pathogen and has the ability to establish immunological memory.  

When an antigen is presented for the second time, the immunological memory allows the 

adaptive immune response to launch a much faster immune response. The adaptive 

immune response consists of antigen-specific lymphocytes. Two major different types of 

lymphocytes exist: B- and T-Lymphocytes. B-lymphocytes or B cells will proliferate and 

differentiate into antibody - producing Plasma cells after contact with their antigen. When 

a T-lymphocyte or T cell recognizes its specific antigen, the T cell will proliferate and 

differentiate into different effector subtypes, like cytotoxic T cells (CD8 positive), helper 

T cells (CD4 positive) and regulatory T cells. Cytotoxic T cells kill infected host cells, 

helper T cells support other immune cells like antibody producing B cells and regulatory 

T cells are able to suppress the activity of other immune cells. The CD4 T helper cell can 
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further by divided into Th1 and Th2 cells. Th1 cells can be characterized by the 

production of INF-g whereas Th2 cells mainly produce IL4 und 5. INF-g, also produced 

by NK-cells and cytotoxic CD8 T cells is responsible for the classical activation of 

macrophages and is able to increase the expression of and the antigen presentation via 

MHC Class I and II.  
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   Immune response of the eye 
 

An immune response in the eye can be especially deleterious to the important sensory 

function of vision, as it can lead to opacities in any of the transparent structures or induce 

irreparable injury to the non-dividing cells of the retina. For this reason, the human body 

has developed a complex array of immune mechanisms that protect the eye against 

pathogens without intense and destructive inflammation. Structures like the cornea and 

lens are therefore poorly vascularized, lymphatic drainage of the eye is limited and the 

blood ocular barrier is preventing unselective exchange of molecules.  

The blood ocular barrier features two components: the blood – aqueous barrier and the 

blood-retina barrier. The blood -aqueous barrier is formed by the non-pigmented layer of 

the ciliary body epithelium (PE) and by the endothelium of irideal capillaries.69 The 

blood-retinal barrier is divided into the inner blood retina barrier, made up of adherens- 

and tight-junctions between the endothelial cells of the capillaries and the outer blood 

retina barrier composed of similar junctions between the RPE cells.70 

Apart from these anatomical features, the eye has been found to exhibit a special down-

regulatory immune environment. Peter Medawar who observed prolonged survival of 

tissue grafts placed into the anterior chamber of the eye was the first to describe this 

immune privilege.14 The so called Anterior-chamber-associated Immune deviation 

(ACAID) was later extended to the intravitreal and subretinal space as well71, 72. The 

mechanisms that constitute this privileged immune response include anti-inflammatory 

molecules and immune suppressive cells.  

The ocular-splenic axis of the ACAID involves antigen presenting cells (APCs) that leave 

the eye despite the absence of draining lymphatics and circulate to the spleen where 

specific tolerance against the presented antigen is induced. Once arrived in the spleen, the 

APCs, together with joining natural killer T cells (NKT cells) and B cells orchestrate the 

deviant systemic immune response by inducing antigen specific regulatory T cells. The 

regulatory T cells (Treg), positive for CD25 and FoxP3, can be of the CD4 “afferent” or 

the CD8 “efferent” type. They suppress the induction of a Th1 and Th2 cell response and 

inhibit B cells from switching to complement binding immunoglobulin isotypes. The 

delayed-type hypersensitivity (DTH) reaction to the introduced antigen is supressed. 

Locally, an intraocular immunosuppressive microenvironment of TGF-b2, a-MSH, VIP, 

TSP, CGRP and MIF promotes the immune privilege by modulating the T cells into Treg 
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cells, preventing T cells to secrete INF-g, suppress NK cell function and inhibit the 

production of nitric oxide by activated macrophages73. 

Ocular resident cells like PE cells of the iris or the retina possess the ability to actively 

convert effector T cells into regulatory T cells via the secretion of TGF-b2, TSP and 

cytotoxic T-lymphocyte-associated antigen 2a (CTLA2a)74. 

Beside the soluble immunosuppressive factors, membrane bound CD95L or FasL is 

expressed on all parenchymal cells in the eye and triggers the death of invading immune 

cells75.  

Despite these mechanisms there seems to be a difference between the intravitreal and the 

subretinal space in terms of antigen presentation to the host immune system that favours 

the subretinal space: Preclinical NHP  studies with AAV mediated gene therapy for AMD 

and Leber’s hereditary optic neuropathy have shown that intravitreal administered vector 

solutions can lead to mild and moderate inflammation at dose (2.4 x10^10 vg/ml) that is 

relatively low when compared to doses given in subretinal studies76. Secondly, animal 

studies in mice and NHP have shown that successful intravitreal or subretinal re-

administration of vector is blocked by NABs after initial intravitreal but not after 

subretinal application77, 78.  

 

 

 Immune response to rAAV  
 

Generally, AAV is considered to be well-tolerable. In contrast to Adenovirus, which was 

also tested for retinal gene therapy but given up for its immunogenicity79, AAV has been 

safely administered to the human subretinal space in various clinical trials.  

Although epidemiological studies have shown that depending on serotype and country 

30-80% of the population have been in natural contact with the ubiquitous virus AAV80, 

the wtAAV has never been associated with any disease.  

On the other hand, recombinant AAV vectors are known to be sensed by the innate 

immune system and have been observed to elicit adaptive humoral and cellular immune 

responses capable of inhibiting successful therapy. The immunogenicity of rAAV is 

hence controversially discussed. Many confounding factors contribute to the complexity 

of the question.  
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First, although nearly identical, the recombinant vector AAV is not the same as the 

wtAAV. Devoid of the capability to replicate and produce its normal viral capsid proteins, 

both of which are triggers of anti-viral immune responses, it is very likely that the immune 

response against rAAV has its own characteristics which can not be deducted from the 

immune response against wtAAV.  

Secondly, as mentioned above, our immune system is able to react differently depending 

on the place of administration of the viral vector. Some organs like the eye are 

immunologically privileged, making the comparison between studies for different target 

diseases and different application routes difficult.  

Finally, pre-clinical safety studies revealed that animal models do not perfectly predict 

the immune response to AAV in humans81. A possible explanation is the difference 

between the immune systems of rodents, larger animals or even NHP and humans. For 

example, the expansion of capsid specific T cells in humans treated with AAV for 

hemophilia B was unexpected, as it had not been observed in the pre-clinical cynomolgus 

monkey model81. This was later attributed to the difference in T cell activation. The T 

cells of humans are known to be more proliferative after activation due to the loss of 

inhibitory surface protein (SIGLEC) expression in human evolution82. 

Besides the immunogenic potential of the viral proteins, an additional question of rAAV 

immunogenicity is the role of the transgene. Principally, potential immunogenic parts of 

the AAV vector not only include the capsid epitopes but also the transgene product. 

Especially in cases of null-mutated patients, one could expect that the transgene product 

would be immunogenic to the host immune system. In the animal model this was shown 

in the case of F.IX gene replacement therapy for Hemophilia B. Cao et al. showed that 

the strength of the immune response correlated inversely with the degree of conservation 

of the endogenous F.IX coding information and thus null mutations leading to the 

strongest immune responses83.  

Luckily for the F.IX therapy development, it was also shown that hepatic gene transfer 

resulted in immunological tolerance induction which limited the transgene-directed 

immune response via Treg cells. In the eye, transgene immunity has not been reported 

making it unclear whether similar tolerance mechanisms to the transgene could play a 

role in ocular gene therapy. 
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Secondly, it is difficult to draw conclusive answers about transgene immunity from 

preclinical animal models as even in target genes which high homology, the actual 

antigenic potential of the respective protein product is usually not known. In humans, 

transgene immunity was neither observed against RPE65 in the initial LCA trials nor 

against F.IX in the hemophilia B trials84, 85.  

In order to monitor the immune response against rAAV, preclinical and clinical safety 

and efficacy studies for different target diseases have most often used the following 

assays84: 

1. The humoral immune response has been assed using a Capsid protein ELISA to 

identify seroconversion and quantity capsid-specific antibodies. Additionally, the 

Goldmann-Witmer coefficient has been used to detect site-specific antibody 

production. 

2. In vitro transduction assays in the presence of a test serum, called neutralizing 

antibody assays, have been used to functionally monitor the ability of antibodies in 

the test serum to inhibit successful transduction. 

3. Cell-mediated immunity has been examined by enzyme linked immunosorbent spot 

(ELISPOT). This assay uses the secreted cytokines like INF-g as a marker of 

activation upon antigen exposure. 

4. Flow cytometry has been used as a way of quantifying the type and level of activation 

of immune cells via CD69 expression following exposure to antigen such as AAV 

capsid proteins. 

5. Morphological changes of the tissue and infiltrating immune cells have been 

visualized in animals by histological methods. 

 

2.7.1 Immune response to rAAV in the eye 
 

For the eye, the results of the RPE65 trials for LCA provided the first patient data of 

immune responses to AAV. The results between the different groups varied a little which 

might be a reflection of the differences in vector and dose. 

The group at the University College London (UCL, Bainbridge et al.) reported that 

intraocular inflammation and immune responses had been observed in 5 out of 8 patients 

of the high dose group (1x10^12 viral genomes), but in none of the 4 patients of the low 

dose group (1x10^11 vg) within three years of follow up after gene therapy with rAAV2. 
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Findings included posterior and anterior intraocular inflammation in three patients, one 

showing also elevated neutralizing antibodies and increased circulating T-cells reactive 

to the AAV2 capsid. No one presented antibodies reactive against the RPE65 protein. 

Except for one patient, where anterior uveitis was followed by macular pigmentary 

changes and persistent reduction in visual acuity, inflammation appeared none deleterious 

and responsive to glucocorticoid treatment.1 

The group at University of Florida (Hauswirth et al.) reported that all eyes (n=6) 

recovered completely under steroid treatment and that the only adverse events were 

related to surgery. Neutralizing antibodies were observed in only two cases but 

interpreted as coincidence since other patients also showed similar titer elevations at 

timepoints where the contact with wtAAV would have been the more likely cause. T-cell 

responses to the AAV capsid were not observed.21 

The group at the University of Pennsylvania (UPenn, Maguire et al.), which has published 

a phase III clinical trial including 20 patients, also did not report any serious adverse 

events related to the test item. Only 2 patients showed signs of intraocular inflammation 

which completely resolved under steroid treatment30. INF-g ELLISPOT assays did not 

detect capsid directed T-cell responses22. The group has also been able to show that the 

re-administration of the same vector to the contralateral eye is safe and efficacious86, 87. 

Even high neutralizing antibodies at baseline had no negative effect on the efficacy of 

administration to the second eye87. Further on, this group investigated T-cell immunity 

against the RPE65 transgene product, which was found to be negative.22, 31 

One can conclude different important facts from these trials. Immune responses were 

generally benign and resolved under steroid treatment. The fact that treatment of the 

second eye is so successful suggests that no relevant adaptive immune response is formed. 

On the other side, the need for immunosuppressive treatment was evident. Ocular 

inflammation was observed in multiple cases and the loss of efficacy over time might be 

explained (in part) by immune-mediated clearing of transduced cells over time. In 

summary, the role of the immune response in ocular gene therapy remained somewhat 

unclear although the extent of its magnitude seemed limited in comparison to the immune 

response against AAV after systemic application.  
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2.7.2 Immune response to rAAV after systemic application 
 

A lot of what is known about rAAV immunity, especially cell-mediated immune 

responses, comes from trials where rAAV is delivered systemically (e.g. intravenously in 

order to transduce hepatocytes). In these trials, systemic application of rAAV elicited a 

systemic und local  (target cell population) cellular immune response, which significantly 

limited the efficacy of the therapy. 

The limitations imposed by cell-mediated immunity were first described by Manno et 

al88. They observed that the transgene expression diminished and liver enzymes rose 

approximately 4 weeks after systemic delivery of rAAV2 (expressing human factor IX). 

At the same time, capsid-specific T cells expanded88, 89. A similar study found the same 

results using an AAV8 vector and described that corticoid treatment was the most 

efficient strategy to prevent loss of transduced hepatocytes9.  

Subsequently, Pien et al. showed that capsid epitopes were presented on the cell surface 

via MHC-I class molecules, making the hepatocytes (or potentially any other transduced 

target cells) susceptible for clearance by CD8 positive T cells81. It was recently shown 

that this antigen presentation is also generated from empty capsids90. 

Some of the receptor pathways that connect the innate immune response against AAV 

with the adaptive immune response have been identified in animal models. The first one 

to be identified was the TLR 9-Myd88 pathway91. TLR 9 is an endosomal receptor that 

senses unmethylated CpG islands within the vector genome92. Confirming these findings, 

experimental transgene depletion of unmethylated CpG islands reduced CD8+ T cell 

responses93.  Myd88 in turn initiates a signaling cascade, that ultimately leads to the 

activation of NF-kB and IL-6, both pro-inflammatory cytokines94. Secondly, it was 

shown that in response to AAV the TLR9-Myd88 pathway led to the release of type I 

INFs in peripheral dendritical cells (pDC)91. Self-complementary AAVs (scAAV) 

showed even higher immunogenicity via TLR 9 compared to single stranded AAV95. As 

mentioned earlier, type I INFs are important signaling molecules responsible for 

orchestrating an antiviral immune response and enhance via MHCI presentation the 

clearance of infected cells through CD8+ T -cells. Interestingly, the proteasome inhibitor 

bortezomib was shown to decrease AAV capsid antigen presentation and by inhibiting T-

cell mediated clearance of transduced cells at the same time enhanced gene expression96. 

B cell intrinsic Myd88 signaling was also shown to be involved in the induction of INF-
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g producing CD4 T cells and the subsequent formation of Th1-associated IgG2 antibody 

responses to AAV97, 98. 

In non-parenchymal liver cells, the capsid of rAAV2 and rAAV8 was shown to be sensed 

by cell membrane-bound TLR299. This is interesting, as for the eye TLR2 – TLR2ligand 

interactions of retinal APCs have been identified to play a role in the activation of 

uveitogenic T cells100. In the retina, not only the resident APCs present TLRs101, 102. 

Photoreceptor cells are also capable of expressing TLRs103, 104. 

Other intracellular receptors which have not yet been linked to AAV recognition but are 

known sensors of viral DNA, include the NOD-like receptors NLRP3 and AIM2. Both 

are known to interact with ASC and Procaspase 1 to form a complex called 

inflammasome, which in turn cleaves  pro-inflammatory interleukines (pro-IL 1b and 

pro-IL18) into their active form in response to cytosolic DNA105, 106. Other receptors that 

might be involved in AAV innate immune response are cytosolic DNA sensors upstream 

of STING (stimulator of interferon genes), like DAI, IFI16, cGAS and DDX41107. The 

activation of STING leads into the Type I INF signaling and has been described to play 

a role in innate immune sensing of other DNA viruses like Herpes virus108. One study 

investigated whether AAV capsid directed CD8 T cell formation was dependent on 

STING signaling but found only the TLR9-Myd pathway uniquely capable of initiating 

this response109. 

 

In a nutshell, although generally considered as non-pathogenic, rAAV is sensed by the 

innate immune system as a foreign particle and can be presented to the adaptive immune 

system. NABs are able to inhibit successful transduction after systemic application of 

AAV, but the eye seems to be immunologically privileged concerning this issue. Cell 

mediated clearance of transduced cells plays a role after systemic application but has not 

been observed after application of AAV to the retina. 
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3 Results 
 

 Humoral Immune Response After Intravitreal But Not After Subretinal 
AAV8 in Primates and Patients  
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PURPOSE. To study longitudinal changes of anti-drug antibody (ADA) titers to recombinant
adeno-associated virus serotype 8 (rAAV8) capsid epitopes in nonhuman primates (NHP) and
patients.

METHODS. Three groups of six NHP each received subretinal injections (high dose: 1 3 1012

vector genomes [vg], low dose: 1 3 1011 vg, or vehicle only). Four additional animals
received intravitreal injections of the high dose (1 3 1012 vg). Three patients received 1 3
1010 vg as subretinal injections. ELISA quantified ADA levels at baseline and 1, 2, 3, 7, 28, and
90 days after surgery in NHP and at baseline and 1, 3, and 6 months after surgery in patients.

RESULTS. Two out of 22 animals lacked ADA titers at baseline and developed low ADA titers
toward the end of the study. Titers in the low-dose group stayed constant, while two of six
animals from the high-dose group developed titers that rose beyond the range of the assay. All
animals from the intravitreal control group showed a rise in ADA titer by day 7 that peaked at
day 28. Preliminary data from the clinical trial (NCT02610582) show no humoral immune
response in patients following subretinal delivery of 1 3 1010 vg.

CONCLUSIONS. No significant induction of ADA occurred in NHP when mimicking the clinical
scenario of subretinal delivery with a clinical-grade rAAV8 and concomitant immunosuppres-
sion. Likewise, clinical data showed no humoral immune response in patients. In contrast,
intravitreal delivery was associated with a substantial humoral immune response. Subretinal
delivery might be superior to an intravitreal application regarding immunologic aspects.

Keywords: gene therapy, vitreoretinal surgery, retina, AAV, immune response, antibodies

Adeno-associated virus (AAV)-mediated gene therapies have
been shown to be clinically safe and offer new possibilities

for the treatment of genetic diseases, such as blinding retinal
dystrophies. However, investigators have independently found
evidence of immune reactions against AAV vectors, the
transgene, or the transgene product.1–4 These include the full
range of active defense mechanisms including innate, humoral,
and cellular immunity. As such, clinical trials in hemophilia
patients have shown that circulating antibodies can effectively
inhibit transduction even at low titers, and that AAV-directed
CD8þ cells target and remove successfully transduced hepato-
cytes as virus-infected cells.5

In contrast to the treatment for hemophilia, where AAV
vectors are injected intravenously, relatively small doses are
administered in the immune-privileged space of the eye for
retinal disorders like Leber’s congenital amaurosis, choroidere-
mia, or achromatopsia. In 2008, different groups independently
reported a modest beneficial treatment effect of AAV2 for the
RPE65 mutation in LCA patients.6–8 In none of these trials were
major adverse advents reported in the following 5 years.

Clinically no inflammation unresponsive to steroids was
observed, and only two patients developed a transient antibody
reaction.9 One study reported a single case in which anti-capsid
antibodies emerged in a functional assay around day 14 but
declined later,6 and in another study some anti-capsid antibody
titers increased toward day 90 but were still low compared to
the overall mean.8 Amado et al.10 showed that subretinal
readministration of an AAV2 vector elicits a humoral immune
response against the viral capsid in large animals. However,
transduction was still possible under these conditions. This is in
line with the observation that readministration of subretinal
AAV (to the contralateral eye) in three adult patients did not
lead to a rise in antibody titer.11 Importantly, though,
intravitreal delivery of AAV2 has been shown to induce humoral
immune response in mice and block transduction in subse-
quent subretinal or intravitreal injections.12 Others have shown
that intravitreal delivery of AAV in NHP results in an increase of
anti-AAV antibodies and decreased transgene expression.13

Although a rise in antibody titer does not seem to be necessarily
harmful, safety of the patient is of paramount importance and
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the role of a potential humoral immune response should be
fully understood.

To further explore this we injected 22 NHP with different
doses of recombinant adeno-associated virus serotype 8
(rAAV8) as part of a formal toxicology and biodistribution
assessment toward regulatory approval of a phase I/II clinical
trial (NCT02610582). Subretinal or intravitreal administration
routes were used in a surgical setting identical to that in human
subjects (including perioperative steroids). We aimed to
elucidate whether a good manufacturing practice (GMP)-grade
AAV8 vector would lead to a humoral immune response in a
clinical scenario and whether route of delivery would make a
difference. Additionally, the same assay was used subsequently
to quantify anti-drug antibody (ADA) titers in human patients
following subretinal gene therapy (NCT02610582) with the
same vector.

METHODS

Animals and Study Design

A total of 22 NHP (Macaca fascicularis) were allocated into
four separate groups (Supplementary Table 1). Groups 1 to 3
consisted of six animals (three males/three females). Group 1
was treated with vehicle (balanced salt solution [BSS]; Alcon,
Freiburg im Breisgau, Germany) with 0.001% PF-68 (BASF,
Ludwigshafen am Rhein, Germany). Animals in groups 2 and 3
received the test item (rAAV8) in the left eye only via single
subretinal injection. Four animals (two males/two females)
were allocated to group 4 and received the same test item via
intravitreal injection. Animals in group 2 were treated with
low-dose (1 3 1011 vector genomes [vg]) and animals in groups
3 and 4 were treated with high dose (1 3 1012 vg). Animals
used in these studies were cared for and handled according to
the ARVO Statement for the Use of Animals in Ophthalmic and
Vision Research and after approval by the local authorities
(Regierungspraesidium) and in full compliance with the
guidelines of the European Community (EUVD 86/609/EEC)
for the care and use of laboratory animals, as well as in
accordance with good laboratory practice (GLP) standards as
defined by German GLP monitoring authorities and in
compliance with U.S. Food and Drug Administration GLP
regulations.

Vector and Vehicle

The AAV8 vector was produced according to GMP guidelines
by cotransfection of human embryonic kidney cells followed
by purification and concentration steps optimized for clinical
use of vector solution as reported previously.14

Surgery and Perisurgical Care of NHP

Animals received general isoflurane (Forane; Baxter GmbH,
Unterschleißheim, Germany) and local 2% oxybuprocain
(Conjuncain; Bausch&Lomb GmbH, Berlin, Germany) anesthe-
sia before preparing (peri-)orbital skin with 10% povidine
iodine solution and rinsing the conjunctival fornices with 1%
povidine iodine solution. Sterile surgical drapes and pediatric
lid specula were applied before a temporal canthotomy was
performed for improved access. Three 23-guage (G) trans-
conjunctival sclerotomies were made approximately 1.5 mm
posterior to the limbus and vitrectomy was performed as
completely as possible without affecting the lens. A localized
retinal detachment was induced through subretinal injection of
BSS (Alcon) using a 41-G cannula (DORC 1270.EXT; D.O.R.C.
Deutschland GmbH, Düsseldorf, Germany). Virus solution was
injected into the preformed bleb using a foot pedal–controlled

injection system (PentaSys II; Ruck GmbH, Eschweiler,
Germany). Before recovery, subconjunctival cefuroxime (125
mg; ratiopharm GmbH, Ulm, Germany) and dexamethasone (2
mg, ratiopharm GmbH) were administered to the operated eye.
Postoperative prophylactic treatment consisted of antibiotic
(0.5% Moxifloxacine; Pharm-Allergan GmbH, Frankfurt am
Main, Germany) and anti-inflammatory (1% Prednisolone;
Pharm-Allergan GmbH) eye drops given three times a day
each in the treated eye for 2 weeks and prednisone (Merck
Pharma GmbH, Darmstadt, Germany) 1 mg/kg intramuscularly
from day!2 until day 5. In the course of the study all animals
received ophthalmoscopic screening (slit lamp, fundus biomi-
croscopy) for signs of inflammation at days 2, 3, 7, 22, 50, and
87.

Enzyme-Linked Immunosorbent Assay (ELISA)

Plasma samples were collected from each animal prior to
dosing and at days 1, 2, 3, 7, 28, and 90 post dosing. A total of
154 samples were analyzed using a sandwich ELISA strategy
utilizing a ELISA kit for the determination of AAV serotype 8
particles in cell culture supernatants or purified preparations
(PROGEN Biotechnik GmbH, Heidelberg, Germany; Art. No.:
PRAAV8). The microtiter strips, coated with a monoclonal
antibody specific for a conformational epitope on assembled
AAV8 capsids, were incubated with GMP-grade rAAV8. This
procedure completed the coating for the detection of the new
analyte: anti-AAV8 antibodies. Captured anti-AAV8 antibodies in
plasma samples were detected using an enzyme conjugate of a
rabbit anti-NHP antibody (rabbit anti human [and NHP] IgG
pAb Streptavidin Peroxidase Conjugate, Cat. No. 55221; MP
Biomedicals, Santa Ana, CA, USA). An anti-AAV8 biotin-
conjugated antibody, together with streptavidin peroxidase,
served as positive control. This antibody was used in a serial
dilution of 1:3 from 250 ng/mL down to 0.34 ng/mL. The
highest concentration of 250 ng/mL showed a hook effect and
was therefore regarded as out of the range of the assay. The
remaining seven standard dilutions covered the complete
range, returned from the plasma samples. Eight negative
controls were included on every ELISA plate. For the negative
controls, no plasma was added and the background was
calculated from the mean absorbance of these blanks. The
background mean was subtracted from the plasma samples.

After addition of substrate solution the color reaction was
measured photometrically at k ¼ 450 nm. In order to avoid
false-negative results due to very high concentrations of the
analyte, the plasma samples were measured in serial dilutions
(1:5, 1:25, 1:125).

To ensure the assay’s validity, coating controls, a dilution
sequence of positive controls, and a negative control with no
analyte were included on every ELISA plate. The optimal
assay setting was tested beforehand in a GLP confirming
proof of principle study. The following criteria were
implemented to ensure validity. Uncoated wells had to show
a low absorbance value (ODSTD0 # 0.2). Coating controls (1 3
109, 1 3 108, 1 3 107 vg/mL, no coating) had to show a dose
dependency in mean absorbance values. Coated wells
without analyte had to show a low absorbance value and
give a good signal-to-noise ratio when using a short time for
color reaction and using a blocking solution (ODno Plasma #
0.3). The mean absorbance value of the positive control wells
coated with 1 3 1010 vg/mL (standard 1, STD1) had to be ‡
1.0. The mean absorbance value of the positive controls
(standards 1–8) had to show a dose dependency (STD1 >
STD2 > STD3 > STD4 > STD5 > STD6 > STD7 > STD8).
Plasma from seroconverted animals had to show a clear dose–
dilution relationship.
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As these criteria were all met, the assay was considered to
be appropriate for the detection of anti-AAV8 antibodies.

Analysis

For the NHP samples, the titer was defined as the reciprocal
dilution of the plasma at which the linear, interpolated graph
for individual plasma intersects a so-called titer intercept line
(TIL). The range where the interpolated graph could intersect
the TIL was defined between 5 and 160. In this assay, the TIL
was defined as the 3.3-fold lower limit of quantification (LLOQ)
of the assay. Limit of detection (LOD) and LLOQ were
calculated according to German Institute for Standardization
(DIN) 32654, using the standard deviation (r(x0)) of negative
controls by the following approximation: LOD: 3 3 r(x0);
LLOQ: k 3 3 3 r(x0) (with k¼ 3 at relative confidence interval
[CIrel] ¼ 33%). In the case of clinical samples, absolute
absorbance values are reported of all dilutions tested and
compared in a longitudinal fashion.

Some samples did not yield quantifiable results. In these,
titers exceeded or stayed below the dilution range of 1:5 to
1:160. Because we calculated the titer using the slope between
different concentrations, in cases where the absorbance values
did not drop in line with the dilution series (see validation
criteria), the intersection with the TIL was outside the dilution
range (i.e., the reading did not meet the prespecified criteria of
validity). The most likely reason for this is the oversaturation of
the assay due to high titer concentrations or a technical error.
Likewise, plasma samples where all dilutions gave absorbance
values below the TIL were considered below the range.

Patients

Three patients (two male, one female) underwent the
procedure after written informed consent was given and
followed up according to the approved trial protocol
(NCT02610582). The vector was applied via subretinal
injection as described previously.14 All three patients received
1 3 1010 vg of the clinical-grade vector rAAV8.hCNGA3. To
monitor safety, clinical and ophthalmologic examinations were
performed at screening, directly after surgery, and 1, 2, 3 6 1,
14 6 3, 30 6 5, 90 6 7, and 180 6 7 days after surgery. Blood
samples were taken in all patients at screening, as well as 30 6
5, 90 6 7, and 180 6 7 days after surgery. The study was
carried out in accordance with the ethical principles of the
Declaration of Helsinki.

RESULTS

Nonhuman Primates (NHP)

For 141 of 154 NHP samples, a titer for rAAV-specific
antibodies could be calculated, while 13 samples (8%) were
out of the range of the assay. Of these, eight were above the
range of the assay (titer > 160), and five samples showed no
seroconversion (titer < 5). In total, 20 of 22 animals were
already seroconverted before application. The two seronega-
tive animals (28011M, 28017M), both allocated to the low-dose
group, developed very low antibody titers throughout the
observation period (maximum titer: 19, 28011M, day 28). No
sex-specific differences in the rAAV8 specific antibody titers
were observed.

In the vehicle control group (Fig. 1A), the change of titer
(day x " day 1) ranged from "28 in animal 28023M to þ50 in
animal 28062F. This represents the test variability and
individual titer fluctuations, which occur without an ongoing
inflammatory reaction since none of the animals received
vector. In the low-dose group (Fig. 1B) we observed titer

changes similar to the control group with a titer change range
from"30 toþ36. As such, the antibody titers of the subretinal
low-dose group stayed constant over the entire observation
period. Although no statistical analysis is applicable, no titer
changes obviously different from those of the vehicle control
group were observed. Interindividual differences as well as the
time curve for the titers found in the low-dose group are similar
to those of the vehicle control group. In the high-dose group
(Fig. 1C), two animals had titers that were above the range of
the ELISA assay (animal 28060F day 28, animal 28063F day 7
and day 28). Where titers exceeded the range of the assay
(160), no titer change was calculated. With the three missing
values put aside, the titer change in group 3 ranged from "25
to þ68. The relevance of the missing values will be discussed
later. In the intravitreal control group (Fig. 1D), which received
the same dose as the high-dose group, the mean titer change
was most pronounced compared to all other groups. All
animals showed a tendency toward higher titers 7 to 28 days
after surgery. In three out of four animals, titers began to rise
by day 7, peaked at day 28, and declined toward day 90 but
remained elevated above baseline. The titer change on day 7
ranged fromþ34 toþ98 and on day 28 fromþ38 toþ140. The
maximum titer change was þ140 (animal 28057F day 28).
Individual titers for each animal and time point are shown in
Supplementary Figures S1 through S4.

Patient Samples

We tested plasma samples from the first three patients with
CNGA3-linked achromatopsia undergoing gene therapy
(NCT02610582), which applies the same vector construct
used in the NHP study above. The same ADA test was applied
and showed no humoral immune response within the first 6
months following subretinal delivery of 1 3 1010 vg (Fig. 2). All
three patients had quantifiable absorbance measurements at
baseline, which did not change significantly at 1, 3, or 6
months after subretinal vector delivery.

DISCUSSION

Through contact with wild-type AAV, humans develop anti-
bodies against the different serotypes in their first years of
life.15,16 Depending on the study, seroprevalence for AAV8
ranges from 15% to 30% of the population (AAV2: 30%–
60%)16,17 to 82% in Asian adult humans (AAV2: 97%).18

Seroprevalence for AAV8 in NHP is considered to be as high
as in humans or even higher.19 Accordingly, in our study, 20 of
22 animals were found to be seropositive for anti-rAAV8
antibodies, indicating a seroconversion before the first
treatment. Likewise, all patients from the first cohort (n ¼ 3)
of the clinical trial (NCT02610582) had quantifiable absor-
bance values in the ADA assay at baseline.

In general, after infection with a virus, the immune system
requires a few days to develop a specific humoral immune
response. Although it is difficult to exactly predict the
temporal dynamics of a humoral immune response against
AAV epitopes, antibody titers in a clinical gene therapy trial for
hemophilia using rAAV8 rose after 1 to 2 weeks.5 Antibody
titers rising in a similar time frame after rAAV8 delivery can
therefore be attributed to a specific humoral immune response.
This is what we observed in our intravitreal control group
where antibody titers began to climb on day 7 and peaked at
day 28 (no samples were taken in between, e.g., on day 14).
Hence, a specific humoral immune response in NHP after
intravitreal delivery of rAAV8 serves as a parsimonious
explanation.

Humoral Immune Response After AAV8 IOVS j April 2018 j Vol. 59 j No. 5 j 1912

Downloaded From: https://iovs.arvojournals.org/pdfaccess.ashx?url=/data/journals/iovs/936911/ on 09/19/2018



Results 

 27 

Although no evidence is at hand for the missing values of
the two animals of the high-dose group, 28060F and 28063F,
having the previous considerations in mind, one could
interpret these titers above the range of the assay on day 28
(28060F) and days 7 and 28 (28063F) as a humoral immune
response. In both animals, titers declined toward an elevated
level above baseline on day 90, which is consistent with what
we observed in the intravitreal control group. Apart from these
two animals, all other rAAV antibody titers in the high-dose
group, as well as all rAAV antibody titers of the low-dose group,
stayed constant over the 90-day observation period.

Since ELISA values for antibodies against AAV serotypes are
not comparable between different studies it is difficult to make
a decision on what titer change is considered a relevant
change—especially since high titers do not translate into
clinical findings. In our study we used the variability of control
group data to assess which change in titer was numerically
significant. It is important to remember, however, that this
does not equate to clinical significance. Indeed, we observed
no clinically relevant, test item–related changes in ophthalmo-
logic assessment throughout the in-life phase of the study.
Findings observed (limited and temporary anterior chamber

flare and cells, drusen, and pigment clumping) were either also
present before dose and thus regarded as background lesions
(e.g., drusen), or equally evident in groups 1 to 3 and therefore
related to the surgical procedure rather than the test item. The
fact that none of the 22 primates presented signs of a clinically
relevant inflammation shows that a rise in antibody titer cannot
be directly correlated to a clinically significant pathogenic
process. It may, however, become relevant in a scenario of
multiple injections and/or intravitreal applications.3,18 Intravit-
real may be considered the preferred route of administration
when targeting inner layers or wide areas of the retina.20

However, some authors have suggested that after intravitreal
injections, neutralizing antibodies are more likely to be
generated than after subretinal injections and that these
antibodies have the potential to inhibit effective gene
transfer.12,13 Part of the explanation for this enhanced humoral
immune response might be the fact that the shedding and
biodistribution of vector after intravitreal injections is consid-
erably higher.21

This study has certain limitations, including absence of
absolute thresholds of clinical relevance for levels of antibodies
against AAV8. Furthermore, there is no international standard

FIGURE 1. Individual titer change in individual animals presented as D to baseline (day 1). (A) Control group, (B) low-dose group (1 3 1011 vg), (C)
high-dose group (1 3 1012), (D) intravitreal high-dose group (1 3 1012). Titers are calculated as described in Methods. Where titers exceeded the
range of the assay (upper range of titer calculation: 1:160), no titer and no titer change could be calculated ([C] 28060F day 7 and 28063F days 7 and
28; [A] 28010M at all time points and therefore not included in graph).
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for benchmarking across studies. As such, dilution series and
longitudinal follow-up are important aspects in these investi-
gations. Another limitation is the lack of true technical repeats
in the ELISA. Instead, each sample was measured in a dilution
sequence and the titer calculated by using the slope instead of
single values. This has the added benefit of accounting for
differences in antibody affinity as a function of epitope
concentration.

One needs to be cautious when extrapolating results
from studies in NHP to the clinical situation because the
response of the immune system of NHP to the therapeutic
vector may differ from that of human subjects. However, we
believe that our findings may help guide study designs of
future clinical gene therapy trials. We argue that this assay
can specifically detect antibodies against AAV8 epitopes and
is appropriate for the comparison of pre- and postdose
plasma specimens. Since our results rely on rAAV8, we can
only speculate about the effects of other serotypes. It seems
possible, though, that the time course of the humoral
immune response as well as the effects of different routes of
administration may be similar for the commonly used vector
AAV2 and other serotypes.

In conclusion, our results show an excellent safety profile,
especially regarding the low dose (1 3 1011 vg). This is
important, as this dose was chosen as the highest dose used
for the c l in ical t r i a l in achromatops ia pat ients
(NCT02610582). Groups 3 and 4, having received 1 3 1012

vg, showed more equivocal results, with some samples
exceeding the range of the ADA assay. In general, the route
of administration seems to have dictated the humoral immune
response against AAV8: While an intravitreal approach
promises the potential of panretinal transduction without
the challenges of subretinal surgery, this study adds evidence
to the observation that intravitreal injections are associated
with a higher risk for humoral immune responses compared
to subretinal delivery of AAV vectors. An ongoing trial with

intravitreal application of AAV8 for X-linked juvenile retinos-
chisis (NCT02416622) will help to further clarify this
observation.

More research is needed to understand the complex
reaction to AAV in the immune-privileged eye. The ocular
immune response against AAV beginning with innate mecha-
nisms and leading to specific humoral/cellular immunity is still
poorly understood. It is of eminent importance to gain a good
knowledge of the mechanisms underlying the antiviral defense
mechanisms of the visual system. This will allow further
improvement of safety and enhancement of efficacy of AAV-
mediated gene therapies in the eye.
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AAV8 Can Induce Innate and Adaptive
Immune Response in the Primate Eye
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Ocular gene therapy has evolved rapidly into the clinical realm
due to promising pre-clinical proof-of-concept studies, recog-
nition of the high unmet medical need of blinding disorders,
and the excellent safety profile of the most commonly used vec-
tor system, the adeno-associated virus (AAV). With several
trials exposing subjects to AAV, investigators independently
report about cases with clinically evident inflammation in
treated eyes despite the concept of ocular immune privilege.
Here, we provide a detailed analysis of innate and adaptive
immune response to clinical-grade AAV8 in non-human pri-
mates and compare this to preliminary clinical data from a
retinal gene therapy trial for CNGA3-based achromatopsia
(ClinicalTrials.gov: 02610582).

INTRODUCTION
Only one decade has lapsed since the first ocular gene therapy in
humans.1–3 Since then, the field has evolved rapidly for three reasons.
First, blinding disorders demonstrate high unmet medical need with
no treatment available. Second, pre-clinical proof-of-concept studies
using adeno-associated virus (AAV) showed convincing efficacy in
the absence of significant toxicity. Third, the eye is regarded as an
attractive target organ due to the availability of an internal control
(fellow eye), its small size, and its diagnostic and therapeutic accessi-
bility and not least due to the concept of ocular immune privilege
initially described by Medawar4 70 years ago.

The initial reports from clinical trials confirmed the excellent safety
profile of AAV and showed some evidence of efficacy. However, the
endpoints used were psychophysical measures such as global light
sensitivity and mobility tests in an open-label trial. Objective mea-
sures of efficacy such as electroretinography (ERG) were not able
to reproduce the results gained from pre-clinical studies in dogs.
The long-term data on the first two independently led retinal
gene therapy trials suggested a decline of therapeutic efficacy with
time.5,6 Different hypotheses have been brought forward to explain
this decline of visual function, including silencing of the episomal
transgene, continuous degeneration despite transduction of cells

past the point of no return, and clearance of transduced cells by im-
mune mechanisms.

Immune-mediated clearance of cells transduced with AAV has been
observed in clinical trials targeting hepatocytes, which are not im-
mune privileged and are in plain sight of the immune system.7 In
contrast, the eye features passive and active mechanisms to counteract
inflammation, such as the blood-retina barrier; lack of anatomically
defined lymphatic drainage; abundance of local anti-inflammatory
agents (e.g., transforming growth factor b [TGF-b], a-melanocyte
stimulating hormone [a-MSH], and somatostatin [SOM]); and
monocytes actively counter-acting adaptive immunity (e.g., F4/80+

antigen-presenting cells [APCs] and CD8+ Treg cells).8 It hence
came as somewhat of a surprise that Bainbridge et al.1,6 reported
some degree of intraocular immune responses in five of eight high-
dose patients following subretinal treatment with AAV2, of which
one showed a persistent reduction of visual acuity following a mild
anterior uveitis. Independently, MacDonald et al. (2016, Invest.
Ophthalmol. Vis. Sci., abstract) presented a case of clinically evident
intraocular inflammation after subretinal gene therapy. Following the
application of serotype 2 AAV, intraretinal hyper-reflective spots
appeared in optical coherence tomography (OCT) scans of the treated
retina reminiscent of cellular infiltration by glia or other immune-
competent cells. These changes dissolved after a course of systemic
steroid treatment, adding to the notion that immune-competent cells
played a role.

Here we report data suggesting activity of both innate and adaptive
immunity in eyes of non-human primates (NHPs) that had received
subretinal injections of clinical-grade AAV8 under concomitant
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steroid treatment. Furthermore, we set this in context with prelimi-
nary clinical data from the first retinal gene therapy trial for
CNGA3-based achromatopsia (ClinicalTrials.gov: 02610582).

RESULTS
Successful Delivery of Clinical-Grade AAV8 in 34 Cynomolgus

Monkeys

All animals successfully received intraocular surgery mimicking clin-
ical application, including concomitant systemic and local steroid
treatment, transconjunctival 23G pars plana vitrectomy, and either
intravitreal or subretinal injection of a predefined dose of clinical-
grade AAV8 in vehicle (buffered saline solution [BSS] with 0.001%
Kolliphor P188 Micro surfactant) or vehicle only. The study design,
specifics of dosing, and sex distribution are summarized in Table 1.
First, a 90-day study was conducted in 22 animals randomized into
groups receiving either subretinal vehicle (group 1), subretinal low
dose (1 ! 1011 vector genomes [vg]; group 2), subretinal high dose
(1! 1012 vg; group 3), or intravitreal high dose (1! 1012 vg; group 4).
The rationale for including an intravitreal control group was to assess
the biodistribution and toxicity following an inadvertent injection
into the vitreous cavity and/or major reflux through the retinotomy
secondary to a subretinal delivery. Dosing was performed without
complication except lens touch in two animals, which subsequently
developed lens opacifications. The pars plana was consistently found
2 mm posterior of the limbus. Introduction of consecutive trocars for
vitrectomy was difficult due to the sturdy sclera and required extra
care to avoid hypotonic collapse of the eyeball and inadvertent
damage to ocular tissue such as the posterior lens capsule. The adhe-
sive force between the retinal pigment epithelium (RPE) and the
neuroretina was greater than in human patients, which necessitated
high initial infusion pressures. To overcome the adhesive force
and induce the neurosensory detachment with BSS in a two-step
approach,9 peak pressures reached% 50 mmHg (6.7 kPa) in animals,
compared to maximal infusion pressures of 30 mmHg (4.0 kPa) in
human patients using the same setup (PentaSys II, Ruck). Placement
of the retinotomy just inside the vascular arcades, halfway between
optic disc and fovea centralis consistently led to a central macular
bleb and promised efficient targeting of cone photoreceptors. Gravi-

tational forces were insufficient to displace the bleb in an inferior
direction.

All blebs had resolved by the first ophthalmological follow-up on day
three. Clinical slit lamp and fundus biomicroscopy revealed limited
numbers of white cells in the anterior or posterior chamber across
the groups (Figure 1). Infiltration of the anterior chamber peaked
three days after surgery. White cells in the posterior segment only
became evident after one week or later. Cellular infiltrations found
in anterior and posterior segments were less severe in the groups
only undergoing the surgery without AAV8 exposure (group 1) or
being exposed to AAV8 but being spared the subretinal injection
(group 4), while subretinal surgery combined with AAV8 exposure
(groups 2 and 3) led to the highest overall scores. Fundoscopy and
imaging of the posterior pole showed only minor changes (Figure 2),
such as the expected pigment displacement first reported by Nork
et al.10 Color photographs, infrared, and autofluorescence recordings
all revealed the pigment displacement reflecting the area of detach-
ment. Angiography showed that perfusion characteristics remained
unchanged and the blood-retina barrier intact. Retinal thickness
temporarily decreased due to transient loss of photoreceptor outer
segments following retinal detachment and re-attachment. However,
signal composition in the outer retina normalized over time and a
formal non-inferiority analysis on the effect of subretinal versus intra-
vitreal injection on the outer nuclear layer showed that subretinal sur-
gery was not inferior to intravitreal application.11

At 90 days after gene therapy, there were no test item-related changes
in organ weights, in macroscopic or in histopathological observations
of ocular and extraocular tissue. Specifically, no degenerative, inflam-
matory, or hyperplastic abnormalities were found in any animal.
Minor changes in the treated eyes consisted of irregularities of the
pigment granules in the RPE, which were attributed to the subretinal
dosing procedure, because they were equally evident in the vehicle
control group.

To further exclude transient effects at an earlier time point, an
additional 28-day study was conducted in 12 animals injected
subretinally at dose levels of 0 (vehicle), 1 ! 1011, and 1 ! 1012 vg
(Table 1). No intravitreal control group was included in the 28-day
study. Based on microscopic observations in retinal sections (Fig-
ure 3), subretinal administration of 1 ! 1012 vg AAV8 resulted in
marked mononuclear cell infiltration in the retina and choroid in
two animals (both female) evident 28 days after surgery. These
were associated with augmented cellular infiltrates into the subretinal
space or with marked perivascular to diffuse mononuclear inflamma-
tory cell infiltrates in the retina and choroid. One male animal from
the subretinal high-dose group also showed a choroidal inflammatory
cell infiltrate, but it was ofmuch smaller magnitude. Animals from the
subretinal low-dose group (1 ! 1011 vg) demonstrated only minor
infiltrates of mononuclear cells, which were also found in subretinal
vehicle-treated animals and thus may constitute incidental back-
ground findings. Table 2 summarizes all relevant microscopic
observations.

Table 1. Study Design

Group Dose Level
Route of Delivery
(Volume)

Number of
Animals Sex F/M

90-Day Study (n = 22)

1 vehicle subretinal (200 mL) 6 3/3

2 low, 1 ! 1011 vg subretinal (200 mL) 6 3/3

3 high, 1 ! 1012 vg subretinal (200 mL) 6 3/3

4 high, 1 ! 1012 vg intravitreal (200 mL) 4 2/2

28-Day Study (n = 12)

1 vehicle subretinal (200 mL) 4 2/2

2 low, 1 ! 1011 vg subretinal (200 mL) 4 2/2

3 high, 1 ! 1012 vg subretinal (200 mL) 4 2/2

www.moleculartherapy.org
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Innate Immune Response following Retinal Gene Therapy

Retinal sections from all animals of the 28-day study (specifically
including those with evident mononuclear cell infiltration in the
retina and choroid) were selected for RNA extraction, reverse tran-
scription, and quantification of antiviral response marker expression.
Expression analysis comparing animals with inflammation evident in
histological assessment (n = 3 from the high-dose group) to animals
of the sham-injected group showed that innate immune response was
activated in those animals and that the innate immune response was
dominated by markers related to the pro-inflammatory T helper
(Th) 1 pathway (e.g., interferon-gamma [IFNg]-induced CXCL10)
and LGP2, a retinoic acid-inducible gene 1 (RIG-I)-like receptor
responsible for cytosolic viral DNA detection (Figure 4; Table 3).

Humoral Immune Response against AAV8 Capsids

Sandwich-ELISA was used to investigate longitudinal changes of anti-
body titers directed against AAV8 capsid epitopes in the 22 animals of
the 90-day study before and after receiving subretinal injections (high
dose, 1 ! 1012 vg, n = 6; low dose, 1 ! 1011 vg, n = 6; or vehicle only,

Figure 1. Grading Inflammation in the Anterior and

Vitreous Chambers

Animals from all groups underwent slit lamp and fundus

biomicroscopy before surgery (BL, baseline) and at five

time points (3, 7, 22, 50, and 87 days) after surgery to

grade the inflammation in the anterior (left) and posterior

(right) segment of the treated eye following the classifi-

cation of the Standardization of Uveitis Nomenclature

(SUN) working group and the NIH classification.

n = 6) or intravitreal injections (1 ! 1012 vg,
n = 4) mimicking via falsa application. These
data have been published elsewhere (Reichel
et al., 2016, Invest. Ophthalmol. Vis. Sci., ab-
stract). Briefly, titers of total antibodies (both
neutralizing and binding antibodies) against
AAV8 capsid epitopes remained constant in
all animals of the subretinal dose groups over
the 90-day observation period. Animals from
the intravitreal group showed some response
with elevated titers at 4 weeks post-treatment.
Data on humoral immune response in the
28-day study was not separately available, but
the longitudinal analysis of titers from the
90-day study included time points at 7 and
28 days, which adhered to the general trend
described earlier.

Adaptive Immune Response following

Subretinal Gene Therapy

Cryosections from subretinally treated animals
from the 28-day study featuring mononuclear
cell infiltrates in the subretinal space and/or
perivascular retina were subjected to immuno-

histochemistry to further define the profile of ocular immune activa-
tion following AAV8-mediated retinal gene therapy. Retinal sections
traversing the treatment area demonstrated activity associated with
adaptive immune response (Figure 5). Staining for ionized calcium-
binding adaptor molecule 1 (IBA1), a hematopoietic marker for mi-
croglia and macrophages, showed substantially more signal in eyes,
which had received AAV8. Similarly, CD8+ staining indicated the
presence of cytotoxic T cells in the outer and inner retina of AAV8-
treated eyes. In line with a general immune response, these sections
also showed positive staining for F4/80, human leukocyte antigen-
antigen D related (HLA-DR), and much higher levels of major histo-
compatibility complex class I (MHC I) expression, suggesting active
antigen presentation with the potential for T cell activation. Next to
microglia and macrophages, cytotoxic T cells, and APCs, we also
found CD20+ B cells associated with the inflammation following
AAV8 application. The presence of cytotoxic T cells and B cells in
the AAV8-injected areas, coupled with microglia and macrophages
and APCs, supports the notion that both innate and adaptive immune
responses play a role in the retina after AAV vector deployment.

Molecular Therapy
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Preliminary Data from Clinical Applications

Clinical application was initiated following unconditional approval by
the relevant regulatory agency (Paul Ehrlich Institute, Germany) and
the ethical review board of the University of Tübingen. This was based
on the observation that there were no test-item-related changes found
in the NHPs 90 days after surgery. The observation of potential, tran-
sient inflammation at four weeks in NHPs prompted regulators to
define a minimum of 4 weeks between enrollments of trial subjects
and ask for go or no-go decisions from an independent data-moni-
toring committee before each dose escalation. The first patient was in-
jected in November 2015, and blood samples were taken one week
before and 3, 14, 30, 90, and 180 days after surgery. C-reactive protein
(CRP), total immunoglobulinM (IgM), and immunoglobulin G (IgG)
did not show clinically significant changes in the first cohort of pa-
tients (n = 3, receiving 1 ! 1010 vg), and patients remained clinically
healthy. Stimulation of isolated peripheral blood mononuclear cell

Figure 2. Change in Retinal Structure after

Subretinal Surgery for Retinal Gene Therapy

Pictures from a representative case at baseline (left),

14 days (middle), and 90 days (right) after subretinal in-

jection. Top panels show the color photographs (CP) and

a diagram (middle panel) indicating the bleb size and

location (dotted line) and retinotomy site (cross) in this

animal. The infrared (IR) images show mild changes in

pigment distribution, which are more clearly highlighted in

the autofluorescence (AF) recordings. Fluorescein angi-

ography (FLA), however, shows an intact blood-retina

barrier and no leakage. Optical coherence tomography

(OCT) demonstrate temporary changes in the signal

composition in the outer retina that seem reversible by

day 90.

(PBMC) subfractions from subject 103 with
AAV8 particles at different concentrations (Fig-
ure 6) led to higher activation rates when as-
sessed before compared to after surgery (which
can be partly explained by concomitant steroid
treatment at 1 mg/kg bodyweight from the day
before surgery until day 19). In the other two
subjects, cytotoxic T cells (CD3+/CD8+) showed
the most marked changes in the activation
pattern around 30 days after surgery (despite
the same steroid regimen). These preliminary
clinical data suggest activation of cytotoxic
T cells, supporting the results shown in the
NHPs on activation of cytotoxic T cells in the
AAV-injected areas.

None of these three patients showed clinically
evident cellular infiltration of the anterior
chamber and/or vitreous cavity at any time.
No patient complained of symptoms or showed
clinical signs associated with inflammation of
uveal tissues, such as anterior uveitis or panu-

veitis, and visual function reached baseline again two weeks after
surgery. However, one of the patients (subject 102) demonstrated hy-
per-reflective spots in the virtual cross sections of the treated area with
a peak two weeks after surgery, which resolved under the concomitant
steroid treatment as per protocol (1 mg/kg bodyweight [70 mg] for
three weeks, followed by weekly reduction to daily doses of 50, 40,
30, 25, 20, 15, 10, 5, and 0 mg) without sequelae (Figure 7; Figure S1).

DISCUSSION
Gene therapy offers great hope to patients with hereditary diseases of
the eye and could lead to treatment modalities for more common dis-
eases of the eye (e.g., age-related macular degeneration) and beyond.
However, this potential can only be leveraged if risks and benefits are
well understood so that they can be weighed against each other by
regulators, investigators, and patients. The immune system can
play a vital role in gene therapy, and the assumptions that AAV is
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non-immunogenic and the immune privilege of the eye is complete
are not supported by current evidence. Both early and late inflamma-
tory reactions have been described in patients by independent inves-
tigators following AAV2-based ocular gene therapy (MacDonald
et al., 2016, Invest. Ophthalmol. Vis. Sci., abstract).5,6,12,13 Only a
small subset of patients also suffered from functional consequences,
and no life-threatening condition has been reported. However, it
seems sensible to further our understanding of underlying risks
related to immune response and ocular gene therapy in an effort to
maximize safety and efficacy of clinical gene therapy.

Vandenberghe et al.14 reported on the transduction pattern and effi-
ciency of the AAV2 and AAV8 pseudotyped vector in cynomolgus
monkeys and showed a dose-dependent humoral immune response
(increases in neutralizing antibodies to the vector capsid) when using
vector batches produced in the lab under non-guanosine monophos-
phate (GMP) conditions. In animals treated with the highest dose
(1 ! 1011 vg), they demonstrated no T cell activation in response to
vector capsid after injection, while T cell responses to the GFP trans-
gene product in the peripheral organs (such as blood and spleen) were
detected in two of 14 injected animals. The eyes exposed to the same
dose demonstrated focal spots of retinal inflammation, retinal thin-
ning, and disrupted retinal architecture.14

Maclachlan et al.15 documented an interesting pre-clinical safety and
biodistribution study in the same species using clinical-grade AAV2
as vector containing a synthetic transgene encoding for a modified
soluble Flt1 receptor (sFLT01) designed to neutralize vascular endo-
thelial growth factor. In this study, injection of the maximal dose
(2.4 ! 1010 vg) into the vitreous cavity was associated with an im-
mune response involving lymphocytes or plasma cells infiltrating
ocular tissue. PBMCs were shown to react to AAV2 capsid protein,
but not to sFLT01.

Although these studies supported the view that AAV has the potential
to stage an adaptive immune response in the eye, they left several
important aspects relevant for the treatment of monogenic disorders
of photoreceptors to be addressed. In contrast to AAV2, whichmainly

transduces ganglion cells after intravitreal application, subretinal de-
livery of AAV8 leads to efficient photoreceptor transduction.14 Our
study therefore explored the effects of subretinal AAV8 gene therapy
at a dose range relevant for clinical gene replacement therapy (up to
42 times higher than in the Maclachlan et al.15 study).

Ye et al.16 reported significant chorioretinitis following subretinal
AAV5 supplementation gene therapy in CNGB3 mutant dogs and
dose-dependent ocular inflammation after subretinal delivery of
either AAV5 or AAV2tYF in healthy cynomolgus monkeys. One
macaque in the lower-vector dose group developed clinical endoph-
thalmitis, and multiple neutrophilic infiltrates in ocular tissues,
including the retina, were found in an undisclosed number of ani-
mals. NHPs from the high-dose group showed moderate or severe
inflammation of the anterior and/or posterior eye segments associ-
ated with whitish subretinal foci, which correlated microscopically
with mononuclear cell infiltrates of the choroid and/or retina.

Ramachandran et al.17 assessed the novel vectors AAV7m8 and
AAV8BP2 expressing GFP after intravitreal or subretinal delivery
in NHPs and showed inflammatory responses at the highest dose
(1 ! 1012 vg). Specifically, they reported some degree of glial activa-
tion and lymphocytic infiltrates in the retina following application of
1 ! 1012 vg AAV7m8. These findings were more pronounced after
subretinal versus intravitreal delivery. In addition, perivascular
inflammation in the retina, loss of RPE, and chronic choroidal inflam-
mation was observed after subretinal delivery of 1 ! 1012 vg
AAV7m8, but not after intravitreal application of the same dose.
Up to 1 ! 1012 vg AAV8BP2 was applied via either route of delivery
without significant retinal infiltrates.

Clinical evidence for a dose-dependent inflammatory response to
ocular gene therapy was first reported by Bainbridge et al.6 While
no participant of their low-dose (1 ! 1011 vg) cohort that received
AAV2 encoding RPE65 showed any clinical sign of inflammation,
five of eight participants from the high-dose group (1! 1012 vg) pre-
sented with intraocular inflammation. Specifically, findings included
anterior uveitis, focal chorioretinal pigmentary changes, mild vitritis,
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Figure 3. Mononuclear Infiltrates 28 Days after High-Dose Subretinal Gene Therapy with AAV8

(A and B) Representative findings from animals of the high-dose (1 ! 1012 vg) group showing (A) perivascular, intraretinal infiltrates (arrowhead) and (B) choroidal, subretinal

infiltrates (arrowhead). In contrast, retinal architecture is essentially recovered one month after surgery in the vehicle control group (C). Scale bar, 50 mm.
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optic disc swelling, retinal vascular tortuosity, and sheathing of ves-
sels. Apart from the focal pigmentary changes, all findings resolved
under steroid treatment, and only one patient showed sustained
reduction of visual function. In a different trial, MacDonald et al.
(2016, Invest. Ophthalmol. Vis. Sci., abstract) showed a case of hy-
per-reflective spots in the treated area of a choroideremia patient
weeks after subretinal AAV2-mediated gene therapy (1 ! 1011 vg)
that resolved under steroid treatment, bringing the patient back to
his baseline visual acuity.

Although it is clear from these studies that AAV-mediated gene ther-
apy has the potential to trigger an immune response in the eye, a
number of questions highly relevant to the field are still to be
answered. These mainly concern the nature of the immune response
(e.g., regulatory versus cytotoxic immune-competent cells and Th1-
versus Th2-dominated response), the causality (e.g., capsid versus
transgene and null versus missense mutations), and the possibility
of modulating the response (e.g., by dose or duration of concomitant
steroid treatment, excluding pre-existing immunity, and method of
delivery).

In a first attempt to address immune responses to AAV in the retina,
we analyzed data from good laboratory practice (GLP) conform toxi-
cology studies in 34 cynomolgus monkeys that were subjected to
clinical-grade AAV8 vectors and preliminary data from the first clin-
ical trial for CNGA3-based achromatopsia. We were able to show that
surgical delivery of the vector was safe and did not result in a signif-
icant loss of photoreceptors or in other anatomical changes apart
from pigment displacement. However, some animals from the
high-dose group (1 ! 1012 vg) demonstrated mononuclear infiltrates
in the retina and choroid. In addition, expression profiling revealed
upregulation of IFNg-mediated cytokines of the pro-inflammatory
Th1 pathway four weeks after subretinal injection. Immunohisto-
chemical analysis showed that antigen presentation is augmented in
the treated areas, glial activity is increased, and cells of the adaptive
immune response populate the treated retina. Specifically, CD8+

T cells and CD20+ B cells were evident in the retina following appli-
cation of 1 ! 1012 vg AAV8 one month after the surgery. No inflam-
mation was seen histologically in other animals that were sacrificed
three months after the surgery, opening the possibility of a transient
reaction. One may speculate that active components of the deviant

ocular immune response (e.g., regulatory T cells or APCs, TGF-b,
a-MSH, and SOM) contain such an inflammatory response. This
raises the question of whether concomitant steroid treatment is bene-
ficial (limiting a harmful immune response) or harmful (incapacitat-
ing the cellular regulatory component of the deviant immune
response), a question worth addressing in future studies.

We observed some degree of discrepancy between the cellular and the
humoral adaptive immune response. There was minimal change of
antibody titers against AAV8 capsid after subretinal delivery, while
the intravitreal group showed an increase in titers (Reichel et al.,
2016, Invest. Ophthalmol. Vis. Sci., abstract). This may reflect our
previous observations of a more favorable biodistribution profile after
subretinal versus intravitreal application of AAV8 (Seitz et al., 2016,
Invest. Ophthalmol. Vis. Sci., abstract). Intravitreal delivery leads to
several orders of magnitude more AAV particles in the systemic cir-
culation and lymphatic tissue compared to subretinal delivery, which
in turn may explain a more robust humoral immune response (Seitz
et al., 2016, Invest. Ophthalmol. Vis. Sci., abstract).

There was no clinically relevant inflammation of either the anterior or
the posterior segment at any time point in our patients that would not
respond to standard medical care. The previously described patient
with discreet hyper-reflective spots in the spectral domain OCT
(SD-OCT) virtual cross sections of the treated retina four weeks after
surgery never showed functional loss. The hyper-reflective dots
resolved under steroid treatment until the next scheduled visit
(month 3) without sequelae. It is unclear what the microscopic equiv-
alent of these hyper-reflective spots is, but inflammatory cells or dis-
placed pigment epithelium is likely a candidate.

The study was primarily designed as a GLP conform toxicology and
biodistribution study in preparation of an investigational new drug
(IND) application with the relevant regulatory authority. As such,
limitations of the study include the low number of time points inves-
tigated (28 and 90 days), the fixation of the tissue, and the lack of
PBMC analysis and antigen-specific immune response (ASR) assays.
These could have proved or ruled out immune reactivity against hu-
man CNGA3. However, the high homology between the orthologs in
macaques and those in humans (>96%) and the lack of any previous
ASR in the eye of healthy macaques and/or human patients with

Table 2. Microscopical Findings in Subretinally Treated Eyes 28 Days after Gene Therapy

Finding Group 1 (Vehicle) Group 2 (1 ! 1011 vg) Group 3 (1 ! 1012 vg)

Individual animal no. 28364M 28379M 28380F 28383F 28370 28376M 28384F 28390F 28367M 28375M 28381F 28383F

Cellular infiltrate in the sclera – – – – f – – – – – – –

Cellular infiltrate in the ciliary body/ora serata – – – – – f – f – – – –

Cellular infiltrate in the choroid – – – – – – – m – – –

Cellular infiltrate in the retina – – – – – – – – – – m m

Cellular infiltrate in the subretinal space – f f f f – – f f – f f

f, focal; m, multifocal.
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either missense or null mutations following gene supplementation
make this rather unlikely.5,6,12,15,16 The primary goal of this study
was to provide GLP conform data on toxicology and biodistribution
in the advent of a clinical trial, and any ASR in animals against a
human antigen would not have been predictive of the risk in a first-
in-man trial.

The immune response in NHPs can be different from that observed in
human patients, and the seroprevalence for AAV8 capsid proteins is
higher in NHPs versus the human population.18–20 As such, the im-
plications of the results in the clinical setting have to be substantiated
by further investigations and most importantly by careful observa-
tions in ongoing and future clinical trials. The NHP study supported
our strategy of subretinal delivery in the clinical trial but cautioned us
to monitor our patients carefully in this first-in-man study and
prompted the regulatory body to insist on a one month delay between
individual surgeries.

The experimental data presented in this paper suggest the presence of
innate and adaptive immune responses following AAV administra-
tion. The innate immune response seems to activate all three main
pattern recognition pathways (Toll-like, NOD-like, and RIG-I-like
receptor pathways) and initiate a Th1 response. This is supported
by the evidence of microglia activation, the recruitment of cytotoxic
T cells and CD20+ B cells into the retina. The eye was long considered
an immune-privileged organ favoring application of gene therapy;
however, recent findings, together with the data presented here, sug-

gest that more research is necessary to identify the temporal dynamics
and extent of inflammation upon AAV delivery, its impact on the
safety and efficacy of ocular gene therapy, and ways to use this knowl-
edge to improve future therapeutic applications.

MATERIALS AND METHODS
Animals

Cynomolgus monkeys (Macaca fascicularis) were treated and taken
care of at the Covance Preclinical Services test facility in Münster.
The study was approved by the local institutional ethics board and
conducted in accordance to GLP standards as defined by German
GLP monitoring authorities, as well as in compliance with U.S.
Food and Drug Administration (FDA) GLP regulations. The age of
animals ranged between 2 and 5 years; the weight of animals was be-
tween 3.0 and 15.0 kg in males and 2.0 and 6.0 kg in females before
treatment. An animal health assessment was performed by a qualified
veterinarian before the start of the pre-dose phase to confirm the suit-
ability of each animal for the study. The animals were not pre-
screened for pre-existing anti-AAV8 antibodies. They were assigned
to two studies: 22 animals to a 90-day study and 12 animals to a
28-day study (Table 1). Animals were regularly assessed by clinical
observation, monitoring of food consumption and body weight,
and ophthalmic examination (fundus and slit lamp examination,
fundus photography, scanning laser ophthalmoscopy, OCT, and
angiography). All animals were fasted overnight before scheduled
surgery and necropsy. Before exsanguination, animals received an
intramuscular injection with ketamine hydrochloride followed by
intravenous sodium pentobarbitone.

Surgery

Before surgery, periorbital regions were thoroughly cleaned with po-
vidone iodine, sterile surgical drapes were applied, and a pediatric lid
speculum was applied to left eye. A temporal canthotomy was applied
to facilitate access where necessary. Three sclerotomies were made
1–2 mm posterior to the limbus after transillumination confirmed
the location of pars plana. The inferotemporal port was used to fix
a perfusion cannula. A pars plana vitrectomy was performed, and
4.0 mg/0.1 mL triamcinolone acetonide (preservative-free formula-
tion) were used to visualize vitreous or posterior hyaloid membrane
where appropriate. Localized retinal detachment was induced
through injecting 50 mL of BSS (Alcon) in the subretinal space using
a 41G cannula (DORC 1270.EXT). A total of 200 mL of vector solution
was injected subretinally or intravitreally to achieve the designated
dosing. The surgery was performed the same way in the clinical trial
with two exceptions: no canthotomy was necessary in patients, and all
sclerotomies were sutured in the clinical trial, but not in the animals,
in which additional irritation due to sutures would have caused more
oculodigital manipulation.

Dosing

The high-dose group animals received a total of 1 ! 1012 vg, and the
low-dose group animals received 1 ! 1011 vg. Subsequent to surgery,
subconjunctival cefuroxime (125 mg) and dexamethasone (4 mg)
were administered to the operated eye. Postoperative local treatment

Figure 4. Differential Gene Expression in Primate Retina following

Subretinal Gene Therapy

Expression profile from whole retina comparing samples from sham-injected ani-

mals versus animals from the high-dose group. Upregulated genes (red) are pre-

dominantly associated with the inflammatory Th1 pathway.
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included eyedrops 3 times a day for one week: Dexamytrex, Dexa-
Gentamicin, and Pred Forte (1% prednisolone). Systemic immuno-
suppression in the form of prednisone at 1 mg/kg (intramuscular)
was administered from day 2 until day 5.

Vector and Vehicle

The AAV8 vector (expressing the human CNGA3 cDNA sequence
and driven by the cone-specific human arrestin 3 [0.4 kb] pro-
moter21,22) was produced according to GMP guidelines by Atlantic
BioGMP in Nantes, France. The manufacturing process of the vector
relied on a transient double-transfection protocol of an HEK293
Master Cell Bank (MCB) fully characterized according to the Euro-
pean Pharmacopeia. Both plasmids were produced from two high-
quality characterized E. coli MCBs (DH10B strain). Following
expansion, the HEK293 cells were seeded in CellStacks 10 chambers

for the double-transfection step. The transfected cells and superna-
tant were then harvested in a BioProcess Container, and the lysate
was clarified by low-speed centrifugation. The cell pellet was dis-
carded and the supernatant was PEG-precipitated overnight at 2!C
to 8!C and then stored frozen at a temperature%"70!C. After thaw-
ing, the product was treated with Benzonase to digest nucleic acids
and purified by two rounds of Cesium chloride gradient ultracentri-
fugation, followed by a tangential flow filtration step for diafiltration
and concentration. After formulation in vehicle (BSS [Alcon] with
0.001% Kolliphor P188 Micro [Sigma]), the vector was stored at a
temperature %"70!C until use.

Histology

Eyes were fixed in 4% paraformaldehyde for 24 hr at 5!C ± 3!C. After
fixation and removal of cornea, iris, and lens, the eyecup was

Table 3. Genes Overexpressed in Treated Animals with Inflammation versus Sham-Injected Animals

Pattern Recognition Receptor Pathways

FC p Value FDR of 0.2Symbol Function

Toll-like Receptor Pathway

1 IRF5
member of the interferon regulatory factor (IRF) family of transcription factors,
responsible for activation of genes encoding key pro-inflammatory cytokines

2.0 0.0001 significant

2 TRAF3
member of the tumor necrosis factor (TNF) receptor-associated factor (TRAF)
family, a key regulator of non-canonical nuclear factor kB (NF-kB) signaling

1.4 0.0378 significant

3 IRAK1
member of the interleukin-1 receptor-associated kinase (IRAK) family; the
phosphorylation of IRAK1 leads to subsequent activation of NF-kB and mitogen-
activated protein kinase (MAPK) pathways

1.1 0.0246 significant

RIG-like Receptor Pathway

4 LGP2 member of the RIG-I-like receptor family, activating downstream interferon signaling 3.2 0.0024 significant

Nod-like Receptor Pathway

5 AIM2
member of the pyrin family that serves as a cytosolic sensor for double-stranded
DNA and a component of inflammasome

2.1 0.0001 significant

6 PYCARD
encodes for apoptosis-associated speck-like protein (ASC), which in association
with caspase-1, forms NLRP3 inflammasome

2.2 0.0215 significant

7 Casp1
member of the cysteine-aspartic acid protease (caspase) family; sequential
activation of caspases plays a central role in the execution phase of cell apoptosis

1.9 0.0268 significant

Cytokine Signaling and Other

88 CXCL10
member of the CXC subgroup of cytokines that binds to CXCR3 and plays pivotal roles in
the chemotaxis of inflammatory cells, being involved in Th1-oriented immune responses

19.3 0.0130 significant

9 CXCR4 a-chemokine receptor specific for stromal-derived-factor-1 2.2 0.0386 significant

10 STAT1
member of the signal transducer and activator of transcription (STAT) family that
mediates cellular responses to interferons, cytokines, and other growth factors

3.5 0.0024 significant

11 APOBEC3G component of innate antiviral defense system 2.1 0.0167 significant

13 MX1
interferon-induced dynamin-like guanosine triphosphatase (GTPase) that participates in
cellular antiviral response by antagonizing the replication of viral RNA and DNA

2.2 0.0303 significant

14 CTSB cathepsin B, a lysosomal cysteine protease that participates in intracellular proteolysis 1.6 0.0110 significant

15 CD40 receptor on antigen-presenting cells, mediating a variety of immune responses 1.6 0.0158 significant

16 IFIH1
encodes for MDA5, an innate immune receptor that acts as a cytoplasmic sensor of viral
nucleic acids

2.1 0.0092 significant

15 L0C708080
cathepsin S, a lysosomal cysteine proteinase participating in degradation of antigenic
proteins

2.1 0.0152 significant

FC, fold change; FDR, false discovery rate, as described by Benjamini and Hochberg.23
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dehydrated in ascending concentrations of sucrose (10%, 20%, and
30% each for 2 hr) diluted in 0.15 M PBS. Then, the eyes were
embedded in OCT and frozen in dry-ice-cooled isopentane (1 hr).
Eye cryosections (20–40 mm) were made from the nasal to the tempo-
ral aspect in the sagittal direction and mounted on SuperFrostPlus
glass slides.

qRT-PCR

RNA was extracted from 40 mm cryosections of treated eyes of the 12
monkeys in the 28-day study. Care was taken to select sections
traversing the treated area in every animal. Using a sterile scalpel,
the tissue was scraped off the slide and RNA was extracted after Pro-
teinase K digestion through silica-membrane spin column technique
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Figure 5. Retinal Immunohistochemistry Suggests Adaptive Cellular Immune Response in Eyes Treated Subretinally

Left panels show an eye treated with high-dose (1! 1012 vg) AAV8 injection; right panels show the vehicle-treated control. (A–D) Staining for microglia andmacrophages with

ionized calcium-binding adaptor molecule 1 (IBA1) shows marked response in the treated eye. (E–H) CD8+ cytotoxic T cells are evident in the AAV-treated eye, but not after

surgery with vehicle. (I–R) Antigen-presenting cells are observed in the AAV-treated eye, as are CD20+ B cells (S–V). Scale bar, 50 mm.
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(RNeasy FFPE kit, QIAGEN). Concentration and quality of eluted
RNA were analyzed by Infinite 200 NanoQuant (Tecan) and Bio-
analyzer 2100 (Agilent); RNA was deemed of sufficient quality
when the RNA integrity number (RIN) was above 7. Immediately af-
ter extraction of RNA, concentration differences were equalized, and
reverse transcription was performed with the RT2 First Strand Kit
(QIAGEN) to prevent loss of RNA due to degradation. The cDNA
was stored at !20"C until further processing. qPCR was conducted

Figure 6. Activation Assays of PBMC Fractions

CD69 expression levels as surrogate markers for activa-

tion were quantified in PBMC subgroups CD3+/CD4+,

CD3+/CD8+, CD45+/CD19+, and CD45+/CD56+ either

spontaneously or after exposure to a dose range of AAV8

particles before and after treatment in three human pa-

tients. Two of three patients show marked changes in the

activation pattern of cytotoxic T cells (CD3+/CD8+), with a

peak 30 days after surgery. Different levels of sponta-

neous activity across time and across cohort demon-

strate inter- and intraindividual variability. Absolute peaks

of reactivity can be observed at different dilutions due to

the non-linearity of the antigen-leukocyte response.

using the 96 gene Rhesus Macaque PCR Array
(RT2 Profiler PCR Array, QIAGEN) in a
CFX96 C1000 Touch Thermal Cycler (Bio-
Rad). The PCR cycling conditions were as fol-
lows: 10 min of 95"C, followed by 40 cycles of
15 s at 95"C and 1 min at 60"C, followed by a
melt curve program at the end of each assay.
Array quality was controlled by the following
criteria: (1) for PCR array reproducibility, the
average Ct of the array built-in PPC (positive
PCR control) was 20 ± 2, and no two arrays
had an average PPC Ct > 2 from each other,
indicating that no amplification-inhibiting fac-
tors were present; (2) no inhibition of reverse
transcription was determined by the average
of the built-in RTC (reverse transcription con-
trol) ! average PPC % 5; and (3) no genomic
DNA contamination was determined by a Ct

of genomic DNA control (GDC) > 35. Data
analysis was done by the DDCt method, in
which every gene of interest (GOI) was normal-
ized to the arithmetic average of expression of
selected housekeeping genes (HKGs) using the
following formula: DCt = Ct

GOI ! Ct
AVG HKG.

The following HKGs were used for normaliza-
tion: b-actin, glyceraldehyde-3-phosphate de-
hydrogenase, and ribosomal protein L13A. To
compare expression of genes across the dose
groups of animals, the DDCt for each gene
was calculated as DDCt = DCt (dose group) !
DCt (control group). The fold change is then ex-
pressed as 2(!DDCT). The p values are calculated

based on Student’s t test of the replicate 2(!DDCT). The false discovery
rate associated with multiple testing of expression data was controlled
for by the false discovery rate method published by Benjamini and
Hochberg.23

ELISA

A sandwich-ELISA strategy using an ELISA kit designed for titra-
tion of AAV8 particles (Progen, Germany) was applied to detect
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anti-AAV8 antibodies. The microtiter strips with AAV8-specific
antibodies from the kit were pre-incubated with clinical-grade
AAV8. Plasma samples collected from each animal before and at
days 1, 2, 7, 28, and 90 after surgery were then tested, and anti-
drug antibodies (ADAs) were quantified via an enzyme conjugate
of a rabbit-anti-NHP antibody (MP Biomedicals). An anti-AAV8-
biotin-conjugated antibody, together with streptavidin peroxidase,
was used as positive control, with both being added into the
AAV8 titration strips. Once the substrate solution was added, the
color reaction was measured photometrically at l = 450 nm. To
avoid false negatives, plasma samples were diluted serially (1:5,
1:25, and 1:125).

Immunohistochemistry

Sections were left to dry at room temperature for 30 min and then
rinsed three times with PBS for 1 min (washing step). Sections were
blocked with 10% donkey serum in PBS + 0.1% Triton X-100 for
1 hr, followed by the same washing step. Primary antibody was
incubated for 1 hr at room temperature, followed by another
washing step and application of secondary antibody for 1 hr at
room temperature. The following antibodies were used: anti-human
CD8 (1:500, AbD Serotec, MCA1226T), anti-HLA-DR (major
histocompatibility complex class II [MHC II], 1:500, Abcam,
ab136320), anti-Iba1 (1:700, Wako, 019-19741), CD20cy (1:500,
Dako, M0755), anti-human HLA ABC (MHC I, 1:500, AbD Serotec,
136320), anti-F4/80 (1:250, Abcam, ab15285), donkey anti-mouse
IgG H&L (1:1,000, Abcam, ab150105), and donkey anti-rabbit
IgG H&L (1:1,000, Abcam, ab175470). After three rinses with
PBS, the sections were mounted with an antifade reagent containing
nuclear stain DAPI (Prolong Gold, Molecular Probes). Images
of immunostaining were taken using an Axio Imager Z1 micro-
scope (Zeiss, Oberkochen, Germany), and processed using Fiji
(v.2.0.0-rc).

Patients

The three patients (two male and one female) were diagnosed with
complete achromatopsia, and homozygous, disease-causing muta-

Figure 7. Virtual Cross-Sectional OCT Imaging

The treated retina (right) shows hyper-reflective spots

(white arrowheads) two weeks after surgery compared to

the untreated retina (left). Baseline imaging shows sym-

metric pre-existing foveal atrophy in this achromatopsia

patient before surgery (top panels). Middle panels show

the same area two weeks (14 days) after surgery to one

eye (right panel). Six months (180 days) after surgery

(lower panel), all hyper-reflective spots have resolved.

However, some degree of structural loss can be seen that

is not evident in the untreated contralateral eye.

tions in CNGA3 were confirmed by a certified
reference laboratory (CeGaT, Tübingen). Pa-
tients underwent the procedure after written
informed consent was given and were followed

up according to the approved trial protocol (ClinicalTrials.gov:
02610582; see also Supplemental Materials and Methods) approved
by the local institutional ethics board. All patients in this first dosing
group received 200 mL containing 1 ! 1010 vg of the clinical-
grade vector rAAV8.hCNGA3. Safety assessments included clinical
and ophthalmological examinations (including OCT imaging) at
screening, directly after surgery, and 1, 2, 3 ± 1, 14 ± 3, 30 ± 5,
90 ± 7, and 180 ± 7 days after surgery. All patients in the
study received a prophylactic regimen with oral prednisolone at
1 mg/kg as per study protocol (from day 1 until day 19, followed
by tapering off as deemed appropriate by the investigator).

Assessment of Cellular Immune Response in Patients

Blood samples were taken in all patients at screening and 30 ± 5,
90 ± 7, and 180 ± 7 days after surgery to isolate PBMCs and
test activation potential upon stimulation with AAV8 in PBMC
subpopulations, as previously described.24 Briefly, 120 mL of
heparinized blood were drawn from subjects, and PBMCs were
isolated by centrifugation through Ficoll-Hypaque gradient within
24 hr. In previous studies, we showed that within this time, interval
cells are still viable and reliable, and reproducible results without
significant changes can be obtained.25,26 PBMCs were adjusted to
1 million cells/mL (5 ! 105 cells/well) in RPMI 1640 medium
supplemented with 25% decomplemented autologous serum and
gentamycin. PBMCs were incubated with medium only (sponta-
neous activity) or with serial dilutions of clinical-grade AAV8
vector (1:500, 1:5,000, 1:50,000, or 1:500,000) for 24 hr and then
assessed for subgroup identity and CD69 expression levels as a
surrogate marker for activation. Antibody cocktails were used for
the demonstration of activated PBMC subpopulations (activated
CD4+ T cells, FastImmune CD4/CD69/CD3; activated CD8+

T cells, FastImmune CD8/CD69/CD3; activated CD19+ B cells,
FastImmune CD19/CD69/CD45; activated CD56+ natural killer
[NK] cells, FastImmune CD56/CD69/CD45; Becton Dickinson,
San Jose, CA). Furthermore, an IgG isotype control antibody
was used (BD Biosciences, San Jose, CA; Pharmingen). At least
10,000 PBMCs were counted. Quadrants were set based upon
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the isotype controls for each antibody. Results were expressed
as the percentage of CD69-expressing cells of the respective cell
types.
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4 Discussion 
 

With the data presented in the two papers we attempted to approach the immune response 

to subretinal AAV from the broadest possible angle. The chances and limitations of this 

approach will be discussed in the following order: The data presented in the paper 

“Humoral immune response after intravitreal but not after subretinal AAV8 in primates 

and patients” will be discussed in the first paragraph “Humoral immune response”. The 

clinical inflammation, the histology from the nonhuman primate retinas and the gene 

expression profile, all published in the paper “AAV can induce innate and adaptive 

immune response in the primate eye” will be discussed subsequently.  

 

 

  Humoral immune response  
 

To summarize the results of the humoral immune response, our study demonstrated that 

antibodies were generated in the intravitreal NHP group but not in the subretinal NHP 

group. No antibody formation was observed in the three patients. Antibody titers started 

to rise from day 7 onwards, with a peak on day 28 and declined towards day 90.  

These results mirror findings from other studies. It was already assumed that the 

intravitreal space somehow is more accessible to the immune system after two groups 

had described that AAV administered to the intravitreal but not the subretinal space can 

lead to antibody production which can prevent re-administration77, 78. It has been 

hypothesized that the enhanced biodistribution of viral vector over the blood and 

lymphatic tissue after intravitreal administration could serve as an explanation110.   

In contrast to the results of the mentioned studies, subretinal injections of rAAV2 

expressing CNGB3 (in cynomolgus monkeys) showed a dose-dependent antibody 

formation111, suggesting that an antibody reaction after subretinal AAV delivery is 

possible if a certain threshold is exceeded. Further support for this theory stems from the 

observation of a dose dependent humoral immune response after subretinal delivery in 

NHPs in a study by Vandenberghe et al. and in another study by Ramachandran et al. 

(although not as prominent as after the intravitreal application)51, 112.  

However, an antibody reaction in the subretinal high dose group would not necessarily 

mean that the assumption of a superior immune privilege in the subretinal space would 
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have to be suspended, it could also simply represent a reflux through the retinotomy into 

the intravitreal space. 

In this context it has to be noted that in our study antibody formation in the subretinal 

high dose group can not be completely ruled out as some values in this group are missing. 

These missing values could not be calculated because they exceeded the range of the 

assay. Nevertheless, an antibody reaction in the subretinal high dose group of the NHP 

(1x10^12vg) would not have had direct implications for the human trial as the highest 

dose planned in the clinical trial corresponds to the low dose group of the NHP preclinical 

trial (1x10^11vg).  

Concerning the question of relevance, it has to be kept in mind that the rising antibody 

titers in our study did not correlate with clinical findings in the ophthalmic assessment. 

For instance, the intravitreal group showed the highest rise in antibody titer but the lowest 

clinical severity score. Puzzlingly, in our results high antibody titers therefore could not 

be correlated with inflammation in the eye.  

But, as studies have shown that pre-existing humoral immunity is able to reduce 

therapeutic efficacy of ocular or systemic gene therapies 77, 113, clinical relevance could 

arise in the situation of re-administration of vector.  

Another limitation to this study is the lack of absolute thresholds for the level of 

significance of specific titer values. As ELISA values are not comparable between 

different studies it is difficult to judge which change of titer is to be deemed relevant.  

Further, titers showed variability in the sham injected group over the observation period, 

suggesting the occurrence of normal fluctuations in titer and/or test-retest variability of 

the assay. It is possible that the rise of antibody titer observed in some animals are in fact 

fluctuations of the titer that arise from the contact with wtAAV8 as wtAAV8 was 

originally isolated from and is commonly found among macaques114. High 

seroprevalence was also seen in our study. 90% of the monkeys showed pre-treatment 

antibody titers against AAV8. Interestingly, the antibody reaction of the two seronegative 

animals did not differ from the other animals.  

Another limitation of the study is the absence of technical replicates in the ELISA assay. 

Instead, the titers were calculated using the slope of a dilution sequence. 
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Finally, the study’s significance is limited by the small number of animals in each group 

and the presumable differences in antibody reaction between the monkeys and the human 

immune system. 

In summary, despite the mentioned limitations, our results suggest that AAV capsid 

antigen are processed by the adaptive immune response leading to the formation of 

specific antibodies. The histology data from the NHP, with infiltrating antigen presenting 

cells in the retina supports this thesis and further proposes the retina as a possible place 

of antigen presentation. These findings are of high value to the developers of ocular AAV 

mediated gene therapies in general and especially to the ones that use the intravitreal 

approach. These currently include AAV gene therapy studies for X-linked Retinoschisis 

(XLRS) or AMD115, 116. 

 

 

  Ocular inflammation following AAV 
 

4.2.1 Ocular inflammation in non-human primates 
 

Clinical signs of inflammation like cells in the anterior or posterior chamber of the eye, 

were observed in all NHP groups. While cells in the anterior chamber peaked at day three 

and gradually declined afterwards, intravitreal cells persisted at low levels.  

The subretinal control group which received a sham injection with balanced salt solution 

(BSS) also showed a limited number of cells at a lighter scale than the other groups 

indicating that some degree of inflammation is due to the surgical procedure by itself.  

This kind of ocular inflammation following the application of subretinal or intravitreal 

AAV has been observed in several other preclinical and clinical studies. 

Ye et al. described a dose dependent inflammation of the anterior and posterior segment 

with vitreous cells that persisted over the full observation period (90 days) after 

intravitreal application of rAAV2tYF (a modified version of AAV serotype 2) for X-

linked juvenile Retinoschisis (XLRS).111 These results were reproduced in a second study 

by the same authors for a subretinally applied vector based on the AAV 2 serotype 

(rAAV2tYF-PR1.7-hCNGB3 to treat Achromatopsia).117 Both studies used a capsid 

containing three tyrosine-to phenylalanine mutations to enhance transduction efficacy. 

The implications for immune reactivity of the capsid are unknown. 
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One animal in the CNGB3 study developed a severe ocular inflammation 

(endophthalmitis) at day 5 and had to be sacrificed subsequently. Microbiological tests 

showed no bacterial growth in cytology or aerobic culture. These findings could suggest 

a test-item related immune response but Ye et al. argued that an occult bacterial 

endophthalmitis could not be ruled out completely. In all other vector-injected animals of 

the study histological examination showed minimal mononuclear cell infiltrates around 

retinal blood vessels.  

Dose dependent ocular inflammation in NHP has also been reported by two other groups 

(AAV vectors expressing GFP): Vandenberghe et al. and Ramachandran et al. both 

showed that high dose subretinal AAV8 can lead to focal retinal inflammation51, 112. 

Ramachandran et al. additionally reported an upregulation of GFAP expression as a 

marker of glial activation. Vandenberghe et al. further described retinal thinning and 

disrupted retinal architecture as well as a T cell mediated transgene toxicity against GFP 

but no T cell response against the AAV8 capsid. The group hypothesized that the 

transgene immunity against GFP could be attributed to the fact that GFP is a foreign 

protein (derived from jellyfish) and thus potentially immunogenic in the NHP.  

Although this reflects the situation of patients with null-mutations receiving gene addition 

therapy (which would lead to expression of a ‘novel’, if human, protein), transgene-

directed immune response has not yet been described in human clinical trials (including 

in patients with predicted null mutations).  

 

 

4.2.2 Ocular inflammation in patients 
 

The patients of our study did not present any signs of inflammation in the clinical slit-

lamp examination. It has to be noted though, that one patient presented hyper-reflective 

spots in the OCT. Although multiple theories exist for the pathological correlation of 

these spots, the most likely correlate are activated microglia or other infiltrating immune 

cells118, 119. Our observation in the NHPs support this interpretation. Under steroid 

treatment these spots resolved completely.  
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In the pivotal phase III trial for voretigene neparvovec (AAV2-hRPE65v2), 6 out of 20 

patients were reported to have presented mild signs of ocular inflammation. All signs of 

inflammation resolved under concomitant steroid treatment30.  

A more vigorous inflammatory response in a patient has been reported by Bainbridge et 

al. in 2015. In their RPE65 trial, 5 out of 8 high dose group patients responded with signs 

of clinical inflammation and one patient showed a persistent reduction in visual acuity 

together with a rise of neutralizing antibodies around week 4 and a slight increase of 

circulating T cell against the AAV2 capsid1. 

Similar to the findings by Bainbridge et al., Dimopoulos et al. reported recently that in 

their AAV2-mediated choroideremia trial one out of six patients developed a serious 

adverse event after the injection of subfoveal AAV2.REP1. The patient presented a 

localized intraretinal immune response (hyperreflective spots), that resulted in a decline 

of vision and loss of outer retinal structures2. It is yet unclear why some patients reacted 

with vigorous inflammation and others did not.  

 

 

  Histology 
 

In the hematoxylin and eosin staining of the NHP retinal sections of our 28 day study, 

mononuclear cells infiltrations were observed in the subretinal and choroidal space. These 

infiltrations were mostly found in the high dose group. Less pronounced infiltrations were 

predominantly found in the low dose group, but also found in the sham injected control 

group and could thus represent incidental background findings and/or be due to the 

surgical procedure itself (as opposed to the AAV). Interestingly, no histological 

abnormalities were found in the animals that were sacrificed after 90 days suggesting a 

transient nature of the immune reaction. 

In order to further define the nature of the infiltrating immune cells found after 28 days, 

immunohistochemistry was performed on neighbouring sections of the same eyes. A 

technical limitation to overcome was, that the eyes had been fixed in 4% PFA leading to 

some difficulties in finding of the optimal staining protocol. As fixation in PFA is known 

to mask antigens and impair epitope binding, spleen tissue of the same monkeys was cut 

and stained beforehand with the same protocol to serve as a positive control (especially 
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for epitopes relating to immune competence). The sham-injected eyes of the control group 

served as the negative control.  

 

4.3.1 Iba1 
 

Iba1 (ionized calcium-binding adapter molecule 1) was used as the most reliable staining 

marker for microglia120 Retinal microglia in the normal retina populate the plexiform 

layers121. They are stationary phagocytic sentinel cells that have migrated into the retina 

during embryonic development and early postnatal phase. In the retina, microglia are 

responsible for the control of retinal homeostasis and the phagocytosis of cell debris. 

Therefore, they inhibit a variety of surface proteins and long motile processes to scan 

their local environment122. Age-related and multifactorial retinal diseases as well 

inherited degenerative retinal diseases are associated with an activation of microglial 

cells123-125. In the case of activation microglia start to proliferate and change their 

appearance from a ramified form into an amoeboid form that migrates from the plexiform 

layer into other layers and to the site of damage121. 

When comparing the treated eye to the sham injected eye, staining with Iba1 showed a 

marked increase in signal. Also, the distribution pattern differed and treated eyes showed 

Iba1 signal not only the plexiform layer, but also the nuclear layers of the retina. 

The signal increase was restricted to the area of treatment.  

Microglia represent the cellular innate immune response in the retina. The activation we 

observed could therefore be due to the recognition of either vector particles themselves 

or a change of microenvironment that leads to proliferation of microglia. It is improbable 

that the activation visible 30 days after treatment is attributed to the temporary retinal 

detachment as the slides were compared to eyes that received a sham-injection of the 

same volume with BSS. The fact that the Iba1 signal is observed in the expected location 

(plexiform layers and after activation in all layers) further supports the thesis that 

microglia are indeed observed.  

Microglial activation is regulated by several inhibitory factors expressed by other cells of 

the retina to maintain the balance between the beneficial phagocytic functions of the 

microglia and possible auto-destructive responses that damage neurons126, 127.  

Form the histological observation of activation we cannot tell whether this balance is 

compromised. The activation of microglia could also represent the reestablishment of the 
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homeostasis after some sort of damage caused by the treatment. What can be concluded 

from the observation, though, is that homeostasis is at least temporarily impaired leading 

to an activation of microglia. 

 

4.3.2 MHCI 
 

As mentioned in the introduction, the classic pathway of innate antiviral defence 

mechanisms of host cells leads to the presentation of viral particles via MHCI molecules, 

which -in turn- enable cytotoxic CD8 T cells to kill the virus infected cell. 

Staining with MHCI gave a strong signal of the RPE and some singular cells in the retina 

that were not found in the sham injected eyes.  

In the central nervous system MHCI is generally expressed only by glia cells and not by 

neurons in order to protect neuronal tissue from cytotoxic T cell responses. Nevertheless, 

this view has been challenged by the observation that in some special inflammatory 

situations in vivo and under artificial conditions in vitro neurons are able to present 

MHCI128. However, this has not yet been described for the adult retinal cells which is 

supported by our observation that did not include MHCI upregulation in retinal neural 

cells. 

The RPE cell, as a phagocytotic cell is however expressing MHCI constitutively 

represented on our slides by a strong signal of MHCI over the RPE layer129. 

The MHCI positive cells observed within the retinal layers could therefore either 

represent microglia or other immune competent cells that have infiltrated the neural 

tissue. 

 

4.3.3 MHCII 
 

MHC II is expressed by antigen presenting cells (APC). In the retina these cells include 

microglia and macroglia, from which the latter can be subdivided into retinal astrocytes 

and Müller cells121. The RPE cells are known to express MHCII after stimulation with 

INF-g and can therefore also be regarded as antigen presenting cells130.  

Immunohistochemistry of the AAV treated slides showed MHCII positive cells in the 

retina and in the subretinal space. Double-staining with Iba1 (unpublished images) 

showed that some cells co-express MHCII and Iba1 but not all cells do. Although no 
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evidence is at hand to the nature of these MHCII positive cells that do not co-express 

Iba1, they could, besides the other mentioned APCs, partly represent CD20 positive B 

cells, which were also found in the retina but could not be co-stained with MHCII for 

technical reasons. 

 

4.3.4 CD8 
 

CD8 positive cells that were found in the retina most likely represent infiltrating cytotoxic 

T cells. Capsid specific T cells have already been observed after AAV mediated gene 

transfer to hepatocytes81. In the eye they have not been described following AAV 

treatment but in models of uveitis like Experimental autoimmune uveoretinitis (EAU) 

CD4 as well as CD8 positive T cells are the main mediators of inflammation131.  

But CD8 positive cells could also carry out regulatory function. Although the main 

protagonist of regulatory T cells are CD4+, CD25+, FoxP3+ T cells, CD8+ regulatory T 

cells have also been described to be part of the immune suppressive mechanisms of the 

eye132. However, these cells did not stain for CD4, markers for regulatory activity 

(CD103b, FoxP3) or INF-g as marker for a TH1 response. 

 

4.3.5 CD20 
 

Interestingly staining for CD20 showed that infiltrating B cells seem to be involved. This 

is another parallel to the pathological observations of EAU in a monkey model where 

infiltrating B cells have been described to be the main infiltrating lymphocyte133. In 

uveitis, B cells play a key role in the inflammatory process which is further evidenced 

also by the beneficial treatment effects of Rituximab, a CD20 antibody therapy133, 134.  

Tissue infiltrating B cells play a role in various autoimmune diseases, especially 

neurological autoimmune disorders135. They also play an important role as tumor 

infiltrating lymphocytes and take part in the rejection of renal allografts136, 137. Of 

relevance, they have also been observed in local immune infiltrations after intramuscular 

AAV1 gene therapy138. 

The function of the B cells in the retina is unclear. As reviewed by Smith et al. for non-

infectious uveitis, there are multiple potential mechanisms by which B cells can initiate 
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or perpetuate inflammation in the eye. However, they can also contribute to immune 

suppression mediated by a subset of B cells called B regulatory cells139.  

The mere presence of B cells in the retina strongly encourages the idea of an antigen 

specific immune response mechanism. The induction of antibodies observed is in line 

with this theory. Unfortunately, no PBMC (peripheral blood mononuclear cell) activation 

assay data is at hand for the NHP. In the patient PBMCs no activation of CD19+ B cell 

after stimulation with AAV8 was observed. 

 

 

  Expression Analysis 
 

For the gene expression analysis, retinal tissue samples from the high dose group were 

compared to samples from the sham injected animals. The data showed enhanced gene 

expression of markers involved in the innate anti-viral immune response in the samples 

from the high dose group vs the sham injected animals. These included markers of the 

three major pattern recognition receptor pathways (TLRs, RIG-like receptors and NOD-

like receptors) as well as markers involved in an INF-g mediated TH1 response like the 

chemokine CXCL10.  

Although TLR9 and Myd88 were not significantly upregulated, their downstream 

signalling molecules IRF5 and TRAF3 were. As mentioned in the introduction, the 

TLR9-Myd88 pathway has been shown to be part in the recognition of AAV and 

responsible for staging a Th1 mediated immune response. Although no answer is at hand 

why only some of these downstream molecules are overexpressed and others are not our 

findings could still be implicating that the TLR9 pathway is activated. 

Other markers that were found upregulated in the high dose group have not yet been 

associated with AAV but could be interesting targets for future investigations. LGP2 

(Fold change (FC) of 3.2, p value 0.0024) and AIM2 (FC of 2.1, p value 0.0001) are both 

sensor proteins for cytosolic dsDNA. LGP2, a DEHX box domain protein related to the 

RIG-I like receptors participates in the cellular response to cytosolic dsDNA140. Although 

the AAV genome traffics the cytosol via endosomes and is only released into the cells’ 

nucleus, it can be hypothesized that some DNA molecules may be recognised, making 

these cytosolic DNA receptors interesting molecules for future investigations on AAV 

immunity.  
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Absent in melanoma 2 protein (AIM2) is a member of the PYHIN protein family and 

another sensor for cytosolic dsDNA. AIM2 forms together with ASC and caspase1 the 

inflammasome and drives INF gene transcription105. ASC (FC of 2.2 p value 0.0215) and 

Caspase 1 (FC of 1.9, p value 0.0268) were also both overexpressed which strengthens 

the assumption that this pathway could be activated. 

The highest elevation (Fold change of 19, p value: 0.013) was shown for CXCL10. This 

chemokine is induced by INF-g and attracts macrophages, T-cells and NK cells. It is 

further known to play a pivotal role in mediating the influx of effector T cells into the 

CNS in a number of viral infectious diseases and can be expressed by glia and     

neurons141, 142  

Taken together, this data suggests that the subretinal treatment with AAV8 leads to an 

activation of the innate immune response in the retina.  

Although INF-g expression was not detected directly, the upregulation of several 

pathways connected to the release of INF-g and the finding of T and B cells in the retina 

are highly suggestive of an INF-g mediated TH1 response. Although INF-g release is 

generally restricted to T cells and NK cells, in some situations it can also be expressed by 

microglia143. As the gene expression analysis data results from the whole retina tissue und 

not a specific cell line no conclusive answer to the question can be drawn from these 

results. In the future cell culture experiments might be able to shed more light on the 

actions of the different cells involved. 

Limiting factors of the assay are the low number of animals included (high dose n=3, 

control group n=4) and the fact that the tissues had been fixed with PFA before RNA 

isolation. Paraformaldehyde leads to chemical modification and fragmentation of 

RNA144. For this reason, formalin-fixed samples are often poor material for molecular 

biology applications. Especially long RNA molecules are prone to fragmentation 

resulting in an altered expression profile. But as Wiegers and Hilz described in 1971, the 

use of Proteinase K prior to extraction digests the ribonucleases that degrade RNA during 

the extraction process145. After several attempts the use of Proteinase K was found to be 

crucial in receiving good quality RNA. This finding is well supported by existing 

literature145-147. Our results on RNA quality assessments after isolation and prior to the 

qPCR experiment showed that our data offers a valid expression profile. 
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  Conclusion 
 

Multiple studies have shown that subretinal AAV meditated gene therapy can lead to 

inflammation of the eye. This immune response is in most cases a transient phenomenon 

that is manageable with steroid treatment. But individual cases of clinically significant 

immune response effecting visual function illustrate that knowledge about the 

immunologic potential of AAV in the eye is not only essential to enhance safety but might 

also increase the efficacy of future therapies.  

Our data suggest that certain amounts of subretinal AAV are able to overcome the anti-

inflammatory immune privilege of the eye. This thesis is supported by gene upregulation 

of markers of the innate antiviral immune defense, the activation of microglia as the 

“immunological watchdogs”121 of the retina and the infiltration of cells of the adaptive 

immune system like CD8+ T cells and CD20+ B cells. The role of these cells in the retina 

can only be hypothesized but CD8+ cytotoxic T cells are known to play a major role in 

antiviral immunity against AAV transduced cells81, 89. It therefore seems likely that they 

adopt a similar function in the retina. The fact that NHP did not present histological signs 

of inflammation after 90 days matches the clinical observation of a transient immune 

reaction. This could be attributed to the anti-inflammatory features of the eye that in most 

cases are able to contain the immune response. It remains unclear, though, whether 

specific tolerance is induced or if the decline of inflammation is a sign of effective 

clearance of the remaining AAV vector particles. If the latter is true, future studies would 

have to determine if the immune response is only directed to free AAV8 particles or as 

well to vector transduced cells. As photoreceptors do normally not present antigens via 

MHCI, damage to these cells is probably only resulting as a side effect of activated 

infiltrating APCs that are not suppressed by the anti-inflammatory mechanisms of the 

eye.  

It has to be kept in mind that all NHP and all patients received concomitant steroid 

treatment. As the inflammation responded to steroid treatment this measurement seems 

to be justified. Future studies will have to show if alternative or additional anti-

inflammatory regimens could help to suppress the immune response even better. Care has 

to be taken when applying new anti-inflammatory drugs as studies have shown that the 
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immunomodulation is able to cause also unwanted detrimental effect to the tolerogenic 

properties of AAV148, 149. 

Limitations of the study include presumed differences between the human and nonhuman 

primate immune system, the limited timepoints, missing PBMC data from the NHP and 

missing antibody data for the 28 day NHP study.  

However, this study adds valuable information to the question how AAV is able to elicit 

specific immune responses in the subretinal space. This information might be able to 

guide future studies in enhancing safety and efficacy of the therapy.
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5 Summary 
 

 Introduction 
 

Adeno-associated viral (AAV) vectors are commonly used in ocular gene therapy for 

inherited retinal degenerations. They are known for their excellent efficacy in transducing 

retinal cells and their benign immune profile. However, the observation that subretinal 

AAV can lead to ocular inflammation highlights the importance to re-evaluate the 

immunogenicity of AAV.  

 

  Methods and material 
 

Cynomolgus monkeys (Macaca fascicularis) were treated with subretinal or intravitreal 

injections of AAV serotype 8. The high dose group received 1x10^12 viral genomes (vg) 

and the low dose group 1x10^11 vg. The control group received injections with vehicle 

only (balanced salt solution). Of the 34 animals included in the study, 12 were sacrificed 

after 28 days and 22 were sacrificed after 90 days. During the observation period, blood 

was taken at fixed timepoints for ELISA of antibodies directed against AAV capsid 

epitopes. After the inlife phase of the study, eyes were fixed in 4% PFA, embedded and 

frozen at -80°C. 20µm cryosections were subsequently used for expression profiling and 

immunohistochemistry.  

These data were compared to clinical observations from three patients treated with the 

same vector subretinally. OCT images were taken and peripheral blood mononuclear cells 

were isolated from patient blood at defined timepoints to be analysed for AAV specific 

reactivity.  

 

 Results 
 

The ELISA study of NHP derived blood samples showed an increase in anti-AAV8 titer 

at day 30 in the intravitreal high dose group but not in the subretinal high or low dose 

group. No antibody formation was observed in the three patients. Immunohistochemistry 

showed an inflammation of the NHP retina with activation of IBA1+ microglia and 

infiltration of CD8+ T cells and CD20+ B cells at 28 days following surgery. Expression 

analysis of the retinal tissue showed an upregulation of genes related to the innate antiviral 
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immune response and associated with the release of INF-g. None of the three patients 

showed clinically significant inflammation, but one featured hyperreflective  foci in OCT 

images one month after surgery, which disappeared following steroid treatment. PBMC 

analysis showed changes in the activation pattern of CD8+ T cells one month after surgery 

in 2 out of 3 patients. 

 

 Discussion 
 

The data presented in this study suggests the activation of the innate and adaptive 

immune response following AAV administration. This hypothesis is supported by the 

activation of markers of antiviral immune pathways (Toll like, RIG1 like and NOD like 

receptor pathways) and the increase of capsid specific antibodies as well as retinal 

infiltration of cells of the adaptive immune response. Future studies will have to 

determine the exact dynamics of the infiltrating immune cells and how this immune 

response can be effectively inhibited. 
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6 Zusammenfassung 
 

 Einführung 
 

Gentherapeutische Ansätze zur Behandlung erblicher retinaler Degenerationen basieren 

zum Großteil auf rekombinanten adeno-assoziierten Viren (AAV) als Vektor zur 

Transduktion der Netzhautzellen. AAV sind im Vergleich zu anderen viralen Vektoren 

bekannt dafür, dass sie bei guter Transduktionseffizienz gleichzeitig eine gering 

ausgeprägte Immunogenität aufweisen. Aufgrund sich mehrender Beobachtungen von 

Immunreaktionen auf AAV vermittelte Gentherapien in präklinischen und klinischen 

Studien wurde immanent, dass der bisherige Kenntnisstand zur Immunogenität diese 

Vektoren lückenhaft ist und einer umfassenden Klärung bedarf. Das Ziel dieser 

Doktorarbeit war über die Erforschung der Mechanismen auf molekularer und zellulärer 

Ebene die Tür in diese Richtung etwas aufzustoßen. 

 

 Material und Methoden 
 

Im Rahmen einer präklinischen Toxizitäts und Sicherheitsstudie wurden Javaneraffen 

(Macaca fascicularis) mit einem AAV8 vector entweder intravitreal oder subretinal 

behandelt. Unterteilt wurde in eine Hochdosisgruppe (1x10^12 virale Genomkopien 

(vg)), eine Niedrigdosisgruppe (1x10^11 vg) sowie eine Kontrollgruppe, welche eine 

gepufferte Kochsalzlösung erhielt. 12 Versuchstiere wurden über einen Zeitraum von 4 

Wochen, 22 Versuchstieren über einen Zeitraum von 90 Tagen nach Behandlung 

beobachtet bevor die Organentnahme durchgeführt wurde. Während des genannten 

Zeitraums wurden Blutproben entnommen und Antikörpertiter mittels ELISA Technik 

berechnet. Danach wurden die Augen in 4% Paraformaldehyd fixiert, in einem 

Gefrierschneidemedium eingebettet, und in 20µm Schnitten bei -80 C° eingelagert. Diese 

Schnitte wurden dann wiederum für immunhistochemische Färbungen und zur Erstellung 

von Expressionsprofilen genutzt. Diese Daten wurden verglichen mit klinischen 

Observationen dreier, mit dem gleichen Vektor subretinal behandelter Patienten. Hierzu 

wurden OCT Bilder und die in-vitro Reaktion peripherer Immunzellen auf den Vektor 

analysiert. 
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 Ergebnisse 
 

In den Vektor-injizierten Javaneraffen stiegen Antikörpertiter gegen des AAV8 Capsid 

um den Tag 30 nur in der intravitreal behandelten Hochdosisgruppe aber nicht in den 

subretinal injizierten Gruppen. In den Patientenproben waren keine Antikörperreaktionen 

sichtbar. Die immunhistochemischen Färbungen der Affennetzhäute fand sich bei den 

nach 4 Wochen getöteten Tieren eine entzündliche Infiltration von Immunzellen, unter 

diesen IBA1+ Mikroglia Zellen, CD8+ T-Zellen und CD20+  B-Zellen. In der RNA - 

Expressionsanalyse derselben Tiere zeigte sich eine Aktivierung von Genen für Signal 

und Rezeptormoleküle welche über die Aktivierung von INF-g an der angeborene 

Immunantwort gegen Viren beteiligt sind. Keiner der Patienten präsentierte klinische 

Zeichen einer Entzündung. Allerdings waren im OCT fokale Veränderungen der 

Netzhaut sichtbar, welche auf eine Prednisolontherapie ansprechend, daraufhin 

verschwanden. Die Analyse der PBMC zeigte eine Aktivierung von CD8+ T-Zellen nach 

einem Monat in 2 von 3 Patienten. 

 

 Diskussion 
 

Die in dieser Doktorarbeit präsentierten Daten zeigen die Aktivierung einer lokalen und 

systemischen Immunantwort. Die Hochregulierung von antiviralen Genen bestimmter 

Pathways (Toll like, RIG 1 like und NOD like receptor pathways) zusammen mit dem 

Anstieg von spezifischen Antikörpern suggeriert die Beteiligung der angeborenen sowie 

die adaptiven Immunantwort. Welche klinische Bedeutung die einzelnen Beobachtungen 

haben und welche Implikationen für die Weiterentwicklung okulärer Gentherapien 

müssen weitere Studien herausfinden. Dies ist ebenso wichtig für die Sicherheit von 

AAV-vermittelten Gentherapien in der klinischen Anwendung wie für die therapeutische 

Effizienz dieses Ansatzes. 
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