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Summary 

Nowadays, the use of High-Performance Liquid Chromatography (HPLC) is indispensable in 

many analytical application fields. Thereby, Reversed Phase Liquid Chromatography (RP LC) 

is the most frequently used chromatographic mode as it is suitable for the majority of 

applications. However, the rising requirements in pharmaceutical quality control concerning 

comprehensive sample characterization as well as the increasing sample complexity rises the 

need of alternative, complementary chromatographic methods. Besides, the 

commercialization of two-dimensional liquid chromatography (2D-LC) systems further 

encouraged the popularity of separation methods complementary to RP LC. In this context, 

Mixed Mode Chromatography (MMC) gained growing importance alongside Hydrophilic 

Interaction Chromatography (HILIC).  

MMC stationary phases show alternative selectivities due to the surface functionalization of 

the separation material with multiple interaction sites of different species which are involved in 

the chromatographic process.  

In house synthesized silica gel based MMC stationary phases, namely N-Propyl-N’-2-

pyridylurea and N-(10-undecenoyl)-3-aminoquinuclidine modified silica particles, were 

characterized concerning their flexible use under different elution conditions such as RP and 

HILIC conditions. The resulting retention data were used in order to comparatively classify the 

stationary phases by Principal Component Analysis (PCA) to elucidate similarities and 

dissimilarities. Such projections can support to make a fast-preliminary selection of potentially 

suitable columns before a specific sample is addressed.  

Additionally, the same procedure was used for the characterization of the zwitterionic chiral 

stationary phases ZWIX(+) and ZWIX(-) which can also be categorized as MMC stationary 

phases. In order to enhance the understanding of the contribution of the distinct molecule 

moieties to the chromatographic process, silica particles with immobilized selector fragments 

of the chiral ligands were characterized in the same manner. As a complementary measure, 

the conformations of the immobilized ligands were examined by molecular modelling. 

Furthermore, the surface charge state of the separation materials was characterized as it plays 

a crucial role in the separation and retention of charged analytes. In this context, -potential 

determination as well as a chromatographic characterization proved to offer valuable 

information.  

The characterization of the zwitterionic separation materials ZWIX(+) and ZWIX(-) and the 

respective fragmented selectors was further supported by the characterization of the free 

ligands in capillary electrophoresis.  

In some cases, the use of high buffer concentrations is necessary in order to analyze multiply 

charged solutes. This limits the choice of compatible detection methods. Hence, the structure 
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elucidation of impurities in pharmaceutical drug substances and drug products involve the use 

of high-resolution mass spectrometry (HR MS) which constrains the tolerated buffer 

concentrations. In order to address this problem, on the one hand the principle of immobilized 

counterions was realized and on the other hand, the basicity of the ion exchange site was 

adjusted to influence the charge state and polarity of the stationary phase. Milder elution 

conditions up to a umpolung of the surface charge in case of the latter one was the result of 

both strategies.  

Furthermore, column bleeding is an important factor in the routine analysis as well as in the 

field of structure elucidation as it detrimentally affects the detection sensitivity in universal 

detection methods and in mass spectrometry in case of ionizable ligands. Therefore, the 

attachment chemistry is of utmost importance also influencing the column lifetime. Previously, 

a new attachment chemistry was developed by Zimmermann et al. (J Chromatogr A, 1436 

(2016) 73-83) where the chromatographic ligand is immobilized on a polysiloxane layer which 

is multiply linked to the silica particle. The stability of brush-type stationary phases compared 

to the polymer coated stationary phase was studied in a chromatographic stress test in this 

work.  

Challenging pharmaceutical example mixtures were separated using one dimensional (1D-LC) 

and two dimensional HPLC (2D-LC) in order to demonstrate the advantage which resulted 

from the improvement strategies. In 1D-LC nucleotides and synthetic oligonucleotides were 

analyzed demonstrating the beneficial use of both strategies aiming at the reduction of the 

utilized counterion concentration.   

The simultaneous analysis of fat- and water-soluble vitamins was addressed by selective 

comprehensive HILIC × RP with precedent optimization of the two chromatographic 

dimensions using design of experiments (DoE) strategy amongst others. However, the 

orthogonality of the two dimensions challenged their hyphenation in terms of solvent mismatch 

problems. Therefore, the active solvent modulation methodology was beneficially used in the 

2D-LC method leading to sharp, well resolved peaks in 2D.  

Moreover, an impurity profiling set-up for polar analytes was developed. A set of polar 

stationary phases was screened under HILIC conditions analyzing proteinogenic amino acids. 

On the basis of these chromatograms, the most promising stationary phases for the 

HILIC × HILIC system were elucidated. The hyphenation of HILIC systems is challenging 

because of decreased refocusing possibilities in the beginning of the chromatogram as well as 

the comparable longer re-equilibration times. In order to prevent solvent mismatch issues, the 

1D elution mode eschewed water which has a high elution strength under HILIC conditions. 

The instrumental set-up included besides the two chromatographic dimensions, the 

hyphenation of multiple detectors, namely diode array detector (DAD), charged aerosol 
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detector (CAD) and HR MS. The UV detectors can be used to elucidate relations of compounds 

due to similar spectra and serve later on as an identification criterion when simpler 

instrumentations are used. The charged aerosol detector can be used for a quasi-universal 

quantification of the compound and high-resolution mass spectrometry (HR-MS and MS/MS) 

serves for proper identification of the peak of interest. 
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Zusammenfassung 

Heutzutage ist die Hochleistungsflüssigkeitschromatographie (HPLC) unverzichtbar in vielen 

analytischen Anwendungsbereichen. Hierbei zählt die Umkehrphasenchromatographie 

(Reversed Phase Liquid Chromatography RP LC) zu den am häufigsten verwendeten 

chromatographischen Modi, da sie für die Mehrheit der Anwendungen geeignet ist. Die 

steigenden Anforderungen in der pharmazeutischen Qualitätskontrolle bezüglich der 

umfassenden Charakterisierung des Arzneistoffs und der Arzneimittel sowie die steigende 

Komplexität von den zu analysierenden Proben im Allgemeinen, erfordern zusätzliche, 

alternative chromatographische Methoden. Weiterhin fördert die Kommerzialisierung der 

Systeme für zweidimensionale Hochleistungsflüssigkeitschromatographie (2D-LC) die 

Beliebtheit der Trennmethoden, die komplementär zu RP LC sind. In diesem Zusammenhang 

gewinnt Mixed Mode Chromatographie (MMC) neben der Hydrophilen 

Interaktionschromatographie (HILIC) zunehmende Bedeutung. MMC stationäre Phasen 

zeigen alternative Selektivitäten aufgrund der Oberflächenfunktionalisierung des 

Trennmaterials mit mehrfachen Interaktionsstellen verschiedener Art, die in den 

chromatographischen Prozess involviert sind. 

Die in house synthetisierten Kieselgel-basierten MMC stationären Phasen, N-Propyl-N’-2-

pyridylurea und N-(10-undecenoyl)-3-aminochinuclidin modifiziertes Kieselgel, wurden 

hinsichtlich des flexiblen Gebrauchs der Elutionsbedingungen wie beispielsweise RP und 

HILIC Bedingungen charakterisiert. Um Gemeinsamkeiten und Unähnlichkeiten aufzudecken, 

verwendete man die erhaltenen Retentionsdaten für eine vergleichende Klassifizierung der 

stationären Phasen mittels Hauptkompenentenanalyse (Principal Component Analysis, PCA). 

Projektionen dieser Art können eine schnelle Vorauswahl potenziell geeigneter Säulen 

unterstützen, bevor eine spezifische Probe untersucht wird. 

Dieselben Untersuchungen wurden für die Charakterisierung der zwitterionischen chiralen 

stationären Phasen ZWIX(+) und ZWIX(-), die ebenfalls als MMC stationäre Phasen 

kategorisiert werden können, verwendet. Um hierbei das Verständnis des 

chromatographischen Prozesses zu erweitern, wurden Kieselgel Partikel mit immobilisierten 

Selektorfragmenten der chiralen Liganden in derselben Art und Weise charakterisiert. 

Ergänzend erfolgte eine Untersuchung der Konformation der immobilisierten Liganden mittels 

molekularer Modellierung.  

Darüber hinaus wurde der Oberflächenladungszustand des Trennmaterials beschrieben, da 

er eine wesentliche Rolle bei der Retention und Trennung von geladenen Analyten einnimmt. 

In diesem Zusammenhang erwiesen sich die Bestimmung der -Potenziale als auch die 

chromatographische Charakterisierung als wertvolle Informationsquellen. Die 

Charakterisierung der zwitterionischen Trennmaterialien ZWIX(+) und ZWIX(-) und die 
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entsprechenden fragmentierten Selektoren wurden weiterführend durch die Charakterisierung 

der freien Liganden mittels Kapillarelektrophorese unterstützt.  

In einigen Fällen sind hohe Pufferkonzentration nötig, um mehrfach geladene Stoffe zu 

analysieren, wodurch jedoch die Wahl der kompatiblen Detektionsmethoden limitiert ist. Die 

Strukturaufklärung von Verunreinigungen in Arzneistoffen und Arzneimitteln erfordert dagegen 

die Verwendung von Hochauflösender Massenspektrometrie (HR MS) wodurch die tolerierte 

Pufferkonzentration limitiert ist. Um dieses Problem anzugehen, wurde einerseits das Prinzip 

von immobilisierten Gegenionen realisiert und andererseits die Basizität der 

Ionenaustauschergruppe angepasst, um den Ladungszustand und Polarität der stationären 

Phasen zu beeinflussen. Beide Strategien führten zu milderen Elutionsbedingungen bis hin 

zur Umpolung der Oberflächenladung im Falle der zweiten Strategie. 

Darüber hinaus ist Säulenbluten ein wichtiger Faktor in der Routineanalytik sowie im Bereich 

der Strukturaufklärung, da es die Detektionssensitivität von universellen Detektoren und, im 

Falle ionisierbarer Liganden, massenspektrometrischer Detektion nachteilig beeinflusst. Daher 

ist die Anbindungschemie von äußerster Wichtigkeit, da sie einen wesentlichen Einfluss auf 

die Lebenszeit der Säule hat. Zuvor wurde eine neue Anbindungschemie von Zimmermann et 

al. (J Chromatogr A, 1436 (2016) 73-83) entwickelt, wobei der chromatographische Ligand an 

einer mehrfach mit dem Kieselgel Partikel verlinkten Polysiloxan-Schicht immobilisiert ist. In 

der vorliegenden Arbeit wurde die Stabilität durch einen vergleichenden chromatographischen 

Stresstest der Bürstenphasen und der mit Polymer beschichteten Phasen untersucht.  

Herausfordernde pharmazeutische Beispielmischungen wurden mittels eindimensionaler (1D-

LC) und zweidimensionaler Hochleistungsflüssigkeitschromatographie (2D-LC) erfolgreich 

analysiert, um die umgesetzten Vorteile zu demonstrieren. Die Analyse von Nukleotiden und 

synthetischer Oligonukleotide demonstrierten beispielsweise die Vorteile beider Strategien zur 

Reduzierung der benötigten Pufferkonzentration. Die gleichzeitige Analyse von fett- und 

wasserlöslichen Vitaminen wurde durch eine selektive umfassende HILIC × RP Methode 

angegangen mit vorheriger Optimierung beider chromatographischen Dimensionen unter 

anderem mittels statistischer Versuchsplanung. Die Kompatibilität der mobilen Phasen beider 

Dimensionen bei der Kopplung beider Dimensionen erwies sich als herausfordernd aufgrund 

deren Orthogonalität. Durch die Verwendung der aktiven Lösungsmittelmodulation resultierten 

in der zweiten Dimension scharfe, gut aufgelöste Peaks.  

Beispielsweise zur Erstellung von Verunreinigungsprofilen diente die Entwicklung eines 

speziellen instrumentellen Aufbaus. Ein Set polarer stationärer Phasen wurde unter HILIC 

Bedingungen zur Analyse von proteinogenen Aminosäuren getestet. Auf der Basis dieser 

Chromatogramme konnte die vielversprechendste Kombination der stationären Phasen für die 

HILIC × HILIC Trennung eruiert werden. Die Kombination von zwei HILIC Dimensionen kann 
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herausfordernd sein, da eine Refokussierung zu Beginn des Chromatogramms schwieriger ist 

und längere Reequilibrierungszeiten notwendig sind. Um Lösungsmittelinkompatibilitäten 

vorzubeugen, wurde in der mobilen Phase der ersten Dimension auf Wasser verzichtet, da 

dies eine hohe Elutionskraft unter HILIC Bedingungen besitzt. Der instrumentelle Aufbau 

umfasst außer den beiden chromatographischen Dimensionen ebenfalls die Kopplung 

multipler Detektoren wie Dioden Array Detektor (DAD), Charged Aerosol Detektor (CAD) und 

Hochauflösende Massenspektrometrie (HR MS). Dabei dient der DAD Detektor zur 

Unterstützung der Aufklärung von verwandten Verbindungen aufgrund ähnlicher Spektren und 

kann später als Identifikationskriterium bei einfacheren instrumentellen Aufbauten verwendet 

werden. Charged Aerosol Detektion ist ein quasi universeller Detektor, der zur Quantifizierung 

der Verbindungen verwendet werden kann. Die hochauflösende Massenspektrometrie dient 

der zuverlässigen Identifikation des gewünschten Peaks.  
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1. Introduction 

1.1. Pharmaceutical Background 

The development of new drugs substances and the respective drug product necessitates the 

characterization of its efficacy and safety. However, the safety of a drug product is not only 

determined by toxicity and adverse effects of the drug substance, but also of the degradation 

products and impurities. Therefore, it is of utmost importance to characterize the drug 

substance as well as the drug product comprehensively [1-3]. The approved guidelines are 

offered by the International Council for Harmonization of Technical Requirements for 

Pharmaceuticals for Human Use (ICH), which categorizes organic impurities, inorganic 

impurities and residual solvents [2]. Albeit, especially in case of complex drug substances, very 

low, but harmless levels of impurities may result out of an economical production which arises 

the need of a thorough monitoring [4]. In this context, there are guidelines for the calculation 

of three threshold levels namely reporting, identification and qualification thresholds, as 

defined by the ICH [2, 3, 5]. The comprehensive characterization should be started already in 

the early stages of the development of the new drug product facilitating the understanding of 

the origin of eventually occurring impurities [6-8]. The stability testing comprises besides time 

coursed studies also stress tests characterizing the influence of temperature, ultraviolet (UV) 

light exposure, humidity, acid/base treatment and oxidation [2, 3, 9]. Thus, deviations in the 

manufacturing process can better be identified and evaluated with the help of the 

comprehensive knowledge about the impurity profile of the active pharmaceutical ingredient 

(API) and the drug product. Also the impurity profile of approved drugs need to be updated 

regularly [6]. 

Nowadays, High Performance Liquid Chromatography (HPLC) is state of the art in the quality 

control of pharmaceutical drugs and formulations [8]. The comparably uncomplicated 

hyphenation of this technique with numerous detection methods such as diode array detection 

(DAD), charged aerosol detection (CAD), evaporative light scattering detection (ELSD), 

refractive index detector (RID) and mass spectrometry (MS) counts to its major benefits [10]. 

The most popular technique in pharmaceutical quality control is by far Reversed phase liquid 

chromatography (RP LC) [8]. However, the structural similarity of the API and the degradation 

product is given in many cases and the concentration of the degradation product might be very 

small compared to API. Therefore, a co-elution of the API and the degradants cannot be 

excluded. In order to identify co-eluting peaks, the need for complementary analytical methods 

arises [11]. Hydrophilic interaction chromatography (HILIC) and Mixed mode chromatography 

(MMC) gained in this context increasing attention. They offer alternative retention profiles to 
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the well-known RP chromatography. Stationary phase classification procedures can help to 

narrow down suitable alternatives.  

The chromatographic methods can be combined on the one hand in traditional approaches 

where either the full sample or the peak of interest is manually collected and subjected to the 

second chromatographic method. On the other hand, the second chromatographic dimension 

can be hyphenated using a special 2D-LC interface for online two-dimensional 

chromatography (2D-LC). Herein, the drug substance is analyzed in the first dimension (1D) 

and either the peak of interest or the complete first dimension is fully automated transferred to 

the second complementary dimension with comparatively low effort [1, 12, 13]. Alongside 

biopharmaceuticals and biosimilars [14], complex mixtures can be generated by complex drug 

matrices or multi drug mixtures. Due to the combination of two chromatographic dimensions, 

the resolving power is significantly increased [15], and such samples can be comprehensively 

addressed as well. This underlines the potential of the use of 2D-LC in pharmaceutical analysis 

either for complex mixtures or in case of supposed co-elution. 
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1.2. Silica Particle Morphology and Ligand Attachment Strategy 

1.2.1. Kinetic Performance and Silica Particle Architectures 

Stationary phases based on silica possess outstanding good properties in terms of the 

chemical and mechanical stability, loading capacity as well as the solvent compatibility. 

Therefore, these support materials are used commonly in almost every chromatographic mode 

in HPLC [16].  

Silica materials experienced a development concerning the chromatographic performance. In 

this connection, the Van-Deemter equation plays an important role describing the dependency 

of the parameters influencing the chromatographic efficiency. The plate height H is expressed 

in dependence of the linear flow velocity u.  

𝐻 = 𝐴 + 
𝐵

𝑢
+ 𝐶 ∙  𝑢     (1) 

Hereby, the different multiple possible flow paths through the packed bed of the silica particles, 

the so-called Eddy diffusion, are represented by the A-term. Smaller and homogeneous 

particles result in better column packing quality and thus reduces the contribution of this term. 

The compound diffusion along the column from the concentrated analyte zone into the less 

concentrated, adjacent sectors (band broadening) is called longitudinal diffusion and 

characterized by the B-term. An increased flow velocity decreases the influence of this 

phenomenon. Furthermore, the diffusion of the analyte into the pores of the particles can be 

observed influenced by the diffusion coefficient of the analyte. This causes a migration delay 

as the flow velocity is decreased in the pores (flow gradient) and is described by the C-term, 

the so-called mass transfer resistance. The increase of the flow rate promotes this 

phenomenon [17].  

On the one hand, the silica particles were optimized concerning the contribution of the A-term 

and C-Term by decreasing the particle size from 10 µm over 5 and 3 µm down to sub-2-µm 

fully porous particles (FPP) [18]. The improved efficiency at higher flow rates results in ultrafast 

separations using particles smaller than 2 µm. (Fig. 1). Hence, the resulting backpressure 

stemming from the compact column bed encouraged the development of Ultra High-

Performance Liquid Chromatography (UHPLC) instruments as the use of standard HPLC 

instruments is constrained due to pressure limits. UHPLC instruments tolerate high pressures 

up to 1200-1300 bar and are optimized in terms of extra column dispersion effects and detector 

sampling rates [18].  
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Fig. 1: Comparison of the chromatographic performance of 5, 3 and 1.7 µm silica gel particles. The smaller particles 
offer higher optimum flow velocities and suffer less of mass transfer resistance as the flow velocity is increased.  
Reprinted with permission from John Wiley and Sons from J.L. Dores-Sousa, J. De Vos, S. Eeltink: Resolving power 
in liquid chromatography: A trade-off between efficiency and analysis time, Journal of Separation Science, 42 (2019) 
38-50 (Ref. [17]), Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 

Additionally, the high pressure causes frictional heating effects meaning axial and radial 

temperature gradients in the column which can result in efficiency loss [19]. 

On the other hand, the particle design was optimized in order to improve the chromatographic 

performance [20, 21]. Particles consisting of a solid core and a surrounding porous shell, were 

developed, also known as superficially porous particles (SSP), core-shell or pellicular particles. 

After the introduction, or better renaissance (such materials were already proposed by Cs 

Horvath as pellicular particles decades ago), of the first commercially available materials in 

2006, these support materials gained rising popularity [18, 22]. Due to the production process 

the particle size distribution is narrow leading to less heterogeneously packed columns. 

Consequently, the A-term (Eddy diffusion) is reduced [23]. The solid core hinders the diffusion 

of the analytes in regard of limiting the number of diffusion paths and constraining the diffusion 

into the particle pores. This decreases the influence of the A-, B- and C-term [22].  

In consequence, the use of coreshell particles (inner diameter (ID) 2.7 µm, for example) leads 

to separations with comparable performance like fully porous particles of lower particle size 

(e.g. sub 2 µm) while showing significantly lower backpressures at the same conditions [24]. 

This offers the possibility to use standard HPLC instruments [24]. Moreover, the heat 

dissipation is improved by the solid core. Band broadening effects caused by frictional heating 

are therefore reduced [19]. 
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1.2.2. Modification of Silica Particles with Special Attention to Column 

Bleeding 

Bare silica is often modified in order to introduce additional interaction sites at the surface of 

the particles which can alter the chromatographic selectivity. The stability of the attachment 

chemistry must be taken into account since the ligand coverage influences the column 

selectivity and peak shape [25-27]. Furthermore, the detachment of ligands, the so-called 

column bleeding, can be measured as background signal in various detection methods [28, 

29]. Ultraviolet/vis (UV) detection shows generally decreased sensitivity for column bleeding, 

though, depending on the used wavelength and the presence of a UV chromophore in the 

ligand [29]. Thus, the detection sensitivity can be significantly influenced when mass 

spectrometry (MS) or universal detectors like charged aerosol detector (CAD) and evaporative 

light scattering detector (ELSD) are used [28, 29].  

Although silica particles allow the use of a wide range of pH values, the solubility of the silica 

support is prone to dissolve under alkaline conditions (pH>7.5) [30] and acidic conditions 

promote the hydrolysis of siloxane bonds [25-27]. Furthermore, metal contaminations, present 

in a significant degree in type A silica, catalyze the detachment especially at low pH values 

[31]. Therefore, nowadays, the silica type B is preferred with low metals contents [25]. 

Alternatively, organic/inorganic hybrid materials which introduce alkyl bridges such as ethyl 

bridges into the silica network, are used for stabilization of the silica support [32]. 

The removal or hindered accessibility of surface siloxane bonds are alternative strategies 

which were followed. The former includes the silanization of type B silica particles replacing 

silanol groups with silica hydride groups at the surface (silica type C, hydride materials) [33]. 

Alternatively, bulky side chains were used in order to shield sterically the attachment sites [34-

36]. 

Furthermore, the increase of the number of the attachment sites per chromatographic ligand 

leads theoretically to an improved stability. Following this approach, siloxane based stationary 

phases like bidentate silica [34, 37], horizontally polymerized silica [38], polymer coated [39-

41] and the hydrophobization of the silica surface followed by functionalization via polymer 

coating [42] were proven to have a superior column life time.  
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1.3. Chromatographic Modes and Functional Surface Modifications 

1.3.1. Reversed Phase Liquid Chromatography (RP LC) 

Reversed phase (RP) liquid chromatography is a well-established, popular chromatographic 

technique [8] which is especially suitable for non-polar and moderately polar analytes. Besides 

other support materials, silica gels modified with alkyl chains of different lengths (e.g. C1, C4, 

C8 and C18) are used [43, 44]. The selectivity range can be altered by the use of aryl- [45], 

perfluorinated- [46] or cyano- ligands [47], for example. The mobile phases usually consist of 

pure organic solvents such as methanol (MeOH), acetonitrile (ACN) or tetrahydrofuran (THF), 

or mixtures with water [48]. The retention of the investigated compounds increase with the 

polarity of the mobile phase as the retention is governed by the degree of hydrophobic 

interactions. Thus, especially affecting the analysis of basic analytes, poor peak symmetry 

combined with unexpected high retention can be observed depending on the utilized stationary 

phases and mobile phase conditions which can be affiliated to secondary interactions. 

Silanophilic interactions which are interactions of the analyte with surface silanol groups, are 

responsible for this observation [49-52]. There are many attempts to systematically 

characterize these additional interactions [53-56]. The strategies which aim to improve column 

lifetime (compare chapter 1.2.2) like the removal or the shielding of the attachment sites, 

generally also reduce silanophilic interactions. Furthermore, the implementation of polar 

groups has gained popularity. Surface-near polar-embedded groups or polar end capping 

provide additional interaction sites and additional selectivities for polar compounds [57-59]. 

Besides, mobile phase additives can also support to improve the peak shape. In this context, 

acids like formic acid (FA) and trifluoracetic acid (TFA) are often used to suppress the 

dissociation of the surface silanol groups [52]. Alternative mobile phase additives are amines 

[49, 60], phosphate and volatile buffers [61] and ionic liquids [62]. Overloading effects can be 

avoided when the concentrations of the additives are adjusted to a sufficient level [63]. The 

polarity range of the investigated analytes can be extended by the addition of hydrophobic 

acids or bases to the mobile phase and the sample solution. This is known as ion pair reversed 

phase (IP RP) chromatography. Thereby, ion pairing agents form ion pairs with the analyte 

which appear less hydrophobic. Moreover, the ion pairing agent interacts with the surface of 

the stationary phase and offers additional interaction possibilities [52].  

As the investigated pH value significantly contributes to the charge state of the analyte and 

therefore to its physicochemical properties, it significantly influences the retention [52, 64]. 

The temperature during the chromatographic process plays a decisive role. In general, the 

higher the temperature, the lower is the retention leading to decreased analysis times [52].  
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1.3.2. Ion Chromatography  

The chromatography addressing especially charged analytes was introduced in the 1970ies 

[65]. The stationary phases which are used in this chromatographic mode, possess charged 

groups at the surface interacting with analytes. Depending on the polarity, anion (AEX) and 

cation exchange (CEX) site can be distinguished serving for attractive and repulsive 

electrostatic interactions. Strong ion exchange ligands (IEX) are formed, for example, by 

sulfonic acids (strong cation exchange (SCX)) and quaternary amines (strong anion exchange 

(SAX)). These modifications usually bear a charge if the pH value is lower than 12 or higher 

than 2, respectively [66]. The surface charge state can be better influenced in case of weak 

ion exchange sites which are only charged over a constrained pH range. This includes weak 

cation exchange site (WCX) like carboxylic acids but also weak anion exchange sites like 

primary, secondary, and tertiary amines (weak anion exchange (WAX)). The combination of 

both, anion and cation exchange site in the same separation material was also reported leading 

to zwitterionic (ZWIX) materials [67].  

Polymeric coated materials are popular as support materials due to the increased stability [68, 

69]. Nevertheless, the chromatographic selectivity can be influenced by support matrices [68]. 

Exemplarily, the use of polydivinylbenzene coated stationary phases lead to long retention 

times accompanied by peak tailing of polarizable anions [68, 70]. 

The mobile phase usually consists of water. Faster elution can be achieved by the addition of 

an organic modifier portion [68] which prevents specific adsorption [71].  

A constant pH value and a controlled change of the pH value, respectively, is ascertained by 

the use of buffers as it can significantly affect the ion exchange capacity of the stationary phase 

as well as the charge state of the sample. Compared to the ion exchange site oppositely 

charged analytes are retained due to attractive electrostatic interactions. The ion exchange 

process can be described stoichiometrically. The stoichiometric displacement model expects 

a competition of the analyte and the buffer molecules whereby it is assumed, that the logarithm 

of the buffer concentration linearly correlates with the logarithm of the retention factor [72]. The 

retention time decreases with increasing counterion concentration. A detailed description and 

application can be found in chapter 4.1.4.34.1.4.3, 4.1.7.6, 4.2.4.4, 4.3.4.2.3 and 4.4.4.4. 

Additionally, increasing valences of the molecules enhance the affinity of the analyte to the 

stationary phase. The same situation is observed for the buffer besides other properties of the 

buffer influencing retention.  

If the charge of a compound has the same polarity as the surface, repulsive interactions are 

occurring. Usually, retention times smaller than the void time are observed since the analytes 

are excluded and repelled by the separation material. This is known as Ion exclusion 

chromatography (IEC). The acidity and basicity, respectively, of the separation material as well 
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as of the analyte significantly contributes to the degree of repulsion. This means, the 

dissociation increases the higher the acidity/basicity [73]. The degree of resulting electrostatic 

forces is influenced by the acidity of the sample, in case strong ion exchangers are used. Broad 

analyte bands are usually observed for weak acids/bases due to partial dissociation and 

comparatively weak interactions [73, 74]. The kind and concentration of the buffer affects the 

separation as well. Ion exclusion phenomena can hardly be explained by stoichiometric 

models. Alternative models like the double layer theory assume a gradient of ions (declining 

for counterions) from the surface to the bulk mobile phase resulting in an accumulation of 

counterions on the surface. Thereby the so-called Stern layer is formed located in close 

proximity to the surface of the particle consisting of ions oppositely charged to the surface. 

Thereafter, the diffuse layer is formed by loosely bond counter- and co-ions as shown in Fig. 2 

[72]. 

 

Fig. 2: Schematic illustration of the ion distribution of a modified silica particle in buffer solution according to the 
double layer theory [72]. (anions are shown in blue and cations in red).  
 

Accordingly, the greater the distance from the surface the lower is the electrostatic potential. 

Increasing buffer concentrations lead to shielding effects of both, the charge of the ion 

exchange site as well as of the solute and consequently the retention enhances due to reduced 

repulsive forces [72, 75]. Besides electrostatic forces, additional interactions can occur due to, 

for example, hydrophobic molecule moieties contributing to the retention and selectivity. The 

degree of these interactions can be controlled by the use of organic modifiers [73]. 
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1.3.3. Hydrophilic Interaction Chromatography (HILIC) 

Analytes with dominant polar or acidic/basic physicochemical properties suffer from retention 

and/or selectivity in RPLC. Hydrophilic interaction chromatography (HILIC), the terminology 

was introduced by Alpert in 1990 [76], addresses these analytes. The utilized stationary phases 

possess polar and/or charged surface properties and can be classified into polar neutral 

stationary phases like amide [77], cyano [78] and diol modified silica [79], anionic stationary 

phases (polyaspartic [76, 80] or bare silica [78, 81], cationic stationary phases (amino [82], 

triazole [83]) and zwitterionic columns (sulfoalkylbetaine [84-86], phosphocholine [87], 

pyridinium based [88]). 

Usually, mixtures of acetonitrile and water are used as mobile phase, whereby the acetonitrile 

content is very high (usually between 60 and 95%), including the use of additives like buffers 

and/or acids [89-92]. The polar surface combined with the aqueous acetonitrile rich mobile 

phases causes the formation of a water enriched layer on the surface of the stationary phase 

as depicted in Fig. 3 [90]. 

 

Fig. 3: Schematic accumulation of water at the surface of the stationary phase when using aqueous acetonitrile 
rich mobile phases, which leads to a water gradient towards the bulk mobile phase. 
Reprinted from P. Jandera, Stationary and mobile phases in hydrophilic interaction chromatography: a review, 
Analytica Chimica Acta, 692 (2011) 1-25. (Ref. [90]) Copyright 2011 Elsevier B.V. with permission from Elsevier.  

The extent of the water layer is affected by the polarity of the surface of the stationary phase 

and the composition of mobile phase [93-95]. Dynamic modelling studies of the water structure 

lead to the assumption of a gradient of the water density with decreased levels of coordination 

and order [96].  



 

10 
 

The retention mechanism is discussed as combined partitioning and adsorption process, also 

including contributions of electrostatic and polar interactions [89-92]. The retention of the 

analytes can be increased by enlarging the water content [90] up to a certain point when 

solvophobic interactions can occur. This dual mechanism leads to a rebound of the retention 

times resulting in the so-called U-shaped curves, when log k is plotted against the volume 

fraction of water (H2O) [89-91, 97]. The affinity difference of the mobile phase components 

plays a crucial role in terms of the formation of the water layer [98]. While the selectivity is 

adversely influenced when acetonitrile is substituted by methanol [90, 92], other alcohols like 

ethanol or 2-propanol seem to compete less with water [90-92]. However, the elution strength 

can be controlled by the partial or complete replacement (non-aqueous HILIC or polar organic 

mode) of the protic modifier water with alcohols leading to alternative selectivities [91, 92, 99, 

100].  

Since the protonation of the eluite as well as the stationary phase can depend on the pH value 

[89-92], buffers are required in order to stabilize the chromatographic separation regarding the 

peak shape [90, 101]. Especially in case of weak acids and bases, the effect of a pH value 

change is more pronounced compared to strong analogues [92]. Besides others, ammonium 

acetate and ammonium formate are often used buffers. Since these buffers are volatile, they 

show good compatibility with detection methods like MS or CAD [89, 90]. While the retention 

times of non-ionizable compounds are weakly dependent on the investigated salt 

concentration, acidic, basic or zwitterionic analytes show a clear dependence, especially in 

combination with protic or charged stationary phases [102, 103]. The increase of the buffer 

concentration causes a decrease of retention times of compounds following an ion exchange 

process [89-92]. Analytes with the same polarity as the stationary phase surface are repelled. 

Thus, these analytes show a significant retention when high levels of organic modifier are used. 

This phenomenon is known as Electrostatic repulsion liquid chromatography (ERLIC) [104].  

Depending on the solute-stationary phase combination, the temperature can be used as an 

additional parameter for optimizations [92].  

Compared to RP LC, HILIC shows improved sensitivity with MS. On the one hand, this can be 

attributed to the high amount of acetonitrile which efficiently evaporates using Electrospray 

ionization (ESI). On the other hand, the dissociation of the analytes is altered beneficially 

influencing the MS sensitivity [105]. 
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1.3.4. Mixed Mode Chromatography (MMC) 

In traditional RP LC chromatography, secondary interactions like for example silanol effects 

were regarded as disadvantageous due to the possible deteriorated performance of the 

chromatographic separation [55]. Besides the numerous approaches to eliminate them [52], 

this supposed drawback is instrumentalized by Mixed-Mode Chromatography or Multi-Modal-

Chromatography (MMC) and turned into an advantage whereby multiple different types of 

interactions sites are available for the separation of the analyte mixtures [106, 107]. In 

consequence, MMC stationary phases benefit from a flexible use of elution conditions [108] 

combined with an extended field of application [109, 110], complementarity to RP LC [106, 

111]. 

 

1.3.4.1. Variety of the Design of the Stationary Phases 

The idea of offering multiple interactions simultaneously in order to separate challenging 

samples was developed already in the 1960ies when proteins were purified with MMC mode 

materials [112]. The rediscovery of the potential of MMC stationary phases started at the 

beginning of this century [113]. Alongside the inline coupling of two columns [114] different 

types of MMC materials based on silica have been developed. Basically, the materials can be 

divided into bimodal and trimodal types which differ in the number of incorporated functional 

groups. The combination of unpolar interaction moieties and polar and/or ionic functional 

groups leads to RP/IEX, RP/HILIC, RP/HILIC/IEX and RP/AEX/CEX = RP/ZWIX materials, 

while polar and ionic functional groups from HILIC/AEX, HILIC/CEX and HILIC/AEX/CEX, also 

known as HILIC/ZWIX materials [106, 113]. The unpolar moieties are often formed by alkyl 

chains (e.g. C3 to C18) [115, 116] and aromatic groups [116]. The polar groups are hydroxyl 

[117], thioether [108], amide [118] and carbamate [118] groups besides others. The ion 

exchange sites can be divided into strong ion exchangers like sulfonic acids [119], phosphoric 

acids [120], quaternary nitrogens as a part of a heterocycle [116, 121] and weak ion 

exchangers like carboxylic acids [118] and primary, secondary and tertiary amines [108].  

Furthermore, the design of the stationary phases can be distinguished in terms of the different 

locations of the interaction functionalities like illustrated in Fig. 4 [122]: 
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Fig. 4: Different design types of mixed mode stationary phases as classified in Ref. [122]: The multiple interaction 
sites can be implemented in the stationary phases by a) mixture of differently modified silica particles, b) 
modification of silica particles with different chromatographic ligands or single selectors with c) “embedded”, or d) 
“tipped” integrated interaction sites. Functionalities of different kinds are represented by the waved line, and the 
blue and red points.  
For further information, the reader is referred to Ref. [122]. 
 

(i) Mixed beds: Two differently modified silica gel particles, e. g. SCX and AEX [114] or RP and 

IEX [123], are mixed and packed into one column. A disadvantage of this type is poor 

reproducibility [106]. 

(ii) Mixed ligands: Different chromatographic ligands are immobilized on the same 

chromatographic support like for example alkyl chains and diol groups (RP/HILIC) for bimodal 

materials [117] or RP/WAX ligands and CEX ligands for trimodal materials [41, 115, 119]. 

(iii) Single ligands: The chromatographic ligand integrates two or more functionalities available 

for solute-stationary phase interactions. Polar or ionizable groups can be located close to the 

silica surface (“embedded”) or at the end of the chromatographic ligand (“tipped”). An example 

for the “embedded” type was synthesized by Jiang et. al. combining benzimidazolium with an 

C8 alkyl chain [116]. A “tipped” ligand is represented by the combination of a hydrophobic 

carbon chain and 3-aminoquinuclidine as anion exchange site [124]. 

However, mixed mode stationary phases were developed showing a huge variety of surface 

modifications with manifold designs in the past years [113, 125].  

A popular field of research is the use of ionic liquids derived from pyridine and imidazole, for 

example, [119, 126] combined with different functional moieties such as hydrophobic alkyl 

chains [116], polar groups [118], acids and bases [127] or even with two functionalities [119], 

for instance. 

Examples for more complex ligands than the already mentioned ones, are calixarene derived 

stationary phases combined with polar groups [128] or ionic liquids [129] and the exploitation 

of the functional groups present in peptides immobilized on silica gels [130, 131].  

a) b) c) d)

Mixed Beds

Mixed 

Ligand Single Ligand

“embedded“ “tipped“
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Alongside brush-type stationary phases, the immobilization of a functional polymer coating 

gains rising importance as it combines the advantages of both materials. The physical, 

chemical and kinetic properties of silica are maintained and additionally enhanced by the 

diverse modification possibilities of polymers as well as the outstanding good chemical stability 

[113].  

Homo polymeric chains with multiple functional groups [132] as well as the mixture of 

polymerization substrates in a random [133] as well as in a block copolymerization reaction 

[134] were reported. The latter two examples offer the possibility to adjust the physicochemical 

surface properties by the adjustment of the ratio of the substrates [133].  

An alternative ligand design is represented by dendritic stationary phases [135], just to mention 

a few. 

 

1.3.4.2. Multi Modal Applicability 

The manifold designs of mixed mode stationary phases share the incomparable flexibility of 

the choice of the chromatographic mode. Hence, the selection of the elution conditions affects 

the dominant interactions responsible for the retention and separation of the analytes. An 

example is shown in Fig. 5. The same RP/WAX stationary phase shows successful separations 

of dipeptides under both, RP (a) (according to the lipophilicity) and (b) HILIC conditions 

(according to their hydrophilicity) [108] while single mode columns would usually lack of 

retention in one mode. Therefore, mixed mode stationary phases can be used under multiple 

chromatographic conditions offering promising, often complementary results [41, 106-108, 

111, 113, 115, 120, 124, 125, 136]. Adjustable parameters for optimization approaches are the 

kind and concentration of the organic modifier and buffer as well as the adjusted pH value as 

well as the temperature [110, 124].  
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Fig. 5: Multi modal applicability of a RP/WAX mixed mode stationary phase: separation of Pro-Phe and Boc-Pro-
Phe under a) RP conditions and b) under HILIC conditions with reversed elution order.  
Experimental conditions: a) mobile phase: A: H2O, B: ACN, C: 100 mM H3PO4, triethylamine was used for pH 
adjustment (pH=3) gradient: C was constant at 10%C during the analysis time, 0% B 0–10 min, 0-90% B 10–30 min; 
0.2 ml/min from 0–5 min, .0.2 to 1 ml/min from 5–10 min, 1 ml/min 10-30 min; 25 °C; 215 nm 
b) mobile phase: A: H2O, B: ACN, C: 200 mM H3PO4, triethylamine was used for pH adjustment (pH=3); gradient: 
C was constant at 5%C during the analysis time, 90% B 0–5 min,90-50% B in 60 min; 1 ml/min; 25 °C; 215 nm 
Reprinted with permission from Springer Nature Customer Service Centre GmbH: Spinger Nature: M. Lämmerhofer, 
R. Nogueira, W. Lindner, Multi-modal applicability of a reversed-phase/weak-anion exchange material in reversed-
phase, anion-exchange, ion-exclusion, hydrophilic interaction and hydrophobic interaction chromatography modes, 
Anal Bioanal Chem, 400 (2011) 2517-2530. (Ref. [108]), Copyright © 2011, Springer Nature 

 

For the demonstration of the suitability of the separation material under a respective 

chromatographic mode, test mixtures containing selected compounds are often used. 

Polycyclic aromatic carbohydrates [137, 138] as well as alkylbenzenes with differing alkyl chain 

length [111, 139] are often used to show the RP suitability. The increase of the organic modifier 

portion leads usually to dropped retention times of hydrophobic molecules as it is the case in 

traditional RP LC [115, 120, 137]. Especially in case of RP/IEX, an ion exchange process can 

be additionally observed. In order to monitor the mixed mechanism, acids and bases with 

distinct degree of polarity are additionally investigated [111, 139].  

The ion exchange process is often further demonstrated by the separation of inorganic ions 

[118, 137, 138]. A quantification of the ion exchange process was described by the application 

of the stoichiometric displacement model as the retention time increases with decreased buffer 

concentration [41, 108, 115, 120, 124, 136].  

Mixed mode stationary phases benefit from the manifold interaction sites present at the 

surface. Thus, the HILIC suitability was often demonstrated by the analysis of polar analytes 

such as nucleosides [111, 115, 118-121, 129, 132-135, 138], vitamins [111, 115, 119, 120, 

132, 135] and xanthins [111, 115, 120]. The study of the retention factor in dependency of the 

used amount of organic modifier leads also for many mixed mode stationary phases to U-

shaped curves (dual retention mechanism) like it is observed for HILIC stationary phases [115, 

117, 120, 131].  
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ERLIC conditions can also be exploited for analytes bearing the same charge like the 

stationary phase [104]. Since mixed mode chromatography columns offer additional 

interactions possibilities, the chromatographic process is influenced beneficially which was 

shown by the reversed phase/cation exclusion separation of the proteins [140]. 

Therefore, it is not surprising that mixed mode stationary phases cover a broad range of 

application fields from small to macro molecules. In pharmaceutical analysis, MMC can support 

beneficially the current chromatographic methods and reduce the effort [107]. Zhang et. al 

developed a method which analyzes simultaneously organic and inorganic anions and cations 

using a trimodal mixed mode stationary phase [141]. The analysis of drugs and related 

substances [142] as well as the analysis of excipients [143] were reported.  

Another field is the analysis of drug levels in human plasma [144] and targeted metabolite 

studies [145, 146]. Additionally, the profiling of complex samples with a high degree of 

heterogeneity such as plant extracts [121, 133, 134] or metabolomic profiles [147] were 

described.  

Furthermore, peptide separations under multiple chromatographic conditions were reported 

[108] as well as successful separations of unmodified peptides, phosphorylated peptides and 

sialylated glycopeptides [148]. Recombinant proteins can show impurities including misfolding 

and aggregates which could be easily separated by a combined salt/pH gradient using mixed 

mode stationary phases [149].  

Moreover, oligonucleotides were successfully analyzed using mixed mode stationary phases 

[110, 150] showing better results compared to the respective single mode column AEX and 

RP columns [110]. 

Solid phase extraction materials which are important in the preanalytical treatment of many 

samples, can also benefit from the mixed mode modifications. The matrix can be removed 

easily, and substance of interest can be enriched [151, 152]. Additionally, the loading capacity 

is increased compared to RP materials.  

  



 

16 
 

1.4. Classification of Stationary Phases 

The large number of available stationary phases offer many possibilities concerning the choice 

of the optimal chromatographic system. Hence, systematic comparative characterizations of 

stationary phases can facilitate the decision for suitable stationary phases. On the one hand, 

this includes similar stationary phases when surrogate columns for a specific application are 

needed. On the other hand, if a utilized stationary phase shows a lack of selectivity, 

complementary stationary phases will be of interest.  

For RP columns numerous tests were developed. Tanka et. al. developed a test method which 

uses selected analytes and analytes pairs in order to describe distinct properties of the 

stationary phase such as hydrophobicity, hydrogen bonding, silanol activity/metal activity and 

steric selectivity for bulky or plane structures, for example [153]. This test was further 

developed through the statistical processing of the properties via cluster analysis and principal 

component analysis by Euerby [154] besides other development procedures. An alternative 

option, following the same principle is the Neue test [155] which allowed the grouping of polar 

embedded stationary phases by cluster analysis. Alongside another classification procedure, 

the United States Pharmacopeia (USP) offers a database based on the same principle using 

the SRM870 mixture provided by the National Institute of Standards and Technologies (NIST) 

comprising C18 and polar embedded C18 stationary phases [156].  

Additionally, retention models like the linear solvation energy relationship (LSER) [157] and 

hydrophobic subtraction model (HSM) [158] which introduce descriptors in order to 

characterize the retention process, can be used for the classification of stationary phases. The 

latter is the basis for the test of the Product Quality Research Institute (PQRI), which is the 

second method offered by the USP for the elucidation of suitable columns [156]. The stationary 

phases can be compared by means of a comparison function which considers the evaluated 

stationary phase descriptors of two materials. 

HILIC stationary phases were also compared with the help of similar strategies as used for the 

characterization of RP stationary phases. Selected analytes were used by Kawachi et. al. in 

order to characterize the retention behavior in terms of the hydrophilicity, methylene- and 

hydroxy- group selectivity, isomer and molecular shape selectivity, surface acidity and ion 

exchange properties [159]. Dinh et. al. characterized hydrophilic, electrostatic, dipol-dipol, 

hydrophobic and - interactions attributed to specific analytes and pairs of analytes [160]. 

Both models reflect the retention properties of analyte pairs in combination with principal 

component analysis while the former one additionally uses radar plots for individual illustration.  

In analogy to the HSM, the hydrophilic subtraction model was developed which considers 

hydrophilic partitioning, hydrogen bond acidity and basicity as well as cation and anion 

exchange [161]. Additionally, the LSER model was extended by two additional descriptors for 
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ionic interactions in order to consider the interactions present during a HILIC separation [162, 

163]. This modification of the LSER model proved to be suitable for the characterization of a 

mixed mode stationary phase [164].  

Another test for mixed mode stationary phases uses RP and HILIC conditions and a test set 

differing in the physicochemical properties. The retention data is processed via principal 

component analysis in order to elucidate similarities and dissimilarities [111]. 
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1.5. Two-Dimensional Liquid Chromatography (2D-LC) 

1.5.1. Principle, Instrumentation and Modes of Operation 

The principle of two-dimensional separation techniques was discovered already a long time 

ago. Examples of the early attempts are paper chromatography [165] as well as thin layer 

chromatography [166]. Hereby, the 1D separation was extended by a second dimension (2D) 

by means of a mobile phase exchange and a 90° rotation after the separation in the first 

dimension (1D). The benefit of the extension of the chromatographic space was also 

transferred to liquid chromatography [167]. In two-dimensional liquid chromatography (2D-LC), 

the (partially) collected 1D eluent is subjected to a second chromatographic analysis using 

different conditions [15].  

Basically, offline and online methods can be distinguished [1, 15]. Offline separations cover 

the collection of the 1D eluent in suitable vessels during a selected time period. Afterwards, the 

eluent can be (partly) stored and/or used for other analytical methods comprising the second 

chromatographic dimension. Additionally, it is possible to concentrate the sample (reduced 

reconstitution volume after evaporation) and to exchange the solvent in order to prevent 

solvent mismatch problems in 2D. The same standard HPLC system can be used for both 

dimensions. Consequently, the method length is not limited, and ultrafast separations are not 

necessary as the 1D eluent is collected and intermediately stored. However, the degradation 

of the constituents during fraction collection, solvent evaporation, carry over and poor 

reproducibility are disadvantages of this methodology. Furthermore, many of these methods 

are time consuming [1]. 

Online separations use special 2D interfaces. This offers the possibility of an automatic direct 

transfer of the 1D eluent into 2D. Strong changes in the composition of the sampled 1D eluent 

caused by decomposition or irreproducible changes of the concentration are less likely due to 

the timely and automated procedure leading to good reproducibilities. Due to the introduction 

of 2D, the peak capacity is greatly enhanced which offers the possibility to approach complex 

samples [1, 15, 168, 169]. Furthermore, selected selectivities can be combined in order to 

address samples with closely related compounds such as isomers [15].  

However, the benefits of 2D-LC is accompanied by some challenges like limited 2D cycle times, 

insufficient sampling in 1D (undersampling), solvent mismatch of 1D and 2D eluents and 

sensitivity loss due to the additional dilution in 2D [1, 15, 168, 169]. In the following chapters, 

the theory, and approaches to overcome these issues are discussed.  
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1.5.1.1. Instrumentation and 2D-LC Modes 

In principle, the hardware of a 2D-LC system comprises the one of two HPLC systems as 

shown in Fig. 6. Thereby, the autosampler of 2D is replaced by the modulator, also called 

interface or 2D-LC valve. It injects the 1D eluent into the 2D for further analysis.   

 

Fig. 6: Configuration of the required HPLC modules for online two-dimensional liquid chromatography separations. 

In dependency of the intention of use, different variants of the interface are possible. If only a 

single 1D fraction needs to be subjected to a 2D analysis, a 2-position/6-port valve can be used 

as shown in Fig. 7 a) besides other possible configurations [1, 170]. If several 1D peaks are 

planned to be analyzed in 2D, two 6-port valves can be combined. Alternatively, one 2-

position/8- (Fig. 7 b)) or 10- port valve can be utilized [1, 13, 169].  

 

Fig. 7: A selection of possible 2D-LC interfaces: a) 6-port/2-position valve [1, 170], b) 8-port/2-position valve [1, 
170] and c) 2-position/4-port duo valve [1, 169] d) including valve switch. For further information the reader is 
referred to the respective Ref. 

The 2D-LC system Infinity II from Agilent Technologies (Waldbronn, Germany) which was used 

for the 2D-LC measurements in the presented studies, possess a 2-position/4-port duo valve 

(Fig. 7 c)) as 2D-LC interface. Thanks to the symmetrical construction, there are two identical 
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flow paths which are connected to a sample loop of adjustable size in each case. Thereby, 

one loop collects the 1D eluent and the other one transfers (“injects”) the 1D eluent which was 

collected in the previous cycle with the help of the 2D flow onto the 2D column for further 

analysis. The 1D and 2D flow paths are changed by the valve switch and the corresponding 

other sample loop serves for sampling of the 1D eluent and the content of the other loop is 

“injected” into 2D (Fig. 7 d). Additional flexibility arises when the sample loops are replaced by 

two 6-positions/14-port valves.  

Depending on the used set-up, three operation modes are possible which are illustrated in Fig. 

8.: a) (multiple) Heartcutting 2D-LC ((m)LC-LC), b) selective comprehensive 2D-LC (sLC×LC), 

also known as High Resolution Sampling, and c) full comprehensive 2D-LC (LC×LC).  

 

Fig. 8: Comparison of the possible 2D-LC modes: In Heartcutting 2D-LC (LC-LC) (a)) one (LC-LC) or multiple peaks 
(mLC-LC) are partly transferred into 2D, while in full comprehensive 2D-LC (LC×LC) (c)) the 1D eluent is completely 
analyzed in 2D. In selective comprehensive 2D-LC (sLC×LC) (b)), the completely covering 2D analysis is confined 
to a comparatively small area, for example a peak cluster. 

In LC-LC (Fig. 8 a)), a selected part (here: maximum one loop fill) of the 1D chromatogram is 

sampled in one sample loop of the 2D-LC valve. After the valve switch at the end of the 

selected 1D section, it is analyzed in 2D. This procedure can be repeated as soon as the 

analysis of the previous cut is completed (minus the time required for the loop fill). If there are 

more peaks of interest, the set-up can be extended by the replacement of the sample loops 

with Multiple Heartcutting (MHC) valves (6-position/14-port valves). Each of these valves 

possess six loops for intermediate eluent storage whereby one loop is always required for the 
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mobile phase flow either to waste (1D) or to the column (2D). Therethrough, the flexibility of the 

mLC-LC methods increases since the 1D fractions can be collected while already sampled 

ones can be analyzed in 2D [15, 171]. As long as the number of loops is sufficient, the 2D 

analysis time is not constrained.   

(m)LC-LC (Fig. 8 a)) is well suited for the analysis of seemingly simple samples with a 

moderate number of analytes that contain structurally very similar compounds such as 

enantiomers [172] or isomers [15]. The lack of enantioselectivity in 1D, for example, can be 

overcome by the use of suitable 2D conditions [172]. Furthermore, this mode can be used as 

a tool for improving MS compatibility [173, 174]. On the one hand, matrix constituents coeluting 

with the compound of interest and thus decreasing detection sensitivity in mass spectrometry 

can be removed by an additional separation in 2D [175]. 

On the other hand, the 1D separation can be performed using non-volatile buffers like 

phosphate buffer, for example. The polar buffer lacks of retentivity in a RP phase system which 

can be used in 2D. Consequently, it elutes within the void volume of the utilized column. By the 

use of a diverter valve, this part of the chromatogram can be directed to the waste. Afterwards, 

the diverter valve can switch and direct the remaining part of the chromatogram to the mass 

spectrometer [173].  

Furthermore, ion pairing agents were removed with the additional use of trapping cartridges 

[176]. Increased detection sensitivity of impurities of therapeutic oligonucleotides was reported 

by IPRP-HILIC and AEX-HILIC measurements being MS compatible [174]. 

The quantitation of compounds of interest in 2D is possible in this mode. Thereby, it is 

recommended to transfer small volumes of the peak located close to its maximum but slightly 

changing retention time significantly affect the result. In order to overcome this problem, large 

volumes containing more than the target peak volume can be transferred in 2D. Hence, this 

can lead to crowded chromatograms [15]. 

In sLC×LC (Fig. 8 b)), a comparatively small part of the 1D chromatogram is sampled in 

consecutive cuts and analyzed in 2D [177]. Closely related substances [12], elucidation of 

coelutions [12, 178] and improvement of MS compatibility and sensitivity [175] can be 

addressed with sLC×LC, for example. The MHC valves are necessarily required for this mode 

and serve for the short-term storage of the collected fractions of 1D. This provides flexibility in 

terms of the analysis time in 2D, but also limits the number of possible cuts according to the 

number of available loops (maximum ten). Valuable information which can be lost due to 

undersampling issues in other modes, is obtained because of the complete coverage across 

the selected time period. In consequence, it is possible to accurately quantify the sampled 

compounds [15, 171, 175]. In the context of absolute quantification, it should be noted, that 
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parabolic flow profiles can lead to sample loss. Therefore, a loop fill level of approximately 50% 

is recommended [168]. 

As contrasted with LC-LC and sLC×LC which only partly analyses the 1D chromatogram in 2D, 

full comprehensive 2D-LC (LC×LC) transfers comprehensively the 1D eluent into 2D. The 

highest degree of information about the eventually numerous analytes can be obtained by the 

use of this mode [15]. The principle is illustrated in Fig. 8 c). Instead of the MHC valves, loops 

of equal size are used. Thus, the sampling into one loop and the analysis of the previously 

sampled fraction in the other loop happens simultaneously. The valve switch changes 

responsibility of the loops (sampling from 1D and analysis in 2D). As a result, the 2D cycle time 

which comprises gradient time and re-equilibration (also: modulation or sampling time), is 

constrained by the time required to fill the loop with 1D eluent. Consequently, lower 1D flowrates 

lead to longer 2D cycle times. However, the choice of suitable column combinations is of utmost 

importance [168]. In some cases, however, time can be gained by partial equilibration [179, 

180]. Anyway, ultrafast separations achieved by sub-2µm particles or superficially porous 

particles are required in 2D significantly enhancing the separation power of the 2D-LC method 

compared to the 1D-LC method [18]. The enlarged separation power is especially suitable for 

very complex samples [15], for example biological samples in the field of Omics [181], dyes 

[182] and polymers [183]. The numerous analytes present in these samples can often be not 

separated by 1D-LC.   
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1.5.2. Peak Capacity and Undersampling 

The peak capacity (𝑛𝐶) is often mentioned and an important performance parameter in 

connection with 2D-LC. It characterizes the separation power of the chromatographic system 

as the number of peaks which can theoretically be observed as a maximum in a (1D) 

chromatogram [184]. It is assumed, that the peak width is constant under gradient elution 

conditions. Thus, the peak capacity can be described as follows [185]: 

𝑛𝐶 = 1 +
𝑡𝑅,𝑛−𝑡𝑅,1

𝑊
     (2) 

with tR,1  and tR,n as the elution times of the first and the last eluting compound, respectively, 

and W as the average baseline peak width. 1D-LC is already quite powerful and attains already 

quite high peak capacities [15]. However, in case of very complex samples with thousands of 

ingredients, the separation space offered by 1D-LC is not sufficient which can be estimated 

with the help of the Statistical Theory of peak Overlap (STO) [186]. It was revealed that 

statistically a maximum of 37 % of the possible peak capacity is used with 18 % being single 

peaks. On the basis of this assumption, 1D-LC is not powerful enough in order to resolve the 

majority of the analytes in complex samples such as a tryptic digest of a cell extract, a lipidomic 

or metabolomic samples [186]. This can be overcome by the introduction of a second 

chromatographic dimension. 

The theory of peak capacity can be extended to 2D-LC by multiplying the peak capacities of 

1D ( 𝑛𝐶
1

) and 2D ( 𝑛𝐶
2 ) [187]: 

nC,2D =  nC
1  ∙ nC

2        (3) 

The calculated values by means of Eq. (3) usually results in overestimated values compared 

to the experimentally observed peak capacity due to the assumption of ideal circumstances. 

Therefore, Eq. (3) was corrected by factors considering the sampling rate in 1D (undersampling 

correction factor) and the coverage of the two-dimensional retention space.   

Undersampling is a result of an insufficient number of collected fractions in 1D. The in 1D 

separated compounds are remixed during the transfer from 1D into 2D as the volume fraction 

is too big compared to the 1D peak widths [188]. 

Fig. 9 illustrates this effect. The sampling rate is indicated within the grey box across the 1D 

chromatogram and the reconstruction of the 1D chromatogram from the 2D signal below it. The 

lower the number of collected fractions in 1D, the more pronounced is remixing in 2D as shown 

in Fig. 9a) [188]. 
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Fig. 9: Schematic depiction of the influence of different sampling rates in 1D on the reconstructed 1D chromatogram 
from the 2D signal based on the study of Murphy, Schure and Foley [188]. The grey frames indicate the sampled 
fractions. a) Insufficient sampling rate causes re-mixing of the 1D effluent containing the peaks which were 
separated in 1D. b) Increasing sampling rates preserves 1D separation in 2D. For detailed information, the reader is 
referred to Ref. [188]. 

This effect was studied by a comprehensive investigation of Murphy, Schure and Foley [188]. 

In order to prevent it, at least three to four fractions across the 1D 8σ peak width are 

recommended as result of this study [188]. Therefore, the average peak-broadening 〈𝛽〉 was 

introduced with 1W as the average 1D peak width and ts as 2D cycle time [189]: 

〈𝛽〉 = √1 + 𝜅 (
𝑡𝑠

𝑊1 )
2

 ;  𝜅 = 0.214  ± 0.010 , 𝑓𝑜𝑟 0.2 ≤
𝑡𝑠

𝑊1 ≤ 16   (4) 

Additionally, the two-dimensional retention space which is used for the elution of compounds 

(fcoverage) is implemented into the following equation [190]:  

𝑛𝐶,2𝐷
∗ =

𝑛𝐶
1  ∙ 𝑛𝐶

2 ∙𝑓𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

〈𝛽〉
      (5) 

The introduction of the correction factors leads to realistic calculations and less overestimated 

values of the effective peak capacity 𝑛𝐶,2𝐷
∗  but simultaneously a strong dependency of the 

sample type is introduced [168].  

2,1 3,1 4,1 1D

Reconstructed 1D signal

2,1 3,1 4,1 1D

a) b)

Reconstructed 1D signal
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1.5.3. Orthogonality 

In order to benefit from the separation power of two-dimensional separations, a suitable 

combination of separation mechanisms is required. Strongly correlating separation 

mechanisms are not the most promising combinations in 2D-LC. The greater the degree of 

independence of the separation mechanisms, the better will be the usage of the separation 

space which is described by the orthogonality [191, 192]. 

However, this expects the use of samples which are suited for two dimensional separations by 

being multidimensional itself, meaning the compounds possess multiple factors which can 

contribute to the retention [193]. For example, a homologous series of alkylbenzenes with 

differing chain length is separated due to one relevant factor, the carbon chain length space 

[193, 194]. Therefore, this sample would be defined as one-dimensional and in consequence 

there is no benefit by extending the separation space [193, 194]. Another example is a complex 

sample like a protein digest or other biological samples which contain numerous heterogenous 

compounds. Such kind of sample will exhibit at least a second factor (net charge, hydrophilicity, 

molecular volume, besides others). Consequently, the introduction of a second dimension is 

senseful [194]. Thereby, the dimensionality of the separation system cannot exceed the 

sample dimensionality, additionally presuming that the decisive factors of the sample are 

considered during the chromatographic process [193, 194]. This shows that the orthogonality 

of a separation system is influenced by the chromatographic conditions as well as on the 

investigated sample and the quality of the interplay.  

The correlation of two chromatographic methods can be illustrated by a diagram of the 

available space for retention, meaning 1D versus the 2D retention times. Therefore, the 

retention times can be normalized in advance. The retention data of a multi-dimensional 

sample measured with highly correlating chromatographic methods will cluster along the 

diagonal across the two-dimensional space as shown in Fig. 10 a). If chromatographic 

methods are completely uncorrelated, the elution pattern will be equally distributed and ideally 

ordered (Fig. 10 b)). In practice, the distribution will be more randomly like shown in Fig. 10 c). 

Additionally, due to a remaining degree of correlation, compound groups and classes, 

respectively, which elute together in close proximity, can be observed (Fig. 10 d) [168]. 
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Fig. 10: Different degrees of usage of the 2D separation space with a) highly correlated, b) ideally uncorrelated 
and c)+d) realistic uncorrelated conditions, In c) a random distribution is shown, while in d) elution of compound 
group clusters are observed. 
Adapted from B.W.J. Pirok, A.F.G. Gargano, P.J. Schoenmakers, Optimizing separations in online 
comprehensive two-dimensional liquid chromatography, Journal of Separation Science, 41 (2018) 68-98.(Ref. 

[168]), licensed under CC BY 4.0. 

Numerous methods have been developed in order to quantify the orthogonality. Basically, 

discretizing and non-discretizing methods can be distinguished [192]. Discretizing methods 

use the division of the separation space into bins according the rules defined in the respective 

method [192]. This procedure helps to identify used and unused space [192]. Examples are 

the box-counting dimension DBC [195], the fractional surface coverage SCG [196] and its 

modification SCS [197]. The non-discretizing methods include orthogonality metrics (OM) 

based on the convex hull method [198], different types of correlation coefficients [199], nearest 

neighbor distributions [200] and the asterisk method [201] besides others. 

The box counting dimension DBC divides the available retention space into different number of 

boxes due to the mathematical concept of fractals. In the double logarithmic depiction of 

scaling parameters of the boxes against the number of boxes occupied by eluting compounds, 

the fractal dimension DBC can now be determined from the slope of least squares regression 

in the linear data range multiplied by -1 [195]. When two chromatographic dimensions are 

used, the maximum observed value is 2 representing the highest possible degree of 

orthogonality.  

The bin counting method SCG developed by Gilar pursues a simpler approach [196]. Thereby, 

the box size is constant and oriented on the number of sample components. The proportion of 

occupied bins in the normalized retention space are determined [196]. The modified SCG 

method, the SCS, also includes unoccupied bins that are located between occupied bins [197] 

leading in some cases to overestimated values [191]. The decision of the number of bins is 

crucial significantly contributing to orthogonality [191].  

The convex hull method which counts to the non-discretizing methods, defines the used 

retention space by the area which is edged by the connection of the marginal peaks. Due to 

their similarity, the orthogonality estimation of the convex hull method and SCS showed similar 

results in a comparative study [191]. 

Some correlation coefficients (Pearson, Spearman, Kendal) were tested in order to represent 

the orthogonality. In studies, the correlation coefficients were compared with other 

a) b) c) d)

https://onlinelibrary.wiley.com/doi/abs/10.1002/jssc.201700863
https://onlinelibrary.wiley.com/doi/abs/10.1002/jssc.201700863
https://creativecommons.org/licenses/by/4.0/
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orthogonality metrics like for example geometric approaches [199]. The Kendall correlation 

coefficient resulted as the most suitable one [199]. In general, these kinds of descriptors show 

their strength in the description of correlation [191]. 

Furthermore, the nearest neighbor distance uses different kinds of mean values of the distance 

between a compound and the closest one eluting to it [200]. The distances represent the 

compactness of the separation. The arithmetic mean describes the peak spreading and the 

harmonic mean the quality of the separation (clustering) [200]. The higher calculated values 

the higher are the orthogonalities [200].  

The asterisk method measures the distribution of peaks in two-dimensional space by 

determining the standard deviation (SD) of the shortest distance to the introduced Z lines. 

These four lines cross the retention space. On the basis of SD, the Z values are calculated 

which serve as a measure of the distribution around the respective Z line. Finally, the 

orthogonality can be calculated by means of all Z values [201]. 

For many methods for the determination of the orthogonality, the underlying chromatographic 

attributes were found to be related. [192]. Furthermore, it was found that it can be differed 

between measures for near (local) and the far (global) peak distribution [192]. The creation of 

a combined orthogonality metric by multiplication of, for example the dimensionality as local 

and the convex hull method as global parameter, showed a benefit. However, other 

combinations of other descriptors are also conceivable [192]. 

In general, however, the quality of the determination of the orthogonality improves as the 

number of peaks increases [191, 192]. 
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1.5.4. Detection Sensitivity and Solvent Incompatibility 

Liquid chromatography is always accompanied by a dilution of the sample [202] due to the 

diffusion of the analyte in the column bed (band broadening effect) [15]. Hence, the additional 

chromatographic dimension which is introduced in 2D-LC amplifies this effect. The 

multiplication of both 1D dilution factors leads to the dilution factor of both dimensions [168, 

203, 204] considering corrections due to band broadening effects as well as possible focusing 

in 2D prior to the 2D analysis [168].  

Generally, solvent mismatch effects are observed more frequently for weakly retained 

compounds and usually restrain their detection sensitivity [13, 204]. Especially, highly 

orthogonal combinations of separation conditions often lead to solvent incompatibilities. 

Basically, two scenarios are mainly responsible for detrimental effects on the peak shape and 

performance in 2D.  

(i) If there is a significant difference of the viscosities of the 1D and the 2D mobile phase, the 

eluent with low viscosity (1D) is partially mixed with the high viscosity eluent (2D) at the interface 

which results in finger profiles (viscous fingering) when it is further transported through the 

porous media [205]. Broad deformed peaks like shown in Fig. 11, and peak splitting result in 

the chromatogram [205].  

 

Fig. 11: Influence of the injection volume on the peak profile of p-cresol ((i) 200 µL, (ii) 100µL and (iii) 30 µL) on 
the peak shape.  
Experimental conditions: sample solvent: 100 % ACN, mobile phase 40/60 (v/v) water/methanol [205].  
Reprinted from K.J. Mayfield, R.A. Shalliker, H.J. Catchpoole, A.P. Sweeney, V. Wong, G. Guiochon, Viscous 
fingering induced flow instability in multidimensional liquid chromatography, Journal of Chromatography A, 1080 

(2005) 124-131 (Ref. [205]), Copyright 2005 Elsevier B.V. with permission from Elsevier. 

(ii) If the 1D mobile phase, which serves as sample solvent in 2D, has a higher elution strength 

than the 2D mobile phase, the sample retention and performance will be affected adversely, 

meaning poor performance, deterioration and splitting of the peak up to break through 

phenomena are possible [13, 204, 206, 207]. Also, pH mismatches show these effects 

especially for protic analytes as the protonation states can differ [208]. However, very small 

injection volumes, as can be used in 1D-LC, can weaken or overcome this effect [209]. In 



 

29 
 

context of 2D-LC comparable high injection volumes are inevitable leading to overloading 

effects in form of deteriorated peak shape and detection sensitivity [13, 206, 207].  

In order to overcome these problems, many strategies have been developed aiming to 

preserve the retention mechanism which was intended.  

Considerations which do not afford additional hardware comprise the 2D injection volumes and 

the column dimension combination as well as the chromatographic modes in 1D and 2D. The 

influence of large 2D injection volumes can be relativized by the choice of the appropriate ratio 

of sample loop size and 2D column volume [168, 174]. Consequently, the sampled 1D volume 

should be 15 % or less of the 2D column volume [168]. 

Furthermore, the peak shape and chromatographic performance is beneficially influenced if 

the 1D mobile phase has a low elution strength in 2D as it serves as sample solvent. This is 

often the case for RP×RP separations [210], for example. Alternatively, for polar analytes the 

combination of non-aqueous and aqueous HILIC conditions is suitable [211].  

However, there are also alternative solutions required which modulate the solvent mismatch 

considering for example HILIC×RP separations. Additionally, the 1D effluent can affect the 2D 

column lifetime when it exceeds the operating limits concerning for example the pH value [169].  

Basically, the followed strategies comprised the dilution or replacement of the 1D eluent in 

order to overcome these issues. A simple approach is the so-called make-up or assistant flow. 

It dilutes the 1D eluent by means of an additional pump after the 1D detector as shown in Fig. 12 

a) [1, 13]. The ratio of the 1D and make-up flowrate determines the dilution. Though, the 

combination of flows leads to an overall flowrate increase. This arises either the need for 

increased sample loops or the 2D cycle time need to be decreased in order to prevent the loss 

of 1D eluent. Alternatively, the use of a flow splitter prior to dilution could prevent the increased 

sample volumes and additionally improved detection sensitivity [13]. 
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Fig. 12: Different solvent modulation set-ups in order to overcome solvent mismatch in 2D-LC: a) Make-up flow 
[1, 13], b) Fixed solvent modulation (FSM) [212], c) Active solvent modulation (ASM) with installed multiple heart 
cutting valves instead of loops [212], d) at column dilution (ACD) [213], e) Stationary phase assisted modulation 

(SPAM) [214] and f) vacuum evaporation modulation (VEM) [215].  

Another approach, Fixed solvent modulation (FSM), aims at the dilution of the 1D eluent with 

the 2D mobile phase with the help of a bypass starting before the valve and reunites the flow 

before the 2D column (Fig. 12 b) [212]. Appropriate conditions during the loop flush lead 

automatically to a dilution of the 1D eluent. The loop content is transferred onto the 2D column 

and previously diluted with 2D mobile phase and shows consequently less frequently solvent 

mismatches. However, numerous baseline disturbances due to complex solvent profiles in 

gradient elution were reported [212]. The re-equilibration time is also influenced by the complex 

solvent profiles. Furthermore, it needs to be noted, that due to the flow split the loop flush time 

is prolonged which can significantly contribute to the 2D cycle time [212]. 

Thus, this approach was further developed to the so-called Active Solvent Modulation (ASM) 

where the bypass ports are integrated into the 2D-LC valve (Fig. 12 c). Thereby, the valve 

position can be switched back to the normal loop flush position after the finished transfer 

stabilizing the solvent flow under gradient conditions. The dilution factor can be adjusted as 

the flow split is dependent on the flow restriction by the bypass capillary. This means the 

shorter the capillary the higher is the dilution factor of the 1D eluent assuming the same inner 

diameter [212]. 

However, also in this variant of solvent modulation, the flow split causes increased transfer 

times from 1D eluent into 2D consequently increasing the 2D cycle time. The lower the dilution 
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factor the less time is needed to flush the loop. Additionally, the doubled number of valve 

switches is required per 2D cycle which might shorten the lifetime of the valve especially in 

LC×LC compared to the normal 2-position/4-port duo valve.  

Another approach, depicted in Fig. 12 d), is the so-called At-Column Dilution (ACD) which 

requires an additional pump [213]. The sample is injected into 2D by means of a transfer flow 

which is united with the 2D gradient flow via a T-piece and a mixer module [213]. The dilution 

factor is controlled by the transfer time of collected 1D fraction. This means if high flowrates 

are used which are suitable for LC × LC application, the dilution factor will be small. In contrary, 

low transfer flow rates lead to high dilution factors which are suitable for LC + LC applications 

in respect of the required time for transfer [213].  

Moreover, trapping columns were installed into the sample loops. The combination with a 

make-up flow offers the possibility to trap compounds eluting from 1D and transfer them 

afterwards onto the 2D column with the help of the 2D flow. This set-up is known as Stationary 

Phase Assisted Modulation (SPAM) (Fig. 12 e)) [182, 214, 216]. Due to the focusing effect on 

the trapping column, the observed peaks in 2D are narrow and sharp. However, the choice of 

the kind of trapping column is important in order to retain as many compounds as possible 

during the complete sampling time. Additionally, the conditions of trapping cartridges crucially 

responsible for the same sampling conditions, for example, ageing effects [169]. 

Furthermore, the complete replacement of the 1D mobile phase is realized by Vacuum-

Evaporation Modulation (VEM) with the help of heated sample loops and the connection of a 

vacuum pump after the outlet port in the 1D sampling position of the 2D-LC valve [215]. The 

set-up is shown in Fig. 12 f). During the sampling, the solvent is evaporated due to the 

increased temperature and the applied vacuum. After the valve switch, heat treatment helps 

to improve the dissolution rate in the 2D mobile phase. This technique requires 1D solvents 

which easily evaporate and non-volatile, easy to reconstitute sample components [169]. 

Most of these solvent modulation techniques cause a significant increase of the detection 

sensitivity as reported in the literature [13, 174, 182, 183, 213, 216]. However, this result is not 

surprising as the consequences of large injection volumes (with higher elution strength of the 

mobile phase) are attenuated. In some cases, this is additionally accompanied with focused 

chromatographic bands. The combination of both effects improves the peak shape and 

enhances the peak height, consequently influencing the detection sensitivity beneficially. The 

successful validation of 2D-LC techniques was reported offering the use in pharmaceutical 

quality control [217]. 
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3. Objective of the Thesis 

The present work aims to elucidate and demonstrate the potential of mixed mode 

chromatography (MMC) as beneficial, flexible tool for achieving complementary selectivities 

which are required for the characterization of drug substances and drug products as well as in 

2D-LC. On the one hand, the new MMC separation materials were comprehensively 

characterized in order to show their chromatographic potential. On the other hand, the benefit 

of mixed mode chromatography was elucidated by the application for the analysis of 

challenging pharmaceutical samples via 1D-LC and 2D-LC. 

Therefore, multiple in-house synthesized mixed mode stationary phases as well as chiral 

stationary phases with mixed-mode selectivity principles were comprehensively characterized. 

The application suitabilities were evaluated by means of particle-based characterizations such 

as -potential determinations as well as chromatographic tests including RP, HILIC and IEX 

chromatography. Similarities and dissimilarities of the retention profiles of RP, HILIC and MMC 

stationary phases were evaluated by a column classification test via principal component 

analysis of the retention data of compounds with differing physicochemical properties.  

Special attention was paid to achiral chromatography using the chiral ZWIX(+) and ZWIX(-) 

stationary phases with the help of a systematic study of silica gels modified with selectors 

which are structural fragments of ZWIX(+) and ZWIX(-). Chromatographic tests, -potential 

and CE measurements were supported by molecular modelling studies. 

Furthermore, as the pharmaceutical analysis often requires the identification of compounds via 

MS, strategies were followed in order to improve MS compatibility concerning the use of buffers 

as well as column bleeding. The sensitivity of the MS signal decreases as the utilized buffer 

concentration increases which can be necessarily due to strong electrostatic interaction 

between multiply charged compounds and the stationary phase. Therefore, the surface charge 

state was altered by the means of two different strategies. On the one hand, a stationary phase 

with modified surface charge by the introduction of attached counterions (POLY-

RP/WAX/SCX) was tested. On the other hand, the influence of decreased basicity of the anion 

exchange site was evaluated.  

Additionally, the attachment stability of the chromatographic ligands affects the MS sensitivity. 

Therefore, chromatographic stress tests were performed in order to evaluate the stability of a 

previously developed stable attachment chemistry. 

Moreover, the stationary phases were used for the separation of pharmaceutical test mixtures. 

1D-LC experiments comprised the separation of nucleotides and oligonucleotides. For 

heterogeneous samples like fat- and water-soluble vitamins two-dimensional chromatography 

with orthogonal separation mechanism were used. By means of selective comprehensive 



 

46 
 

HIILIC × RP separation all investigated vitamins were baseline separated. Thereby, solvent 

mismatch issues were overcome by the use of active solvent modulation.   

In order to address impurity profiling screening approaches, a 2D-LC method was developed 

combined with a complementary detector hyphenation set-up comprising DAD, CAD and MS. 

The chromatographic method addressed hydrophilic analytes as a HILIC × HILIC separation 

was used. Solvent mismatch issues were overcome by weakening the elution strength of the 

first dimension by means of non-aqueous elution conditions. The detector set-up allowed the 

characterization via UV spectra which can help to elucidate the origin of an impurity, the 

identification via MS and a universal calibration by CAD.  
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4.1.1. Abstract 

A polymeric reversed-phase/weak anion exchange (Poly-RP/WAX) mixed-mode stationary 

phase has been prepared by coating of a poly(3-mercaptopropyl)methylsiloxane film on vinyl-

modified silica (100 Å, 5 µm) and simultaneous in situ functionalization with N-(10-undecenoyl)-

3-aminoquinuclidine as well as crosslinking to the vinyl silica surface by solventless thiol-ene 

double click reaction. Such bonding chemistry showed greatly enhanced stability compared to 

brush-type analogs with bifunctional siloxane bonding to silica. Solid-state 29Si-CP/MAS NMR 

confirmed the immobilization of the siloxane layer. pH-Dependent -potential determinations 

revealed a high anion-exchange capacity over the entire pH range with a maximum around 

pH 5. Oxidation of residual thiols yielded a zwitterionic Poly-RP/WAX/SCX mixed-mode phase 

with sulfonic acid endcapping and shifted the still net positive surface charge to lower -

potentials. It allowed a faster elution of strongly retained anionic species in particular of multiply 

negatively charged analytes such as oligonucleotides. Chromatographic tests under RPLC and 

HILIC elution mode with various test substances documented the multimodal utility and 

complementarity in retention profiles compared to RP, HILIC and commercial mixed-mode 

phases. 

 

4.1.2. Introduction 

Mixed-mode chromatography (MMC) gained recently great popularity as an alternative 

chromatographic mode to reversed-phase liquid chromatography (RPLC) and hydrophilic 

interaction chromatography (HILIC) [1,2] being complementary to both of them [3-6]. Its 

complementary retention profiles make it an ideal choice for secondary impurity profiling 

methods, supporting RPLC [7] and along with its excellent mobile phase compatibility with both 

RPLC and HILIC enables its straightforward integration in 2D-LC concepts [8-10]. MMC 

combines multiple retention principles through an assembly of hydrophobic, hydrophilic and 

ionic domains in one stationary phase and column, respectively, which can to some extent be 

independently controlled by specific parameters of the elution conditions. This enables great 

flexibility for method development and optimization of chromatographic separations through 

the choice of the selected chromatographic conditions [3, 6, 11-17]. The distinct interaction 

moieties, thereby, may be either on distinct particles which are blended, be located on simple 

separate brush ligands or on the same ligand with embedded or tipped ion-exchange or polar 

moiety [18, 19]. In other works, more complex brush ligands with e.g. peptides [20-22], 

calixarenes [23], cyclophanes [24] or dendritic structures [25] bearing distinctive interaction 

moieties have been proposed. Furthermore, materials described in the literature as ionic-liquid 

stationary phases for LC can be actually also classified as mixed-mode phases [26]. Besides, 
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polymeric mixed-mode phases have been reported as well having as advantage a higher 

stability but often suffer from much lower column efficiencies [27-29]. In terms of surface 

chemistry, MMC in itself appears in a variety of different modalities comprising HILIC/RP [30], 

RP/AX [16], RP/CX [10], HILIC/AX [31], HILIC/CX [22] and trimodal RP/AX/CX [32], 

HILIC/AX/CX [33]. Very often, indeed, individual mixed-mode phases are applicable per se in 

a number of distinct chromatographic modes making them truly multi-model separation 

materials. For instance, peptide separations in RP, WAX, HILIC, ion-exclusion and 

hydrophobic interaction chromatography mode on a single RP/WAX column with immobilized 

N-(10-undecenoyl)-3-aminoquinuclidine immobilized through thiol-ene click chemistry on 3-

mercaptopropylsilica have been achieved [14]. This brush-type RP/WAX phase exhibited 

interesting application profiles for peptides [14], oligonucleotides [17], metabolites [34], 

mycotoxins [35], and biomarkers [36]. Unfortunately, brush-type mixed-mode phases which 

are immobilized via siloxane bond, although being relatively stable, show some minor bleeding. 

It contributes to detrimental background noise in LC-MS. Hence, concepts for different more 

stable immobilization strategies were devised. 

In general, over the years a number of concepts have been pursued to increase the stability 

of bonded silica phases. For example, type C silica gels employ immobilization of ligands via 

a silica hydride surface which is more stable [37, 38]. More stable phases can also be obtained 

when the chromatographic ligand is immobilized via bidentate siloxane bonding [39, 40] or by 

incorporation of a steric shielding of hydrolytically labile siloxane bonds through bulky side 

chains attached to monofunctionally bonded silanes [41] Other concepts pursue polymer 

coating [42], horizontally polymerized silica [43] or hyper-crosslinking immobilization strategies 

[44] to mention just a few. 

In this work, we present new silica-based mixed-mode RP/WAX stationary phases, which 

unlike to prior brush-type RP/WAX congener with bifunctional siloxane bonded ligand that 

show a slight bleeding, have been prepared by a stable polymer coating strategy. The new 

surface chemistry involves a poly-3-mercaptopropylmethylsiloxane film as a reactive polymer 

layer for both immobilization of the RP/WAX ligand, herein N-(10-undecenoyl)-3-

aminoquinuclidine, and covalent attachment to vinyl silica by multiple linkages through a single 

step solventless thiol-ene double click reaction. In a second version of polymeric RP/WAX 

phase residual thiols were oxidized to sulfonic acids which can act like surface anchored 

counterions and accelerate separations of (multiply) negatively charged analytes such as 

oligonucleotides. The new mixed-mode phases, Poly-RP/WAX and Poly-RP/WAX/SCX, have 

been characterized by solid-state 29Si-CP/MAS NMR spectroscopy, pH-dependent -potential 

measurements and chromatographic tests documenting their complementary retention 

profiles. The chemical stability was evaluated by stress tests of the polymeric RP/WAX in 
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comparison to brush-type analog and 3-aminopropylsilica. It was also an objective to examine 

whether and to what extent the mixed-mode character and selectivity is compromised by the 

new polymer bonding chemistry and by the sulfonic acid endcapping compared to brush-type 

RP/WAX. 
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4.1.3. Materials and Methods 

4.1.3.1. Materials 

Poly(3-mercaptopropyl)methylsiloxane (PMPMS), 3-mercaptopropyl dimethoxymethylsilane 

and vinyltrichlorosilane were supplied by ABCR (Karlsruhe, Germany). Spherical silica gel 

Kromasil with 100 Å pore size and 5 µm particle size, was supplied by Eka Chemicals (Bohus, 

Sweden). 2,2’-Azobis(2-methylpropionitrile) (AIBN), 4-(dimethylamino)pyridine (DMAP), and 

hydrogen peroxide solution (30%) were purchased from Merck (Sigma Aldrich) (Munich, 

Germany). Chemicals used for the preparation of mobile phases and chromatographic test 

substances were from Merck (Sigma Aldrich) except for N-acetyl-L-phenylalanine (Ac-Phe) 

and N-tert-butoxycarbonyl-prolyl-phenylalanine (Boc-Pro-Phe) which were purchased from 

Bachem (Bubendorf, Switzerland). O,O-Diethylthiophosphate (DETP) was synthesized from 

O,O-diethylthiochlorophosphate by hydrolysis in presence of triethylamine, which was also 

obtained from Merck (Sigma Aldrich). The oligonucleotides were synthesized by Sigma 

Genosys and the desalted raw products were directly used for chromatographic separation. 

Ultra-pure water was prepared by an ElgaPurLab Ultra Purification system (Celle, Germany). 

 

4.1.3.2. Synthesis of Polymeric RP/WAX Mixed-Mode 

Stationary Phase (Poly-RP/WAX) 

5.2 g vinyl silica gel (ligand coverage 1.48 mmol/g) (the synthesis is described elsewhere [45]) 

was suspended in 25 mL methanol. 879 µL PMPMS (corresponding to 1 mmol sulfur per gram 

vinyl silica), 200 mg of radical initiator AIBN, 1.9 g of N-(10-undecenoyl)-3-aminoquinuclidine 

ligand and additional 25 mL methanol were added. Afterwards methanol was evaporated under 

vacuum at 35 °C. The flask was rinsed with nitrogen, closed with an air-tight plug and the thiol-

ene click reaction was initiated at 60 °C in a drying cabinet overnight. After washing the 

modified silica gel with hot toluene and hot methanol multiple times, it was dried at 60 °C under 

vacuum overnight. The results of the CHNS-elemental analysis (performed by Institute of 

Organic Chemistry, University of Tübingen, Germany) are shown in Table 1 and the surface 

structure in Fig. 1a). 
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Table 1: Elemental analysis results of the N-(10-undecenoyl)-3-aminoquinuclidine modified polymer coated silica 
gel particles before and after oxidation with performic acid. 

Stationary 
phases 

% C % H % N % S 
N 

[mmol/g] 
S 

[mmol/g] 

RP/WAX Ligand 
coverage 

[mmol/g] [µmol/m2] 

Vinyl silica gel 5.32 1.09 0.03 0.01 - - 1.48a 4.63 

Poly-RP/WAX 16.20±0.01 2.92±0.01 1.17±0.01 2.38±0.19 0.84±0.01 0.74±0.06 0.42±0.01b 1.31 

Poly-
RP/WAX/SCX 

15.42±0.01 2.94±0.04 1.11±0.01 2.16±0.19 0.79±0.01 0.67±0.06 0.39±0.002b 1.22 

a - Calculation based on the assumption that one methoxy-group remains on the surface in average (bifunctional 
bonding). 

b - Calculation based on the nitrogen content, considering two nitrogen atoms per selector molecule. 

 

 

 

Fig. 1: Surface structure of a) the new coated RP/WAX (Poly-RP/WAX) stationary phase and its oxidized version 
(Poly-RP/WAX/SCX). b) Corresponding brush-type RP/WAX used for comparison. 

 

a)

b)

X Y

Poly-RP/WAX -SH -S-

Poly-RP/WAX/SCX -SO3H -SO2-
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4.1.3.3. Oxidation of Free Thiol Groups of Poly-RP/WAX 

(Synthesis of Poly-RP/WAX/SCX) 

Poly-RP/WAX (2.5 g) with covalently bonded N-(10-undecenoyl)-3-aminoquinuclidine ligand 

was suspended in 25 mL methanol and 2.1 mL formic acid (99%). Under ice cooling and 

mechanical stirring 8.4 mL performic acid (prepared by adding 0.5 mL of 30% hydrogen 

peroxide to 9.5 mL of 99% formic acid and reaction at room temperature for 2 h) were dropwise 

added. After 4 additional hours of stirring at room temperature, the oxidized silica gel was 

washed with a mixture of water/methanol (50:50, v/v). When a neutral pH of the filtrate was 

obtained, multiple washing with hot methanol followed and the material was finally dried at 

60 °C under vacuum. The surface structure is depicted in Fig. 1a and the elemental analysis 

results are summarized in Table 1. 

 

4.1.3.4. Solid-State 29Si Cross-Polarization Magic Angle 

Spinning (CP/MAS) NMR  

The solid-state NMR spectra were measured on a Bruker Avance III HD XWB instrument 

(Bruker, Rheinstetten, Germany) operating at 300.13 MHz for 1H and equipped with a 7 mm 

double resonance (1H/X) probe. 10 kHz was used for the spinning rate of the 7 mm ZrO2 rotor, 

3.18 µs for the 90° proton pulse length, and 5 ms and 2 s contact and relaxation delay times, 

respectively. 

 

4.1.3.5. Electrophoretic Mobility and -potential 

Determinations 

Poly-RP/WAX and Poly-RP/WAX/SCX, respectively, were dispersed in buffer solutions of 

different pH-values and electrophoretic mobilities were measured using a Zetasizer NanoZS 

particle analyzer equipped with a Universal Dip Cell (Malvern Instruments, Herrenberg, 

Germany). To obtain a constant ion strength, the slurries (0.2 mg/mL silica) contained 10 mM 

potassium chloride. To ensure constant pH values, the following buffers (pH 3.5 to 9.5, 1.0 

mM) were included: formic acid/Na-formate, acetic acid/Na-acetate, histidine, tris/tris–HCl, 

boric acid/Na-borate [46]. Stable suspensions of the stationary phases were obtained by ultra-

sonification. 1.0 mL sample aliquots were analyzed in triplicates at 25 ± 0.1 °C. The -

potentials were determined using the Von Smoluchowski approximation [46]. 
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4.1.3.6. Liquid Chromatographic Experiments 

The new separation materials were slurry packed (isopropanol/acetic acid, 10:1, v/v) into 

stainless steel columns (150 mm x 4 mm ID) using methanol as delivery solvent (80 MPa). RP 

and HILIC experiments were performed on an Agilent 1100 series LC system from Agilent 

Technologies (Waldbronn, Germany) equipped with an autosampler, degasser, quaternary 

pump, thermostated column compartment and diode array detector. The flow rate was 

1.0 mL/min, column temperature 25°C and the injection volume 10 µL (sample concentration 

1 mg/mL) unless otherwise stated. Physicochemical properties of analytes (log D, pKa values) 

were calculated using Marvin Sketch. The principal component analysis (PCA) was done with 

the statistic software Umetrics SIMCA-P+ (level of significance: 95%, no weighting, 

autoscaled). 

 

4.1.3.7. Stress Test 

The new Poly-RP/WAX stationary phase (50 x 3 mm, slurry packed as previously described), 

a brush-type RP/WAX stationary phase (Fig. 1b) (100 x 4.0 mm, synthesized as described in 

[47]) and a representative commercial 3-aminopropyl modified silica stationary phase (100 x 

4.0 mm) were continuously flushed (linear flow velocity: 1.33 mm/s) with highly aqueous mobile 

phase (ACN/H2O/acetic acid, 30:70:0.1, v/v/v, mixture adjusted to pH 5 with ammonia) at 

elevated temperature of 60°C. After defined time periods (0, 7, 20, 50, 80, 110 and 137.5 h) 

the phases were characterized chromatographically. 
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4.1.4. Results and Discussion  

4.1.4.1. Synthesis of Polymeric RP/WAX Stationary Phases  

The chromatographic ligand of the new polymeric RP/WAX stationary phase was immobilized 

via polymer film. Thus, a reactive poly(3-mercaptopropyl)methylsiloxane was first coated onto 

the surface of vinyl silica in presence of the chromatographic mixed-mode ligand (N-10-

undecenoyl-3-aminoquinuclidine). In a second step, immobilization of the mixed-mode ligand 

and crosslinking of the polythiol to vinyl silica occurred simultaneously by thiol-ene (double) 

click reaction yielding a surface chemistry as illustrated in Fig. 1a. Through multiple covalent 

attachments of the polythiol film on vinyl silica a more stable bonding compared to the brush-

type RP/WAX phase [48] obtained by bi-functional bonding of trialkoxysilane (Fig. 1b) is 

expected. Both thiol content and selector coverage can be well controlled by addition of 

appropriate amounts of polythiol and RP/WAX selector. Based on experience with another 

chromatographic ligand (the chiral selector quinine carbamate [45]), the polythiol content in the 

reaction mixture was adjusted to 1 mmol sulfur/g vinyl silica to provide sufficient thiols for 

functionalization and  immobilization, and 0.74 mmol sulfur/g were actually immobilized 

(Table 1) corresponding to a reaction yield of 74%. Furthermore, based on experience with 

quinine carbamate [45], the reaction mixture was charged with a 3-fold molar excess of the 

RP/WAX ligand with respect to the targeted coverage of 0.4 mmol/g (to closely match the one 

of the previous brush-type RP/WAX phase with 0.36 mmol/g used for comparison herein [47]). 

In good agreement with these considerations the reaction resulted in a ligand loading of 0.42 

mmol/g (35% yield). The click reaction itself was carried out solventless. Solvent is just 

employed to homogenously coat the polysiloxane as a thin film to the surface. For this purpose, 

all constituents were dissolved in methanol, slurried in vinyl silica, and then the solvent 

evaporated to end up with a thin polymer film for solventless click reaction. 

Elemental analysis showed that only a fraction of the reactive sulfhydryls of the polythiol film 

were used for immobilization of RP/WAX selector. It was further assumed that not all of the 

remaining sulfhydryls were utilized for crosslinking to vinyl silica. Thus, an aliquot of the poly-

RP/WAX phase was further treated with performic acid oxidizing residual thiols to sulfonic acid 

groups and thioether functionalities to sulfonyl groups yielding a zwitterionic Poly-

RP/WAX/SCX material (Fig. 1a). Polythiol, which is bound just via disulfide bridges to 

immobilized polymer layers on the silica surface, would be detached upon treatment with 

performic acid due to oxidative cleavage of disulfide bonds to sulfonic acid moieties. However, 

as can be seen from the elemental analysis results in Table 1 there is no significant change of 

the thiol coverage after performic acid oxidation.  

The successful coating of the polysiloxane layer was also confirmed by 29Si CP/MAS NMR 

spectra, which are depicted in Fig. 2. 



 

56 
 

The spectrum of vinyl silica is shown in Fig. 2a) and the one of Poly-RP/WAX in Fig. 2b) [45]. 

29Si resonance signals for unmodified residual silanol groups (-101 ppm) and for siloxane 

groups (-111 ppm) were observed in both modified silica gels (Fig. 2a) and b) [45, 49]. 

Additional signals can be seen at around 12 ppm (4) and -21 ppm (5) in the spectra of the 

coated Poly-RP/WAX (Fig. 2b) but not in the one of vinyl silica (Fig. 2a). These additional 

resonances can be assigned to the bonding of the polysiloxane layer. Thiol-ene click reaction 

was performed between the alkene residue of the vinyl silica and the thiol group of the poly(3-

mercaptopropyl)methylsiloxane, resulting in signal 4 at 12 ppm. The polysiloxane coating with 

ligand attachment leads to signal 5 at -21 ppm. The remaining vinyl moieties on the silica 

surface lead to signal 1 of Poly-RP/WAX in Fig. 2b.  

The 29Si CP/MAS NMR spectra remain unchanged after performic acid oxidation. Neither, 

vinyl-silica (Fig. 2c) nor the mixed-mode phase oxidized to Poly-RP/WAX/SCX (Fig. 2d) show 

significantly altered 29Si CP/MAS NMR spectra after performic acid treatment compared to the 

congeners before such treatment. Since the same resonances can be observed before and 

after performic acid oxidation both in the 29Si NMR as well as in the 13C NMR (see Suppl. 

Fig. S2), it can be concluded that no epoxide formation on residual vinyl groups occurs. 

 

Fig. 2: 29 Si CP/MAS NMR spectra. a) Vinyl silica and b) polysiloxane-coated Poly-RP/WAX silica as well as 
corresponding phases after performic acid oxidation, c) oxidized vinyl silica and d) oxidized Poly-RP/WAX silica (i.e. 
Poly-RP/WAX/SCX). 
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4.1.4.2. -Potential Determinations  

Mixed-mode phases develop their peculiar separation characteristics through multiple 

interactions of solutes with various domains amongst others ion exchange sites. Since silica-

based Poly-RP/WAX as well as the oxidized zwitterionic Poly-RP/WAX/SCX material feature 

distinct ionizable groups on the surface, characterization of their actual net charge state in 

dependence on the pH may be informative. In consequence, determination of their -potentials 

in a pH dependent manner by electrophoretic light scattering (ELS) may be useful for 

understanding their retention characteristics of ionic analytes [12, 46, 50-52].  

The surface concentration and dissociation status of residual silanol groups, of the immobilized 

RP/WAX selector and, in case of the oxidized Poly-RP/WAX/SCX silica gel, of the sulfonic acid 

residues actively contribute to the surface charge of the modified silica particles. In order to 

evaluate the pH dependency of the -potentials of the modified silica gels, the determination 

was carried out for a pH range of 3.5 to 9.5, keeping the ionic strength constant at 10 mM KCl. 

The results are shown in Fig. 3. The immobilization of N-(10-undecenoyl)-3-aminoquinuclidine 

selector induces basic surface properties yielding positive -potentials over the entire 

investigated pH range. Below pH 7.5, the dissociation of the WAX-ligand dominates the surface 

charge due to its pKa of about 8.08 (calculated with Marvin Sketch) reaching full anion 

exchange capacity. At pH > 7.5 -potentials and anion-exchange capacity drop due to 

increasing dissociation of residual silanols [46] and decreased ionization of the quinuclidine 

ring of the RP/WAX selector. Unlike to similar RP/WAX brush-phases [51], charge reversal 

(umpolung) to net negative surface charge at high pH was not observed for the poly-RP/WAX 

phase which indicates an efficient shielding of the residual silanols by the polysiloxane layer. 

The additional acidic sulfonic acid co-ligands of the Poly-RP/WAX/SCX phase lead to an offset 

i.e. an overall decrease of measured -potentials compared to the Poly-RP/WAX phase (Fig 

3). Furthermore, due to the influence of acidic co-ligands, the isoelectric point (pI) of the surface 

is shifted to slightly lower pH values and can be found at around pH 9. While the anion 

exchange capacity is maintained over a wide pH range (3.5 to 7.5) on Poly-RP/WAX/SCX, the 

acidic co-ligands impose a shift in the overall -potentials, which might be of advantage for the 

separation of multiply charged acidic analytes. 
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Fig. 3: Change of -potential in dependency of the pH revealing the charge state of the new Poly-RP/WAX and 
Poly-RP/WAX/SCX stationary phases. 

 

4.1.4.3. LC Characterization under RP, Weak Anion Exchange 

and HILIC Elution Modes  

The polymeric RP/WAX phases were chromatographically tested under different elution 

conditions to demonstrate that their multimodal chromatographic characteristics was not 

compromised by the new immobilization chemistry. RP and HILIC conditions were utilized and 

the test chromatograms are shown in Fig. 4 in comparison to brush-type analogs. The neutral 

lipophilic test compounds butylbenzene (BuB) and pentylbenzene (PeB) were selected as 

probes to provide information on the methylene selectivity of the stationary phases. Their anion 

exchange character can be derived from the relative retention of the polar acids DETP and 

Boc-Pro-Phe of which the former is highly hydrophilic (but has a chromophore for UV detection) 

and the latter is more lipophilic, yet with polar groups embedded for the probing of the mixed-

mode character. The chromatograms are shown in Fig. 4a and the chromatographic data in 

Supplementary Table S2. The methylene selectivity of the Poly-RP/WAX column (CH2=1.66) 

is slightly higher than for the brush type RP/WAX of Fig. 1b) (360 µmol/g) column (CH2=1.56 

[47]) and the structurally closest commercially available RP/WAX phase (Acclaim Mixed Mode 

WAX-1; CH2=1.53 [47]) but slightly lower than the polar RP phase Synergi Fusion RP 

(CH2=1.79). The polysiloxane layer per se brings about some lipophilicity and slightly 

increases retention for hydrophobic compounds. On the contrary, the Poly-RP/WAX/SCX 

column shows significantly reduced methylene selectivity (CH2=1.44) due to hydrophilic 

sulfonyl and sulfonic acid moieties which make the surface more polar. 
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Fig.4: Multimodal applicability of the Brush-RP/WAX, Poly-RP/WAX and Poly-RP/WAX/SCX stationary phases 
illustrated by a) the separation of alkylbenzenes and organic acids under RP conditions, and b) the separation of 
nucleosides under HILIC conditions (for detailed conditions see Suppl. Material). Mobile phase: a) ACN/acetic acid 
(40:60, v/v) (Ctot = 50 mM), pH 6 adjusted with ammonia; butylbenzene (BuB); pentylbenzene (PeB)¸ O,O-
diethylthiophosphate (DETP); N-tert-butoxycarbonyl-prolyl-phenylalanine (Boc-Pro-Phe). b) ACN/ammonium 
acetate (90:10, v/v) (Ctot = 5 mM), apparent pH around 8; T, Thymidine; A, Adenosine; U, Uridine; C, Cytidine; G - 
Guanosine. 

The hydrophilic acid DETP was not retained on RP phases such as Synergi Fusion RP under 

tested conditions [47]. In contrast, the Poly-RP/WAX mixed-mode phases sufficiently retained 

and resolved the two acids DETP and Boc-Pro-Phe due to their anion exchange character 

(see Suppl. Table S2). Selectivity got worse the higher the selector coverage. Amino phases 

like Luna Amino and Biobasic AX showed reversed elution order for these two test analytes. 

The Poly-RP/WAX/SCX column showed significantly smaller retention times also for the acidic 

test compounds. However, weak anion exchange mechanism still appears to be the 

dominating factor in spite of the presence of anionic co-ligands with repulsive electrostatic 
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interaction increments for these acids. It can be documented by the stoichiometric 

displacement model. This simple retention model assumes a direct proportional dependency 

of the logarithm of retention factors of oppositely charged compounds k and the logarithm of 

the concentration of counter ions C for a common ion-exchange process (see Suppl. Material 

for more details). For the Poly-RP/WAX/SCX this model needs to be modified to account for 

the immobilized surface anchored counterions (Eq. 1). 

log 𝑘 = log 𝐾𝑍 − 𝑍 ∙ log[𝐶]𝑚 − 𝑋 ∙ log[𝐶]𝑠  (1) 

In this equation subscript m and s stand for counterions in the mobile (here acetate) and 

stationary phase (here sulfonate), respectively. Z and X are proportional to the effective charge 

numbers involved in the two processes (see Suppl. Material). This formalism clearly explains 

the shift to lower retention factors on the Poly-RP/WAX/SCX phase in comparison to Poly-

RP/WAX, as exemplified in Fig. 5 for Ac-Phe. It is in agreement with the -potential 

measurements in Fig. 3. 

 

Fig. 5: Effect of retention factor of Ac-Phe on counterion concentration demonstrating that an anion-exchange 
retention principle dominates both on Poly-RP/WAX as well as Poly-RP/WAX/SCX stationary phases using the 
stoichiometric displacement model. Experimental conditions, mobile phase: ACN/H2O (80:20, v/v), 10, 20, 50 and 
30, 40, 50 mM acetic acid, pH 5 adjusted with ammonia.; flow rate,1.0 mL/min; injection volume, 10 µL; column 
temperature, 25 °C; Ac-Phe: 258 nm; sample concentration, 1 mg/mL; void volume marker, acetone. 

With acetonitrile-rich eluents, hydrophobic interactions are set off and hydrophilic interactions 

become dominating leading to a HILIC elution mode for polar analytes such as nucleosides 

(Fig. 4b and Suppl. Table S2). All 5 nucleosides were well baseline resolved on the Poly-

RP/WAX phase according to a HILIC mechanism. It clearly demonstrates the HILIC potential 

of this material. Surprisingly, the retention of the nucleobases only slightly increases on the 

oxidized Poly-RP/WAX/SCX phase. It seems that the HILIC performance is not further 

improved by the acidic co-ligands and the more polar surface. 
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In general, these tests clearly document the multimodal applicability of the new polymer 

bonded mixed-mode phases. 

 

4.1.4.4. Stationary Phase Classification by Multivariate Data 

Analysis  

Principal component analysis (PCA) is useful means for the elucidation of complementarities 

and similarities in generated chromatographic data sets [47, 53]. Herein, the retention factors 

obtained by the RPLC and HILIC tests on the two new polymeric mixed-mode phases (Poly-

RP/WAX and Poly-RP/WAX/SCX), corresponding brush mixed-mode phase (RP/WAX-

AQ360), some commercial mixed-mode phases (including Acclaim Mixed-mode WAX1), a 

chiral weak anion exchanger (Chiralpak QN-AX), some amino phases (Luna NH2 and Biobasic 

AX), a number of HILIC columns and a polar RP phase (Synergi Fusion-RP) along with some 

synthesis intermediates of the polymeric RP/WAX phases were used as variables in PCA 

(structure of stationary phases, retention factors, and statistics are given in the Suppl. 

Material). The resultant score plot of the first two principal components, which represent latent 

variables on which stationary phases are ordered by increasing hydrophilicity on PC1 and from 

negative to positive surface charge on PC2, classifies the different columns in accordance to 

their similarity (Fig. 6). Stationary phases, which show similar retention behavior are clustered 

together, whereas stationary phases with distinct retention characteristics are distant from 

each other. PC1 explains around 55% of the variance in the data and PC2 around 25%; the 

two first PCs together about 80%. 

Even though the predictive power of the PCA model is moderate (see Suppl. Material Table 

S6), the score plots are quite useful to illustrate the dominating retention characteristics of the 

examined stationary phases. The new Poly-RP/WAX phase is located in the score plot 

essentially equidistant from the RP column Synergi Fusion-RP and the HILIC columns (Fig. 6). 

Its positioning in the middle of PC1 between HILIC and RP may readily indicate its mixed-

mode nature and applicability in both modes. Its chemical character and thus retention 

characteristics is resembling the Acclaim Mixed-mode WAX1 phase, but is significantly 

different to the other commercial mixed-mode phases. It is also evident in the score plot that 

the Poly-RP/WAX is shifted on PC1 scale to slightly higher lipophilicity as compared to the 

brush-type RP/WAX (RP/WAX-AQ360) and on PC2 to higher positive charge. This is indicative 

for a higher anion-exchange capacity due to slightly higher selector coverage but probably also 

due to more efficient shielding of silanols by the polysiloxane film. Upon introduction of the 

sulfonic acid moieties in the Poly-RP/WAX/SCX this stationary phase experiences a huge shift 

in direction to the HILIC phases due to a slight shift on PC1 to higher hydrophilicity and large 

shift on the charge scale of PC2. 
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Fig. 6: Score plot of the principal component analysis of the retention data obtained by RP and HILIC tests revealing 
the classification of the polymer-bonded Poly-RP/WAX and Poly-RP/WAX/SCX stationary phases along with other 
chiral WAX, RP, HILIC and several commercial mixed-mode stationary phases. 

The score plot also documents illustratively changes in the retention behavior in dependence 

of the surface modification in each step. Since bare silica possesses a highly polar surface and 

is hence well suited for the separation of polar analytes under HILIC conditions, it is not 

surprising that the raw material Kromasil is clustered together with HILIC phases (Fig. 6). The 

introduction of vinyl groups at the surface of the silica promotes hydrophobic interactions and 

as a result Vinyl-Kromasil is shifted towards more hydrophobic columns in the score plot. The 

coating of the silica particles with poly-3-mercaptopropylmethylsiloxane (PMPMS) and 

crosslinking to vinyl silica in absence of RP/WAX selector (further information can be found in 

the Suppl. Material) causes a further obvious increase of lipophilicity of the surface by 

increasing the carbon content on the stationary phase. Besides it is striking that this stationary 

phase is shifted on the PC 2 scale indicating a reduction of negative surface charge due to an 

additional shielding of residual surface silanol groups by the polymer coating. The oxidation of 

the polymer-coated silica (oxidized PMPMS, further information can be found in the Suppl. 

Material) introduces cation exchange groups on the surface, which is seen by a drift back 

towards Vinyl Kromasil. However, all these precursor and comparative phases are located in 

the score plot far distant from Poly-RP/WAX and Poly-RP/WAX/SCX which indicates the 

dominant influence of the RP/WAX ligand on the surface property and the resultant 

chromatographic retention characteristics. 
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4.1.4.5. Separation of Synthetic Oligonucleotides  

Synthetic oligonucleotides are gaining increasing popularity as new therapeutics. The synthetic 

process for small scale production is based on the phosphoramidite chemistry, which yields 

besides the target sequence a large number of impurities with similar structure. For human 

use, further purification as well as analysis methods for quality control of these drugs are 

needed, in order to achieve and control pharmaceutical quality.  

The applicability of the new stabilized separation materials for oligonucleotide separations was 

evaluated using a test mixture containing oligos with slight sequence alterations (see Fig. 7). 

It can be seen that the Poly-RP/WAX has remarkable selectivity for the separation of these 

structurally closely related oligonucleotides (for chromatographic data see Suppl. Table S7). 

Unfortunately, retention is strong on the Poly-RP/WAX due to the multiple negatively charged 

oligos and required application of a mixed triethylammonium phosphate (TEAP) buffer/pH 

gradient for their elution in reasonable time. The negatively charged immobilized sulfonic acid 

moieties of Poly-RP/WAX/SCX act like immobilized counterions and due to their long-range 

nature, they have the capability to reduce retention significantly. Selectivity, although slightly 

reduced, was still reasonable, yet the analytes now eluted within 20 min (Fig. 7). This 

documents the applicability of the two new polymeric mixed-mode phases for synthetic 

oligonucleotide separations and confirms that selectivity for this application was not 

compromised by the new polymer bonding chemistry compared to the brush-type RP/WAX 

analog [17]. More chromatograms of potential applications (xanthins, vitamins, and 

phosphorylated carbohydrates) are given in the supplementary information for interested 

readers. 
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Fig. 7: Separation of synthetic oligonucleotides with minor sequence differences on brush-type (Brush-RP/WAX), 
polymer coated Poly-RP/WAX and oxidized coated Poly-RP/WAX/SCX stationary phases highlighting the repulsive 
character (surface-anchored counterion effect) obtained by additional acidic co-ligands allowing milder elution 
conditions. Experimental conditions: Poly-RP/WAX and Poly-RP/WAX/SCX: mobile Phase: A: 20 % ACN,50 mM 
phosphoric acid, pH 7 adjusted with triethylamine in the final mixture, B: 20 % ACN, 100 mM phosphoric acid, pH 
8 adjusted with triethylamine; Brush-RP/WAX: mobile Phase: A: 20 % ACN, 100 mM phosphoric acid, pH 7 adjusted 
with triethylamine in the final mixture, B: 20 % ACN, 200 mM phosphoric acid, pH 8 adjusted with triethylamine in 
the final mixture, gradient: in 25 min 50 to 100 % B, hold 100 % B for 27 min, in 0.5 min 100 % to 0 % B, 8 min 0 % 
B; 40°C, 10 µL (8.0 µM each oligonucleotide), 254 nm, for further details about conditions see Suppl. 

 

4.1.4.6. Column Stability Test  

Polar stationary phases and in particular amino phases are known to suffer from ligand 

bleeding due to hydrolysis of the siloxane (Si-O-Si) bond by which the chromatographic ligand 

is attached to the silica surface. This effect is more pronounced under aqueous rich elution 

conditions. In the most severe form, this problem has been observed for 3-aminopropyl silica 

(APS) phases which have been synthesized by silanization reaction of silica with APTES (3-

aminopropyltriethoxysilane), the classical amino phase on the market [54]. It has been reported 

that the aminopropyl ligand can bend back towards the silica surface and catalyze the 

hydrolytic cleavage of the siloxane bond leading to leaching of 3-aminopropylsilane. This 

makes this classical amino phase relatively unstable. In order to test the claimed improved 

stability of the polymer bonded Poly-RP/WAX, a stress test under highly aqueous conditions 

(ACN/H2O/Acetic acid = 30/70/0.1, pH 5 adjusted with ammonia) and elevated temperature 

(60°C) was devised using a brush-type RP/WAX (selector coverage 360 µmol/g; Fig. 1b) and 

a commercial, classical APS phase for comparison. After certain time intervals of column 

stressing, the retention of hydrophobic (butylbenzene, pentylbenzene) and acidic test 

compounds (Boc-Pro-Phe and DETP) were monitored under RP conditions. Fig. 8 shows the 

percentage of retention remaining after a certain volume of stress solution was pumped 

through the column at 60°C. As can be seen retention dropped to about 60% for alkylbenzenes 

(Fig. 8a and 8b) and to about 25% of the initial value for acidic test analytes (Fig. 8c and 8d) 

after around 3000 column volumes (i.e. 3000 x V0) of stress solution was pumped through the 
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brush-type RP/WAX column. The acidic compounds are more sensitive to minor losses of 

RP/WAX ligand because besides less attractive ionic interactions with the RP/WAX moiety, 

repulsive electrostatic interactions with newly generated silanols both reduce retention. The 

retention loss due to bleeding is significantly more pronounced for the 3-aminopropyl-silica 

phase for which only approximately 6% of the initial retention of the acids was observed after 

3000 column volumes of stress solution (Fig. 8c and 8d). In sharp contrast, the Poly-RP/WAX 

column exhibited still about 95% of the initial retention for the alkylbenzenes (Fig. 8a and 8b) 

after 3000 column volumes and more than 85% of the initial retention for the acidic test solutes 

(Fig. 8c and 8d). Even after 16,000 column volumes a high percentage of retention could be 

preserved on the Poly-RP/WAX column indicating its significantly enhanced column stability 

through immobilization via the polymeric film with multiple covalent linkages to the silica 

surface. 

 

Fig. 8: Relative retention of butylbenzene (a), pentylbenzene (b),Boc-Pro-Phe (c) and DETP (d) after flushing 
several column volumes (V0) of stress solution (ACN/H2O/acetic acid, 30/70/0.1 (v/v/v), pH 5 adjusted with 
ammonia, 60°C) through the column. For chromatographic test conditions see Fig. 4. 
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4.1.5. Conclusions  

In this study, two stable polymer-coated RP/WAX mixed-mode phases (Poly-RP/WAX and 

Poly-RP/WAX/SCX) were synthesized and characterized. The controlled synthesis by thiol-

ene double click reaction comprising simultaneous ligand immobilization on a polythiol and its 

crosslinking to vinyl silica allowed to adjust a selector coverage (of N-undecenoyl-3-

aminoquinuclidine) of 420 µmol/g (Poly-RP/WAX) closely matching the one of a brush-type 

RP/WAX analog which was used for comparison. Performic acid oxidation of residual thiols of 

Poly-RP/WAX introduced acidic co-ligands yielding a zwitterionic Poly-RP/WAX/SCX phase. 

Solid-state 29Si CP/MAS NMR of the modified silica particles verified the attachment chemistry. 

The pH dependent -potential determinations showed positive surface charge for Poly-

RP/WAX over the entire pH range investigated with maxima at around pH 5 (corresponding to 

maximal anion-exchange capacity). The introduced sulfonic acid moieties upon oxidation 

caused a significant off-set to lower charge for the Poly-RP/WAX/SCX, as targeted by the 

design of the surface chemistry. The latter RP/WAX mixed-mode stationary phase with 

immobilized sulfonate counterions can be advantageously utilized for the analysis of multiply 

negatively charged analytes such as oligonucleotides which are too strongly adsorbed on 

RP/WAX without acidic co-ligands. While these acidic co-ligands reduced the retention, the 

selectivity was not much influenced indicating the still dominating role of the RP/WAX ligand 

of the Poly-RP/WAX/SCX mixed-mode phase. A PCA of retention data documented the 

complementarity of the retention profiles of the new polymeric RP/WAX phases compared to 

HILIC, commercial MMC and polar RP phases. Stress tests confirmed the greatly superior 

stability of the new polymer bonded RP/WAX phases compared to brush-type analogs. Due to 

their general mobile phase compatibility and orthogonal retention patterns in both elution 

modes these new stationary phases could be valuable alternatives in 2D-LC.  
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4.1.7. Supplemental Material 

4.1.7.1. Materials 

Kromasil 100 Å, 5µm, was from Eka Chemicals (Bohus, Sweden). Acetic acid, 2-propanol, 4-

(dimethylamino)-pyridine (DMAP), 2,2-azobis-(2-methylpropionitrile) (AIBN), hydrogen 

peroxide (30% v/v), methanol and toluene in HPLC grade quality were supplied from Sigma 

Aldrich (Steinheim, Germany). Poly(3-mercaptopropyl)methylsiloxane (PMPMS) and 

vinyltrimethoxysilane were purchased from ABCR (Karlsruhe, Germany). 

Trifluoroacetic acid (spectroscopy grade) (TFA) was supplied by Panreac Applichem 

(Darmstadt, Germany). Acetonitrile HPLC grade (ACN) was purchased from J.T.Baker 

(Netherlands).  

The phosphorylated carbohydrates dihydroxyacetone phosphate dilithium (DHAP), 

glyceraldehyde-3-phosphate solution 50 mg/mL (GAP), D-ribose-5-phosphate disodium salt 

hydrate (Rib5P), D-glucosamine-6-phosphate (GlcN6P), D-fructose-6-phosphate disodium 

salt hydrate (F6P), -D-glucose-1-phosphate sodium salt hydrate (G1P), and -D-galactose-

1-phosphate dipotassium salt pentahydrate (Gal1P) were obtained from Merck (Sigma Aldrich) 

(Munich, Germany). 

 

4.1.7.2. Instrumentation 

An Agilent 1100 series LC system (autosampler, degasser, quaternary pump, thermostated 

column compartment and diode array detector) was used for the analysis under RP and HILIC 

conditions as well as for the evaluation of the anion exchange capacity. For the analysis of the 

phosphorylated carbohydrates, a similar system was used differing in the installed pump 

(binary pump) and the detector (variable wavelength detector). It was additionally coupled to a 

charged aerosol detector (CAD) from Thermo Fisher Scientific (Munich, Germany). The 

chromatographic data of the synthetic oligonucleotides were measured on an Agilent 1290 

series UHPLC system equipped with an autosampler, binary pump, degasser, thermostated 

column compartment and diode array detector.  
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4.1.7.3. Synthesis of Vinyl-Kromasil, Polymercoated and 

Oxidized Polymercoated Silica 

Experimental 

4.1.7.3.1. Vinyl-Kromasil 

15.0 g dried Kromasil (100 Å, 5 µm) (under vacuum at 60 °C, overnight) was suspended in 200 

mL toluene. To remove the water, the toluene was distilled with a distillation bridge. After 

discarding the first distilled milliliters, 50 mL toluene was distilled off. While cooling down, the 

system was purged with nitrogen. The vinylization was done by the addition of 5.043 mL 

vinyltrimethoxysilane and 150.0 mL DMAP. The mixture was refluxed overnight flushing 

constantly with nitrogen. Afterwards the silica gel was flushed three times with hot toluene and 

three times with hot methanol. The silica gel was dried overnight at 60 °C. The results of the 

CHNS elemental analysis are shown in Table S1 and the surface structure is shown in Fig. 

S1a). 

 

4.1.7.3.2. Poly(3-Mercaptopropyl)methylsiloxane-Coated Silica (PMPMS 

Silica) 

A suspension of 8.0 g vinyl silica and 80.0 mL methanol in a round bottom flask was formed. 

After the addition of 200 mg AIBN and 1.27 mL PMPMS (corresponding to 1 mmol sulfur per 

g vinyl silica), the suspension was sonicated and then evaporated to dryness using a rotary 

evaporator (337 mbar, 40 °C). Thereafter, the flask was flushed with nitrogen for two hours 

and the radical addition reaction was performed at 50-60°C overnight. Afterwards, hot toluene 

and hot methanol was used for the washing of the modified silica gel. It was dried overnight at 

60 °C. The results of the elemental analysis are shown in Tab S1 and the surface structure in 

Fig S1b). 

 

4.1.7.3.3. Oxidized Poly(3-Mercaptopropyl)methylsiloxane-Coated Silica (ox. 

PMPMS Silica) 

6.0 g of the PMPMS-coated silica gel was suspended in 80.0 mL methanol and 4.2 mL formic 

acid. A mixture of 19.0 mL formic acid and 1 mL hydrogen peroxide (30 %, v/v) was prepared, 

allowed to stand for 2h at ambient temperature, and was then added dropwise under ice 

cooling and stirring for four hours. Subsequently, the silica was three times washed with a hot 

mixture of water and methanol (1:1, v/v). Afterwards the silica gel was dried overnight under 

vacuum at 60 °C. The results of the elemental analysis are shown in Table S1 and the surface 

structure in Fig S1b). 
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Table S1: Elemental analysis and calculated sulfur surface coverage of the modified silica gels 

Stationary phase % C % H % N % S 
Surface coverage  

S [mmol/g]2 
Surface coverage 

 S [µmol/m2] 

Silica (unmodified)  0.27 0.50 - - - - 

Vinyl-Silica 3.,28 0.67 - - - - 

PMPMS-coated silica 7.93 1.65 0.12 3.18 0.99 3.31 

Ox. PMPMS-silica 6.74 1.48 0.13 2.60 0.81 2.70 

 

 

 

 

Fig. S1: Surface structure of the stationary phases used as reference materials for evaluation of the retention 
contributions by PCA  
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4.1.7.4. Solid-State 13C Cross-Polarization Magic Angle 

Spinning (CP/MAS) NMR  

The solid-state NMR spectra were measured on a Bruker Avance III HD XWB instrument 

(Bruker, Rheinstetten, Germany) operating at 300.13 MHz for 1H and equipped with a 7 mm 

double resonance (1H/X) probe. 10 kHZ was used for the spinning rate of the 7mm ZrO2 rotor, 

3.18 µs for the 90° proton pulse length and 5 ms and 2 s contact and relaxation delay times, 

respectively. 

 

Fig S2: Solid-state 13C CP/MAS NMR spectra of a) vinyl silica gel and b) vinyl silica gel after performic acid 
treatment. 

 

Like the solid-state 29Si CP/MAS NMR spectra (Fig 2), the 13C CP/MAS NMR spectra showed 

no shifts of the vinyl signals which would indicate an oxidation of the vinyl group. The 

resonance signals did not change and it can be concluded that the vinyl group is not affected 

by the performic acid treatment. 
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4.1.7.5. Chromatographic Classification of the Stabilized 

Stationary Phases by Principal Component Analysis 

(PCA) 

4.1.7.5.4. Classification under RP Conditions 

The mobile phase was a mixture of ACN and water (40:60, v/v) containing 0.29 % acetic acid 

(Ctot = 50 mM). The pH value was adjusted to 6 with ammonia. The sample contained 

butylbenzene (BuB), pentylbenzene (PeB) and N-tert-butoxycarbonyl-propylphenylalanine 

(Boc-Pro-Phe) dissolved in the mobile phase; and O,O–diethylthiophosphate (DETP), which 

was prepared as follows. In the presence of an equimolar amount of triethylamine, O,O-

diethylchlorothiophosphate was hydrolyzed to O,O-diethylthiophosphate in an 

acetonitrile/water (75:25; v/v) solution. The concentration of the analytes was 0.8 mg/mL. The 

injection volume was 10 µL. The linear flow velocity was 1.7 mm/s. The column was 

thermostated at 25 °C. The detection wavelength was 220 nm. The void volume was 

determined using uracil. 

4.1.7.5.5. Classification under HILIC Conditions 

Experimental 

The mobile phases used for the xanthin mixture contained ACN/water (95:5, v/v) and for the 

vitamin and nucleoside a mixture of ACN/water (90:10, v/v), of which each was buffered with 

ammonium acetate to obtain a total concentration of 5 mM. The apparent pH was 8 

(unadjusted). All samples were dissolved in the mobile phase to a concentration of 1.0 mg/mL 

from which 10 µL was injected. The linear flow velocity was 1.7 mm/s. The temperature of the 

columns was 25 °C. The samples were analyzed at a wavelength of 220 nm. The void volume 

was determined by toluene. 

Results 

 

Fig S3: Separation of vitamins (a) and xanthines (b) under HILIC conditions using the new stationary phases. The 
investigated conditions were described above. 1. Thiamine, 2. Pyridoxine, 3. riboflavine, 4. nicotinic acid, 5. caffeine 
6, Theobromine, 7. Theophylline.  
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4.1.7.5.6. Surface Structure of Investigated Stationary Phases 

The RP and HILIC tests were done with the commercially available and in house synthetized 

stationary phases shown in Fig. S4. The obtained chromatographic data (Table S2 and S3) 

were used for the retention mapping by principal component analysis discussed in the main 

document 

.  

Fig. S4: Surface structure of the stationary phases which were used for the RP and HILIC tests to obtain a retention 
map. 
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Table S2: Retention factors and selectivities obtained by the separation of analytes of different polarity under RP and HILIC conditions 

Column Retention factor k Selectivity  

RP Conditions: a BuB PeB DETP BocProPhe  (-DETP/BocProPhe)  (-CH3-)   

Brush-RP/WAX 11.01 12.69 17.03 28.89  2.18 1.56   

Poly-RP/WAX 24.07 39.91 35.16 55.20  1.57 1.66   

Poly-RP/WAX/SCX 5.67 8.14 12.41 13.05  1.05 1.44   

HILIC Conditions: b T A U C G  (1,2)  (2,3)  (3,4)  (4,5) 

Brush-RP/WAX 0.79 1.59 1.89 4.12 7.52 2.01 1.19 2.18 1.83 

Poly-RP/WAX 0.59 1.18 1.59 3.17 7.07 2.00 1.35 1.99 2.23 

Poly-RP/WAX/SCX 0.99 1.82 1.94 3.61 8.55 1.84 1.07 1.86 2.37 
          

 Thiamine Pyridoxine Riboflavine Ascorbic acid 
Nicotinic 

acid 
 (1,2)  (2,3)  (3,4)  

Brush-RP/WAX 0.094 1.17 2.17 n.d. 34.37 12.45 1.85 15.84  

Poly-RP/WAX 0.77 1.39 2.56 n.d. 42.92 1.81 1.84 16.77  

Poly-RP/WAX/SCX 0.89 1.50 2.34 n.d. 30.28 1.69 1.56 12.94  

HILIC Conditions: c Caffeine Theobromine Theophylline    (1,2)  (2,3)   

Brush-RP/WAX 0.17 0.35 1.11   2.06 3.17   

Poly-RP/WAX 0.00 0.14 0.89   n.a. 6.36   

Poly-RP/WAX/SCX 0.00 0.24 1.04   n.a. 4.33   

        
n.d. - not detected, n.a. – not available      
a - Experimental conditions: ACN/H2O 40/60 (v/v), 50 mM acetic acid, pH 6 adjusted with ammonia, 1.7 mm/s, T=25°C, UV: 220 nm, 10 µL injected (0.8 mg/mL) 

b - Experimental conditions: ACN/H2O 90/10 (v/v), 5 mM ammonium acetate, pH unadjusted, 1.7 mm/s, T=25°C, UV: 220 nm, 10 µL injected (1.0 mg/mL) 

c - Experimental conditions: ACN/H2O 95/5 (v/v), 5 mM ammonium acetate, pH unadjusted, 1.7 mm/s, T=25°C, UV: 220 nm, 10 µL injected (1.0 mg/mL) 
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Table S3: Chromatographic efficiency under RP and HILIC conditions 

Column Plate Height H [10-6 m] 

RP Conditions: a BuB PeB DETP BocProPhe  

Brush-RP/WAX 19.57 18.47 15.23 20.70  

Poly-RP/WAX 21.17 20.59 22.90 25.03  

Poly-RP/WAX/SCX 33.33 34.16 33.17 36.85  

HILIC Conditions: b T A U C G 

Brush-RP/WAX 74.54 35.64 28.54 20.12 25.94 

Poly-RP/WAX 42.85 35.66 33.22 28.40 25.95 

Poly-RP/WAX/SCX 50.73 56.88 41.98 38.96 127.95 

      

 Thiamine Pyridoxine Riboflavine Ascorbic acid Nicotinic acid 

Brush-RP/WAX 204.21 71.12 80.33 n.d. 10.59 

Poly-RP/WAX 108.11 31.74 35.01 n.d. 15.29 

Poly-RP/WAX/SCX 96.15 51.37 47.99 n.d. 25.47 

HILIC Conditions: c Caffeine Theobromine Theophylline   

Brush-RP/WAX 75.87 56.83 74.87   

Poly-RP/WAX 60.07 42.25 37.25   

Poly-RP/WAX/SCX 74.61 52.01 47.60   

     

n.d. - not detected   
a - Experimental conditions: ACN/H2O 40/60 (v/v), 50 mM acetic acid, pH 6 adjusted with ammonia, 1.7 mm/s, T=25°C, UV: 220 nm, 10 µL injected (0.8 mg/mL) 

b - Experimental conditions: ACN/H2O 90/10 (v/v), 5 mM ammonium acetate, pH unadjusted, 1.7 mm/s, T=25°C, UV: 220 nm, 10 µL injected (1.0 mg/mL) 

c - Experimental conditions: ACN/H2O 95/5 (v/v), 5 mM ammonium acetate, pH unadjusted, 1.7 mm/s, T=25°C, UV: 220 nm, 10 µL injected (1.0 mg/mL) 
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Table S4: Retention factors k obtained by the isocratic analysis of nucleosides (adenosine=A, cytidine=C, guanosine=G, thymidine=T, uridine=U), vitamins (riboflavine, ascorbic 

acid and nicotinic acid) and xanthines (caffeine, theobromine and theophylline) on several columns under HILIC conditions. 

Column T A U C G Riboflavine 
Ascorbic 

acid 
Nicotinic 

acid 
Caffeine Theobromine Theophylline 

Brush-RP/WAX (AQ360) 0.79 1.59 1.89 4.12 7.52 2.17 n.d. 34.37 0.17 0.35 1.11 

Thiolated silica 0 0.11 0 0.15 0.15 0.1 0 0 0 0 0 

Acclaim Mixed Mode WAX-1 0.88 1.67 1.9 4.18 7.15 1.66 n.d. 31.14 0.1 0.26 0.84 

Uptisphere 5 MM3 0 0.15 0.15 0.81 1.05 0.13 5.27 3.03 0 0 0 

Primesep B2 0 0.1 0 0.22 0.22 0.04 0.04 0.73 0.02 0.02 0.11 

Obelisc R 0.09 0.48 0.48 2.15 2.69 0.78 2.73 10.11 0.06 0.14 0.26 

Obelisc N 0.23 0.59 0.48 2.75 1.61 1.15 1.15 0.66 0.15 0.22 0.22 

Chiralpak QN-AX 0.15 0.15 0.15 0.29 0.29 0.32 n.d. 3.52 0.1 0.24 0.44 

Luna NH2 1.21 3.8 3.8 11.99 19.18 3.1 28.74 24.9 0.31 0.67 3.19 

BioBasic AX 0.35 0.84 0.75 2.18 3.42 0.89 n.d. 10.88 0.08 0.18 0.18 

Synergi Fusion-RP 0 0.04 0 0.16 0.04 0 0 0.44 0 0 0 

TSKGel Amide-80 1.27 3.12 3.45 10.2 12.8 4.77 20.7 5.49 0.4 0.76 1.16 

PolysulfoethylA 0.77 2.08 3.14 15.02 16.69 3.1 n.d. 2.73 0.2 0.45 0.51 

ZIC-HILIC 0.89 2.09 3.24 9.54 12.63 2.2 35.13 4.89 0.28 0.63 0.63 

Nucleodur HILIC 0.91 1.64 2.08 5.05 6.53 1.78 6.26 1.78 0.36 0.67 0.67 

Chromolith Performance Si 0.29 0.76 0.61 2.26 2.04 0.65 1.41 1.85 0.19 0.19 0.19 

PC-HILIC 1 2.29 1.66 4.7 5.21 2.66 6.65 2.05 0.6 1.03 1.03 

Kromasil 0.58 1.70 0.89 3.00 3.65 0.34 0.09 5.23 0.43 0.79 0.87 

Vinyl-Kromasil 0.09 0.42 0.09 0.42 0.55 0.27 n.d. 1.28 0.25 0.30 0.30 

PMPMS 0.02 0.17 0.02 0.17 0.17 0.11 0.11 0.47 0.21 0.21 0.21 

oxidized PMPMS 0.19 0.46 0.24 0.76 0.91 0.58 n.d. 0.73 0.13 0.25 0.33 
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Table S5: Retention factors obtained by the isocratic analysis of hydrophobic alkylbenzenes (butylbenzene (BuB) 
and pentylbenzene (PeB)) and acidic compounds (diethylthiophosphate (DETP) and BocProPhe) on several 
columns under RP conditions. 

Column BuB PeB DETP BocProPhe 

Brush-RP/WAX (AQ360) 11.8 18.36 25.71 45.91 

Thiolated silica 5.02 6.33 0 0 

Acclaim Mixed Mode WAX-1 5.52 8.47 14.45 34.75 

Uptisphere 5 MM3 27.73 48.89 0.19 0.28 

Primesep B2 9.97 15.59 1.97 5.36 

Obelisc R 6.22 9.47 3.59 10.97 

Obelisc N 1 1.35 4 3.64 

Chiralpak QN-AX 4.11 5.76 5.76 7.69 

Luna NH2 0 0 4.39 1.76 

BioBasic AX 0 0 1.05 0.53 

Synergi Fusion-RP 24.17 43.28 0 0.06 

TSKGel Amide-80 0 0 0 0 

PolysulfoethylA 0 0 0 0 

ZIC-HILIC 0 0 0.14 0 

Nucleodur HILIC 0 0 0 0 

Chromolith Performance Si 0 0 0 0 

PC-HILIC 0 0 0.12 0.22 

Kromasil 0.00 0.00 0.00 0.00 

Vinyl-Kromasil 3.37 4.40 0.00 0.16 

PMPMS 3.20 4.33 0.00 0.16 

oxidized PMPMS 23.16 37.03 0.00 0.26 

 

 

4.1.7.5.7. Statistical Results of the PCA 

Table S6: Sum of squared residuals and predicted sum of squared errors of the principal component analysis using 
the investigated columns as objects and the calculated retention factors (Tab. S2, S4 and S5) as factors. 

PC R2 Cumulative R2 Q2 Cumulative Q2 

1 0.549 0.549 0.453 0.453 

2 0.255 0.803 0.35 0.644 
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4.1.7.6. Characterization of Anion Exchange Retention in a pH 

and Counterion Dependent Manner as well as Effect 

of Acidic Co-Ligands  

The anion exchange capability of the new mixed-mode phases can be readily characterized 

by the stoichiometric displacement model [1-3]. This simple retention model assumes a direct 

proportional dependency of the logarithm of retention factors of charged compounds k and the 

logarithm of the concentration of counter ions C for a common ion-exchange process (Eq. 1).  

log 𝑘 = log 𝐾𝑍 − 𝑍 ∙ log[𝐶]      (1) 

wherein Z is the slope and shows direct proportionality to the ratio of effective charge numbers 

of solute (zeff,S) and counter-ion (zeff,C). The intercept 𝐾𝑧, is a system specific constant, which is 

related to the equilibrium constant K (in L/mol). The dependency can be described as follows. 

𝐾𝑧 =
𝐾∙𝑆∙(𝑞𝑥)𝑍

𝑉0
             (2) 

whereby, S represents the surface area (in m2/g stationary phase), qx the number of ion 

exchange sites (available for adsorption) (in mol/m2) and V0 the volume of the mobile phase 

within the column (in L). 

It can be seen that this simple linear model sufficiently well describes the effect of counterion 

concentration on retention factors and documents that for both Poly-RP/WAX and Poly-

RP/WAX/SCX anion-exchange dominates the retention of N-Ac-Phe and N-Ac-Trp (Fig. S5). 

The highest actual anion-exchange capacity was observed at pH 5 which corroborates the 

results of -potential determinations that showed a global maximum at this pH for both of the 

mixed-mode phases as well, and at which the acidic analytes are largely ionized. 

 

It is striking that the trend lines of Poly-RP/WAX/SCX show a significant offset in retention 

compared to Poly-RP/WAX, just like the -potential in Fig. 3. It means that Poly-RP/WAX/SCX 

shows significantly less retention for acidic solutes due to a lower positive net surface charge 

or due to an intramolecular counterion effect of the attached SCX moieties (which can be 

regarded as immobilized counterions). In view of this, the surface charge term qx in Eq. 2 

should be rewritten as Eq 3. 

𝑞𝑥 = ∑ 𝑧𝑖 ∙ 𝑐𝑠,𝑖
𝑛
𝑖  (3) 

Wherein zi and cs,i are the effective charge numbers and the concentrations of the distinct 

charged groups (here tertiary ammonium and SCX), respectively. Thus, it follows that 

𝐾𝑧 =
𝐾∙𝑆∙(∑ 𝑧𝑖 ∙𝑐𝑠,𝑖

𝑛
𝑖 )𝑍

𝑉0
=

𝐾∙𝑆∙(𝑧𝑊𝐴𝑋∙𝑐𝑊𝐴𝑋 +𝑧𝑆𝐶𝑋∙𝑐𝑆𝐶𝑋 )𝑍

𝑉0
 (4) 
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Since, zWAX and zSCX have opposite charge signs, a lower positive net charge is obtained with 

Poly-RP/WAX/SCX as compared to Poly-RP/WAX. This formalism can also be expressed in 

terms of surface anchored counterion effect by eq. 5. 

log 𝑘 = log 𝐾𝑍 − 𝑍 ∙ log[𝐶]𝑚 − 𝑋 ∙ log[𝐶]𝑠  (5) 

In this equation subscript m and s stand for counterions in the mobile (acetate) and stationary 

phase (SCX), respectively. This formalism clearly explains the shift to lower retention factors 

on the Poly-RP/WAX/SCX phase in comparison to Poly-RP/WAX. 

 

 

Fig. S5: Characterization of the anion exchange capacity of the Poly-RP/WAX and of the Poly-RP/WAX/SCX 
stationary phases in dependence of the pH using the stoichiometric displacement model. Analytes, N-
acetylphenylalanine (AcPhe) and N-acetyltryptophan (AcTrp). 
Experimental conditions: mobile phase: ACN/H2O (80:20, v/v/), 10, 20 and 50 mM or 30, 40 and 50 mM acid (pH 
3.5: formic acid, pH 5 and 7: acetic acid), pH 3.5, 5 or 7 adjusted with ammonia. Flow rate,1.0 mL/min; injection 
volume, 10 µL; column temperature, 25 °C; AcPhe: 258 nm, AcTrp: 280 nm; sample concentration, 1 mg/mL; void 
volume marker, acetone. 
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4.1.7.7. Application of the New Stationary Phases 

4.1.7.7.8. Analysis of Synthetic Oligonucleotides by UHPLC-UV 

Experimental 

The mobile phases for the separation of the oligonucleotide mixture were a mixture of ACN 

and water (20:80, v/v). The ortho-phosphoric acid concentration in the mobile phases was 50 

mM (A) and 100 mM (B) in the case of the polymer coated stationary phases and 100 mM (A) 

and 200 mM (B) in the case of the brush type stationary phase. The pH of the mobile phase A 

was adjusted to pH 7 with triethylamine (TEA) and mobile phase B to pH 8 in the final mixture. 

The investigated gradient started at 50 % mobile phase B and rised in 25 minutes to 100% B 

which was maintained for 27 minutes. In 2 minutes the amount of B was reduced to the initial 

percentage of 50 % B and was reequilibrated for 8 minutes. 

The oligonucleotide test mixture had a concentration of 8.0 µM (each oligo). The injection 

volume was 10 µL, the flow rate was 1.0 mL/min. The column temperature was 40 °C and the 

detection wavelength was 254 nm. 

 

Results 

Table S7: Chromatographic data of the separation of synthetic oligo nucleotides with minor sequence differences, 
chromatographic conditions as described in Fig. 7 

  Retention time [min] Peak width [min] Resolution 

  IIIa Ia IIa IIIa Ia IIa RIII,I RI,II 

Brush-RP/WAX 28.53 31.00 34.3 0.43 0.51 0.63 3.11 3.43 

Poly-RP/WAX 28.08 30.17 33.76 0.51 0.60 0.82 2.22 3.01 

Poly-PR/WAX/SCX 13.94 15.33 16.55 0.50 0.51 0.53 1.63 1.38 

a - Oligonucleotide sequence can be found in Fig. 7      
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4.1.7.7.9. Analysis of Phosphorylated Carbohydrates by LC-CAD 

Experimental 

The mobile phases of the isocratic experiments were a mixture of ACN/water (70:30, v/v) 

containing 0.1 % (v/v) TFA. The mobile phase A of the gradient elution of DHAP and GAP was 

an aqueous solution containing 0.1 % TFA, whereas the mobile phase B contained 0.1 % TFA 

in ACN. The gradient started at 80% of mobile phase B and decreased in 20 minutes to 20 % 

B. After 5 minutes holding 20 % B the amount of B returned to the starting conditions in 2 

minutes followed by a reequilibration time of 5 min.  

All samples were dissolved in water at a concentration of 0.05 mg/mL. The injection volume 

was 10 µL and the flow rate 1.0 mL/min. The column was thermostated at 25 °C. Analyte 

detection was performed with a charged aerosol detector. 

 

Results and discussion 

 

Fig S6: Separation of phosphorylated carbohydrates utilizing the Poly-RP/WAX and Poly-RP/WAX/SCX stationary 
phases. Separation of a) isomer GAP and DHAP, and b) of five phosphorylated C5/C6 carbohydrates. a) Mobile 
phase: A: 0.1 % TFA in H2O, B: 0.1 % TFA in ACN; gradient: 20 min 80 to 20 % B, hold 20 % B for 5 min, 
reequilibration 80 % B for 5 min; b) Mobile phase: 0.1 % TFA in ACN/water (70/30, v/v). Abbreviations: GAP, 
glyceraldehyde-3-phosphate; DHAP, dihydroxyacetone phosphate; GlcN6P, glucosamine-6-phosphate; Rib5P, 
ribose-5-phosphate; F6P, fructose-6-phosphate; Gal1P, galactose-1-phoshpate; G1P, glucose-1-phosphate. For 
further details about conditions see experimental part above. 
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The separation of isomers of phosphorylated carbohydrates is a challenging yet highly relevant 

task in metabolomics [4]. A large number of constitutional isomers and diastereomers exist in 

this class of compounds which are difficult or impossible to distinguish by mass spectrometry. 

For example, special attention has to be paid in metabolic profiling studies to the isomeric 

structures of the glycolysis pathway such as the constitutional isomers DHAP and GAP, which 

are interconverted by the triose phosphate isomerase [4]. Both of the polymer-bonded 

RP/WAX phases of this study showed remarkable capability to chromatographically resolve 

these very hydrophilic isomeric compounds with a HILIC gradient under acidic conditions 

(0.1% TFA in mobile phase) (Fig. S6 a)). The resolution was 4.7 on the Poly-RP/WAX phase. 

In general, the Poly-RP/WAX stationary phase showed enhanced retention properties 

compared to the Poly-RP/WAX/SCX stationary phase. In spite of significantly reduced 

retention due to repulsive electrostatic interactions of SCX moieties on the Poly-RP/WAX/SCX, 

this MMC stationary phase still exhibited satisfactory isomer selectivity for the polar triose 

phosphates. 

Additionally, a more complex mixture of phosphorylated C5/C6 carbohydrates was analyzed 

on the Poly-RP/WAX as well as on the Poly-RP/WAX/SCX stationary phase under similar but 

isocratic HILIC conditions (Fig. S6 b)). The epimers Gal1P and G1P were fully baseline 

separated on the Poly-RP/WAX column and the other phosphorylated sugar phosphates could 

be resolved as well. The additional repulsive electrostatic interactions caused by the SCX sites 

on the oxidized stationary phase had led to a decrease in retention, but only a small loss of 

selectivity. The faster elution on the Poly-RP/WAX/SCX is certainly of advantage as resolution 

is essentially maintained. 
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4.2.1. Abstract 

Herein, we present a novel silica-based stationary phase modified with N-propyl-N’-2-

pyridylurea selector. Due to the weakly basic properties of the pyridine selector and the 

presence of residual silanols after selector immobilization, a zwitterionic surface with a pI 

observed at approximately pH 5.5 was measured by electrophoretic light scattering in pH-

dependent -potential determinations. The capability of the new N-propyl-N’-2-pyridylurea-

modified silica to serve as mixed-mode stationary phase was investigated. For this purpose, it 

was characterized under RP and HILIC conditions using test mixtures. Subsequent 

classification of this stationary phase in comparison to in-house and commercial benchmarks 

was carried by principal component analysis of resultant retention factors from 

chromatographic tests. The results show a relatively unique mixed-mode character amongst 

the tested stationary phases. The chromatographic retention characteristics of acidic 

compounds matched well the -potential determinations. The application of anion-exchange at 

low pH values (e.g. pH 5) and ion exclusion chromatography at pH 7 for the separation of 

uridine 5’-mono-, di- and triphosphate demonstrated a pH-dependent umpolung of the 

stationary phase surface. The combination of these separation principles in a pH gradient from 

5 to 7 gave rise to weak anion-exchange selectivity with a charge-inducted elution due to 

repulsive interactions at higher pH and resulted in a significant faster separation with improved 

peak shape under mild elution conditions. 

 

4.2.2. Introduction 

Mixed-mode chromatography (MMC) offers the possibility to exploit two or more kinds of 

interactions in one chromatographic column in order to separate complex analyte mixtures or 

develop unique selectivity profiles [1-3]. The advantage of this chromatographic mode is the 

application of different elution conditions when using the same stationary phase with 

complementary selectivity. Great flexibility in method development results from this multimodal 

applicability. Due to the combination of a weak anion exchanger and a hydrophobic side chain 

connected by polar embedded groups [4], it was possible to successfully use this RP/WAX 

silica gel for the separation of complex analyte mixtures such as peptides [5-7], metabolites 

[8-10] and oligonucleotides [11] in different chromatographic modes. A disadvantage of this 

adsorbent was that relatively high buffer concentrations were necessary to elute charged 

analytes, in particular multiply charged ones such as oligonucleotides [11], so that detection 

and identification by mass spectrometry was not possible. However, silica-based anion-

exchange materials may change their electrostatic surface potential from positive at low pH to 

negative at high pH due to residual silanols which may allow efficient elution of acidic analytes 



 

87 
 

at pH of the mobile phase above the pI of the stationary phase. Unfortunately, on conventional 

silica-based anion-exchangers this pI is typically observed at high pH at which silica-based 

materials may be hydrolytically instable. The aim was therefore to tailor the surface in such a 

way that the pI of the silica-based mixed-mode phase can be observed at around neutral pH. 

Efficient retention of acidic analytes below the pI and efficient elution above the pI of the 

stationary phase could be easily adjusted by a pH switch. For this reason, N-propyl-N’-2-

pyridylurea was chosen as the anion exchanger site in this study. 

Pyridine based stationary phases are well known for their good suitability and alternative 

selectivities to diol-, cyanopropyl modified and bare silica in supercritical fluid chromatography 

(SFC) [12]. 2-Ethylpyridine and vinylpyridine modified stationary phases are very popular 

commercially available columns from several manufacturers and various applications [13-18]. 

Additional polar embedded groups (amide, urea) in the linker of the pyridine selector molecule 

brought about complementary selectivities [19-21]. Pyridine functionalities have been also part 

of so called ionic liquid based stationary phases with linkage via pyridine nitrogen yielding a 

quaternary pyridinium ion [22-25]. 

Pyridine phases are also used for biopharmaceuticals chromatography, on the one hand for 

plasmid DNA separations [26-28], on the other hand for purification of monoclonal antibodies. 

The latter type of chromatography was termed as hydrophobic charge induction 

chromatography based on 4-mercaptoethylpyridine (MEP) modified stationary phases on 

which proteins are eluted by a pH shift to acidic conditions after their adsorption under neutral 

conditions by hydrophobic interactions [29-32]. 

In this study, a novel pyridine-based stationary phase (Fig. 1a) was synthesized and 

characterized in comparison to a recently proposed reversed-phase/weak anion-exchange 

(RP/WAX) type mixed-mode phase (Fig. 1b). This stationary phase shows as a new structural 

feature a urea group adjacent to the pyridyl residue yielding a specific alignment of directed H-

donor/acceptor systems. Carboxylic acids (and possibly other acids as well) can interact at the 

pyridine by simultaneous hydrogen bonding superimposed upon ionic interactions (Fig. 1c) 

which combined with hydrophobic interactions at the aromatic ring gives rise to mixed-mode 

separations. The stationary phase was characterized by elemental analysis, solid state 13C 

and 29Si cross-polarization/magic angle spinning (CP/MAS) NMR spectroscopy, 

electrophoretic light scattering measurements for pH-dependent -potential determinations 

and various chromatographic tests to illustrate the peculiarities of this material. 
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Fig. 1: Surface structure of the N-propyl-N’-2-pyridylurea (a) and N- (10-undecenoyl)-3--aminotropane (b) modified 
silica and the tentative molecular recognition mechanism for carboxylic and phosphonic (phosphoric) acids (c). 

  

a) 

c) 

b) 
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4.2.3. Materials and methods  

4.2.3.1. Materials  

3-Isocyanatopropyltriethoxysilane, dibutyl tin dilaurate, and 4-dimethylaminopyridine (DMAP) 

were supplied by ABCR (Karlsruhe, Germany). 2-Aminopyridine was purchased from Sigma 

Aldrich (Munich, Germany). Solvents for synthesis (toluene, methanol) were analytical grade 

and obtained from Sigma Aldrich. Kromasil 100 Å, 5 µm (Eka Chemicals, Bohus, Sweden) with 

a specific surface area of 320 m2/g was used as supporting particles for the synthesis of the 

N-propyl-N’-2-pyridylurea -modified silica gel. 

The compounds for characterization and classification of the synthesized stationary phase 

(butylbenzene (BuB), O,O-diethylchlorothiophosphate (DECTP), pentylbenzene (PeB), 

adenosine, guanosine, cytidine, thymidine, uridine, ascorbic acid, nicotinic acid, pyridoxine 

hydrochloride, riboflavin, thiamine hydrochloride, caffeine, theobromine, theophylline, L-

phenylalanine (Phe), N-acetyl-L-phenylalanine (AcPhe), L-phenylalanine methyl ester 

(PheOMe), L-tryptophan (Trp), N-acetyl-L-tryptophan (AcTrp) and L-tryptophan-amide 

hydrochloride (Trp-amide) were supplied by Sigma Aldrich. N-tert-butoxycarbonyl-prolyl-

phenylalanine (BocProPhe) and N-acetyl phenylalanine ethyl ester (AcPheOEt) were 

purchased from Bachem (Buchs, Switzerland). DETCP was hydrolysed to O,O-diethyl-

thiophosphate (DETP) in the presence of an equimolar amount of triethylamine dissolved in 

acetonitrile/water (3:1; v/v). Uridine 5′-triphosphate trisodium salt hydrate (from yeast, type III, 

≥96%) (UTP), Uridine 5′-(trihydrogen diphosphate) sodium salt (from Saccharomyces 

cerevisiae; 95-100%) (UDP) and Uridine 5′-monophosphate disodium salt (≥99%) (UMP) were 

supplied by Sigma Aldrich. 

HPLC grade acetonitrile was from J.T. Baker (Netherlands). MilliQ water was prepared by 

purification of deionized water using Elga PurLab Ultra Purification system (Celle, Germany). 

The additives ammonium acetate, formic acid, acetic acid, phosphoric acid and ammonia were 

purchased from Sigma Aldrich in HPLC grade quality. 

 

4.2.3.2. Synthesis of N-Propyl-N’-2-Pyridylurea -Bonded 

Stationary Phase  

4.2.3.2.1. Synthesis of the Chromatographic Ligand  

2.49 g (27.75 mmol) 2-aminopyridine was suspended in 80 mL of toluene and then dissolved 

under heat treatment. The remaining water in the mixture was removed by heating for 60 min 

to the boiling point under reflux followed by distillation of 30 mL toluene using a Liebig 

condenser and a measuring cylinder. The following steps were carried out under inert gas 

atmosphere (nitrogen). After cooling the solution, 3-isocyanatopropyltriethoxysilane (6.4 mL, 
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26.43 mmol) and the catalyst dibutyl tin dilaurate (15 µL) were added. After additional four 

hours of heating up to the boiling point, the solution was cooled down and the reaction product 

was characterized by FT-IR (ATR-technique) and NMR (see Suppl. material). 

FT-IR (cm-1): 3218, 2980, 2926, 2889, 1665, 1586, 1557, 1478, 1415, 1299, 1062, 954, 

766, 687.  

1H-NMR (CDCl3, 200MHz): δ in ppm, δ 9.38 (s, 1H), 8.15 (d, 1H), 7.75-7.48 (m, 2H), 6.92-

6.80 (m, 2H), 3.94-3.72 (m, 9H), 3.48-3.30 (m, 2H), 1.86-1.60 (m, 2H), 1.16 (t, 9H), 0.81-

0.53 (m, 2H).  

13C-NMR (CDCl3, 200MHz): δ in ppm, δ 156.3, 153.5, 145.8, 138.4, 116.6, 112.1, 58.5, 42.5, 

23.9, 18.3, 7.8. 

4.2.3.2.2. Immobilization of the Chromatographic Ligand on Silica Gel 

A suspension of 7.565 g silica gel (Kromasil 100 Å, 5 µm) and 80 mL toluene was heated for 

60 min under reflux and then 40 mL of toluene were distilled off to remove water. Subsequently, 

40 mL of the selector solution described in Chapter 4.2.3.2.1 as well as DMAP (0.05 mmol / g 

silica) were added and heated overnight under reflux and rinsing with nitrogen. The modified 

silica gel was washed 5 times with hot toluene and methanol each and then dried overnight at 

60 °C in a vacuum drying oven. Afterwards, a sample was analyzed by elemental analysis 

(6.79% C, 1.18% H and 1.91% N), and solid-state 13C and 29Si cross-polarization magic angle 

spinning (CP/MAS) NMR (Fig. 2). 

 

4.2.3.3. Column Packing  

The N-propyl-N’-2-pyridylurea -modified silica was slurry packed into a stainless-steel column 

(150x4.6 mm ID) utilizing 800 bar and methanol as delivery solvent.  

 

4.2.3.4. Structure Elucidation by Solid State 13C and 29Si 

Cross-Polarization Magic Angle Spinning NMR  

Bruker ASX 300 spectrometer (Bruker, Rheinstetten, Germany) was used for the acquisition 

of 13C and 29Si CP/MAS NMR spectra. The modified silica (about 250 mg) was filled into a 7 

mm double bearing ZrO2 rotor and measured using a spinning rate of 10 kHz. For the 29Si 

spectra the 90° proton pulse length was 3.2 µs, the contact time was 5 ms and the relaxation 

delay time was 2 s. Trimethylsilyl ester of octameric silica (Q8M8) was used for external 

reference of all chemical shifts. In order to acquire the 13C NMR, the 90° puls length was 3.8 µs, 

the contact time 2 ms and the relaxation delay time was 4 s.  
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4.2.3.5. Electrophoretic Light Scattering Measurements and 

–Potential Determinations  

A Zetasizer NanoZS (Malvern Instruments, Herrenberg, Germany) particle analyzer with a 

Universal Dip Cell was used for measurement of the electrophoretic mobilities of the modified 

silica particles. For the calculation of the -potentials, the Smoluchowski approximation was 

used. 0.2 mg/mL modified silica were suspended in 1 mM buffers. For evaluation of the pH 

dependency of the -potentials in the pH range from 3.5 to 9.5 the following buffers were used: 

formic acid/Na-formate, acetic acid/Na-acetate, histidine, tris/tris-HCl, boric acid/Na-borate 

[33]. The ionic strength was fixed to 10 mM KCl. After sonification the suspension was 

measured three times at 25 ± 0.1°C for calculation of average values. Each measurement was 

the mean of 10 sub-runs. 

 

4.2.3.6. Liquid Chromatographic Experiments 

4.2.3.6.1. Instrumentation and Utilized Software 

The measurements were carried out on an Agilent 1100 series LC system from Agilent 

Technologies (Waldbronn, Germany) equipped with a degasser, quaternary pump, 

autosampler, thermostated column compartment and diode array detector. Unless otherwise 

stated, the sample concentration was 1 mg/mL in mobile phase, the injection volume was 

10 µL, the column temperature 25°C and the detection wavelength 220 nm. The pKa values 

were calculated using MarvinSketch (ChemAxon). Principal component analysis was done 

with the statistic software JMP13.0.0 (SAS Institute). 

4.2.3.6.2. Stationary Phase Characterization under RP Conditions 

The evaluation of the chromatographic performance in RP mode was carried out using a 

mixture of ACN and water (40:60, v/v) as mobile phase. The total concentration of acetic acid 

was 50 mM. The pH was adjusted to 6 with ammonia. The linear velocity was adjusted to 

1.7 mm/s. The void volume marker was uracil. 

4.2.3.6.3. Stationary Phase Characterization under HILIC Conditions 

The mobile phase for HILIC test conditions consisted of ACN and water mixtures. The mixing 

ratio was 95:5 (v/v) for the xanthines and 90:10 (v/v) for the vitamins and nucleosides. Both 

mobile phases contained 5 mM ammonia acetate and showed an unadjusted apparent pH of 

8. The flow rate was calculated to the corresponding linear velocity of 1.7 mm/s. The void 

volume was determined by toluene. 
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4.2.3.6.4. Study of Anion Exchange Retention Mechanism in Dependence on 

pH 

The mobile phases were a mixture of ACN/water (80:20, v/v) containing 10, 20 and 50 mM of 

the corresponding acid (formic acid: pH 3.5; acetic acid: pH 5 and 7), respectively. The pH was 

adjusted with ammonia. The flow rate was 1.0 mL/min. The detection of the phenylalanine 

derivatives was carried out at 258 nm and tryptophan derivatives at 280 nm. The void volume 

marker was uracil. 

4.2.3.6.5. Separation of Nucleotides 

The mobile phases for the isocratic experiments were a mixture of acetonitrile and water (1:4, 

v/v). The total ion strength was 1.25, 2.5 and 5 mM phosphoric acid and the pH was adjusted 

to 5 and 7, respectively, with ammonia. The following flow rates were investigated: 1.0 mL/min 

(isocratic and gradient experiments), 0.5 mL/min and 0.2 mL/min (isocratic experiments). The 

detection wavelength was 254 nm. The sample was a mixture of uridine mono-, di- and 

triphosphate (0.1 mg/mL) dissolved in mobile phase. The injection volume was 2 µL. The 

investigated gradient profiles are specified in the figure captions. 
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4.2.4. Results and Discussion  

4.2.4.1. Synthesis of Mixed Mode Ligand and Immobilization 

on Silica Gel 

The new mixed mode ligand was synthesized by reaction of 2-aminopyridine with the 

bifunctional linker 3-isocyanatopropyltriethoxysilane, which allowed the attachment to silica by 

a silanization reaction, in a stoichiometric ratio of 1:1 under water exclusion. In spite of the 

reactive trialkoxysilane group the synthesis product was sufficiently stable to allow its 

characterization by ATR-FT-IR spectroscopy, 1H and 13C NMR spectroscopy (Suppl. Material). 

Compared to the IR spectrum of the educt 2-aminopyridine, the IR spectrum of the product did 

not show an amine band at 3438 cm-1. However, additional bands appeared at a wavenumber 

of 1665 cm-1 as well as in the range of 2980-2880 cm-1. The former can be assigned to the 

urea group and the latter to the ethoxy functionalities and the propyl group of the linker. Also 

the chemical shifts of the 1H and 13C NMR indicated a successful synthesis of the ligand.  

This pyridine derivative was immobilized on silica (100 Å, 5 µm) by a silanization reaction. In 

order to confirm the surface structure shown in Fig. 1a) solid state cross-polarization/magic 

angle spinning (ss CP/MAS) 13C and 29Si NMR spectra were measured (Fig. 2). The signals of 

the aliphatic carbon atoms stemming from the propyl-linker and remaining silyl ethoxy group 

can be found in the most shielded region of the 13C NMR spectrum (0-60 ppm) (Fig. 2a). The 

aromatic carbon atoms and the carbonyl carbon of the urea are significantly shifted downfield 

(100−170 ppm). Since all expected 13C signals could be observed, it was concluded that the 

immobilization reaction was successful. 

 

Fig. 2: Elucidation of the surface structure of the N-propyl-N’-2-pyridylurea silica gel by a) solid-state 13C CP/MAS 
NMR, and b) solid state 29Si CP/MAS NMR. 
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Siloxane bondings are generally sensitive to hydrolysis and are therefore of crucial importance 

when considering the lifetime of a stationary phase. The stability increases with the number of 

bonds per ligand (mono-, di- or trifunctional linkage). To investigate the siloxane bonding 

chemistry, a ss 29Si CP/MAS NMR spectrum was acquired, which provides valuable 

information regarding the linkage type [24, 34−38]. In Fig. 2b) there are two groups of signals. 

The signals marked with Q are silicon atoms, which have only covalent bonds with oxygen 

atoms and are therefore located in the more unshielded chemical shift regions. In this case, 

the signals are related to siloxane groups (Q4: -111 ppm) and free silanol groups (Q3: -101 

ppm). It becomes evident that there is a significant portion of free silanols which may have 

implications for the chromatographic behavior of the stationary phase (vide infra). The second 

signal set in the more shielded region provides information about the selector linkage chemistry 

which is of special interest from the chromatographic point of view (i.e. stability of the linkage; 

vide supra). Monofunctional siloxane bonds (T1: -48 ppm), which are most sensitive to 

hydrolysis, are hardly present in the NMR spectrum. Based on the relative signal intensities of 

the di- (T2: -58 ppm) and trifunctional (T3: -64 ppm) siloxane bonds, it can be concluded that 

the majority of the ligands are bound by a difunctional siloxane bond and a smaller number by 

a trifunctional siloxane bond, which both give the surface bonding a higher stability and 

longevity [39].  

Direct information on the surface concentration of the chromatographic ligand cannot be 

derived from these spectra. However, this information can be readily obtained from elemental 

analysis (6.79% C, 1.18% H and 1.91% N). Based on the nitrogen content, a ligand coverage 

of 455 µmol/g (which corresponds to about 1.4 µmol/m2) was calculated. Since the silanol 

group surface coverage of unmodified silica is known to be 8.0±1.0 µmol/m2 [39], the 

investigated conditions led to a reaction with about 35% of the available silanol groups under 

the assumption of an average bifunctional linkage of the ligand to the silica surface. The 

remaining free silanol groups can be calculated to be around 5.2 µmol/m2. 

 

4.2.4.2. Surface Charge Characterization  

A key factor in ion exchange and mixed-mode chromatography is the surface charge of the 

resultant chromatographic particles. This valuable information about the charge state of the 

stationary phase can be readily obtained by determining ζ-potentials in a pH-dependent 

manner [4, 33, 40]. If charged particles are in a buffer solution, an electrical double layer is 

formed on the surface, the dimension of which depends on the effective charge of the particles. 

When an electric field is applied, the particles begin to migrate in the field according to their 

net charge which can be characterized by the -potential. The -potential is defined as the 

potential of the shear distance from the surface and can be calculated from mobilities 
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measured by ELS using the Smoluchowski equation. The variation of the pH value of the 

mobile phase is a valuable tool in chromatography for tuning the charge state of the surface of 

the stationary phase as well as controlling the ionization of the analytes. For this reason, the 

-potentials determined over the chromatographically useful pH range offers valuable 

information for the decision of the best suitable pH value for a given separation. Thus, the 

measurements were carried out covering a pH range from 3.5 to 9.5 with a constant ionic 

strength of 10 mM KCl. The results are depicted in Fig. 3. 

 

Fig. 3:  Surface charge of the N-propyl-N’-2-pyridylurea modified silica illustrated by the determination of the -
potentials in dependency of the pH value. 

At lower pH values (3.5 − 6) the -potentials of the N-propyl-N’-2-pyridylurea modified silica 

showed positive sign in spite of an excess of residual silanols (5.2 µmol/m2) over 

chromatographic ligand moieties (1.4 µmol/m2) (Fig. 3, green curve). It indicates that the 

dissociation of the immobilized selector (pKa = 3.88 as calculated by Marvin Sketch) dominated 

the surface charge. Further increase of the pH value of the suspension caused a decrease and 

then loss of the surface charge. At pH values above 6.5 it finally resulted in an umpolung i.e. 

negative surface charge. This phenomenon can be explained by the increasing dissociation of 

residual silanol groups (pKa = 4 − 6) on the surface of the modified silica. The isoelectric point 

(pI) of the surface was observed at pH 6.5. The further negative values were mainly contributed 

by the dissociated silanol groups which was already observed with other chromatographic 

ligands [4, 33, 40]. 

For comparison Fig. 3 (blue curve) shows also the corresponding -potentials of a previously 

described 3-aminotropane-based RP/WAX stationary phase [4] (for structure see Fig. 1b). It 

can be seen that the -potentials of the pyridine-modified stationary phase are set off by around 

20 mV as compared to the RP/WAX phase although showing a slightly higher selector 

coverage (RP/WAX: 0.38 mmol/g [4], N-propyl-N’-2-pyridylurea: 0.46 mmol/g). It can be 
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explained by the pKa values of the two ligands: The calculated pKa of the new N-propyl-N’-2-

pyridylurea ligand is 3.88 while it is 10.45 for the mixed-mode ligand of the RP/WAX particles. 

It is evident that only a fraction of the immobilized pyridine ligands is protonated in the pH 

range between 3.5 and 5.5 explaining the much lower positive surface charge of the N-propyl-

N’-2-pyridylurea -modified silica compared to the RP/WAX particles in this pH range. This 

offers the possibility to use milder elution conditions what the counterion concentration in the 

mobile phase is concerned. Furthermore, the pI of the pyridine-modified particles (pI ~ 6.5) is 

significantly shifted as compared to the RP/WAX particles which showed a positive surface 

charge over almost the entire measured pH range (pI ~ 9.5). This shift of the pI to lower pH 

value of around 6.5 should enable mild elution of strongly retained multiply negatively charged 

analytes by simple pH-gradient elution, e.g. from pH 5 - 7. Good recovery of multiply negatively 

charged species, e.g. oligonucleotides, can be expected due to a repulsive charge-inducted 

elution. 

 

4.2.4.3. Chromatographic Characterization under RP and 

HILIC Conditions and Stationary Phase Classification 

by PCA 

The new stationary phase offers multiple interaction possibilities. For example, under aqueous 

mobile phase conditions hydrophobic interactions with the propyl residue and the aromatic ring 

are possible. The urea group offers the possibility of interaction with electron donors and 

electron acceptors. The aromatic system of the pyridine ring is capable for - interactions and 

by protonation of the nitrogen an anion exchange site is present. This large variety of functional 

groups leads to a flexibility of the usable chromatographic modes. In order to evaluate the 

suitability of the new stationary phase under RP conditions, a simple test set was utilized 

composed of two lipophilic alkylbenzene derivatives which differ in a methylene unit (BuB and 

PeB thus probing for methylene selectivity of the phase) as well as two acids (DETP and 

BocProPhe) which differ in their acidity and lipophilic properties. The properties of the 

stationary phases and of the analytes, and the chromatographic data are summarized in 

Table 1 (The chromatogram is shown in Supplementary Fig. S5 a)). 
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Table 1: Comparison of the properties of the new N-propyl-N’-2-pyridylurea modified stationary phase and the well established RP/WAX stationary phase, the properties of the test 
compounds and comparison of the retention factors and selectivities of hydrophobic and acidic compounds under RP conditions  

  % Na 
Ligand- coverage 

[mmol/g] b 
pKa c 

RP Test 

Log P (pH 6)    Log D (pH 6)    retention factor k   selectivity  

BuB PeB   DETP BocProPhe   BuB PeB DETP BocProPhe   -CH2- DETP/BocProPhe 

Pyridylpropyl-urea 1.9 0.46 3.88 
4.27 4.8 

 

-2.8 -0.6 

 0.95 1.12 0.19 0.56  1.18 3.11 

RP/WAX  1.3d 0.38 10.5     4.1 5.69 14.41 27.72   1.39 d 1.92 d 

a determined by elemental analysis.      
b Calculation based on the nitrogen content determined by elemental analysis. 

c pKa of the selector, calculated with Marvin Sketch. 
   

d adopted from [4].        
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Compared to the already characterized RP/WAX phase [4], the new N-propyl-N’-2-pyridylurea 

stationary phase showed a significantly weaker retention of the analytes, both for the neutral 

lipophilic as well as acidic compounds (see retention factors in Table 1). Due to the lower 

carbon content (6.8% for the N-propyl-N’-2-pyridylurea phase vs 11.9% for the RP/WAX [4]) 

the significantly lower retention of the alkylbenzenes and the significantly lower methylene 

selectivity (separation factor for the two alkylbenzenes of 1.18 vs 1.39 for the RP/WAX phase 

[4]) was not surprising. Since acetonitrile was used as an organic modifier, it can be assumed 

that - interactions did not occur. The lower retention of the acidic compounds was a result 

of the very weakly protonated pyridine nitrogen at the selected pH (pH 6.0) and even eluted 

before the alkylbenzenes (i.e. reversed elution order of acids and alkylbenzenes compared to 

RP/WAX). Yet, it is remarkable that the selectivity for the two acids was maintained on the new 

stationary phase which provided a selectivity of 3.11 for BocProPhe and DETP, while the 

RP/WAX stationary phase showed a selectivity of 1.92. Considering the increased polarity, the 

N-propyl-N’-2-pyridylurea phase was also evaluated under HILIC conditions using vitamins, 

nucleosides and xanthines as test mixtures. In general, the newly synthesized phase also 

showed relatively low retention in HILIC mode under given conditions, although there is a good 

selectivity for the tested analytes (for chromatograms see Supplementary Fig. S5b-5d). 

 

Fig. 4: Classification of the chromatographic properties of the N-propyl-N’-2-pyridylurea modified silica gel by 
principal component analysis. A detailed description of the columns included in the data set can be found in Ref. 

[4, 40−42] 
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In the past, we have already successfully used principal component analysis to classify new 

stationary phases [4, 40−42]. In this statistical procedure, the retention factors of different 

analytes as factors are used to mathematically show differences and similarities of the new 

and already characterized stationary phases [4, 40−42] as objects (for structures of stationary 

phases see Suppl. Fig. S6-7). The resulting score plot of the components PC1 and PC2 (Fig. 

4) thus shows stationary phases with similar retention characteristics in close proximity to each 

other. The more different the retention behavior, the greater is the distance. Overall, 

approximately 68% of the variance in retention factors can be explained by the first two 

components. Along the PC1 axis, lipophilic separation materials such as the classical RP-

phase Synergi Fusion RP are found at low values, while very hydrophilic (Luna NH2, TSK Gel 

Amide-80, Polysulfoethyl A) are found at high values. The PC2 axis represents a degree of 

surface charge of the stationary phase. In the negative range there are stationary phases the 

surface charge of which is net negative (e.g. Nucleodur HILIC, Chromolith Performance Si) 

under the given conditions and in the case of high values columns with net positive surface 

charge (e.g Acclaim Mixed Mode WAX-1). The already described -aminotropane-based 

RP/WAX phase [4, 42] is therefore found in the upper half of the PC2 axis. According to their 

lipophilicity, they are distributed in the midfield of PC1, whereas the HILIC phases are more 

likely to be found in higher PC2 values, depending on their suitability for polar analytes. The 

N-propyl-N’-2-pyridylurea phase is located near the silica gel column Chromolith Performance 

Si. Taking into account the pH values used (apparent pH for RP test 6 and approx. 8 for HILIC 

tests), this result is not surprising. The dissociation of the selector is low at these pH values. 

The polar embedded groups are available for additional hydrophilic interactions and the 

dissociation of the superficial silanol groups seem to be dominant. These chromatographic 

results and the stationary phase comparison give a useful indication of the characteristics and 

the multimodal applicability of the new N-propyl-N’-2-pyridylurea -modified stationary phase. 

 

4.2.4.4. Anion Exchange Mechanism in Dependence on pH 

For more detailed characterization of the effect of surface charge under chromatographic 

conditions, a series of test runs were carried out in which the pH value (pH 3.5, formic acid; 5 

and 7, acetic acid) and ionic strength (10, 20 and 50 mM acid adjusted with ammonia to the 

respective pH) of the mobile phase were varied. For example, phenylalanine and tryptophan 

derivatives were selected as analytes, which show acidic (AcPhe, pKa = 4.02; AcTrp, pKa = 

4.12), neutral (AcPheOEt), zwitterionic (Phe, pKa1 = 2.47 and pKa2 = 9.45; Trp, pKa1 = 2.54 and 

pKa2 = 9.40) and basic (PheOMe, pKa = 6.97; TrpAmide, pKa = 7.97) properties. Fig. 5a) depicts 

the chromatograms of the phenylalanine derivatives. 
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Fig. 5: a) Chromatographic characterization of the anion exchange retention behaviour depending on the pH 
value (1: PheOMe 2: Phe 3: AcPheOEt 4: AcPhe) and b) the applicability of the stoichiometric displacement model 
to the retention data obtained:  
N-propyl-N’-2-pyridylurea -◼- AcPhe  -- AcTrp; RP /WAX: -⚫- AcPhe -- AcTrp: - 
Experimental conditions: ACN/H2O (80:20, v/v) containing 10, 20, and 50 mM formic acid (pH 3.5) and acetic acid 
(pH 5 and 7), adjusted with ammonia; sample conc.: 1 mg/mL, dissolved in mobile phase, inj.vol. 10 µL, flow rate: 
1.0 mL/min, detection: 258 nm. 

 

The elution order for pH 3.5 and 5 was as follows: PheOMe < AcPheOEt < Phe < AcPhe. In 

contrast to this, the elution order changed for pH 7 and PheOMe is slightly retained due to a 

reversed polarity of the surface of the stationary phase. This already indicates that the effective 

charge of the analytes may be decisive for the retention behaviour, like the surface charge of 

the 2-pyridyl-modified silica phase. On the other hand, it turns out that the ionic strength has a 

significant effect (pH 3.5 and 5) solely for the acidic solute (Ac-Phe). The stochiometric 

displacement model (Eq. (1)) can be invoked to prove the prevalence of an anion exchange 

process [4, 10, 40, 43, 44]. 
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The slope Z represents the effective involved charge ratio of analyte and counterions. KZ, the 

intercept, describes the investigated ion exchange system taking account of the ion exchange 

equilibrium constant K [L/mol], the concentration of available ion exchange sites at the surface 

qx [mol/m2] correlated to the surface area of the particles S [m2/g] and void volume of the 

column V0 [L] (Eq. (2)). 

Of particular interest as a factor of charge density on the surface of the stationary phase are 

the calculated y-axis intercepts of linear regression. In case of the N-propyl-N’-2-pyridylurea 

stationary phase, these show the highest values for pH 5 (AcPhe: 1.09; AcTrp: 0.56), followed 

by pH 3.5 (AcPhe: 0.68; AcTrp: 0.55) and pH 7 (AcPhe: 0.25; AcTrp: 0.15). This correlates 

very well with the trend of the -potentials described above. In the neutral pH range, the 

protonation of the pyridine nitrogen is relatively low while dissociation of residual silanol groups 

gains importance, which reduces the number of positive charges available for anion exchange. 

This is reflected in the decrease of the y-axis intercepts for the 2-pyridiylurea phase as 

compared to the RP/WAX phase (Fig. 5b). Milder elution conditions (lower counterion/buffer 

concentrations) can be used, which may be also advantageous for ESI-MS detection, as less 

ion suppression, higher ionization yield and thus better sensitivity can be achieved.  

 

4.2.4.5. Separation of Nucleoside Mono-, Di- and 

Triphosphates 

Classical anion-exchange chromatography and also mixed-mode anion-exchange 

chromatography may be problematic if multiply charged analytes need to be investigated. The 

elution strength with commonly employed mobile phase conditions may not be enough which 

can lead to excessive retention times or trapping of these analytes (e.g. oligonucleotides). It is 

expected that the current N-propyl-N’-2-pyridylurea -based mixed-mode phase can better cope 

with such multiply charged species. To document this, uridine 5’-mono-, di- and triphosphates 

(UMP, UDP and UTP) were used as model analytes [7, 45, 46]and the separation investigated 

at pH 5 (anion-exchange under positive surface charge) and at pH 7 (ion-exclusion effects at 

negative surface). Furthermore, buffer concentration (1.25, 2.5 and 5 mM ammonium 

phosphate) and flow rate (0.2, 0.5 and 1.0 mL/min) dependencies were investigated. Resultant 

isocratic separations at pH 5 are shown in Fig. 6a-c) and at pH 7 in Fig. 6d-f). The 

corresponding plots following the stoichiometric displacement model are given in Fig.7. 
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Fig. 6: Separation of UMP (1), UDP (2), and UTP (3) on N-propyl-N’-2-pyridylurea modified silica. Mobile phase: 
ACN/H2O (1:4, v/v), a) 5.0 mM, b) 2.5 mM, c) 1.25 mM phosphoric acid, pH 5, adjusted with ammonia, d-f) ACN/H2O 
(1:4, v/v), d) 5mM, e) 2.5 mM, f) 1.25 mM phosphoric acid, pH 7, adjusted with ammonia, flow rate: 1.0 mL/min, 

T=25°C, inj.vol. 2 µL, =254 nm, ⧫=t0. 

 

 

Fig. 7: Stoichiometric displacement model for the analysis of the nucleotides on pH 5 (a) and pH 7 (b). 

It can be seen that at pH 5 (positive surface charge) retention decreases with the counterion 

concentration in accordance to an anion-exchange process. On the other hand, the retention 

of the negatively charged nucleoside mono-, di- and triphosphates increases in accordance to 

their net charge (Table 2), following the order: UMP<UDP<UTP. Slopes and intercepts 

(derived from stoichiometric displacement model) correlate well with the net charge, as 

expected for an anion-exchange process (Table 2).  

  



 

103 
 

Table 2: Acidic properties of the investigated nucleotides and the calculated parameters of the stoichiometric 
displacement model for N-propyl-N’-2-pyridylurea modified stationary phase. 

Compound pKa 
a, b 

net chargea  slope (Z) c  Intercept (KZ) c 

pH 5 pH 7  pH 5 pH 7  pH 5 pH 7 

UMP 1.23 (P), 6.25 (P), 8.70 (U) -1.1 -1.94   -0.929 -0.467   -2.967 -4.634 

UDP 1.77 (P), 3.21 (P), 7.40 (P), 8.72 (U) -2 -2.46  -1.288 -0.393  -3.532 -4.331 

UTP 
0.90 (P), 2.53 (P), 3.30 (P), 7.40 (P), 

8.72 (U) 
-3 -3.46   -1.715 -0.369   -4.28 -4.223 

a calculated with Marvin Sketch 
        

b P: phosphate residue, U: nitrogen atom in uridine 
        

cinvestigated flowrate: 1.0 mL/min 
        

 

At pH 7, the situation is completely different. Since the predominant interactions are of 

repulsive nature because of the negative charge of stationary phase and solutes, elution of the 

nucleotides occurred before the void volume V0. Still, the separation mechanism was 

dominated by their charge. However, UTP eluted first i.e. with the lowest ion exclusion volume 

VIEC (VIEC=V0-VA, wherein VA is the elution volume of the anion), followed by UDP and UMP 

(reversed elution order compared to pH 5). Although a good linear regression can be achieved 

by the fit to the stoichiometric displacement model (Fig. 7b), the underlying explanation is more 

rational on the basis of the double layer theory [45]. As the ionic strength in the mobile phase 

decreases, the double layer thickness of the charged particle increases. In consequence the 

shielding of the charges (analyte and stationary phase) is less effective. In the case of ion 

exclusion chromatography, this leads to increased repulsive interactions and the elution 

volume is reduced i.e. the analyte elutes earlier. The effect is more pronounced for analytes 

with higher effective charges which therefore elute earlier than their congeners with lower 

charge. This explains the reversal of the elution order. 

 

4.2.4.6. pH-Gradient with Stationary Phase Umpolung and 

Repulsive Charge-Supported Elution 

The above isocratic experiments as well as the determination of the zeta potentials confirmed 

the umpolung of the surface charge between pH 5 and 7. The combination of these 

chromatographic modes (anion-exchange at pH 5 and ion-exclusion at pH 7) in the form of pH-

gradient elution should lead to milder elution conditions. While this is less of relevance for the 

current model nucleotides, it may be necessary to elute highly charged species such as 

oligonucleotides under milder conditions [11]. 

Fig. 8 shows the chromatograms for the mixture of UMP, UDP and UTP under pH-gradient 

elution with constant ionic strength (1.25 mM) (Fig.8a) and with a mixed pH/counterion (buffer) 
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gradient (Fig. 8b). For comparison, a comparable pH-gradient separation of the same mixture 

at 5 mM constant ionic strength on the RP/WAX phase is shown in Fig. 8c. It is evident from a 

comparison with Fig. 6c that the pH-gradient on the pyridine phase at 1.25 mM ionic strength 

allows faster elution in particular of the strongly retained multiply charged UTP. Using a mixed 

pH/counterion gradient, retention times could be further shortened while essentially 

maintaining the selectivity (cf. Fig 8a and 8b). 

 

Fig. 8: pH-Gradient elution of UMP (1), UDP (2), and UTP (3) on N-propyl-N’-2-pyridylurea (a+b) and RPWAX 
phases (c). a) pH-gradient from 5 to 7 at constant ionic strength of 1.25 mM, b) mixed pH/counterion gradient (pH 

5 − 7 and counterion concentration from 1.25 to 2.5 mM), and c) pH - gradient separation on RP/WAX modified 
silica. 
Mobile phase: (a, b) ACN/H2O (1:4, v/v), a) 1.25 mM and b) A: 1.25 mM and B 2.5 mM phosphoric acid, A: pH 5 
and B: pH 7, adjusted with ammonia, gradient profile: 0 to 100 % B in 1.00-15.00 min, 100% B 15.00-20.00 min, 
100 to 0% B 20.00-20.01, 0% B for 20.01-30.00min. (c) ACN/H2O (1:4, v/v), 5.0 mM phosphoric acid, A: pH 5 and 

B: pH 7, adjusted with ammonia, gradient profile: 0 to 100 % B in 1.00-15.00 min, 100% B 15.01-40.00 min, 100 − 

0% B 40.00-40.01, 0% B for 40.01-50.00min, flow rate: 1.0 mL/min, T = 25°C, inj. vol. 2 µL, =254 nm. 

The favorable effect of the pH gradient and moderate surface charge of the 2-pyridyl phase for 

the separation of multiply charged analytes becomes striking from the comparison with the 

RP/WAX phase which still has positive charge at pH 7 and umpolung occurs only in the 

chromatographically inaccessible pH-range above pH 9 (stability problem of silica based 

stationary phases). Due to the still prevailing positive surface charge at pH 7, the anion 

exchange process is dominating the separation throughout, which required a subsequent hold 

phase of 25 minutes at pH 7 to enforce the elution of UTP. The analysis time could be reduced 

by using higher pH values, which also significantly restrict the dissociation of the RP/WAX 

selector. However, this is disadvantageous in relation to the lifetime of the column due to 

hydrolysis of siloxane bonds. It is clearly evident that the new N-propyl-N’-2-pyridylurea based 

stationary phase exhibits favorable chromatographic behavior for multiply charged anionic 
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species over classical anion-exchangers and mixed-mode anion-exchangers such as RP/WAX 

as it allows the separation of (multiply) charged analytes by pH-gradients with stationary phase 

umpolung around neutral pH and repulsive charge-supported elution in a short analysis time 

using mild elution conditions. 

 

4.2.5. Conclusions 

The surface structure of the N-propyl-N’-2-pyridylurea stationary phase was successfully 

elucidated by elemental analysis and solid-state 13C and 29Si NMR after the synthesis of the 

ligand and its immobilization by silanization. Compared to a previously characterized RP/WAX 

stationary phase, the N-propyl-N’-2-pyridylurea stationary phase showed a significantly lower 

pKa value. This was reflected in the lowered -potentials and a shift in the pI of the silica-based 

pyridine phase to lower values compared to RP/WAX. As a consequence, significantly reduced 

retentivity of this stationary phase for acidic analytes was observed while still working by an 

anion-exchange mechanism at pH 5. This requires significantly reduced counterion 

concentrations for the elution of anions. The umpolung of the surface of the stationary phase 

at pH 7 was verified by the analysis of nucleotides in ion exclusion chromatography mode. The 

combination of anion exchange and ion exclusion chromatography modes one separation 

realized by a pH gradient allowed the analysis of nucleotides with mild elution conditions.   
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4.2.7. Supplementary Material 

4.2.7.1. Elucidation of the Structure of the Newly Synthesized 

Ligand and the Modified Silica Gel 

4.2.7.1.1. Characterization of the Mixed-Mode Selector 

 

Fig. S 1: Comparison of the IR Spectra of the educt (2-amino pyridine) (red) and of the chromatographic ligand N-
2-pyridyl-N’-3-triethoxysilylpropylurea (blue). 

 

 

Fig. S 2: 1H NMR spectrum of the chromatographic ligand N-2-pyridyl-N’-3-triethoxysilylpropylurea (product) 
(200 MHz, CDCl3). 
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Fig. S 3: 13C NMR spectrum of the chromatographic ligand N-2-pyridyl-N’-3-triethoxysilylpropylurea (product) (200 
MHz, CDCl3). 

 

 

Fig. S 4: 13C-DEPT NMR spectrum of the chromatographic ligand N-2-pyridyl-N’-3-triethoxysilylpropylurea (product) 
(200 MHz, CDCl3). 
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4.2.7.2. Chromatographic Characterization 

4.2.7.2.1. Retention Behavior of Acidic, Basic and Neutral Compounds under 

RP and HILIC Conditions 

 

Fig. S 5: Separation of a) alkylbenzene derivatives and acids under RP conditions and b) xanthines, c) vitamins 
and d) nucleosides under HILIC conditions on the pyridine-modified stationary phase: 
1 – DETP, 2 – BocProPhe, 3 – BuB , 4 – PeB, 5 – caffeine, 6 – theobromine, 7 – theophylline , 8 – pyridoxine HCl, 
9 – ascorbic acid, 10 – nicotinic acid, 11 – riboflavin, 12 – thiamine, 13 – thymidine, 14 – uridine, 15 –adenosine, 
16 – cytidine, 17 - guanosine  
RP conditions a): 40 % (v/v) ACN, 50 mM, pH 6 adjusted with ammonia; sample: 0.8 mg/mL; flow vel.: 1.7 mm/s; 

column temperature: 25 °C;  = 220 nm 
HILIC conditions: ACN/ammonium acetate ( b) Ctot = 5 mM (xanthines) and c-d) 10 mM (vitamins and nucleosides) 
(90:10, v/v), apparent pH around 8 
sample conc.: 0.8 mg/mL; injection volume: 10 µL; flow vel.: 1.7 mm/s; column temperature: 25 °C; detection 
wavelength: 220 nm 
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Fig. S 6: Surface Structure of commercially available RP, HILIC and Mixed mode columns which served for creating 
the retention map for principal component analysis shown in Fig. 4 of the main document  
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Fig. S 7: Surface structure of in house developed separation media which were also included in the retention map 
and classified by principal component analysis 
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Fig. S 7: continued: Surface structure of in house developed columns which were included in the retention map and 
classified by principal component analysis 
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4.2.7.3. Milder Elution Conditions for Charged Analytes 

4.2.7.3.1. Separation of Nucleotides using Ammonium Acetate as Buffer 

 

Fig. S 8: Separation of the Uridine mono-, di- and triphosphate on the pyridine modified silica using ammonium 
acetate buffer 
Experimental conditions: isocratic separation: 
ACN/H2O (1:4, v/v), a)-f) 12.5 mM, g)-l) 25 mM, m)-r) 50 mM ammonium acetate, pH 5: a), c), e), g), i), k), m), o) 
and q); pH 7: b), d), f), h), j) l), n), p) and r) with acetic acid, flowrate: 1.0 mL/min: a-b), g-h), m-n), 0.5 mL/min: c-d), 
i-j), o-p), 0.2 mL/min: e-f), k-l), q-r) The temperature was set to 25 °C, the detection wavelength was 254 , sample 
conc. mixture of uridine mono-(1), di-(2) and triphosphate (3) (0.1 mg/mL) dissolved in mobile phase. The injection 
volume was 2 µL.⧫=t0 
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Table S1: Retention times and the obtained resolution of nucleotide mono-, di- and triphosphates investigating different flow rates and ammonium acetate buffer concentrations 
under isocratic RP conditions 

Flowrate 
[mL/min] 

Buffer 
[mM] 

  pH 5   pH 7 

 Retention time [min]   Resolution  Retention time [min]   Resolution 

  UMP UDP UTP   UMP, UDP UDP,UTP   UMP UDP UTP   UMP, UDP UDP,UTP 

1.0  50  2.55 2.94 3.97  0.70 1.05  1.54 1.41 1.57  1.19 0.69 

0.5  50  5.26 5.99 8.20  0.71 1.11  3.11 2.85 2.72  1.35 0.75 

0.2  50  13.42 15.25 21.74  0.77 1.05  7.80 7.10 6.80  1.47 0.80 

1.0  25   2.61 2.95 3.83   0.71 1.66   1.65 1.52 1.46   1.07 0.64 

0.5  25  4.87 5.48 7.21  0.77 1.52  3.14 2.88 2.76  1.31 0.74 

0.2  25  12.52 13.97 18.64  0.89 1.67  7.85 7.19 6.88  1.52 0.85 

0.1  25  24.76 27.57 37.02  1.02 1.91  15.46 14.13 13.51  1.59 0.90 

1.0  15   4.81 6.75 22.87   2.49 2.02   1.41 1.26 1.20   1.46 0.81 

0.5  15  7.65 13.83 42.35  3.07 2.80  2.81 2.51 2.38  1.63 0.97 

0.2  15   19.23 34.62 n.d.   3.20 -   7.08 6.31 5.98   1.78 1.06 
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4.2.7.3.2. Isocratic Separation of Nucleotides using Ammonium Phosphate as 

Buffer 

 

Fig. S 9: Separation of the Uridine mono-, di- and triphosphate on N-propyl-N’-2-pyridylurea modified silica using 
ammonium phosphate buffer 
Experimental conditions: isocratic separation: 
ACN/H2O (1:4, v/v), a)-f) 1.25 mM, g)-l) 2.5 mM, m)-r) 5.0 mM ammonium phosphate, pH 5: a), c), e), g), i), k), 
m), o) and q); pH 7: b), d), f), h), j) l), n), p) and r)  with ammonia, 
flowrate: 1.0 mL/min: a-b), g-h), m-n), 0.5 mL/min: c-d), i-j), o-p), 0.2 mL/min: e-f), k-l), q-r) The temperature was 
set to 25 °C, the detection wavelength was 254nm , sample: mixture of uridine 5’-mono- (1), di- (2) and 
triphosphate (3) (0.1 mg/mL) dissolved in mobile phase. The injection volume was 2 µL.⧫=t0  
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Table S 2: Retention times and the obtained resolution of nucleotide mono-, di- and triphosphates investigating different flow rates and ammonium phosphate buffer concentrations 
under isocratic RP conditions 

Flowrate 

[mL/min] 

Buffer 

[mM] 

  pH 5   pH 7 
 Retention time [min]   Resolution  Retention time [min]   Resolution 

  UMP UDP UTP   UMP, UDP UDP,UTP   UMP UDP UTP   UMP, UDP UDP,UTP 

1.0 mL/min 1.25  2.73 4.55 10.26  6.40 6.27  1.26 1.14 1.26  1.64 0.90 

0.5 mL/min 1.25  5.61 9.38 21.50  7.04 6.05  2.62 2.37 2.25  1.85 1.04 

0.2 mL/min 1.25  15.02 25.08 58.85  7.18 10.88  6.75 6.08 5.77  1.97 1.09 

1.0 mL/min 2.5   2.38 3.17 4.92   4.35 5.63   1.41 1.30 1.24   1.45 0.74 

0.5 mL/min 2.5  4.82 6.42 10.05  4.93 5.86  2.86 2.63 2.52  1.65 0.83 

0.2 mL/min 2.5   12.60 16.74 26.39   5.10 5.37   7.50 6.88 6.57   1.78 0.94 

1.0 mL/min 5  2.06 2.27 2.59  1.64 2.17  1.51 1.41 1.37  1.16 0.60 

0.5 mL/min 5  4.14 4.54 5.19  1.86 2.59  3.10 2.90 2.80  1.39 0.68 

0.2 mL/min 5   10.77 11.79 13.42   1.93 2.61   8.52 7.95 7.67   1.53 0.74 
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4.2.7.3.3. Gradient Separation of Nucleotides using Ammonium Phosphate as 

Buffer 

 

Fig. S 10: Separation of UXP's investigating pH gradients with different gradient profiles on N-propyl-N’-2-
pyridylurea stationary phase: 
G1to15: 0 to 100 % B in 1.00-15.00 min, 100% B 15.00-20.00 min, 100 to 0% B 20.00-20.01, 0% B for 20.01-
30.00min 
G0to15: 0 to 100 % B in 0.00-15.00 min, 100% B 15.00-20.00 min, 100 to 0% B 20.00-20.01, 0% B for 20.01-
30.00min 
G0to10: 0 to 100 % B in 0.00-10.00 min, 100% B 10.00-12.00 min, 100 to 0% B 12.00-12.01, 0% B for 12.01-
30.00min 
G0to5: 0 to 100 % B in 0.00-5.00 min, 100% B 5.00-7.00 min, 100 to 0% B 7.00-7.01, 0% B for 7.01-22.00min 
G0to3: 0 to 100 % B in 0.00-3.00 min, 100% B 3.00-8.00 min, 100 to 0% B 8.00-8.01, 0% B for 8.01-19.00min 
ACN/H2O (1:4, v/v), 1.25 mM H3PO4, A: pH 5 and B: pH 7, adjusted with ammonia, 

1.0 mL/min, T=25 °C, =254nm , sample: mixture of uridine 5’-mono- (1), di- (2) and triphosphate (3) (0.1 mg/mL) 
dissolved in mobile phase. The injection volume was 2 µL. 
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Fig. S 11: Separation of UXP's investigating salt gradients with different gradient profiles using on N-propyl-N’-2-
pyridylurea modified column: 
G1to15: 0 to 100 % B in 1.00-15.00 min, 100% B 15.00-20.00 min, 100 to 0% B 20.00-20.01, 0% B for 20.01-
30.00min 
G0to15: 0 to 100 % B in 0.00-15.00 min, 100% B 15.00-20.00 min, 100 to 0% B 20.00-20.01, 0% B for 20.01-
30.00min 
G0to10: 0 to 100 % B in 0.00-10.00 min, 100% B 10.00-12.00 min, 100 to 0% B 12.00-12.01, 0% B for 12.01-
30.00min 
G0to5: 0 to 100 % B in 0.00-5.00 min, 100% B 5.00-7.00 min, 100 to 0% B 7.00-7.01, 0% B for 7.01-22.00min 
G0to3: 0 to 100 % B in 0.00-3.00 min, 100% B 3.00-8.00 min, 100 to 0% B 8.00-8.01, 0% B for 8.01-19.00min 
ACN/H2O (1:4, v/v), A: 1.25 mM H3PO4, B: 2.5 mM H3PO4; pH 5, adjusted with ammonia, 

1.0 mL/min, T=25 °C, =254nm , sample: mixture of uridine 5’-mono- (1), di- (2) and triphosphate (3) (0.1 mg/mL) 
dissolved in mobile phase. The injection volume was 2 µL. 
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Fig S 12: Separation of UXP's investigating combined pH and salt gradients with different gradient profiles on N-
propyl-N’-2-pyridylurea stationary phase: 
G1to15: 0 to 100 % B in 1.00-15.00 min, 100% B 15.00-20.00 min, 100 to 0% B 20.00-20.01, 0% B for 20.01-
30.00min 
G0to15: 0 to 100 % B in 0.00-15.00 min, 100% B 15.00-20.00 min, 100 to 0% B 20.00-20.01, 0% B for 20.01-
30.00min 
G0to10: 0 to 100 % B in 0.00-10.00 min, 100% B 10.00-12.00 min, 100 to 0% B 12.00-12.01, 0% B for 12.01-
30.00min 
G0to5: 0 to 100 % B in 0.00-5.00 min, 100% B 5.00-7.00 min, 100 to 0% B 7.00-7.01, 0% B for 7.01-22.00min 
G0to3: 0 to 100 % B in 0.00-3.00 min, 100% B 3.00-8.00 min, 100 to 0% B 8.00-8.01, 0% B for 8.01-19.00min 
ACN/H2O (1:4, v/v), A: 1.25 mM H3PO4, B: 2.5 mM H3PO4 A: pH 5 and B: pH 7, adjusted with ammonia, 1.0 mL/min, 

T=25 °C, =254nm, sample: mixture of uridine 5’-mono- (1), di- (2) and triphosphate (3) (0.1 mg/mL) dissolved in 
mobile phase. The injection volume was 2 µL. 
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Fig. S 13: Comparison of the elution of the nucleotides (1. UMP, 2. UDP, 3. UTP) investigating primary and binary 
gradients on N-propyl-N’-2-pyridylurea modified silica 
grey: salt gradient: ACN/H2O (1:4, v/v), A: 1.25 mM H3PO4, B: 2.5 mM H3PO4, pH 5 adjusted with ammonia 
black: pH gradient: ACN/H2O (1:4, v/v), 1.25 mM H3PO4, A: pH 5 and B: pH 7, adjusted with ammonia 
green: salt and pH gradient: ACN/H2O (1:4, v/v), A: 1.25 mM H3PO4, B: 2.5 mM H3PO4, A: pH 5 and B: pH 7,  
adjusted with ammonia, gradient profile: 0 to 100 % B in 1.00-15.00 min, 100% B 15.00-20.00 min, 100 to 0% B 

20.00-20.01, 0% B for 20.01-30.00min, 1.0 mL/min, T=25 °C, =254nm , sample: mixture of uridine 5’-mono- (1), 
di- (2) and triphosphate (3) (0.1 mg/mL) dissolved in mobile phase. The injection volume was 2 µL.  
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4.2.7.3.4. Separation of Single- (ss) and Double Stranded (ds) 

Oligonucleotides 

Single and double stranded oligonucleotides were analyzed as model compounds for multiple 

charged analytes. For the separation of ss and ds oligonucleotides mobile phase A consisted 

of 100 mM ammonium acetate dissolved in water (pH 7) whereas mobile phase B was a 

mixture of acetonitrile/water (1:1, v/v). A two-step gradient was performed with the following 

gradient profile: 0-2 min: 0%B, 2-17 min 10-20% B, 17-22 min: 20-100% B, hold 100% B for 2 

min, 24-30 min: 100-0% B, 5 min equilibration at 0% B. The self-complementary 

oligonucleotide dodecamer (5’- CGCAAATTTGCG - 3’ was dissolved in water (1 mg/mL). An 

aliquot was heated to 95 °C und gently cooled down to room temperature. None heated and 

previously heated solution was mixed in the ratio 1:1 (v,v). The injection volume was 2.86 µL. 

The flowrate was 0.378 mL/min. The column was thermostated at 25 °C and the 

oligonucleotides were detected at 258 nm. 

 

Fig. S 14: Separation of single and double stranded oligonucleotides (5’- CGCAAATTTGCG - 3’) on N-propyl-N’-2-
pyridylurea stationary phase 
Experimental conditions: mobile phase A: 100 mM NH4Ac, B: ACN/H2O (50/50, v/v); gradient: 0-2 min: 0 %B, 2-17 
min 10-20 % B, 17-22 min: 20-100 % B, hold 100 % B for 2 min, 24-30 min: 100-0 % B, 5 min equilibration at 0 % 

B; flow: 0.378 mL/min; T=25°C; 1mg;  = 258 nm 

 

An increased salt concentration was used, but the pH was kept constant in the neutral range. 

Under these conditions a close to baseline separation of single and double stranded 

oligonucleotides was observed. Further method optimization could lead to baseline separation 

but was not the subject of the present study. 
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4.3.1. Abstract 

The simultaneous liquid chromatographic analysis of water- and fat-soluble vitamins is 

challenging because of their wide polarity range. Typically, water-soluble vitamins are 

separated and analyzed by hydrophilic interaction chromatography (HILIC) while fat-soluble 

vitamins are analyzed by reversed-phase liquid chromatography (RPLC). The combination of 

these two retention principles in a column coupling or multidimensional liquid chromatography 

approach seems to be a logical consequence to solve the problem. In this work, a selective 

comprehensive HILIC × RPLC 2D-LC approach is investigated. In this method, the polar water-

soluble vitamins are resolved in the first dimension (1D) on a 2-pyridylurea mixed-mode phase 

operated by a HILIC gradient and the coeluted fat-soluble vitamins in the early part of the 

chromatogram are comprehensively transferred in ten 40-µL fractions into a second dimension 

(2D) separation by RPLC on a C8 core–shell column. This mode of separation is also known 

as high-resolution sampling. The separations in 1D and 2D were optimized systematically and 

the retention mechanism on the mixed-mode column interpreted by support of these 

chromatographic data. The solvent incompatibility of 1D HILIC and 2D RPLC conditions due to 

sampling of acetonitrile-rich fractions from 1D into 2D RPLC led to severe peak broadening 

when a direct fraction transfer was carried out. An isocratic refocusing step could partly 

improve the situation for the stronger retained fat-soluble vitamins. Active solvent modulation 

with a specifically designed valve which allows a bypass of the weak eluent from the 2D pump 

to the column head and dilution of the fractionated sample from the sampling loop completely 

solved the problem and provided perfect peak shapes and chromatographic efficiencies. 

 

4.3.2. Introduction 

Multivitamin formulations for nutritional supplementation are recommended under certain 

situations of malnutrition, some diseases, strong alcohol abuse, and heavy smoking. For 

pharmaceutical multivitamin products, adequate quality control is mandatory. Yet, the 

simultaneous analysis of fat- and water-soluble vitamins in one analytical procedure or method 

is not a trivial task because of the wide physicochemical properties of these vitamins. 

Quite often, two distinct methods are adopted for the analysis of fat- and water-soluble vitamins 

[1,2,3,4,5], while their simultaneous analysis, e.g., by a single chromatographic method is rare. 

Separation of water- and fat-soluble vitamins into separate samples by solid-phase extraction 

and subsequent analysis on RP columns with methanol-buffer (aqueous RPLC) for water-

soluble vitamins and methanol–acetonitrile (nonaqueous RPLC) for fat-soluble vitamins was 

one reported approach [1, 2]. Buszewski and Zbanyszek performed the analysis on two distinct 

C18 columns varying in the ligand density and combined those separations via a column-
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switching technology [3, 4]. In another work, two distinct LC–MS methods based on two distinct 

C18 columns were developed for both fat- and water-soluble vitamins and applied to the 

measurement of NIST vitamin standard reference materials [5]. 

Single-column analysis approaches are reported as well. For example, Li and Chen [6] 

employed multi-step gradients consisting of methanol (A), potassium phosphate (B) and water 

(C) to accomplish separation of 12 fat- and water-soluble vitamins on a C18 column. Klejdus 

et al. [7] suggested to cope with this problem by applying in a single run a combination of 

isocratic and linear gradient elution to separate both classes of vitamins. Dabre et al. [8] solved 

the problem of separating both classes of vitamins by mixed-mode chromatography. 

A general review of the state of art in analysis of vitamins by liquid chromatography is given in 

Ref. [9]. The determination of water- and fat-soluble vitamins in biological fluids has been 

recently reviewed [10]. The state of art in fat-soluble vitamin analysis was reviewed by Fanali 

et al. [11]. 

More recent work focused on a sequential extraction and subsequent analysis of both classes 

of vitamins by coupling the extraction steps to LC–MS/MS and LC-DAD in order to quantify the 

free vitamin content [12]. Similarly, sequential analysis of water- and fat-soluble vitamins on 

the same column, a core–shell C18 particle column, and same UHPLC instrument with 

different gradient elution conditions for the two distinct vitamin classes was suggested by 

Tayade et al. [13]. Very recently, fat-soluble and water-soluble vitamins were separated by a 

unified supercritical fluid chromatography–liquid chromatography approach with MS/MS 

detection in which the mobile phases state was changing continuously during the elution from 

supercritical (at 100% CO2), to subcritical (increasing percentage of methanol as additive), to 

finally liquid (at 100% methanol) [14]. In another approach, electrokinetic chromatography 

(EKC) with polymeric micelles was utilized to separate and analyze 11 kinds of water- and fat-

soluble vitamins [15]. 

Besides these works, there are numerous publications describing the separation of water-

soluble vitamins by hydrophilic interaction chromatography (HILIC). Fat-soluble vitamins elute 

close to the void in such methods. Therefore, HILIC has not been widely adopted in concepts 

of simultaneous analysis of water- and fat-soluble vitamins. 

In this work, we evaluate the simultaneous liquid chromatographic separation of water- and 

fat-soluble vitamins by selective comprehensive HILIC × RPLC (also known as high-resolution 

sampling) [16]. A new mixed-mode chromatography stationary phase based on an N-propyl-

N’-2-pyridylurea ligand linked to silica (Fig. 1) is utilized and employed under HILIC conditions 

for the separation of the water-soluble vitamins. The apolar fat-soluble vitamins, eluting close 

to the void volume of the column, are comprehensively sampled into a second dimension (2D) 
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separation. Since HILIC is not very well compatible with the RP conditions of the 2D separation 

and leads to extra band broadening [17], active solvent modulation (ASM) [18,19,20] was 

adopted to refocus the analyte zones on the 2D-RPLC column [20]. This work should document 

the potential of active solvent modulation to hyphenate HILIC and RPLC in online two-

dimensional LC approaches and give some insight into the potential of mixed-mode columns 

[21] for generating complementary selectivity. 

 

 

Fig. 1: Surface structure of the investigated stationary phase (N-propyl-N′-2-pyridylurea-modified silica particles). 
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4.3.3. Material and Methods 

4.3.3.1. Materials 

Vitamins A-palmitate (hereafter short vitamin A), B1, B2, B3, B6, B9, B12, C, D, E and K (Fig. 2) 

were a generous gift by Fresenius Kabi (Bad Homburg, Germany). Ammonium acetate, acetic 

acid and formic acid were purchased from Sigma Aldrich (Munich, Germany). Acetonitrile 

HPLC grade was supplied by J.T. Baker (Netherlands). MilliQWater was prepared by further 

deionization of demineralized water using Elga PurLab Ultra Purification system (Celle, 

Germany). 

N-Propyl-N′-2-pyridylurea-modified silica stationary phase (150 × 4.6 mm, 5 µm, 100 Å) 

(Fig. 1) was in-house synthesized and previously characterized in detail as described 

elsewhere [22]. For the second dimension (2D) separation a Kinetex C8 column (50 × 2.1 mm, 

2.6 µm, 100 Å) from Phenomenex (Torrance, CA, USA) was used. 

 

 

Fig. 2: Structure of the investigated a water-soluble and b fat-soluble vitamins. 
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4.3.3.2. Instrumentation and Software 

The screening for general elution conditions (RPLC vs HILIC) was performed using an Agilent 

1100 series LC system from Agilent Technologies (Waldbronn, Germany) equipped with an 

autosampler, degasser, binary pump, thermostated column compartment, and variable 

wavelength detector (VWD). The system was controlled by OpenLab CDS ChemStation—

Edition for LC & LC/MS System (Rev.C.01.07 SR3 [465]). Data were analyzed using 

ChemStation software (Rev. B.04.03.16). The physicochemical data were calculated with 

Marvin Sketch (Rev. 14.12.15.0). 

The study of the design space was made on an Agilent 1100 series LC system equipped as 

above but using a quaternary instead of a binary pump as well as a diode array detector (DAD) 

instead of VWD. 

The two-dimensional LC experiments were carried out on an Agilent 1290 Infinity II 2D-LC 

Solution (Agilent Technologies, Waldbronn, Germany). The first dimension (1D) instrument was 

equipped with a quaternary pump, multisampler, column compartment and a VWD detector. 

The second dimension consisted of a binary pump, column compartment and a DAD detector. 

The first and second dimension was interfaced by a pressure release kit followed by a 2D-LC 

five position/ten-port valve (concurrently installed, active solvent modulation possible) 

connected to two 14-port multiple heart cutting valves with 6 sample loops (each 40 µL). For 

the experiments using active solvent modulation (ASM factor 5, split ratio 1:4), the 0.96-µL 

restriction capillary (85 × 0.12 mm) was installed. The system was controlled and the data were 

analyzed by using Open Lab CDS Rev. C.01.07SR3. Further analysis was done using LC-

Image v2.7r3 LC × LC-HRMS (GC Image, LLC, Lincoln, Nebraska, USA). 

 

4.3.3.3. 1D-Liquid Chromatographic Methods 

The concentration of the vitamins in the test mixture was 0.1 mg/mL, except vitamin B12 

(1.0 mg/mL) and vitamin A, D, E and K (0.025 mg/mL), dissolved in mobile phase. 

Unless stated otherwise, for all 1D-LC experiments the flow rate was set to 1.0 mL/min, the 

temperature to 25 °C and the injection volume of the vitamin mixture was 10 µL. The vitamins 

were detected at 270 nm, except for vitamin A which was detected at 325 nm and vitamin E at 

290 nm. 

4.3.3.3.1. Screening of Elution Conditions (Scouting Runs) 

Initially, the separation of fat- and water-soluble vitamins was examined under RPLC (Kinetex 

C8) and HILIC conditions (2-pyridylurea mixed-mode phase). To do so, the mobile phases 

consisted of an acetonitrile/water mixture, whereas mobile phase A contained 5% (v/v) 

acetonitrile and mobile phase B 95% (v/v). Both mobile phases contained 15 mM ammonium 
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acetate, the apparent pH was adjusted to 4.5 with acetic acid in the final mixture. An RP 

gradient (100% A to 100% B) and a HILIC gradient (100% B to 100% A) was run.  

4.3.3.3.2. Design Space and Development of a Suitable Gradient 

The further experiments were performed under HILIC conditions with the mixed-mode column 

for development of a suitable 1D method. A design space was created consisting of different 

acetonitrile concentrations (95, 90 and 85% (v/v)), different buffer concentrations (5, 10 and 

15 mM ammonium acetate) and different apparent pH values (4.5, 5.5 and 6.5, adjusted with 

acetic acid in the final mixture). 

With the help of the design space a final gradient method was developed. The mobile phases 

contained 10 mM ammonium acetate and the pH was adjusted to 4.5 in the final mixture. The 

linear gradient was performed from 95 to 30% (v/v) acetonitrile in 10 min. 

 

4.3.3.4. Two Dimensional Separation of Fat and Water-

Soluble Vitamins 

In the first dimension (HILIC using N-propyl-N′-2-pyridylurea-modified mixed-mode phase), a 

linear gradient from 100% B (ACN–H2O; 95:5, v/v, containing 15 mM ammonium acetate 

(NH4Ac) in total, apparent pH 4.5 adjusted in the mixture with acetic acid) to 100% A (ACN–

H2O, 30:70, v/v, containing 15 mM NH4Ac in total, apparent pH 4.5 adjusted in the mixture with 

acetic acid) in 10 min was performed, with a subsequent 2-min hold at 100% A. Afterwards, 

the column was re-equilibrated for 8 min at 100% B. 

The second dimension conditions (RP with Kinetex C8 column) are described in the 

corresponding discussion part. The fat-soluble vitamins were collected by high-resolution 

sampling and either transferred directly into the second dimension [ACN:H2O (4:1, v/v), 0.1% 

FA in total], transferred and focused for 0.61 min by an isocratic elution step [ACN:H2O (5:95, 

v/v), 0.1% FA in total] or transferred using active solvent modulation (ASM factor 5, threefold 

capillary flush for 0.61 min in total with (ACN:H2O (5:95, v/v)) before starting the isocratic run. 

In case of the directly transferred fractions, the 2D gradient time corresponds to the 2D cycle 

time (6.1 min), whereas in case of the focused and/or the runs using active solvent modulation 

the 2D gradient time is 6.71 min and focusing conditions are equilibrated until the 2D cycle ends 

(7.0 min). The 2D flow rate was 1.0 mL/min and the temperature was set to 60 °C. 
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4.3.4. Results and Discussion 

4.3.4.1. Screening of Elution Conditions (Scouting Runs) 

The investigated vitamin test mixture contains substances that cover a wide polarity range and 

are difficult to resolve in their entirety on either RPLC or HILIC stationary phases. On the other 

hand, they show a great structural diversity of functional groups being present for interactions 

with stationary phases in a chromatographic separation. In detail, the mixture contained the 

water-soluble acidic vitamins like ascorbic acid, folic acid, and nicotinic acid as well as basic 

ones like thiamine (Fig. 2). Furthermore, the amphoteric pyridoxine and the complex 

cyanocobalamine add to the structural complexity of the mixture leading to a wide range of 

polarities and charge state and thus to diverse chromatographic interactions driving the 

adsorption and partitioning behavior of these analytes. Table 1 summarizes some 

physicochemical properties of the tested vitamins which are decisive for their chromatographic 

retention characteristics in RPLC and HILIC. 
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Table 1: Physicochemical characteristics of the investigated fat- and water-soluble vitamins. 

Name pKaa,d 
Log Dd Net charged 

IPb,d 
pH 4.5 pH 5.5 pH 6.5 pH 4.5 pH 5.5 pH 6.5 

Water-soluble Vitamins 

Thiamine (vitamin B1) 5.54 -4.1 -3.41 -3.14 1.92 1.52 1.1 - 

Riboflavin (vitamin B2) 5.97 -0.93 -1.04 -1.54 -0.03 -0.25 -0.77 1.8 

Nicotinic acid (vitamin B3) 
2.79 

-0.49 -1.33 -2.25 -0.14 -0.65 -0.95 4.01 
4.19 

Pantothenic acid  
(vitamin B5)  

4.35 -1.69 -2.48 -3.44 -0.58 -0.93 -0.99 0.8 

Pyridoxine (vitamin B6) 
5.58 

-1,92 -1.28 -1 0.92 0.55 0.11 7.49 
9.4 

Biotin (vitamin B7) 4.4 -0.16 -0.93 -1.86 -0.58 -0.93 -0.99 1.27 

Folic acid (vitamin B9) 

0.84 

-2.11 -3.94 -5.8 -1.69 -1.97 -2.07 2.64 
2.12 

3.38 

4.17 

Cyanocobalamine  
(vitamin B12) 

4.32    0.4 0.06 0.01 8.44 

Ascorbic acid (vitamin C) 4.36 -2.29 -3.08 -4.04 -0.58 -0.93 -0.99 1.29 

Fat-soluble Vitamins 

Retinol palmitate (vitamin A) -  11.62c  - - - - 

Cholecalciferol (vitamin D) -  7.13c  - - - - 

Tocopherol (vitamin E) -  10.51c  - - - - 

Menadion (vitamin K) -   1.89c   - - - - 

a pKa of functional groups, relevant for changes in the protonation status in the investigated pH 
range  

b IP = isoelectric point         
c depicted value = log P value, calculated with Marvin 
Sketch      

d calculated with Marvin Sketch         
 

The idea in this work was to examine the retention characteristics of vitamins on a new mixed-

mode stationary phase [22] that in dependence on mobile phase pH can be either weakly 

positively charged (pH < 6.5) or negatively charged (pH > 6.5) (due to residual silanols). 

Dependent on mobile phase pH ionic interactions with either anionic (acidic) vitamins or 

cationic (basic) vitamins can be superimposed upon other types of interactions such as 

hydrogen bonding with urea group of the chromatographic ligand, π–π interactions and/or 

hydrophobic with the aromatic moieties (in particular under aqueous RP conditions). Mixed-

mode phases are usually more flexible in method development as they may be often operated 

in different elution modes (e.g., RP, HILIC or ion-exchange elution mode). For this reason, in 

a first screening experiment we tested which of the two conditions, RPLC or HILIC, provides a 

more promising strategy for further method development. The results of a positive acetonitrile-
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gradient elution (RPLC conditions) are shown in Fig. 3a and those of a negative acetonitrile-

gradient elution (HILIC conditions) in Fig. 3b (both at pH 4.5). It becomes evident that the 

elution pattern in RPLC and HILIC scouting gradients is not in accordance to the log D 

calculated for pH 4.5 (Table 1) and is not simply following a reversal of the elution order 

expected from the hydrophilicity and/or lipophilicity of the compounds. Instead, a mixed-mode 

retention appears to be established that makes the two modes quite complementary. Overall, 

the HILIC elution conditions seem to give a better overall separation with less overlaps. The 

fat-soluble lipophilic vitamins elute unresolved at the front while the other substances are all 

close to baseline separated (Fig. 3b). In contrast, under RPLC conditions a number of peaks 

are unresolved in the early eluting part of the chromatogram and the lipophilic vitamins are still 

not separated (Fig. 3a) although they elute late in the chromatogram. It turns out that the ligand 

chain is too short and lipophilicity insufficient for a good RPLC behavior of the lipophilic 

vitamins on this phase. The HILIC separation mode was therefore selected to be further 

developed as 1D separation. 

 

Fig. 3: Screening of chromatographic conditions utilizing a reversed phase and b hydrophilic interaction 
chromatography conditions on the 2-pyridylurea-modified mixed-mode stationary phase. Experimental conditions: 
mobile phase A: 5% ACN, 95% H2O; mobile phase B: 95% ACN, 5% H2O; containing both 15 mM NH4Ac in total, 
pH 4.5 adjusted with acetic acid in the final mixture, gradient profile: a 0–100% B in 10 min, 100%B for 2 min, 100–
0% B in 0.01 min, 0% B for 8 min; b 100–0% B in 10 min, 0%B for 2 min, 0–100% B in 0.01 min, 100% B for 8 min; 
1.0 mL/min; 25 °C, 270 nm, inj. vol. 10 µL.   
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4.3.4.2. Design Space of 1D HILIC Separation 

A systematic study of the effect of the major experimental variables was undertaken under 

isocratic conditions. The idea was to study the impact of mobile phase conditions on retention 

of water-soluble vitamins under HILIC conditions and pinpoint the design space for this type of 

separation. The aim was also to get insight into the retention mechanism of these molecules 

on the current mixed-mode stationary phase that is more difficult to understand. Accordingly, 

this part of the work should outline the retention behavior of polar compounds on the presently 

investigated mixed-mode column under HILIC elution conditions. The results of the design-of-

experiment (DoE) optimization with a full factorial design on 3 levels are given in the 

Supplementary (see Suppl. Fig. S1–S8 and Suppl Table S1). 

4.3.4.2.1. Variation of Organic Modifier Content 

As can be expected for a HILIC method, the acetonitrile content plays a major role on retention 

and this is underpinned by the coefficients plot shown in supplementary Fig. S2. Since the 

current mixed-mode phase has an aromatic (i.e., pyridyl) group and C3 linker connected via a 

urea functionality, it could be expected that the stationary phase shows some RP-type retention 

at low organic content. For this reason the effect of acetonitrile percentage on the retention 

was investigated over a wider range (pH 4.5). At acetonitrile contents higher than 60% a typical 

HILIC behavior is observed, i.e., retention factors steeply increase with the ACN content 

(Fig. 4). On the other hand, RP-type retention (i.e., increase with lower ACN content) is 

observed only for B9 (folic acid), B2 (riboflavin) and B12 (cyanocobalamine). It becomes evident 

that the lipophilicity of the pyridylurea ligand is low (note, at pH 4.5 the pyridyl ligand is partly 

charged further reducing the lipophilicity; pKa = 3.88 as calculated by Marvin Sketch [22]). If we 

look closer at the elution order at high ACN percentage, we find out that it is different from what 

was expected from the calculated log D4.5. Acidic folic acid (B9) is stronger retained than the 

more hydrophilic basic thiamine (B2). At pH 4.5 the pyridyl ring is protonated and can impose 

a weak anion-exchange retention increment. B12, which possesses a negatively charged 

phosphate moiety is probably strongly retained for the same reason. Zwitterionic nicotinic acid 

(B3) does not show this strong retention. Overall, it becomes apparent that a mixed-mode 

retention resulting from common HILIC behavior superimposed by attractive and repulsive 

ionic interactions provides a specific opportunity for a unique retention pattern on this 2-

pyridylurea-modified mixed-mode phase. 
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Fig. 4: Retention factors of vitamins on the 2-pyridylurea-modified mixed-mode stationary phase in dependence on 
acetonitrile percentage in the eluent buffered with 15 mM ammonium acetate at pH 4.5, adjusted in the final mixture 
with acetic acid. U-shaped curves for vitamin B9, B2, and B12 indicate hydrophobic interactions at low ACN content 
(in accordance to an RPLC mode) and dominance of hydrophilic interactions at high ACN content (in accordance 
to a HILIC mode). 

 

4.3.4.2.2. Variation of Apparent pH 

The surface charge of the 2-pyridylurea-modified mixed-mode phase was recently 

characterized by pH-dependent ζ-potential measurements [22]. They revealed positive surface 

charge below pH 6.5 and a soft weak anion-exchange capacity around pH 4–5. Due to residual 

silanols the surface gets negatively charged at pH above 6.5, leading to attractive ionic 

interactions with cationic species or moieties and repulsive electrostatic interactions with 

anionic species or moieties. Under current ACN-rich eluents, all analytes regardless of their 

charge character showed increased retention factors when the mobile phase pH was elevated 

from 4.5 to 6.5 (Fig. 5). This trend follows roughly the increasing dissociation degree of residual 

silanols between pH 4 and 6. With increased number of dissociated silanols the surface 

becomes more polar causing stronger HILIC retention. The 2-pyridylurea ligand seems to have 

only minor modulating effect. 
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Fig. 5: Effect of the mobile phase pH on log k values on the 2-pyridylurea-modified mixed-mode stationary phase 
under HILIC conditions (95% ACN, 5 mM ammonium acetate). 

 

4.3.4.2.3. Variation of Buffer Concentration 

To illustrate the extent of ionic interactions, the buffer concentration in the eluent was varied 

(Fig. 6). The trends are given by plots of log k vs log buffer (ammonium acetate) concentration 

(in accordance to the stoichiometric displacement model). Such plots should give a linear trend 

line with negative slope for compounds with attractive ionic interactions (here at pH 4.5 anion 

exchange for acidic compounds) while the slope is expected to be positive for compounds for 

which repulsive ionic interactions are dominating (at pH 4.5 net positively charged analytes). 

Strong silanol interactions may mask the effect of the chromatographic ligand. 

 

Fig. 6: Effect of ionic strength (log C) on retention factors (log k) in accordance to the stoichiometric displacement 
model (85% ACN, pH 4.5). 

It can be seen that folic acid (B9) is the only compound with a significant anion-exchange 

contribution (negative slope of ca. − 0.2; corresponds to the effective charge ratio of analyte 

and counterion). B1, B2 and C also reveal a slightly negatively charged slope (ca. − 0.1). While 
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this is understandable for ascorbic acid for which anion-exchange process can be expected, 

for B1 (thiamine) it is more likely due to cation-exchange at the silanols. For the other 

compounds (B3 and B6), slightly positive slopes are observed and can be explained by absence 

of strong ionic interactions or very weak repulsive electrostatic interactions. Overall, this 

stationary phase imposes only soft ionic interactions on the given analytes and is mainly driven 

by HILIC retention mechanism under the selected conditions. 

 

4.3.4.3. 1D and 2D Gradient Optimization 

From above screening experiments and DoE study, useful conditions for the design of a 

selective comprehensive 2D-LC separation, which was found to be most promising solution to 

solve this problem of the simultaneous analysis of water- and fat-soluble vitamins, could be 

identified. Some further optimizations were then carried out for 1D and 2D gradients. 

For the 1D-HILIC gradient separation, gradient time, gradient steepness, and mixed buffer–

acetonitrile gradients were tested as variables for optimization of the resolution of the water-

soluble vitamins. The results are given in supplementary material (supplementary Fig. S9 to 

Fig. S11). Full baseline separation could be achieved when the 1D gradient time was at least 

10 min or larger (Suppl. Fig. S9) and gradient steepness was at least 35%B in 10 min (with 

initial %B always 5%, tG = 10 min) (Suppl. Fig. S10). The effect of a superimposed buffer 

gradient upon the acetonitrile gradient was minor (Suppl. Fig. S11). For the water-soluble 

vitamins, an optimized HILIC separation with a full baseline separation could be achieved 

under the conditions shown in Fig. 7a. 
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Fig. 7: Optimized 1D (a) and 2D (b) chromatograms of fat- and water-soluble vitamins. The cuts indicate the eluents 
of fat-soluble vitamins which were transferred to 2D via high-resolution sampling. a1D: 2-pyridylurea-modified 
stationary phase, 5 µm, 100 Å, 150 × 4.6 mm; mobile phases: A: 30% ACN, 15 mM NH4Ac in total, pH 4.5; B: 95% 
ACN, 15 mM NH4Ac in total, pH 4.5; gradient: 100 to 0% B in 10 min, 2 min 0% B, 8 min re-equilibration 100% B, 
Inj. vol.: 10 µL; flow rate: 1.0 mL/min; 25 °C; 270 nm. b2D: column: Kinetex® 2.6 µm C8, 100 Å, 50 × 2.1 mm; mobile 
phase: ACN:H2O (85:15, v/v), 0.1% FA, 1.0 mL/min; 60 °C; detection, CAD (charged aerosol detector); injection, 
10 µL mixture of fat-soluble vitamins (note, in the final 2D-LC method isocratic conditions with slightly lower organic 
content, i.e., 80%B were used to shift the first peak farther away from t0). 

The early eluted fat-soluble vitamins were then separated in the 2D by RPLC using a high-

resolution sampling approach, also called selective comprehensive HILIC × RPLC. Since the 

fat-soluble vitamins differ sufficiently in their lipophilicity (log P values are listed in Table 1), the 

level of hydrophobic interactions occurring on a C8 phase is well suited for the baseline 

separation under optimized conditions. The goal of the optimization was therefore to accelerate 

the separations and keep the 2D run time as short as possible. One has to consider that the 

2D runs of the various cuts are performed serially and therefore cumulatively contribute to the 

entire analysis time (see Electronic Supplementary Material Fig. S14). The speed at which the 

2D separation can be performed is therefore decisive for the overall analysis time. 

A core–shell particle C8 column was therefore used because they allow faster separations as 

compared to sub-2 µm C8 columns of the same dimension. As a further optimization 

parameter, temperature was investigated. Suppl. Fig. S12 depicts chromatograms of the 

mixture of the fat-soluble vitamins at two distinct temperatures, 50 and 60 °C. It can be seen 

that this slight increase by 10 °C has a significant influence on the speed of separation with a 

reduction of run time for the 2D separation from ca. 7 to ca. 5 min. 60 °C was hence maintained 
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as column temperature. Various gradients (from 70, 80 or 90% B to always 97%B in 4 min with 

a 1-min hold at 97%B before re-equilibration; B composed of acetonitrile with 0.1% formic acid) 

were tested (Suppl. Fig. S13). It turned out that for fast elution the %B should be between 80 

and 90%. In order to save the re-equilibration time, an isocratic 2D separation column 

temperature of 60 °C and a flow rate of 1 mL/min were finally adopted as optimal 2D separation 

(Fig. 7b). It allows to finish the 2D separation in about 3 min, as to keep the entire analysis time 

acceptable (see Electronic Supplementary Material Fig. S14) (vide infra). 

 

4.3.4.4. 2D-LC with High Resolution Sampling of Fat-Soluble 

Vitamins 

Neither the polar mixed-mode stationary phase with 2-pyridylpropylurea ligand nor RPLC with 

C8 core–shell column were capable to resolve the entire mixture of fat- and water-soluble 

vitamins. Hence, a two-dimensional LC approach was established. Only the early part of the 

1D HILIC chromatogram on the 2-pyridylpropylurea mixed-mode column which contained the 

coeluted fat-soluble vitamins was switched into a second dimension by a comprehensive 

sampling of 1D eluates into 2D RPLC. This mode of 2D-LC is called selective comprehensive 

HILIC × RPLC or simply high-resolution sampling. It should be noted that with a large loop a 

single fraction of the lipophilic vitamins could be switched onto the RP column. However, due 

to severe solvent incompatibility trap columns for refocusing should be used [25]. In our proof-

of-principle high-resolution sampling method, a standard 2D-UHPLC system can be used on 

routine basis without changing loops or the setup. An easy handling of the quantitation is also 

offered by the Open Lab CDS Rev. C.01.07SR3 software which allows the identification of the 

peaks in the cuts and automatically sums up the peak area of a single compound. 

Thus, the first dimension (mixed-mode column) was coupled to a second dimension (Kinetex 

C8 column) by a two position 4-port dual valve which was connected to two loop decks each 

one equipped with six 40-µL parking loops (Fig. 8a). Of those loops, 5 can be used to sample 

fractions, while the 6th loop must be free for mobile phase flow. Thus, 10 cuts across the 

unresolved DEAK peak (Fig. 7a), each of 40 µL eluate of 1D separation, starting with sampling 

from 1.35 min in the 1D HILIC run were made and analyzed by 2D RPLC. Like already expected 

the directly transferred 1D eluent caused broadened, distorted peaks in the second dimension 

when 100% loop fill was adopted (Fig. 9a). This distortion effect is usually especially prominent 

for high injection volumes (i.e., here 40 µL) and is due to mobile phase incompatibilities of 1D 

(HILIC) and 2D (RPLC) eluents. The sampled 1D mobile phase represents the sample matrix 

of the 2D separation and the high acetonitrile content of the HILIC eluates during sampling of 

the ADEK peak exhibits too strong elution strength in 2D RPLC, in particular for the weakly 
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retained analytes (D, E, and K). In contrast, the highly lipophilic and strongly retained retinol 

palmitate (vitamin A) seems to get refocused on the C8 phase. 

 

Fig. 8: Different valve types for the short time storage and transfer of the sampled first dimension into the second 
dimension a 4-port/2-position duo valve and b 10 port/4-position switching valve (offering the possibility for ASM) 
coupled to two 14-port/6-positions multiple heart cutting valves with 40-µL loops. 
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Fig. 9: Improvement of 2D peak shape with decreasing loop fill level (a 100%, b 70% and c 60%) exemplarily shown 
on cut #5 of the high-resolution sampling of the HILIC × RPLC chromatographic system. 1D: 2-pyridylurea-modified 
stationary phase, 5 µm, 100 Å, 150 × 4.6 mm; mobile phases: A: 30% ACN, 15 mM NH4Ac in total, pH 4.5; B: 95% 
ACN, 15 mM NH4Ac in total, pH 4.5; gradient: 100 to 0% B in 10 min, 2 min 0% B, 8 min re-equilibration 100% B, 
Inj.vol.: 10 µL; flow rate: 1.0 mL/min; column temperature, 25 °C; detection: UV 270 nm; time-based high-resolution 
sampling: 40 µL loops; sampling start at 1.35 min. 2D: Kinetex C8, 2.6 µm, 100 Å, 50 × 2.1 mm; mobile phase: A: 
H2O, 0.1% FA B: ACN, 0.1% FA; 0–0.5 min 80% B, from 0.5 to 1.0 min 80 to 97% B, from 1.0 to 1.33 min hold at 
97%B, from 1.33 to 1.4 min to start conditions, then 0.3 min reequilibration. Flow rate: 2.0 mL/min; column 
temperature, 60 °C, detection: UV 270 nm (blue), 290 nm (red) and 325 nm (green). 

The online coupling of HILIC and RPLC is a challenging exercise since mobile phase mismatch 

is a well-known problem [23, 24]. A number of solutions to the incompatibility problem have 

been suggested, e.g., trap columns for modulation [25], dilution of 2D eluent with weak mobile 

phase using an additional pump, fixed-loop modulation [18] and others. Herein, we first tested 

partial loop fill which already showed limited advantageous effects on the 2D peak shape [26]. 

We studied reduced filling levels of the parking loops from 100% to 70 and 60%. Indeed, the 

peak shape and peak width improved using a loop fill level of 70 and 60% exemplarily shown 

in the chromatograms of cut #5 in Fig. 9 (loop fill 70%, Fig. 9b and loop fill 60% in Fig. 9c). A 

disadvantage of this strategy was that the collection time of the peak in 1D decreased leading 

to incomplete sampling of the peak at the rear end (100% loop fill level covers a peak width of 

0.4 min, 60 and 70% only 0.24 and 0.28 min, respectively). Since the 1D peak (peak 

width = 0.4 min) requires 100% loop fill in the first dimension (if the loop volumes are not 

increased) in order to avoid loss of analyte and sample disproportioning, an alternative strategy 

had to be used for comprehensive characterization of the fat-soluble vitamins.  

Alternatively, peak focussing by an initial isocratic step at low organic modifier content of 5% 

B before an isocratic elution at 80% B was applied to reduce peak distortions due to mismatch 

of the 1D sample solvent and the mobile phase. The resultant chromatograms are shown in 

Fig. 10c, f for cuts #3 and #7 in comparison to the chromatograms obtained with direct transfer 

which are depicted in Fig. 10b, e. It can be seen that the refocusing at low elution strength 

works well for the stronger retained analytes such as vitamin A, K and also vitamin E (Fig. 10c) 

but fails for early eluted vitamin D for which a peak splitting/double peak was observed 

(Fig. 10f). 
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Fig. 10: Simultaneous analysis of fat- and water-soluble vitamins using time-based high-resolution sampling for 
comprehensive peak coverage of target analytes a1D chromatogram of the investigated vitamin mixture separated 
on the 2-pyridylurea-modified silica column (5 µm, 100 Å, 150 × 4.6 mm) under HILIC conditions and 2D 
chromatograms [cut #3 (b–d) and #7 (e–g)] which were measured after direct transfer of the mobile phase used for 
elution in the second dimension (b and e), after focusing for 0.61 min at 5% B (c and f) and after focusing 0.61 min 
at 5% B using active solvent modulation d and g. 1D: conditions as specified in Fig. 7a. 40 µL loop; 100% loopfill 
(2.4 s); sampling start: 1.35 min, 2D: column: Kinetex 2.6 µm C8, 100 Å, 50 × 2.1 mm; mobile phase: A: H2O/ACN 
(1:4, v/v), 0.1% FA, 1.0 mL/min; 60 °C; 270 (blue), 290 (red) and 325 nm (green). 

 
To overcome this problem, the active solvent modulation (ASM) valve (Fig. 8b) was activated 

and the corresponding chromatograms are given in Fig. 10d, g. The ASM valve allows four 

positions (Fig. 11) [18]. In Fig. 11, the valve switching beginning with the sampling in Deck A 

and ending with the analysis of Deck B is depicted. In Fig. 11 Pos.1a the 1D eluent is 

transferred and sampled into the multiple heart cutting (MHC) loops of the Deck A ending with 

cut #5 in the sixth loop. Then the valve switches like it is shown in position 2. The new position 

enables on the one hand the sampling of further cuts in Deck B. On the other hand, the analysis 

of previously sampled cuts starts. The flow of the mobile phase of the second dimension is 

split in the valve. According to the installed ASM capillary (bypass capillary), the flow is divided 

into one part which transfers the sample from loop deck A and four parts which go through the 

ASM capillary, for example. Both flow streams are reunited in the valve and directed to the 2D 

column. In this way, the cut is diluted before it is transferred to the 2D column and the solvent 

mismatch is reduced. The number of ASM capillary flushes can be adjusted. Once the sampled 

volume is completely transferred, the ASM phase is finished and the valve switches to position 

3 where the whole flow is led through the MHC loop. After finishing the analysis of this cut the 
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MHC valve switches to the other cuts (not shown) and the analysis starts in the same way with 

the ASM phase like already described. As soon as all the cuts stored in Deck A are analyzed, 

the valve switches to position 4 where the ASM phase of the last 1D effluent sampled in the 

MHC loops starts. Afterwards, the valve returns to start position and the analysis without 

enabled ASM of Deck B is possible (position 1b). 

 

 

Fig. 11: Valve positions during the analysis of 10 cuts stored by high-resolution sampling with and without enabled 
active solvent modulation (ASM). 

 

In general, the bypass dilutes the stored fraction before being transferred onto the 2D column 

which gives a refocusing effect of the sample zone. The ASM factor is dependent on the 

installed ASM capillary. Herein, we used the smallest available ASM loop leading to the 

(largest) dilution factor 5. This is necessary because of the high elution strength of the 

composition of the 1D eluent under RP conditions used in 2D, as well as the lower tolerance of 

high injection volumes due to the column dimension in the second dimension (50 × 2.1 mm) 

[18]. In consequence, the mismatch of the start conditions in the second dimension and the 

solvent of the sample from 1D decreases. In cut #3 vitamin A showed no further improvement 
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in efficiency (see Electronic Supplementary Material Table S2) by using the ASM valve (plate 

number N = 11,500) as compared to gradient refocusing without ASM (N = 10,100) because it 

is strongly retained (cf. Fig. 10d vs c). The same was observed for vitamin E. Vitamin K exhibits 

slightly higher efficiency with ASM in cut #3 (Electronic Supplementary Material Table S2). 

Finally, Vitamin D peak shape and efficiency was greatly improved and turned into a symmetric 

Gaussian peak with ASM (Electronic Supplementary Material Table S2). Additionally, the 

vitamin A peak was completely separated into a main peak and a peak of an 

impurity/degradation product in cut #7 with ASM (see different UV spectra shown in Electronic 

Supplementary Material Fig. S15) while only a shoulder was observed by gradient refocusing 

(cf Fig. 10g vs Fig. 10f). Overall, the positive effect of ASM is striking and can lead to 

significantly improved separations when HILIC is coupled to RPLC in 2D-LC high-resolution 

sampling. 

The chromatographic traces of the cuts #1–10 from the high-resolution sampling can be 

reconstituted into a comprehensive chromatogram using LC×LC-image software (Fig. 12). 

Comparing the contour plots in Fig. 12b–d, it becomes clearly evident that the zones in Fig. 12c 

(gradient refocusing) and Fig. 12d (ASM) are sharp while they are extremely broad in Fig. 12b 

(direct transfer of HILIC fractions). In the contour plots of Fig. 12d, wavelength 270 nm, two 

peaks emerge with ASM which are not separated in the corresponding UV trace of Fig. 12c 

(gradient refocusing), underlining the advantage of ASM. Vitamin D is the first eluted of the two 

zones. 
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Fig. 12: Simultaneous analysis of fat- and water-soluble vitamins using time-based high-resolution sampling for 
comprehensive peak coverage of targeted analytes a1D chromatogram of the investigated vitamin mixture 
separated on the 2-pyridylurea column (5 µm, 100 Å, 150 × 4.6 mm) under HILIC conditions and the 2D signal of 
the transferred fractions visualized with LC x LC software detected b after direct transfer, c after 0.61 min focusing 
at 5% B and d 0.61% at 5% B using active solvent modulation. Experimental conditions, same as specified in 
Fig. 10. 
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4.3.5. Conclusions 

A selective comprehensive 2D-LC with a 2-pyridylurea-modified silica stationary phase 

operated in the HILIC mode in the first dimension and a RP C8 core–shell column in the second 

dimension allowed the simultaneous separation of fat- and water-soluble vitamins in a single 

analysis. The HILIC separation in 1D enabled a baseline resolution of all water-soluble vitamins 

and the 2D separation by RP C8 of all fat-soluble vitamins. The two separation modes were 

coupled to get a full separation of all analytes. Since only the fat-soluble vitamins remained 

unresolved in the 1D, only the region of the chromatogram close to the void where the fat-

soluble vitamins eluted was comprehensively sampled into the 2D (high-resolution sampling, 

selective comprehensive 2DLC). Upon direct transfer of the collected 1D-HILIC fractions into 

the 2D-RPLC column, peaks were distorted and broad due to mobile phase incompatibility. 

Gradient refocusing starting the 2D gradient with very low modifier content has led to 

refocusing of the zones of late eluting peaks while early ones were still broad with some loss 

in resolution as exemplified for vitamin D. Using active solvent modulation, this problem could 

be solved and all peaks showed good peak shape and optimal resolution. 2D-LC hyphenating 

HILIC and RPLC is therefore a good option for the simultaneous separation of fat- and water-

soluble vitamins. The method should be also applicable to quantitative analysis of vitamins in 

multivitamin supplements. For this purpose, like for the analysis of vitamins in food extracts or 

other more complex mixtures, elution conditions may need some adjustments. In this case, 

matrix components may coelute with the lipophilic components in the 1D HILIC separation and 

will be switched into the 2D where the lipophilic analytes can be resolved from matrix 

components. This is the topic of ongoing studies. 

 

Acknowledgements: ML is grateful to Agilent Technologies for financial support through an 

Agilent Research Award. Stephan Buckenmaier (Agilent Technologies, Waldbronn, 

Germany) is gratefully acknowledged for technical support. 

Funding: This study was funded by an Agilent Technologies Research Award (grant number 

Agilent Research Gift #4068). 

Compliance with Ethical Standards 

Conflict of Interest:  Author ML has received a research grant from Agilent Technologies. 

Other authors declare no conflict of interest. 

Ethical approval: This article does not contain any studies with human participants or 

animals performed by any of the authors.  



 

148 
 

4.3.6. References 

[1] Papadoyannis IN, Tsioni GK, Samanidou VF (1997) Simultaneous determination of nine water- and fat-
soluble vitamins after SPE separation and RP-HPLC analysis in pharmaceutical preparations and biological 
fluids. J Liq Chromatogr Relat Technol 20(19):3203–3231. https://doi.org/10.1080/10826079708000485 

[2] Moreno P, Salvado V (2000) Determination of eight water- and fat-soluble vitamins in multi-vitamin 
pharmaceutical formulations by high-performance liquid chromatography. J Chromatogr A 870(1 + 2):207–
215. https://doi.org/10.1016/S0021-9673(99)01021-3 

[3] Zbanyszek W, Buszewski B (2002) Determination of different solubility vitamins in pharmaceutical 
preparations. II. Methods validation. J Liq Chromatogr Relat Technol 25(8):1243–1254. 
https://doi.org/10.1081/JLC-120004022 

[4] Buszewski B, Zbanyszek W (2002) Determination of different solubility vitamins in pharmaceutical 
preparations. I. HPLC column switching. J Liq Chromatogr Relat Technol 25(8):1229–1241. 
https://doi.org/10.1081/JLC-120004021 

[5] Phinney KW, Rimmer CA, Thomas JB, Sander LC, Sharpless KE, Wise SA (2011) Isotope dilution liquid 
chromatography-mass spectrometry methods for fat- and water-soluble vitamins in nutritional formulations. 
Anal Chem (Washington, DC, U S) 83(1):92–98. https://doi.org/10.1021/ac101950r 

[6] Li HB, Chen F (2001) Simultaneous determination of twelve water- and fat-soluble vitamins by high-
performance liquid chromatography with diode array detection. Chromatographia 54(3):270–273. 
https://doi.org/10.1007/bf02492256 

[7] Klejdus B, Petrlová J, Potěšil D, Adam V, Mikelová R, Vacek J, Kizek R, Kubáň V (2004) Simultaneous 
determination of water- and fat-soluble vitamins in pharmaceutical preparations by high-performance liquid 
chromatography coupled with diode array detection. Anal Chim Acta 520(1):57–67. 
https://doi.org/10.1016/j.aca.2004.02.027 

[8] Romain D, Nazanin A, Achim S, Michael L, Wolfgang L (2011) Simultaneous separation and analysis of 
water- and fat-soluble vitamins on multi-modal reversed-phase weak anion exchange material by HPLC-UV. 
J Sep Sci 34(7):761–772. https://doi.org/10.1002/jssc.201000793 doi 

[9] Gentili A, Caretti F(2013) Analysis of vitamins by liquid chromatography. In Elsevier Inc., pp 477–517. 
https://doi.org/10.1016/B978-0-12-415806-1.00018-8 

[10] Karazniewicz-Lada M, Glowka A (2016) A review of chromatographic methods for the determination of 
water- and fat-soluble vitamins in biological fluids. J Sep Sci 39(1):132–148. 
https://doi.org/10.1002/jssc.201501038 

[11] Fanali C, D’Orazio G, Fanali S, Gentili A (2017) Advanced analytical techniques for fat-soluble vitamin 
analysis. TrAC Trends Anal Chem 87:82–97. https://doi.org/10.1016/j.trac.2016.12.001 

[12] Santos J, Mendiola JA, Oliveira MBPP, Ibanez E, Herrero M (2012) Sequential determination of fat- and 
water-soluble vitamins in green leafy vegetables during storage. J Chromatogr A 1261:179–188. 
https://doi.org/10.1016/j.chroma.2012.04.067 

[13] Tayade AB, Dhar P, Kumar J, Sharma M, Chaurasia OP, Srivastava RB (2013) Sequential determination of 
fat- and water-soluble vitamins in Rhodiola imbricata root from trans-Himalaya with rapid resolution liquid 
chromatography/tandem mass spectrometry. Anal Chim Acta 789:65–73. 
https://doi.org/10.1016/j.aca.2013.05.062. 

[14] Taguchi K, Fukusaki E, Bamba T (2014) Simultaneous analysis for water- and fat-soluble vitamins by a novel 
single chromatography technique unifying supercritical fluid chromatography and liquid chromatography. J 
Chromatogr A 1362:270–277. https://doi.org/10.1016/j.chroma.2014.08.003 

[15] Ni X, Xing X, Cao Y, Cao G (2014) Rapid analysis of water- and fat-soluble vitamins by electrokinetic 
chromatography with polymeric micelle as pseudostationary phase. J Chromatogr A 1370:263–269. 
https://doi.org/10.1016/j.chroma.2014.10.047 

[16] Stoll DR, Carr PW (2017) Two-dimensional liquid chromatography: a state of the art tutorial. Anal Chem 
89(1):519–531. https://doi.org/10.1021/acs.analchem.6b03506 

[17] PB WJ, GA FG, J. SP (2018) Optimizing separations in online comprehensive two-dimensional liquid 
chromatography. J Sep Sci 41(1):68–98. https://doi.org/10.1002/jssc.201700863 doi 

[18] Stoll DR, Shoykhet K, Petersson P, Buckenmaier S (2017) Active solvent modulation: a valve-based 
approach to improve separation compatibility in two-dimensional liquid chromatography. Anal Chem 
89(17):9260–9267. https://doi.org/10.1021/acs.analchem.7b02046 



 

149 
 

[19] Pursch M, Wegener A, Buckenmaier S (2018) Evaluation of active solvent modulation to enhance two-
dimensional liquid chromatography for target analysis in polymeric matrices. J Chromatogr A 1562:78–86. 
https://doi.org/10.1016/j.chroma.2018.05.059 

[20] Stoll DR, Harmes DC, Staples GO, Potter OG, Dammann CT, Guillarme D, Beck A (2018) Development of 
comprehensive online two-dimensional liquid chromatography/mass spectrometry using hydrophilic 
interaction and reversed-phase separations for rapid and deep profiling of therapeutic antibodies. Anal Chem 
90(9):5923–5929. https://doi.org/10.1021/acs.analchem.8b00776 

[21] Lämmerhofer M, Richter M, Wu J, Nogueira R, Bicker W, Lindner W (2008) Mixed-mode ion-exchangers 
and their comparative chromatographic characterization in reversed-phase and hydrophilic interaction 
chromatography elution modes. J Sep Sci 31(14):2572–2588. https://doi.org/10.1002/jssc.200800178 doi 

[22] Bäurer S, Polnick S, Sánchez-Muñoz OL, Kramer M, Lämmerhofer M (2018) N-Propyl-N′-2-pyridylurea-
modified silica as mixed-mode stationary phase with moderate weak anion exchange capacity and pH-
dependent surface charge reversal. J Chromatogr A 1560:45–54. 
https://doi.org/10.1016/j.chroma.2018.05.012 

[23] Jandera P, Hájek T, Česla P (2011) Effects of the gradient profile, sample volume and solvent on the 
separation in very fast gradients, with special attention to the second-dimension gradient in comprehensive 
two-dimensional liquid chromatography. J Chromatogr A 1218(15):1995–2006. 
https://doi.org/10.1016/j.chroma.2010.10.095 

[24] Stoll DR, O’Neill K, Harmes DC (2015) Effects of pH mismatch between the two dimensions of reversed-
phase × reversed-phase two-dimensional separations on second dimension separation quality for ionogenic 
compounds—I. Carboxylic acids. J Chromatogr A 1383:25–34. 
https://doi.org/10.1016/j.chroma.2014.12.054 

[25] Gargano AFG, Duffin M, Navarro P, Schoenmakers PJ (2016) Reducing dilution and analysis time in online 
comprehensive two-dimensional liquid chromatography by active modulation. Anal Chem 88(3):1785–1793. 
https://doi.org/10.1021/acs.analchem.5b04051 

[26] Stoll DR, Sajulga RW, Voigt BN, Larson EJ, Jeong LN, Rutan SC (2017) Simulation of elution profiles in 
liquid chromatography—II: Investigation of injection volume overload under gradient elution conditions 
applied to second dimension separations in two-dimensional liquid chromatography. J Chromatogr A 
1523:162–172. https://doi.org/10.1016/j.chroma.2017.07.041 

  



 

150 
 

4.3.7. Supplementary Material 

4.3.7.1. Modeling of Responses with MODDE and Statistical 

Evaluation 

The chromatographic data (retention factors) of the isocratic study on the influence of the 

various experimental factors were processed with MODDE 8.0.2 (Umetrics, Umea, Sweden) 

using Full Factorial (3 levels) Design.  

 

Fig. S1. Full factorial design (with 3 factors at 3-levels) used for the evaluation of the design pace under isocratic 
HILIC conditions. 

 

To find out the effects of the three investigated factors (acetonitrile percentage, pH and buffer 

concentration) on the response, the following polynom function was used to model the 

response: 

Y = b0 + b1X1 + b2X2 + b3X3 + b11X1
2 + b22X2

2 + b33X3
2 + b12X1X2 + b13X1X3 + b23X2X3 + b123X1X2X3 

+ ε 

where Y is the response, Xi are the factors, including % ACN (modifier), mM NH4Acetate 

(buffer) and pH, b0 is the intercept and the other bi are the coefficients, ε are the residuals. 

This model was used to derive the coefficients by nonlinear curve fitting which then allowed to 

create contour plots. 

In Table S1 the model statistics is summarized. The best model with PLS was obtained with 5 

principal components. In this Table S1, R2 shows the model fit, while Q2 shows an estimate 

of the prediction quality, where 1 is perfect, 0 is similar predictive quality as the sample mean. 
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The models for retention factors B3, B6, C, B2 have sufficient model fit (higher R2) and 

reasonable predictive quality (Q2 >0.5). The Summary List (Table S1) displays for each 

response also R2 Adjusted (R2 Adj.), the Standard Deviation of Y (SDY), the Residual 

Standard Deviation (RSD), and the number of experiments (N). As can be seen from Table 

S1, for the retention factors of B1 and B9 no model with a good fit could be obtained (R2 <0.9 

and Q2 < 0.5) and therefore these models are discarded and not further discussed. 

 

 

Table S1: Summary of multivariate optimization (PLS; optimal number of components, 5) 

k R2 R2 Adj Q2 SDY RSD N 

B3 0.95990 0.93484 0.68202 0.12032 0.03071 27 

B6 0.97361 0.95711 0.79089 0.43893 0.09090 27 

C 0.93547 0.89514 0.74720 0.71367 0.23111 27 

B2 0.95470 0.92638 0.68067 0.21173 0.57449 27 

B1 0.61677 0.37725 0.37911 0.79804 6.29774 27 
B9 0.49018 0.17154 0.18761 0.65098 5.92522 27 

 

 

 

Fig. S2: Coefficient plots for retention factors (error bars are 95% confidence intervals). 
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Fig. S2 depicts the coefficient plots (scaled and centered coefficients with 95% confidence 

intervals as error bars), which illustrate the significance of the model terms. The most 

significant term for retention factors of vitamin B3, B6, and B2 was the % ACN, for retention 

factor of vitamin C is pH. From error bars being larger than the respective coefficient, it can be 

derived that this term is not significant. 

 

4.3.7.1.1. Contour Plots 

 

The contour plots can be used to predict the response values. They show how retention factors 

k vary by the selected two factors while the third factor is kept constant. The dark regions (red) 

identify higher retention. It can be observed that at high pH and high modifier content a 

maximum retention factor for vitamin B3, B6, C, and B2 is obtained. In addition, it seems that 

changing the buffer concentration has little effect on the retention for these vitamins.  

 

 
Fig. S3: Contour plots of retention factor for vitamin B3 with respect to buffer concentration and percentage of 
modifier, where pH was held at 4.5, 5.5, 6.5 (buffer as variable to the left and modifier, i.e. acetonitrile, to the right) 
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Fig. S4: Contour plots of retention factor for vitamin B3 with respect to pH and percentage of modifier, where buffer 
concentration was held at 5, 10, 15mM (pH as variable to the left and modifier, i.e. acetonitrile, to the right) 

 
 

 

Fig. S5: Contour plots of retention factor for vitamin B3 with respect to pH and buffer concentration, where 
percentage of modifier was held at 85, 90, 95% (pH as variable to the left and buffer to the right) 
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Fig. S6: Contour plots of retention factor for vitamin B6 (top panel: buffer as variable to the left and modifier, i.e. 
acetonitrile, to the right; middle panel: pH as variable to the left and modifier, i.e. acetonitrile, to the right; bottom 
panel: pH as variable to the left and buffer to the right) 
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Fig. S7: Contour plots of retention factor for vitamin C (top panel: buffer as variable to the left and modifier, i.e. 
acetonitrile, to the right; middle panel: pH as variable to the left and modifier, i.e. acetonitrile, to the right; bottom 
panel: pH as variable to the left and buffer to the right) 
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Fig. S8: Contour plots of retention factor for vitamin B2 (top panel: buffer as variable to the left and modifier, i.e. 
acetonitrile, to the right; middle panel: pH as variable to the left and modifier, i.e. acetonitrile, to the right; bottom 
panel: pH as variable to the left and buffer to the right) 
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4.3.7.2. 1D Gradient Optimization 

 

 

Fig. S9: Influence of the investigated HILIC gradient time on the retention and separation of the vitamins with 
constant pH and buffer concentration.  

Experimental conditions: Mobile phase A: ACN/H2O (1:1,v/v), 15 mM NH4CH3COO, apparent pH 4.5, adjusted with 
acetic acid, mobile phase B: ACN/H2O (95:5,v/v), 15 mM NH4CH3COO, apparent pH 4.5 adjusted with acetic acid; 
1 mL/min, 25 °C, 270 nm;  
1, Vitamin A; 2, Vitamin E; 3, Vitamin D; 4, Vitamin K; 5, Vitamin B3; 6, Vitamin B6; 7, Vitamin C; 8, Vitamin B2; 9, 
Vitamin B1; 10, Vitamin B9; 11, Vitamin B12. 
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Fig. S10: Variation of the organic modifier gradient steepness and the influence on the separation of the vitamins. 

Experimental conditions: Mobile phase A: pink: ACN/H2O (2:8,v/v), green: ACN/H2O (3:7,v/v), red: pink: ACN/H2O 
(4:6,v/v), blue: pink: ACN/H2O (5:5,v/v) 15 mM NH4CH3COO, apparent pH 4.5, adjusted with acetic acid, mobile 
phase B: ACN/H2O (95:5,v/v), 15 mM NH4CH3COO, apparent pH 4.5 adjusted with acetic acid; gradient: 0-10 min 
0 to 100% A, hold for 2 min 100% A followed by reequilibration for 8 min, 1.0 mL/min, 25 °C, 270 nm;  
1, Vitamin A; 2, Vitamin E; 3, Vitamin D; 4, Vitamin K; 5, Vitamin B3; 6, Vitamin B6; 7, Vitamin C; 8, Vitamin B2; 9, 
Vitamin B1; 10, Vitamin B9; 11, Vitamin B12. 
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Fig. S11: Comparison of the differences in retention especially for vitamin B1, B9 and B12 using a linear organic 
modifier gradient (green) with a linear mixed organic modifier and buffer gradient (red) and a mixed step organic 
modifier and buffer gradient (blue). 
Experimental conditions: Mobile phase A: ACN/H2O (5:95,v/v), 15 mM NH4CH3COO, apparent pH 4.5, adjusted 
with acetic acid, mobile phase B: ACN/H2O (95:5,v/v), green: 15 mM; red and blue: 2 mM NH4CH3COO, apparent 
pH 4.5 adjusted with acetic acid;  
gradient: green and red: 0-30 min 0 to 100% A, hold for 1 min 100% A followed by reequilibration for 8 min; blue: 
0-5 min 0% A, 5-15 min 0 to 20 % A, 15-30 min 20 to 50% A, hold for 1 min 50% A, followed by reequilibration for 
8 min at 0% A, 1.0 mL/min, 25 °C, 270 nm;  
1, Vitamin A; 2, Vitamin E; 3, Vitamin D; 4, Vitamin K; 5, Vitamin B3; 6, Vitamin B6; 7, Vitamin C; 8, Vitamin B2; 9, 
Vitamin B1; 10, Vitamin B9; 11, Vitamin B12. 

 

 

Fig. S12: Effect of temperature on 2D RPLC separation on Kinetex C8 2.6 µm column (100 Å, 50 x 2.1 mm). 
Charged aerosol detector (CAD). 
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Fig. S13: Optimization of 2D gradient. Agilent 1100 system; Column: Kinetex 2.6 µm C8 (100 Å, 50 x 2.1 mm); 
mobile phase: A:  H2O, 0.1 % FA B: ACN, 0.1 % FA; 2 min start conditions, to 97 % B in 4 min, hold 1 min, in 0.5 
min to start conditions, 0.5 min reequilibration. Flow rate: 1.0 mL/min; 60°C; CAD. 
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Figure S14: High Resolution Sampling of the fat-soluble vitamins which are not retained under HILIC conditions in 
the first dimension (a) and the UV signal of the cuts which are led directly into the second dimension (RP) (b), 
focussed for 0.61min at 5% ACN, 95 % H2O, 0.1% FA in total (c) and combined focussing and transfering via active 
solvent modultion after high resolution sampling of the HILIC separation. 

Experimental conditions: 1D: 2-Pyridylurea stationary phase, 5µm, 100 A, 150 x 4.6 mm; mobile phases: A: 30 % 
ACN, 15 mM NH4Ac in total, pH 4.5; B: 95 % ACN, 15 mM NH4Ac in total, pH 4.5; Gradient: 100 to 0 % B in 10 min, 
2 min 0 % B, 8 min reequilibration 100 % B Inj. vol.: 10µL; Flowrate: 1.0 mL/min; 25°C; 270 nm 

Time based High Resolution Sampling: 40 µL Loop; sampling start: 1.35min, 100 % loopfill, ASM activated during 
the first 0.61 min at H2O/ACN (95:5, v/v) , 0.1 % FA 

2D: Column: Kinetex ® 2.6 µm C8, 100 A, 50 x 2.1 mm;  
mobile phase: A mobile phase: A: H2O/ACN (1:4, v/v) , 0.1 % FA, 1.0 mL/min; 60°C; 270, 290 and 325 nm.   
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4.3.7.3. Performance Evaluation of Refocusing and ASM 

Table S2. Chromatographic data obtained for the three modes of modulation in the selective comprehensive 

HILIC  RPLC 2DLC approach. 

  
Vitamin 

2D Retention 
time [min] 

FWHMa 
[min] 

Asymmetryb Symmetryc Nd R1/2
e 

  Cut #3 

D
ir
e
c
tl
y
 

tr
a
n
s
fe

rr
e
d
  D 0.61 0.20 0.93 0.98 52  

Unknown Coelution with vitamin D     

E 1.16 0.21 0.43 0.80 169 1.57f 

K 1.68 0.23 0.46 0.75 297 1.40 

A 5.29 0.48 0.73 0.88 674 6.00 

fo
c
u
s
e
d
  

D 1.34 0.06 1.15 1.11 2776  

Unknown 1.45 0.03 0.80 0.80 12942 1.40 

E 1.88 0.04 0.91 0.92 12277 6.37f 

K 2.40 0.06 1.36 1.15 8886 6.14 

A 5.99 0.14 0.90 0.94 10152 21.18 

fo
c
u
s
e
d
 +

 A
S

M
 

D 1.34 0.03 0.91 1.08 11102  

D* 1.97 0.03 0.73 0.95 23962 12.39 

E 1.46 0.03 0.80 0.77 13067 2.24f 

K 2.40 0.05 1.43 1.22 12796 13.95 

A 5.93 0.13 0.89 0.94 11527 23.12 

  Cut #7 

D
ir
e
c
tl
y
 

tr
a
n
s
fe

rr
e
d
  

D 0.52 0.16 3.64 2.67 59  

Unknown Coelution with vitamin D     

K 1.67 0.27 0.42 0.80 213 3.16 

fo
c
u
s
e
d
  D 1.36 0.08 0.33 0.70 1601  

Unknown Coelution with vitamin D     

K 2.41 0.11 0.61 0.83 2653 6.50 

fo
c
u
s
e
d
 +

 

A
S

M
 D 1.36 0.03 0.78 0.95 11385  

Unknown 1.45 0.03 1.00 0.95 12889 1.71 

K 2.39 0.05 1.43 1.19 12690 15.24g 

        
b FWHM = full width half maximum     
b calculated: Asymmetry = b/a      

c calculated: Symmetry =  (a0.05+b0.05)/(2*a0.05) 
   

d calculated: N =  5.54*(tR/FWHM)2 
    

e calculated: R =  1.18*(tR2-tR1)/(FWHM1+FWHM2))2    
f Resolution between vitamin D and E 

 
 

  

g Resolution between vitamin D and K     
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Fig. S15: UV Spectra of the two compounds that were separated using ASM before starting the analysis in the 
second dimension a) Vitamin D (retention time 65.922 min (complete signal)) and b) related compound (impurity) 
(retention time 66.011 min) 
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4.3.8. Corrigendum 

Correction to: Simultaneous Separation of Water and Fat Soluble Vitamins by 

Selective Comprehensive HILIC   RPLC (High Resolution Sampling) and Active 

Solvent Modulation 

 

Stefanie Bäurer 1, Wenkai Guo 1, Stefan Polnick1, Michael Lämmerhofer 1 * 

1 Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of 

Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany 

 

Reprinted by permission from Springer Nature Customer Service Centre GmbH:  

Springer Nature, Journal: Chromatographia:  

Title: Correction to: Simultaneous Separation of Water and Fat Soluble Vitamins by Selective 

Comprehensive HILIC × RPLC (High Resolution Sampling) and Active Solvent Modulation, 

S. Bäurer, W. Guo, S. Polnick, M. Lämmerhofer, Chromatographia 83 (2020) 1159.  

DOI: 10.1007/s10337-020-03940-w 

Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020 

 

 

Correction to Chromatographia (2019) 82:167-180, https://doi.org/10.1007/s10337-018-

3615-0 

 

In this article, we depicted the structure of the investigated fat-and water-soluble vitamins in 

Fig. 2. Unfortunately, the published structure in Fig. 2 was vitamin K3 (Menadione) instead of 

vitamin K1 (Phytomenadione) (log P = 9.7, calculated with Marvin Sketch) which was actually 

used in the presented experiments. 

Additionally, we want to clarify the final buffer concentration of the 1D gradient method which 

was 15 mM ammonium acetate (pH adjusted to 4.5) as correctly stated in the respective Figure 

captions and the 2D conditions used for the separations depicted in Fig. 10 (conditions as 

described in the Materials and Methods part are correct): Mobile phases: A: H2O, 0.1% FA, B: 

ACN, 0.1% FA, isocratic separation at 80% B after direct transfer, focusing (5% B), and 

focusing (5% B) with ASM, respectively. The corresponding text is still correct. 

https://doi.org/10.1007/s10337-020-03940-w
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4.4. Mixed-mode Chromatography Characteristics of Chiralpak 

ZWIX(+) and ZWIX(–) and Elucidation of their Chromatographic 

Orthogonality for LC×LC Application 

 

Stefanie Bäurer a, Martina Ferri a,b, Andrea Carotti b, Stefan Neubauer a, Roccaldo Sardella b, 

Michael Lämmerhofer a * 

 

a Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of 

Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany 

b Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 

Perugia, Italy 

 

Reprinted with permission from Analytica Chimica Acta, Volume 1093 (2020)  

Pages 168-179,  

DOI: 10.1016/j.aca.2019.09.068 

Copyright 2019 Elsevier B.V. 

 

Graphical Abstract 
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4.4.1. Abstract 

Two-dimensional liquid chromatography requires orthogonal columns and/or separation 

principles in the first and second separation dimension. It is sometimes not straightforward to 

achieve. Chiral columns could expand the toolbox for 2D-LC, but are rarely exploited for this 

purpose, not least due to missing understanding of retention principles under non-chiral 

application conditions. To gain more insight, in this study Chiralpak ZWIX(+) and ZWIX(−), 

based on zwitterionic quinine and quinidine carbamate selectors, were carefully characterized 

by molecular dynamics simulations, lipophilicity/hydrophilicity measurements of selectors, pH-

dependent ζ-potential determinations, and chromatographic characterization in RPLC and 

HILIC modes combined with unsupervised principal component analysis to extract 

classification of these columns in comparison to a number of commercial benchmarks (RP, 

HILIC and mixed-mode columns). The results showed that these chiral columns can be 

classified as mixed-mode chromatography phases with balanced lipophilic-hydrophilic surface 

character, excess of negative net charge due to sulfonic acid groups (in spite of weakly basic 

quinuclidine and quinoline rings), and multimodal applicability (RP, HILIC and polar organic 

elution modes). Orthogonality mapping in comparison to a number of modern HILIC and mixed-

mode columns revealed that Poroshell HILIC-Z (with a zwitterionic ligand on 2.7 μm core-shell 

particles) can be beneficially combined as second dimension with the ZWIX column for 

comprehensive LC × LC. The online hyphenation of this 2D-LC system with complementary 

detection modalities including UV (DAD for chromophoric substances), charged aerosol 

detection (for universal detection and calibration of non-volatile analytes) and high-resolution 

mass spectrometry (ESI-QTOF-MS/MS for identification) provided an advanced method for 

comprehensive impurity profiling, applicable for instance for amino acid pharmaceutical 

products. 

 

4.4.2. Introduction 

Two-dimensional liquid chromatography gained recently strong impetus in the field of 

pharmaceuticals and biopharmaceuticals analysis as well as a number of other applications of 

LC including food and polymer analysis [1-10]. Its success in both maximizing effective peak 

capacities and providing enhanced selectivities for challenging analyte mixtures is largely 

related to the availability of orthogonal separations in first and second separation dimensions. 

The combination of two RP phases at distinct pH as well as of RPLC and HILIC modes have 

qualified as the most promising orthogonal separation modes in LC × LC [11]. The former 

combination is of advantage in terms of mobile phase compatibility upon [12-16] fraction 

transfer while the degree of orthogonality may be lower. The latter employs principally miscible 
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eluents in the two dimensions, but compatibility is seriously compromised by the fact the 

fraction sampled from the first dimension is a strong eluent in the second dimension leading to 

peak broadening, distorted peaks or even splitted peaks; the introduction of the active solvent 

modulation concept has relieved the problem a bit [17]. Mixed-mode chromatography [18-30] 

in one of the two dimensions could hold some promise as orthogonal LC mode as well but has 

been realized in few studies only [31]. Some researchers reported that chiral columns could 

be beneficially used for achiral separation problems as well [32], a strategy that is rarely 

considered by workers not much involved in chiral separations. In fact, since most chiral 

stationary phases contain both polar functionalities embedded in apolar domains they might 

be classified as mixed-mode phases per se in achiral applications i.e. separations not having 

enantiomer separations as the target focus. However, their general physicochemical properties 

in terms of hydrophilicity-lipophilicity balance (HLB) as well as their retention characteristics for 

pharmaceuticals or organic molecules in achiral applications is rarely reported in a systematic 

manner like is the case for RP phases [33] (e.g. based on hydrophobic subtraction model or 

United States Pharmacopoeia Product Quality Research Institute (USP PQRI) approach [34]). 

Only a few studies attempted to apply retention models to mixed-mode chromatography. 

However, the models were typically examined on a single MMC column [35-38], but not applied 

for comparison of a larger number of MMC phases. A systematic classification of mixed-mode 

phases [19,21] and of chiral columns regarding their mixed-mode character could widen their 

application range. 

Along this line, we herein propose the use of two chiral columns, namely Chiralpak ZWIX(+) 

and Chiralpak ZWIX(−) [39] as potentially useful mixed-mode phases for achiral separations 

and in particular also as orthogonal separation principle in 2D-LC separations. The selectors 

ZWIX(+) and ZWIX(−) exhibit multiple interaction possibilities like hydrophobic moieties, polar 

embedded groups, a strong cation exchange site and a weak anion exchange site (see Fig. 1). 

The pKa of the sulfonic acid, quinoline and quinuclidine nitrogens were calculated to be −0.97, 

4.05 and 8.08, respectively (MarvinSketch 14.12.15.0, ChemAxon Ltd., Budapest, Hungary). 

In order to make these chiral columns more amenable for the design of 2D-LC separations, 

their physicochemical surface properties should be examined to allow their characterization 

and classification within the set of other polar RP, HILIC and commercial mixed-mode 

chromatography (MMC) phases. For this purpose, we adopt a molecular modelling approach 

to visualize the 3-dimensional structure of the chromatographic ligands indicating their binding 

clefts and steric interaction contributions, as well as their hydrophilic and hydrophobic surface 

domains. Followed is a pH-dependent lipophilicity and hydrophilicity measurement of the 

zwitterionic ligands by RPLC and HILIC, respectively, for the characterization of their HLB and 

regarding their differences with respect of the two diastereomers. Since the nominal net charge 

was expected to be largely zero due to positive-negative surface charge balance by mutual 
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compensation of anionic and cationic sites of the ligands, there was great interest in measuring 

the ζ-potential after immobilization of the chiral selectors on silica particles in order to figure 

out which is the prevailing surface charge under experimental conditions. Simple 

chromatographic tests were then carried out to allow for the unsupervised classification of the 

two chiral phases amongst a series of benchmarks (polar RP, HILIC, MMC) as outlined above 

by use of principal component analysis (PCA) using retention factors as independent variables. 

Last but not least, chromatographic orthogonalities were evaluated against a number of 

stationary phases of distinct classes for the LC × LC separation of amino acids. To indicate the 

practical utility of the resultant LC × LC method for the potential application of amino acid 

impurity profiling, this comprehensive two-dimensional LC method was combined with 

orthogonal detection modalities including UV (diode-array detector), CAD (charged aerosol 

detector) and high-resolution mass spectrometry (HR-MS/MS). 
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4.4.3. Materials and Methods 

4.4.3.1. Materials 

The columns Chiralpak ZWIX(+) (150 × 3 mm, 3 μm) and ZWIX(−) (150 × 4 mm, 3 μm) were 

obtained from Chiral Technologies (Illkirch, France). The surface structures of the silica-based 

zwitterionic chiral selectors are shown in Fig. 1. The Poroshell HILIC-Z column (50 × 3.0 mm, 

2.7 μm) was from Agilent Technologies (Waldbronn, Germany). 

 

 

Fig. 1. Surface structure of the zwitterionic pseudo-enantiomeric stationary phases ZWIX(+) and ZWIX(−). Note, 
the stereochemistry is different for four out of seven asymmetric atoms. 1S,3R, 4S are identical in ZWIX(+) and 
ZWIX(−). Other configurations: ZWIX(+) (quinine-derived): 8S,9R,1″S,2″S; ZWIX(−) (quinidine-derived): 
8R,9S,1″R,2″R. 

 

Formic acid (FA), acetic acid (AA), histidine, tris-HCl, boric acid, hydrochloric acid, sodium 

hydroxide and potassium chloride for the determination of the ζ-potentials, as well as acetic 

acid, formic acid, ammonium acetate (NH4AA), ammonium formate (NH4FA) and ammonia 

used for the preparation of the mobile phases of the liquid chromatographic experiments 

(HPLC grade quality) were purchased from Sigma Aldrich (Merck, Munich, Germany). 

Acetonitrile HPLC grade (ACN) was from J.T.Baker (Deventer, Netherlands) and MS grade 

quality from Carl Roth (Karlsruhe, Germany). Water for HPLC and 2D-LC-DAD-CAD-MS was 

prepared from demineralized water by further purification using ElgaPurLab Ultra Purification 

system (Celle, Germany). 

The analytes of the RP test butylbenzene (BuB), pentylbenzene (PeB), N-tert-butoxycarbonyl-

prolyl-phenylalanine (Boc-Pro-Phe) and the reagents O,O-diethylthiochlorophosphate 

(DETCP) and triethylamine for the synthesis of O,O-diethylthiophosphate (DETP), for the 
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HILIC test (caffeine, theobromine, theophylline, adenosine, cytidine, guanosine, thymidine, 

uridine, ascorbic acid, nicotinic acid, pyridoxine, riboflavin, thiamine), the salts lithium bromide, 

potassium chloride, rubidium chloride and sodium chloride, as well as the void volume markers 

uracil, acetone and toluene were purchased from Sigma Aldrich (Munich, Germany). DETCP 

was hydrolyzed to DETP in the presence of an equimolar amount of triethylamine in a mixture 

of acetonitrile and water (75:25; v/v). Amino acids were from Sigma Aldrich and purchased 

from Merck. 

 

4.4.3.2. Molecular Modelling Methods 

The Maestro 11.4 graphical interface of the Schrödinger Suite 2017-4 (Schrödinger, LLC, New 

York, NY, 2017) was used. As reported in the previous work [40] the cubic box was built with 

a 30 Å side length. For a realistic reproduction of the stationary phase environment, four 3-

mercaptopropyl-functionalized silanols (∼1.97 mol m−2), eight free silanols (∼8.0 mol m−2) and 

forty-five silicon atoms were considered for each grafted selector (SO) unit (∼0.5 mol m−2), at 

the base of the box. All the silicon atoms and their bonded hydrogen atoms in the base layer 

were set frozen during the molecular dynamics. A custom solvent of ACN/water (90:10; v/v) 

was created in house with the aid of the Packmol tool [41] and added to the simulation systems. 

The two simulations with the two CSP systems were performed in the canonical ensemble at 

298 K. The temperature in the simulation cell was maintained constant through use of a Nosé-

Hoover thermostat [42]. All the other parameters in the simulation study were left to default 

values in the Desmond Molecular Dynamics System (version 5.2, Schrödinger, LLC, New 

York, NY, 2017) present in the Schrödinger Suite 2017-4 [43-45]. A production run produced 

3000 frames during the 1 μs dynamics, with an integration time of 2 fs. All the conformations 

of the two SOs were extracted by each frame and used to calculate three descriptors: the 

conformational energy of the SO (SELF-SO, in kcal mol−1) to identify the energy minima, the 

Solvent Accessible Surface Area (SASA, in Å2), the Polar Surface Area (PSA, in Å2) and the 

Volume (in Å3). The three latter surface descriptors were calculated by the Vega ZZ software 

[46,47]. 

 

4.4.3.3. ζ-Potential Determination by Electrophoretic Light 

Scattering (ELS) 

The measurements of the electrophoretic mobility of the modified silica particles were carried 

out in a pH dependent manner with a Zetasizer NanoZS particle analyzer equipped with a 

Universal Dip Cell (Malvern Instruments, Herrenberg, Germany). For this purpose, modified 

silica particles were suspended at a concentration of 0.2 mg mL−1 in 10 mM KCl solutions 

containing 1 mM of the following buffers: formic acid/Na formate, acetic acid/Na acetate, 
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histidine, tris/tris-HCl, boric acid/Na-borate. The dip cell was tempered to 25 °C. The 

measurements were done in triplicates. The Von Smoluchowski equation was used for the 

calculation of the ζ-potentials. 

 

4.4.3.4. Liquid Chromatographic Experiments 

4.4.3.4.1. Instrumentation and Utilized Software 

The chromatographic characterization of the ZWIX phases by 1D-LC was performed on an 

Agilent 1100 series LC system (Waldbronn, Germany) equipped with a degasser, quaternary 

pump, autosampler, thermostated column compartment and a diode array detector. In some 

experiments, the Agilent 1100 HPLC was coupled to a charged aerosol detector (CAD) 

(Corona VEO CAD, Thermo Fisher Scientific, Munich, Germany). The system was controlled, 

and the data was analyzed using OpenLab CDS ChemStation – Edition for LC & LC/MS 

System (Rev. B.04.03). The samples for the characterization under RP and HILIC conditions 

were analyzed on an Agilent 1290 series LC system from Agilent Technologies with the same 

setup except a binary pump. 

The principal component analysis was done by SIMCA Multivariate Data Analysis Solution, 

Version 15.0.2.5959 from Sartorius Stedim Data Analytics AB (Umeå, Sweden) (level of 

significance: 95%, normalized in units of standard deviation, no weighting, autoscaled, 

centered). 

The online full comprehensive 2DLC runs were performed on an Agilent 1290 Infinity II 2D-LC 

Solution. The first dimension (1D) consisted of a flexible pump (G7104A), autosampler 

(G7167B) and column compartment (G7116B) followed by a pressure relief device (G4236-

60010). For the coupling of 1D and 2D, a two-position four port dual valve with 40 μL sample 

loops was installed. In the second dimension (2D), a high speed pump (G7120A) and a column 

compartment (G7116B) was used. The flow was split at the ratio of 1:11.6 using a QuickSplit 

Flow Splitter from ERC GmbH (Riemerling, Germany). The high flow stream was directed to a 

DAD (G7117B) (1  μL flow cell) connected in series (in-line) to the Corona Veo CAD, while the 

low flow stream was used for hyphenation to a Sciex TripleTOF 5600 + with a Duospray ion 

source (ESI interface). The 2D-LC system was controlled with Open Lab CDS Rev. 

C.01.07SR4 and the mass spectrometer with Analyst TF 1.7 software (AB Sciex, Darmstadt, 

Germany). The data were processed by LC-Image Version 2.7b3 LC × LC-HRMS from GC 

Image (Lincoln, NE, USA). 
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4.4.3.4.2. Chromatographic Conditions for 1D-LC 

The mobile phases were prepared according to the conditions stated in the figure captions 

and/or in the Supplemental Material. The apparent pH ( 𝑝𝐻𝑤
𝑠 , measured in the hydro organic 

mixtures (s), calibrated in aqueous calibration solutions (w)) was adjusted in the final mixture. 

The flow rate was 1.0 mL min−1, the temperature was 30 °C, the injection volume 5 μL and in 

case of UV detection the wavelength was 220 nm unless otherwise stated. 

 

4.4.3.4.3. Analysis of Proteinogenic Amino Acids via LC × LC-DAD-CAD-ESI-

QTOF-MS/MS 

For the column screen (columns, their dimensions and suppliers are listed in Table S2), the 

mobile phases were a mixture of acetonitrile, water and aqueous 200 mM NH4FA, pH 3.5 (A: 

50:45:5, v/v/v; B: 90:5:5, v/v/v) except for Poroshell HILIC-Z and Chiralpak ZWIX(+) and 

ZWIX(−) (conditions compare Supplemental Material). After the initial holding period (for 5 min 

at 100% B), the linear 20 min long linear gradient from 100 to 0 %B started. After another 5 min 

hold at 0% B, the column was re-equilibrated for 10 min at 100 %B. The linear flow velocity 

was 1.18 mm s−1, the thermostat was set to 40 °C, the injection volume was adjusted to the 

column dimension (5, 10 and 20, respectively). The ESI parameters were chosen as follows: 

GS1: 60 psi, GS2: 60 psi, CUR: 35 psi, ISVF 4000 V, TEM 500 °C. The QTOF was operated 

in positive mode (35–1000 m/z) and information-dependent acquisition (IDA) was used. A 

complete cycle comprised one survey scan (200 ms, CE: 5 V, DE: 100) and four product ion 

scans (20 ms, CE: 30 V, CES: 20 V, DE: 100) resulting in a cycle time of 330 ms. 

For the online full comprehensive measurements, ZWIX(+) was used in the first dimension (1D) 

and Poroshell HILIC-Z in the second (2D). The 1D mobile phases were A: H2O, B: ACN, C: 

200 mM NH4FA/400 mM FA in MeOH/H2O (98:2, v/v) and D: MeOH. After an initial isocratic 

period, the linear gradient started (organic modifier ACN: 75 to 0%, methanol: 23–78%, H2O: 

2–22% in 75 min) using a constant ionic strength (18.8 mM NH4FA and 37.6 mM FA) at 20 °C. 

The detailed gradient profile regarding each channel can be found in Table S3. The injection 

volume was 5 μL (10 μg mL−1 of the proteinogenic amino acids in ACN/MeOH; 80:20, v/v). 

36 μL of the 1D eluent was collected per modulation and transferred into 2D (cycle time: 

1.2 min). In 2D, the 1D eluent was separated in a 0.6 min long gradient from 70 to 50% ACN at 

20 mM NH4FA, pH 3, followed by a hold period (0.1 min 50% B) and subsequently re-

equilibrated for 0.3 min (detailed description can be found in the Supplemental Material). The 

2D effluent was split in the ratio of 1:11.6. As specified above for the column screening, the 

high flow stream was directed to DAD and CAD. The low flow stream was directed to the high-

resolution mass spectrometer (QTOF). The settings were the same like already mentioned 

except for the ESI settings: GS1: 50 psi, GS2: 40 psi, CUR: 30 psi, ISVF 5500 V, TEM 450 °C.  
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4.4.4. Results and Discussion 

4.4.4.1. Molecular Modelling 

Molecular modelling can give valuable insights into 3-dimensional structural features and 

resultant physicochemical properties as evidenced by derived structural descriptors. Herein, it 

was particularly of interest to use it for the characterization/explanation of differences in 

hydrophilicity/lipophilicity of the two chromatographic surfaces with diastereomeric 

chromatographic ligands, if there are any, allowing hopefully reasonable interpretations of the 

retention profiles in RPLC and HILIC elution modes. Commonly employed structural 

descriptors such as log D fail for description of hydrophilicity/lipophilicity differences because 

in this concept the structural descriptor is calculated by a mere incremental approach which 

does not consider the 3D structure and therefore will provide identical results for stereoisomeric 

ligands like ZWIX(+) and ZWIX(−). To this end, structural descriptors accounting for interactive 

surface area, polarity and providing steric information, possibly indicating preferential binding 

clefts, were therefore considered to be helpful in the interpretation of the chromatographic 

results. Consequently, a molecular dynamics study was performed with the two distinct 

diastereomeric zwitterionic chromatographic ligands considering also the linker group and 

eight free silanols. 

In order to assess the lipophilicity/hydrophilicity profile of the two zwitterionic chromatographic 

surfaces (Fig. 1), a conformational analysis was initially carried out. In Fig. 2 the favourable 

minimal energy conformations are depicted, which are to some extent different for ZWIX(−) 

(left, Fig. 2a) and ZWIX(+) (right; Fig. 2b), as expected for diastereomers. The mean molecular 

volumes were calculated for comparison, to support this claimed structural difference by a 

quantitative measure. Slightly different values were obtained with 668.46 ± 4.68 Å3 for ZWIX(+) 

against 694.2 ± 4.47 Å3 for ZWIX(−), respectively, indicating that the former has a slightly more 

compact conformations than the latter. The model also shows that the hydrophilic functionality 

(carbamate group) and ionic interaction sites are freely accessible for analytes. As these 

hydrophilic interaction sites are embedded between bulky groups they can be possibly 

supported (or, more in general, affected) by simultaneous hydrophobic and steric interactions, 

respectively, which are deemed to be favourable for a mixed-mode chromatography concept. 
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Fig. 2: Minima energy conformations of the ZWIX(+) (a) and ZWIX(−) (b) chromatographic ligands. Both selector 
molecules are displayed in ball and sticks and with the relative SASA. The ball and sticks are coloured with green 
and red carbon atoms for ZWIX(+) and ZWIX(−), respectively. ZWIX(−): SASA 1102.90 Å2; Volume 676.98 Å3; 
ZWIX(+): SASA 1124.10 Å2; Volume 688.34 Å3. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 

 

Further information was obtained from the extent of exposure of the Polar Surface Area (PSA, 

in Å2) in the two diastereomers. It was initially appraised on all the 3000 produced conformers. 

In this context, interested at studying the distribution of the measured PSA, intervals of 5 Å2 

were set (Fig. 3a). Interestingly, this analysis revealed negligible differences among the two 

diastereomers, with population values close to each other for the two diastereomeric ligands 

and similar distributions. 

 

Fig. 3: a) Distribution of the PSA values (in Å2) of the ZWIX(+) and ZWIX(−) selectors. In the y axis is reported the 
percentage of conformations (population) falling into a certain interval of surface values, while the ranges of polar 
surface area values are shown in the x axis. b) Distribution of the SASA values (in Å2) of the ZWIX(+) and ZWIX(−) 
selectors. In the y axis is reported the percentage of conformations (population) falling into a certain interval of 
surface values, while the ranges of molecular surface area values are shown in the x axis.  
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Since the surface accessibility plays a significant role in chromatography, the Solvent 

Accessible Surface Area (SASA, in Å2) was calculated as well. Smaller values were computed 

for the ZWIX(+) selector with respect to its ZWIX(−) diastereomer. Indeed, the former exhibits 

about 98% of the conformer population with SASA values < 1150 Å2 while only 71.6% of 

conformers were classified into such categories by the latter (Fig. 3 b). 

Overall, the in silico results revealed significant similarities and minor differences of the 

diastereomeric selectors. As a result of its smaller SASA and the comparable PSA, ZWIX(+) 

exposes a less extended hydrophobic area than ZWIX(−), thus ultimately resulting in a 

chromatographic ligand with a more pronounced polar feature as a whole. However, the 

modelling also shows that the ZWIX(−) has a more open interactive surface from which the 

analyte can more easily dissociate again after its binding. On contrary, ZWIX(+) appears to be 

more compact featuring narrower binding clefts which could be favourable for mixed-mode 

interactions. Driven by simultaneous attractive interactions and effective steric barriers 

precluding fast dissociation, it might be a more favourable mixed-mode ligand displaying 

generally stronger interactions. 

 

4.4.4.2. Lipophilicity and Hydrophilicity Measurement of the 

Zwitterionic Selectors by RPLC and HILIC 

Measurements of lipophilicity by RP-HPLC is a common strategy in drug discovery to 

characterize the lipophilic potential and membrane distribution of a molecule [48]. For 

rationalizing lipophilicity differences of ZWIX(+) and ZWIX(−) selectors and their relative 

propensity to allow for hydrophobic interactions in MMC, the two diastereomeric zwitterionic 

selectors were injected into RP C18 column under variable pH conditions (detailed 

experimental conditions see Suppl. Material). It can be seen in Fig. 4a that ZWIX(+) showed 

marginally higher retention, in general. Increased pH values lead to enhanced retention, thus 

increased lipophilicity, of both selectors whereas the selectivity for the selectors decreased 

slightly. Since the sulfonic acid is dissociated over the entire investigated pH range, the 

increase in retention and lipophilicity at higher pH is assumed to be largely due to the 

decreasing dissociation of the basic sites, i.e. quinoline (pKa ∼4.05) and quinuclidine (pKa 

∼8.08). Higher buffer concentrations in the mobile phase, which may increasingly shield 

existing surface charges, gave the same trends (compare Supplemental Material Fig. S1). 
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Fig. 4: Chromatographic lipophilicity (a) and hydrophilicity (b) measurements of the chromatographic ligands of 
ZWIX(+) and ZWIX(−) by RPLC (a) and HILIC (b).Experimental conditions: (a) Phenomenex Gemini (150 × 4.6 mm, 
120 Å, 5 μm), mobile phase: MeOH/H2O (1:1, v/v), (b) LiChrospher 100 Diol (250 × 4 mm, 100 Å, 5 μm) mobile 
phase: ACN/H2O (9:1, v/v); buffers in (a) and (b): 5 mM NH4FA (pH 3.5 and 4.5) or 5 mM NH4AA (pH 5.5 to 8.5), 
apparent pH ( 𝑝𝐻𝑤

𝑠 ) adjusted with FA in the hydroogranic mixture (pH 3.5 and 4.5), AA (pH 5.5 to 7.5) or NH3 (8.5); 
flow rate, 1.0 mL min−1; injection volume, 5 μL (ZWIX(+) and ZWIX(−) selectors dissolved at 0.1 mg mL−1, in mobile 
phase); temperature, 40 °C; UV detection, λ = 245 nm. 

Considering the amphiphilic nature of the current ZWIX type selectors, an extension to 

characterize their hydrophilicity under HILIC conditions (Diol column; see Suppl. Material for 

detailed conditions) was devised in analogy. Under HILIC conditions, ZWIX(+) was surprisingly 

also more strongly retained than ZWIX(−) (Fig. 4b) (for corresponding experiments with 20 mM 

buffer see Supplemental Material Fig. S1). 

This unexpected behavior is somewhat difficult to understand; a reversed elution order 

compared to RPLC was expected because stronger retention in RPLC indicates higher 

lipophilicity and consequently lower retention was expected in HILIC. However, experiments 

reveal that the ZWIX(+) selector shows under both, RP and HILIC conditions, slightly stronger 

retention than the pseudo-enantiomeric ZWIX(−). This may indicate that the accessibility of the 

interaction sites differs somehow and/or conformational differences exist in distinct solvents 

which lead to exposure of different moieties at the interactive surface. Applying the reciprocity 

principle of molecular recognition, the ZWIX(+) selector should be the preferred selector for 

MMC both in RP as well as HILIC mode providing stronger retention in both elution modes. 
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4.4.4.3. Surface Charge Characterization by Determination of  

ζ-potentials of Modified Silica Particles 

In chromatography, the surface charge of separation materials plays an important role for the 

analysis of charged compounds. The characterization of modified silica particles by 

determination of ζ-potentials in a pH-dependent manner already offered valuable information 

about the chromatographic behavior and applicability of MMC phases [18,19,24,49,50]. 

Suspended ionized particles in electrolyte solutions usually possess a non-abrasive layer of 

counter-ions (Stern layer) followed by an abrasive layer of mixed species at the surface. If an 

electric field is applied, the charged particles will start moving in the solution and a shear plane 

is formed. The potential at this shear plane is defined as the ζ-potential [51] and can be used 

to characterize the surface charge of the particles. In this particular case, the same ζ-potentials 

for both ZWIX(+) and ZWIX(−) are expected due to the similar selectors only differing in their 

stereochemistry (note: the stereochemistry is different for four out of seven asymmetric atoms; 

see caption of Fig. 1 for more details) and the same ligand coverage. Therefore, we studied 

the ζ-potentials of these silica gels and for comparison tert-butyl carbamoyl quinine-bonded 

silica (Chiralpak QN-AX) investigating different pH values at constant ionic strength of 10 mM 

KCl (Fig. 5). 

 

Fig. 5. Surface charge tendency of ZWIX(+) and ZWIX(−)-modified silica presented by ζ-potentials determined at 
different pH values. 

The tert-butyl carbamoyl quinine modified silica particles (QNAX) showed positive ζ-potentials 

at low pH values dominated by the presence of tertiary amines (pka (quinuclidine) = 8.08, pka 

(quinoline) = 4.05 (Marvin) [49]. By increasing the pH ζ-potential slightly dropped but remained 

positive up to pH 7.5. This trend can be explained on the one hand by the weakly basic 

properties of the quinoline and quinuclidine nitrogens and on the other hand by the enhancing 

dissociation of residual surface silanol groups. The dominating influence of the latter forces the 

surface charge at pH values higher than 8 to negative values. 
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The introduction of an additional sulfonic acid moiety (pKa = −0.97, calculated with Marvin 

Sketch) resulted in a negative offset of the ζ-potentials of around 30–50 mV for both ZWIX 

selectors. The general pH-dependency was similar for both diastereomeric ZWIX selectors 

(increasing pH led to declined values). This indicates that the negative polarity of the surface 

charge was mainly caused by the fully dissociated sulfonic acid while the net charge state was 

still influenced to some extent by the weak anion exchange increments. Comparing the 

calculated values for ZWIX(+) and ZWIX(−), no significant differences are revealed over a wide 

pH range except for pH values around 7.5. The slight difference could originate from the 

opposite configurations at the chiral centers at C8/C9 close to the quinuclidine nitrogen which 

could slightly influence the protonation of this interaction site i.e. its effective pKa due to distinct 

electronic effects from the microenvironment. Interestingly, at very basic pH values, ZWIX(−) 

and ZWIX(+) showed the same surface charge probably due to domination of silanols at this 

pH. 

Overall, it becomes evident that the ZWIX phases have a net negative character, different than 

expected. Obviously, charge balance from sulfonic acid and quinuclidine ring does not occur 

as expected, but there is an overall domination from the presence of the sulfonic acid group 

rendering these modified silicas slightly acidic. 

 

4.4.4.4. Characterization of Ion Exchange Capability of Small 

Ions 

The ability to cause retention of small solvated spherical inorganic ions is a property that 

depends strongly on surface chemistry and the surface charge state, respectively. It can be 

utilized as a complementary characterization approach of the surface charge compared to the 

above described ζ-potential determination. For this purpose, the counterion concentration-

dependent retention of ionic analytes in accordance to the stoichiometric displacement model 

can be adopted which describes the linear relationship of the logarithmic retention factor k to 

the logarithm of the counterion concentration C [M] (Eq. (1)) and can serve for retention 

prediction [51]. The intercept Kz is a system-specific constant which describes the used ion 

exchange system, taking into account the dead volume t0, the concentration of available ion 

exchange sites qx [mol m−2] in relation to the particle surface S [m2 g−1] and the ion exchange 

equilibrium constant K [L mol−1] (Eq. (2)) [51]. The slope Z characterizes the ratio of the 

effective involved charges of analyte and counterions. 

log 𝑘 = log  𝐾𝑍 − 𝑍 ∙ log 𝐶     (1) 

𝐾𝑍 =
𝐾∙𝑞𝑥

𝑍∙𝑆

𝑉0
      (2) 
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Herein, we selected a homologous series of inorganic spherical solvated ions from the class 

of alkali metals and halide anions to probe electrostatic interactions. Since ZWIX phases can 

have both cation exchange as well as anion exchange capacity, it was of interest which one 

would prevail experimentally. In Fig. 6 the stoichiometric displacement model is applied to the 

retention data of alkali metal ions obtained from the chromatographic experiments with 

ZWIX(+) and ZWIX(−). The retention order for both columns follows the generally known 

pattern of the lyotropic series: Li+<Na+<K+<Rb+ [51]. The charge density drops with increasing 

atomic number within the group. As a result, the degree of hydration decreases and thus the 

electrostatic attraction that acts on the ion increases [52]. The cations show almost parallel 

straight lines in both cases. However, it becomes clear that in the case of ZWIX(+) the intercept 

is slightly higher than that of ZWIX(−). The trends prove the existence of cation exchange 

properties. Halide ions, on contrary, were not retained and thus not resolved being indicative 

for an experimentally net negative surface charge which is confirming the behavior measured 

by ELS. 

 

Fig. 6: Stoichiometric displacement model applied to the counterion concentration (ammonium) dependent 
retention of the lyotropic series of small inorganic cations at pH 7: Blue diamonds, K+; black circles: Na+; red 
squares: Li+; green triangles: Rb+; open symbols: ZWIX(+); closed symbols: ZWIX(−) Experimental conditions: 
ACN/H2O (4:1, v/v), 5, 10 or 20 mM NH4FA, pH unadjusted, 0.2 mL min−1, T = 40 °C, injection volume 7 μL (10 mM 
of each cation), charged aerosol detection (CAD). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 

 

4.4.4.5. Characterization of MMC Behaviour under RP and 

HILIC Conditions 

The MMC capability of the columns ZWIX(+) and ZWIX(−) were tested under non-chiral RP 

conditions. The suitability of RP and MMC stationary phases can nicely be characterized by 

the selectivity for compounds only differing in a single methylene unit. Herein, the retention of 

homologous alkylbenzenes served for the characterization of hydrophobic interactions, 

especially the methylene selectivity. A test mix commonly used previously for characterizing 

methylene selectivity of mixed mode phases containing also some other compounds (DETP, 
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Boc-Pro-Phe) was used. The obtained chromatograms of the zwitterionic stationary phases 

were compared to the ones of a polar RP column Synergi Fusion RP. The retention data are 

summarized in Table S1 and the chromatograms are shown in Fig. 7 [21]. As expected, the 

polar RP column showed no retention for the polar acid DETP and only weak retention for the 

more hydrophobic acid Boc-Pro-Phe (Fig. 7a) (both additional part of a previously used test 

mix for mixed-mode phases) [21]. The zwitterionic stationary phases (Fig. 7b and c) revealed 

a similar behavior in spite of the quinuclidine WAX site. The sulfonic acid moiety and the net 

negative surface charge has led to low retention because of electrostatic repulsion. Overall, 

the ZWIX phases show reasonable MMC character as can be derived from the retention of 

aromatic alkanes (BuB, and PeB). Methylene selectivities α(CH2) calculated for these 

compounds were 1.43 and 1.29 on ZWIX(+) and ZWIX(−), respectively. It indicates some 

potential to separate analytes by hydrophobic interactions in accordance to a MMC concept. 

For comparison, the polar RP phase Synergi Fusion RP (Fig. 7a) showed strong retention of 

BuB and PeB due to the occurring strong hydrophobic interactions with methylene selectivity 

α(CH2) of 1.79 [21]. 

 

Fig. 7: Separation of alkylbenzenes and acids under RP conditions on a) Synergi Fusion RP, b) ZWIX(−) and c) 
ZWIX(+). 
Solutes: 1, DETP; 2, Boc-Pro-Phe; 3, Butylbenzene (BuB); 4, Pentylbenzene (PeB). Mobile phase: ACN/H2O (2:3, 
v/v), 0.29% AA (Ctot = 50 mM), apparent pH ( 𝑝𝐻𝑤

𝑠 ) 6, adjusted with NH3 in the hydroogranic mixture, lin. flow velocity: 
1.7 mm s−1, T = 25 °C, λ = 220 nm. Injection volume: 5 μL. Note, the concentrations of BuB and PeB were not the 
same for ZWIX(+) and ZWIX(−) because they were partly evaporated from the sample mixture. 

MMC phases have been shown to possess multimodal applicability. Hence, due to the polar 

surface properties of ZWIX(+) and ZWIX(−), the retention behavior was additionally 
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investigated under HILIC conditions in comparison to the zwitterionic HILIC column ZIC-HILIC. 

A mixture of xanthines, nucleosides and vitamins served as model analytes. The 

chromatograms in Fig. 8 show the separation of nucleosides on ZWIX(+), ZWIX(−) and the 

reference column ZIC-HILIC. The retention data are listed in Tab S1. The elution order is 

similar for both columns (thymidine < uridine < adenosine < cytidine < guanosine), which is 

not corresponding to the log D values 

(adenosine < thymidine < uridine < guanosine < cytidine) like already reported previously for 

other HILIC columns [5]. The reference column showed an elution order switch of adenosine 

and uridine and in general a stronger retention of the nucleosides compared to the ZWIX 

columns as expected for a pure HILIC column. Aligning the chromatograms of ZWIX(+) and 

ZWIX(−), it can be seen that the selectivity for thymidine and uridine is slightly dropped on 

ZWIX(+) under the investigated experimental conditions. However, the nucleobases cytosine 

and guanosine are more strongly retained on ZWIX(+) than on ZWIX(−). 

 

Fig. 8. Separation of nucleosides performed on the HILIC stationary phase ZIC-HILIC (a), ZWIX(−) (b) and ZWIX(+) 
(c) using HILIC conditions. Solutes: 1, thymidine; 2, uridine; 3, adenosine; 4; cytidine; 5; guanosine. Mobile phase: 
ACN/water (90:10, v/v) with 5 mM NH4AA, lin. flow velocity: 1.7 mm s−1, T = 25 °C, λ = 220 nm, injection volume: 
2 μL. 

The results clearly indicate that ZWIX(+) and ZWIX(−) columns have multimodal applicability 

and can be useful for MMC in various applications. Overall, the ZWIX(+) phase seems to be 

of advantage both for RP as well as HILIC mode applications. 
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4.4.4.6. Stationary Phase Classification by Multivariate Data 

Analysis 

Unsupervised principal component analysis (PCA) is well suited to demonstrate similarities 

and differences of stationary phases in their retention profiles. A data set of retention factors 

of hydrophilic, lipophilic, neutral, basic and acidic analytes obtained on various (commercial) 

RP, HILIC, mixed-mode and chiral columns under HILIC and RP conditions were subjected to 

PCA [18-21,24,50]. The surface structure of the columns is depicted in Fig. S2. Multivariate 

analysis can be used to calculate a score plot (Fig. 9), which depicts columns with similar 

retention behavior in close proximity. The more different the retention behavior, the greater is 

the distance [18-21,24,50,53]. In this particular case, the two main components PC1 and PC2 

describe approximately 68% of the variance in the data set. While the PC1 axis is a descriptor 

of the hydrophilicity, the PC2 axis represents the effective charge of the silica particles. 

Stationary phases with polar surfaces can be found at high PC1 values like the amino column 

Luna NH2 and the HILIC columns ZIC-HILIC, Polysulfoethyl A, PC HILIC and the TSKGel 

Amide-80. The polar RP phase Synergi Fusion-RP shows the lowest score on the lipophilicity-

hydrophilicity axis indicative for its apolar surface character. The MMC columns Uptisphere 5 

MM3 (RP phase with quaternary ammonium endcapping) and Primesep B2 (RP/AX; suppl. 

Fig. S2) also showed a pronounced RP character and were therefore clustered together with 

the RP phase. The PC2 axis, on the other hand, is mainly characterized by the charge state 

of the surface of the separation materials. Mixed-mode anion exchange columns like Acclaim 

Mixed Mode WAX-1 are found at high PC2 values and net negatively charged phases like PC-

HILIC at low PC2 values. 

 

Fig. 9: Score plot of principal component analysis based on retention factor (k) of the RP and HILIC tests with 
several RP, HILIC, MMC and chiral stationary phases (for more details see suppl. material). 
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In accordance to the already discussed ζ-potentials, it is not surprising, that the ZWIX columns 

are located between negatively charged columns like bare (Kromasil) and monolithic silica 

(Chromolith Performance Si). It again highlights the dominating effect of the strongly acidic 

sulfonic acid moiety in the ligand molecule. This statistical projection shows slightly different 

locations for the two columns with diastereomeric ZWIX selectors that can be regarded as the 

result of the slightly different retention behavior and is in accordance with the in silico prediction 

and the other above discussed studies. On the polarity scale (PC1), they show intermediate 

hydrophilicity (balanced hydrophilicity-lipophilicity) being indicative for their mixed-mode 

character rather than classical HILIC behavior. Depending on the elution conditions, one of the 

respective chromatographic modes (RP- or HILIC-type) prevails making them a flexible tool. 

 

4.4.4.7. Evaluation of the Orthogonality of ZWIX(+) and 

ZWIX(−) for LC   LC 

Successful LC × LC separations rely on a proper column selection and, amongst others, 

sufficient orthogonality regarding their retention profiles in first and second separation 

dimension. General column characterization and classification systems like described in the 

previous chapters can be helpful concerning the preliminary column choice. In order to address 

specific analyte groups, column screens investigating the target compounds or similar ones (if 

the real target analytes of interest are not available) are necessary. Multiple approaches 

comprising statistical procedures like correlation coefficients, bin counting methods [11,13,54], 

fractional surface coverages like the convex hull method [55] and asterisk methods [12] were 

described to determine the degree of orthogonality. In our work, we were interested in 

establishing a complementary selectivity dimension for amino acid analysis by 2D-LC, being 

potentially useful for impurity profiling in amino acid formulations. 

Due to the small analyte set, the comparison of ZWIX(+) and ZWIX(−) with commercial HILIC 

and mixed mode stationary phases can be conveniently performed by plotting normalized 

retention times [11] of the amino acids on the ZWIX columns against the ones on the 

investigated stationary phases in the two dimensional retention space. In Fig. 10 the 

orthogonality plots of ZWIX(+) (employed in polar organic elution mode) versus uncharged and 

zwitterionic HILIC and MMC stationary phases (in HILIC elution mode) are depicted. The 

corresponding figure for ZWIX(−) can be found in the Supplemental Material (suppl. Fig. S3). 

However, the comparison of ZWIX(+) and ZWIX(−) showed less related retention mechanisms 

than expected (Fig. 10a). Especially in case of the amino acids with charged residues, the 

correlation is low and a reasonable distribution in the chromatographic 2D-space can be found. 
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Fig. 10: Orthogonality plots of normalized retention times of proteinogenic amino acids in the two dimensional 
separation space with ZWIX(+) as 1D column and commercial HILIC (b–g) and MMC columns (a, h-i) in 2D under 
HILIC conditions. Screening conditions: A: ACN/H2O/200 mM NH4FA in the aqueous solution, pH 3.5 adjusted with 
ammonia (50:45:5, v/v/v), B: ACN/H2O/200 mM NH4FA in the aqueous solution, pH 3.5 adjusted with ammonia 
(90:5:5, v/v), linear flow velocity: 1.18 mm s−1, T = 40 °C gradient: 0.0–5 min: 100 %B, 5–25 min: 0 %B, 25–30 min: 
0% B, 30–30.1 min: 0–100 %B, 30.1–40 min: 100 %B, except Poroshell HILIC-Z and ZWIX(+) and ZWIX(−), 
detailed conditions can be found in the Supplemental Material. Red circles: polar and apolar amino acids, green 
squares: basic amino acids, black diamonds: acidic amino acids. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 

In order to extend the chromatographic window for early eluted amino acids in the 2D retention 

space and to find the most promising complementary column to ZWIX, retention on the 

zwitterionic stationary phases (employed in polar organic mode) were plotted against bare 

silica stationary phases (Kinetex HILIC, Fig. 10b), with cyano phases like Luna CN (Fig. 10c), 

zwitterionic HILIC phases like Nucleoshell (Fig. 10d), ZIC-HILIC (Fig. 10e), ZIC-cHILIC 

(Fig. 10f) and Poroshell 120 HILIC-Z (Fig. 10g) as well as the mixed mode columns Coresep 

SB (Fig. 10h) and BioBasic AX (Fig. 10i) under HILIC conditions (pH 3.5). All investigated 

column combinations were able to sufficiently separate the basic and acidic amino acids. 

However, the amino acids with apolar and polar residues clustered together. The investigated 
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superficially porous columns Nucleoshell, Poroshell 120 HILIC-Z and Coresep SB showed the 

best selectivity for this analyte group in the 1D screening experiments. 

For the online LC × LC experiments, ZWIX(+) in polar organic mode was combined with 

Poroshell HILIC-Z (50 × 3.0 mm) under HILIC conditions (Fig. 11). The combination of these 

complementary chromatographic modes (polar organic and HILIC) offered the possibility to 

avoid distorted peaks due to solvent mismatch issues. The short 2D HILIC column allowed fast 

separations of the amino acids in about 60 s. Since the final application of the method is for 

impurity profiling, the 2D-LC system with its DAD in the 2D (chromatogram in Fig. 11a) was 

additionally equipped with complementary detectors via a splitter (ratio 1:11.6), viz. a high-

resolution mass spectrometer (ESI-QTOF) for identification (Fig. 11c) and a charged aerosol 

detector (CAD) for universal detection (of non-volatile compounds) (Fig. 11b) as well as 

preliminary quantitation as reported previously [56]. In the first and in the second dimension a 

mixed retention mechanism was observed. Amino acids with ionizable residues were strongly 

retained while the hydrophobic and polar amino acids were clustered, but separated in the 

early retention time window of the two dimensional analysis. It is clearly evident that in the 

case of an impurity profiling approach, the retention space not covered by the main amino acid 

constituents is available for the separation and detection of impurities. Such comprehensive 

LC × LC method with multiple complementary detection systems should be beneficial for 

advanced impurity profiling. Its application will be reported separately. 
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Fig. 11: Two dimensional separation of underivatized proteinogenic amino acids using ZWIX(+) in polar organic 
mode in 1D and Poroshell 120 HILIC-Z under HILIC conditions and complementary detection in 2D for 
comprehensive sample information. Therefore, the 2D flow was split (1:11.6) to a DAD (λ = 280 nm) (a) followed by 
a charged aerosol detector (b) and a high resolution mass spectrometer (ESI-QTOF) (c) multiple selected ion 
chromatograms of proteinogenic amino acids). The detailed experimental conditions can be found in the 
Supplemental material. 
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4.4.5. Conclusions 

Chiral columns could expand the tool box for 2D-LC. They can be often categorized as mixed-

mode chromatography columns and frequently show chromatographic complementarity to 

both RP and HILIC columns. A better characterization of chiral stationary phases in view of 

achiral applications is therefore worthwhile. In this work, such beneficial utility was 

demonstrated for the two diastereomeric selectors of Chiralpak ZWIX(+) and ZWIX(−) columns 

which are well established for the separation of enantiomers. Herein, we focused on the 

characterization and elucidation of differences in non-chiral chromatography. While the in silico 

predicted polar surface areas were very similar, the solvent accessible surface areas (SASA), 

the molecular volumes and the minimal energy conformations indicated differences. Therefore, 

the pH-dependent study of the retention behavior of selector molecules under RP and HILIC 

conditions followed the same trend but indicated that the involved charges may play an 

important role. Hence, the surface charge of the ZWIX(+) and ZWIX(−) stationary phases were 

chromatographically characterized by separation of inorganic ions through application of the 

stoichiometric displacement model. A net negative surface charge was indicated which was 

confirmed by pH-dependent ζ-potential determinations. Principal component analysis of 

retention data from RP and HILIC elution modes acquired for ZWIX(+) and ZWIX(−) along with 

a variety of commercial RP, HILIC and mixed-mode phases allowed to classify the zwitterionic 

chiral stationary phases within the group of RP/SCX mixed-mode phases with slightly negative 

charge excess and balance hydrophilic-lipophilic surface character. Orthogonality plots for 

amino acids in comparison to a number of HILIC and mixed-mode phases were established 

and the Poroshell HILIC-Z column was then selected as 2D column for LC × LC. By establishing 

such a comprehensive 2D-LC method in combination with complementary detectors (DAD, 

CAD and HR-MS/MS) a powerful method for comprehensive impurity profiling could be 

established. 
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4.4.7. Supplemental Material 

4.4.7.1. Lipophilicity and Hydrophilicity Measurement of the 

Zwitterionic Selectors by RPLC and HILIC 

4.4.7.1.1. Material and Methods 

The stationary phase was Phenomenex Gemini C18 (150 x 4.6 mm, 120 Å, 5 µm) and a 

LiChrospher 100 Diol (250 x 4 mm, 100 Å, 5µm). The mobile phases were a mixture of 

methanol and MilliQ water for the separation under RP conditions (1:1, v/v) and acetonitrile 

and MilliQ water for the separation under HILIC conditions (90:10, v/v). The pH was buffered 

using 20 mM ammonium formate (3.5 and 4.5) and ammonium acetate (5.5 to 8.5), 

respectively. The apparent pH was adjusted to 3.5, 4.5, 5.5, 6.5, 7.5 and 8.5 (only under RP 

conditions due to limited column stability of the HILIC column) using formic acid (pH 3.5 and 

4.5), acetic acid (pH 5.5 to 7.5) or ammonia (8.5). The flow rate was 1.0 mL min-1. The selector 

molecules ZWIX (+) and ZWIX(-) were diluted with mobile phase (0.1 mg mL-1 of each). 5 µL 

were analyzed at 40°C and 254 nm. 
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4.4.7.1.2. Results for Mobile Phases with 20 mM Buffer 

 

Fig. S1: Retention profiles of the diastereomeric selectors ZWIX(+) and ZWIX(-) dependent on pH under a) RP and 
b) HILIC conditions 
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4.4.7.2. Chromatographic Characterization under HILIC and 

RP Conditions for Column Classification 

4.4.7.2.1. Material and methods 

The stationary phases which were included in the test set for the evaluation of the 

chromatographic properties comprised all stationary phases depicted in Fig S2. 

For RP-HPLC separations, the mobile phase contained 40% (v,v) ACN, 60% (v,v) water and 

0.29 % acetic acid (Ctot = 50 mM). The pH value was adjusted to 6 with ammonia. The HILIC 

measurements were carried out with the following mobile phases: For the xanthines the mixing 

ratio of ACN and water was 95:5 (v/v) and for the nucleosides and vitamins 90:10 (v/v). 

Ammonium acetate (5 mM) was used as buffer. The apparent pH was 8 and remained 

unadjusted. The analytes were dissolved in the mobile phase. The concentration of the 

analytes was 0.8 mg mL-1 (RP test) and 1.0 mg mL-1 (HILIC test). The injection volume was 5 

µL (RP) and 2 µL (HILIC). The flow rate was 1.7 mm s-1. The columns were thermostated to 

25 °C. The detection wavelength was 220 nm. The void volume was determined using uracil 

(RP) and toluene (HILIC). 

4.4.7.2.2. Results
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Tab. S1: Overview of the chromatographic data obtained by the analysis of hydrophobic and acidic compounds under RP conditions and xanthines, nucleosides and vitamins under 
HILIC conditions on ZWIX(+) and ZWIX(-) 

    ZWIX (-)   ZWIX (+) 

  Compounds k N H  Rd d   k N H  R 1,2 

RPa 

DETP 0.09 4661 32.2    0.41 4477 33.5   

Boc-Pro-Phe 0.41 5392 27.8 4.59e 4.73e  0.59 4677 32.1 1.98e 1.44e 

BuB 2.87 11898 12.6    5.35 10320 14.5   

PeB 3.71 11823 12.7 5.35f 1.29f   7.68 10202 14.7 7.85f 1.43f 

HILICb 

caffeine 0.30 4370 34.3    0.15 2322 64.6   

theobromine 0.59 6760 22.2 3.64 1.93  0.45 4396 34.1 3.31 3.05 

theophylline 0.84 6738 22.3 2.97 1.42   0.62 4625 32.4 1.91 1.39 

thymidine 0.41 5856 25.6    0.41 4184 35.9   

uridine 0.56 6184 24.3 2.00 1.37  0.73 4913 30.5 3.46 1.78 

adenosine 1.02 6895 21.8 5.26 1.83  0.78 5440 27.6 0.54 1.07 

cytidine 1.43 7046 21.3 3.83 1.40  2.14 7507 20.0 11.26 2.73 

guanosine 2.37 6807 22.0 6.70 1.65   4.02 8049 18.6 10.21 1.88 

pyridoxine 0.92 4640 32.3    0.53 2802 53.5   

riboflavin 1.40 7653 19.6 4.26 1.51  2.51 2577 58.2 4.78 2.31 

ascorbic acid n.d.c      2.29 2477 60.6 0.82 1.86 

nicotinic acid 1.94 7115 21.1 42.29 1.39  1.23 6273 23.9 4.80 0.91 

thiamine 5.78 761 197.1 6.86 2.98   10.27 8538 17.6 20.35 4.49 

a Experimental conditions: ACN/H2O (60:40, v/v), 50 mM acetic acid, pH 6 adjusted with ammonia 
b Experimental conditions: xanthines: ACN/H2O (95:5, v/v), vitamines and nucleosides: ACN/H2O (90:10, v/v) 5 mM ammonium acetate, pH 
unadjusted 
c n.d. = not detected            
d Resolution and selectivity, respectively, refer to compound in the corresponding row and the previous eluting one if not otherwise stated 
e Resolution and selectivity, respectively, of DETP and0 Boc-Pro-Phe  
f Resolution and selectivity, respectively, of BuB and PeB 

k, retention factor; N, plate number; H, theoretical plate height in µm; R, resolution; , separation factor  
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Fig. S2: Surface structure of investigated a) RP, b) HILIC and c) mixed mode stationary phases which were chromatographically evaluated for the principal component analysis. 
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4.4.7.3. Orthogonality Determination of ZWIX(+) and ZWIX(-) 

Compared to Commercially Available Stationary 

Phases 

4.4.7.3.1. Material and Methods 

Column Screen 

Tab S2: Investigated columns including the dimension for the separation of proteinogenic amino acids. 

Column Dimension, Particle size 

Phenomenex Kinetex HILIC 150 x 3.0 mm, 2.6 µm 

Thermo Fischer, Biobasic AX 150 x 3.0 mm, 5µm 

Agilent Technologies, Poroshell 120 HILIC Z 30 x 3.0 mm, 2.7 µm 

Merck Sequant ZIC-HILIC 150 x 2.1 mm, 3.5 µm 

Merck Sequant ZIC-cHILIC 100 x 2.1 mm, 3 µm 

Macherey Nagel, Nucleoshell 50 x 4.6 mm, 2.7 µm 

SIELC Coresep SB 50 x 4.6 mm, 2.7 µm 

Chiralpak ZWIX(+) 150 x 3.0 mm, 3µm 

Chrialpak ZWIX(-) 150 x 4 mm, 3 µm 

Phenomenex Luna CN 150 x 4.6 mm, 3 µm 

 

General experimental LC conditions:  

Mobile phases:  

A: ACN/H2O/200mM NH4FA in water, pH 3.5 adjusted with ammonia (50:45:5, v/v/v),  

B: ACN/H2O/200mM NH4FA in water, pH 3.5 adjusted with ammonia (90:5:5, v/v), ,  

Lin. flow vel.: 1.18 mm s-1, T = 40°C  

gradient: 0.0 - 5 min: 100 %B, 5 - 25 min: 0 %B, 25-30 min: 0 % B, 30 – 30.1 min: 0 - 100 

%B, 30.1 - 40 min: 100 %B 

Experimental LC conditions for Poroshell 120 HILIC-Z (30 x 3 mm, 2.7 µm):  

Mobile phases:  

A: 10 % 200 mM NH4FA, pH 3 adjusted with FA, in H2O;  

B: 10 % 200 mM NH4FA, pH 3 adjusted with FA, in ACN 

Flow rate: 0.8 mL min-1, T = 30 °C,  

gradient: 0.0 – 10.0 min: 100-70 %B (compare legend), 10.0-10.1 min: 70-100% B, 10.1-15.0 

min: 100 %B 

Experimental LC conditions for ZWIX(+) (150 x 3 mm, 3 µm) and ZWIX(-) (150 x 4 mm, 3 

µm):  

mobile phases:  

A: 9.4 mM NH4FA in MeOH/ H2O (98:2, v/v),  

B: 9.4 mM NH4FA in MeOH/ H2O (49:51, v/v) 
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Flow rate: ZWIX (-): 0.45 mL min-1 , ZWIX (+): 0.28 mL min-1, T = 30 °C, gradient: 0.0 – 18.0 

min: 100 %B (compare legend), 18.0 – 40.0 min: 0 to 100 % B, 40.0-50.0 min: 100 %B, 50.0 

- 50.2 min: 100 to 0 %B, 50.2 – 70.0 min: 100 %B [1] 

ESI settings: 

ESI settings: curtain gas (CUR) 35 psi, nebulizer gas (GS1) 60 psi, drying gas (GS2) 60 psi, 

source voltage (ISVF) 4000 V, source Temperature (T) 500 °C, the utilized gas was nitrogen, 

The measurements were done in positive mode. Information dependent acquisition (IDA) was 

used. A TOF-MS scan (accumulation time 250 ms, scan window m/z: 35 to 1000, collision 

energy (CE) of 5 V, declustering potential (DP) 100 V, RF transmission m/z: 25 = 33%, 90 = 

33 %, 290 = 34 %) was followed by four IDA experiments (accumulation time 50 ms, scan 

window m/z: 35 to 1000, collision energy (CE) of 30 V, declustering potential (DP) 100 V, RF 

transmission m/z: 25 = 50%, 90 = 50 %) resulting in a period cycle time of 500 ms. 

Two Dimensional LC Experiments: 

LC parameters: 

1D: ZWIX(+), 150 x 3 mm, 3 µm 

A: H2O, B: ACN, C: 200 mM NH4FA / 400 mM FA in MeOH/H2O (98:2, v/v) D:MeOH 

Flow: 0.03 mL min-1, 20°C, gradient profile: compare Tab S3. 

Injection volume 5 µL (10 µg mL-1 AA in MeOH/ACN 20:80, v/v) 

2D: Poroshell HILIC-Z, 50 x 3 mm, 2.7 µm  

A: 30% ACN, 20 mM NH4FA, pH 3 

B: 80% ACN, 20 mM NH4FA, pH 3 

Flow 1.0 mL min-1, 30°C, gradient profile: compare Tab. S3. 

40 µL Loops Modulation time 1.2 min, loop fill 90 %,  
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Tab S3: Investigated gradient profiles for the first and the second dimension. The mobile phases in the first 
dimension were: A: H2O, B: ACN, C: 200 mM NH4FA / 400 mM FA in MeOH/H2O (98:2, v/v) D:MeOH and in the 
second: A: 30% ACN, 20 mM NH4FA, pH 3 and B: 80% ACN, 20 mM NH4FA, pH 3. 

1D  2D 

Time 
[min] 

A 
[%] 

B 
[%] 

C 
[%] 

D 
[%] 

Flow 
[mL min-1] 

Time 
[min] 

B [%] 

0 1.9 75 9.4 13.7 0.2 0 71.4 

9 1.9 75 9.4 13.7 0.2 0.6 50 

10 1.9 75 9.4 13.7 0.03 0.7 50 

62 1.9 75 9.4 13.7 0.03 0.8 71.4 

137 21.9 0 9.4 68.7 0.03 1.2 71.4 

170 21.9 0 9.4 68.7 0.03   

172:2 1.9 75 9.4 13.7 0.03   

240 1.9 75 9.4 13.7 0.03   

 

After the column, the flow was split (1:11.6). The high flow path was directed to a DAD ( = 

280 nm) and a CAD veo (Thermo scientific). The low flow was directed to a high resolution 

mass spectrometer (Sciex QTOF 5600+) equipped with a DuoSpray Ionsource. The 

parameters were set as following.  

MS parameter: 

ESI settings: curtain gas (CUR) 30 psi, nebulizer gas (GS1) 50 psi, drying gas (GS2) 40 psi, 

source voltage (ISVF) 5500 V, source Temperature (T) 450 °C, the utilized gas was nitrogen, 

The QTOF was operated in positive mode. Information dependant acquisition (IDA) was used 

as acquisition mode. One period cycle was 330 ms long and comprised a TOF-MS scan 

(accumulation time 200 ms, scan window m/z: 35 to 1000, collision energy (CE) of 5 V, 

declustering potential (DP) 100 V, RF transmission m/z: 25 = 33%, 90 = 33 %, 290 = 34 %) 

followed by four IDA experiments (accumulation time 20 ms, scan window m/z: 35 to 1000, 

collision energy (CE) of 30 V, declustering potential (DP) 100 V, RF transmission m/z: 25 = 

50%, 90 = 50 %).  
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4.4.7.3.2. Results 

 

Fig. S3: Distribution of normalized retention times of proteinogenic amino acids in the two dimensional separation 
space of ZWIX(-) in 1D and commercial HILIC (b-g) and mixed mode columns (a, h-i) in 2D (normalized after Gilar 
[2]). 

Screening conditions: compare Section 3.1. 
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Tab S4:  Physicochemical properties of the investigated amino acids. 

 
 

pka (COOH) pka (NH4
+) pka (3) 

Isoelectric 
point (IP) 

Log D (pH 
3) 

Net charge 
(pH 3) 

Ala 2.47 9.48  5.98 -3.44 0.23 

Arg 2.41 9.12 12.41 10.77 -6.4 1.3 

Asn 2 8.43  5.22 -4.87 0.09 

Asp 1.7 9.61 5.11 3.41 -4 0.04 

Gln 2.15 9.31  5.73 -4.63 0.12 

Glu 1.88 9.54 4.27 2.79 -3.77 -0.09 

Gly 2.31 9.24  5.77 -3.95 0.17 

His 1.85 9.44 6.61 7.69 -5.39 1.07 

Ile 2.79 9.59  6.19 -2.24 0.38 

Leu 2.79 9.52  6.15 -2.31 0.38 

Lys 2.74 9.44 10.29 9.82 -7.17 1.12 

Met 2.53 9.5  6.02 -2.93 0.25 

Phe 2.47 9.45  5.96 -1.75 0.23 

Pro 1.94 11.33  7.12 -3.16 0.45 

Ser 2.03 8.93 15.17 5.7 -4.48 0.23 

Thr 2.21 9 14.95 5.6 -4.08 0.14 

Trp 2.54 9.4  5.97 -1.66 0.26 

Tyr 2 9.19 9.79 5.51 -1.99 0.09 

Val 2.72 9.6  6.16 -2.62 0.34 
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4.5.1. Abstract 

The role of individual functional groups has been assessed with regard to surface charge and 

chromatographic retention. Coatings were prepared from various fragments of the chiral 

zwitterionic materials Chiralpak ZWIX(+) and ZWIX(-). The different chromatographic ligands 

allowed fine tuning of the surface charge. Chiralpak ZWIX phases showed strongly negative 

ζ-potentials over the entire pH-range. Zwitterionic congeners with quinuclidine and sulfonic 

acid moieties but lacking the quinolone ring in the ligand structure exhibited shifted ζ-potentials 

of around + 5 to 20 mV depending on the surrounding residues. Capillary electrophoretic 

mobilitiy measurements with the chromatographic ligands and molecular dynamics simulations 

were carried out to offer some explanation of these surface charge differences of the distinct 

zwitterionic stationary phases. The new mixed-mode phases were also chromatographically 

characterized by simple RP and HILIC tests. The results allowed their positioning within a large 

variety of different commercially available RP, HILIC and mixed-mode phases, which were 

evaluated as well, by multivariate data processing using principal component analysis. The 

new mixed-mode phases overall exhibit reasonable hydrophilicity-lipophilicity balance and 

enable retention of ionic compounds by additional ionic interactions through anion-exchange 

(WAX-type), cation-exchange (SCX-type) or both (RP/ZWIX-type). Hence, the new RP/ZWIX 

phases can be flexible tools for selectivity tuning in RP and HILIC separations. 

 

4.5.2. Introduction 

Mixed-mode chromatography (MMC) [1-7] has raised interest as an alternative LC separation 

mode to reversed-phase (RP) LC [8, 9] and hydrophilic interaction chromatography (HILIC) 

[10-12]. It combines distinct retention and separation principles, respectively, in one column. 

This can be accomplished by i) blending of distinct particles, e.g. RP particles and ion-

exchangers (mixed bed), ii) mixing of chromatographic ligands with different retention 

principles on the same support (mixed-ligand), iii) distinct retention principles on one 

chromatographic ligand (mixed-mode ligand) [4]. Multimodality (e.g. applicability in RP, HILIC, 

cation exchange (CX), anion exchange (AX), ion-exclusion (IEC), hydrophobic interaction 

chromatography (HIC) [13]), orthogonality/complementarity to RP and HILIC, wider scope of 

application [2], enhanced flexibility in method development and optimization [13], and higher 

sample loading capacity compared to RP in preparative applications [14] are features of MMC 

phases. They have found applications for analysis of oligonucleotides [1, 15, 16], peptides [13, 

14, 17-19], proteins [20], metabolites [2] and simultaneous analysis of pharmaceuticals and 

their counterions [4, 21], as well as for comprehensive analysis of natural products by 

multidimensional separations [22], and many more. 
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A number of distinct chromatographic modalities (i.e. retention principles) have been combined 

in MMC. For example, combination of size-exclusion with RP has been realized by so-called 

internal surface RP phases [23], HILIC with RP e.g. [24] or by the commercial column Acclaim 

Mixed-Mode HILIC-1 (from Thermo Fisher Scientific) [4]. Most commonly, however, ion-

exchange is combined with RP or HILIC to yield RP/AX [1, 14, 16, 25-27], RP/CX [28], 

RP/ZWIX [29], HILIC/AX [30, 31], HILIC/CX [32], HILIC/ZWIX [33] phases (all available as 

either weak or strong ion-exchanger modalities). Trimodal phases combining e.g. cation-

exchange, anion-exchange and RP have been proposed as well [4, 34, 35]. The combination 

of electrostatic repulsion with HILIC elution was termed ERLIC [36]. Many of the ionic liquid-

derived LC phases [37] as well as several zwitterionic stationary phases [38] reported in the 

literature can also be classified as MMC phases. Further, more advanced mixed-mode phases 

have been proposed such as those combining chiral stationary phases with size exclusion 

principles (internal surface chiral stationary phase) [39, 40]. 

In general, chiral stationary phases can act per se as mixed-mode phases owing to their 

plurality of functional groups. Therefore, it is not surprising that they have been examined for 

challenging achiral applications [41-43]. In this work we explore the mixed-mode 

chromatography behavior of Chiralpak ZWIX(+) and ZWIX(-), i.e. cinchonan carbamate based 

chiral stationary phases decorated with cyclohexylsulfonic acid carbamate residues [44]. This 

chiral selector contains both anion (WAX) and cation exchanger (SCX) functionalities as well 

as hydrophobic moieties and can be classified as a RP/SCX/WAX trimodal mixed-mode phase 

(RP/ZWIX for short). To better understand the incremental contributions of the various 

interaction sites to the mixed-mode chromatography behavior, a fragment-based design was 

adopted to devise a series of structural analogs of this ZWIX-type MMC phase (Fig. 1). Thus, 

new RP/WAX, RP/SCX and RP/ZWIX type MMC phases were obtained which are 

characterized herein regarding their surface charge (pH-dependent ζ-potentials), multimodal 

applicability in RPLC and HILIC, hydrophilicity/lipophilicity balance (HLB) and anion- and 

cation-exchange capability. A benchmarking study was performed which allowed the 

classification of these phases among groups of commercial RP, HILIC and MMC phases. In 

addition, a molecular dynamics simulation was carried out to explain surface charge 

differences of the distinct zwitterionic stationary phases by conformational preferences of the 

different selectors. 
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4.5.3. Experimental 

4.5.3.1. Materials 

Chiralpak ZWIX(+) (150 × 3 mm ID, 3 µm) and ZWIX(-) (150 × 4 mm ID, 3 µm) were purchased 

from Chiral Technologies Europe (Ilkirch, France). The weak anion-exchange stationary 

phases QN-AX and QN were prepared as described elsewhere [45, 46]. Quinine, quincorine 

((2S,4S,5R)-2-hydroxymethyl-5-vinyl-quinuclidine, QCI) and quincoridine ((2R,4S,5R)-2-

hydroxymethyl-5-vinyl-quinuclidine, QCD) (all as free bases) were from Buchler 

(Braunschweig, Germany) (note, configurational descriptors are inconsistently used in the 

literature which may be confusing. The above terminology is identical to the CA index 

terminology (1S,2S,4S,5R)-5-ethenyl-1-azabicyclo[2.2.2]octane-2-methanol for quincorine, 

CAS registry number (RN) 207129-35-9, and (1S,2R,4S,5R)-5-ethenyl-1-

azabicyclo[2.2.2]octane-2-methanol for quincoridine, CAS RN 207129-36-0). 

The silica used for immobilization of the new chromatographic ligands was Daisogel 3 µm, 120 

Å (DAISO Fine Chem GmbH, Düsseldorf, Germany). 3-Mercaptopropyl-modified silica was 

utilized for the immobilization of the chromatographic ligands and was synthesized as 

described previously [45]. 4-Nitrophenyl chloroformate, N,O-bis-(trimethylsilyl)acetamide 

(BSA), calcium hydride (CaH2), taurine, 5-hexen-1-ol, 4-dimethylaminopyridine, and 3-

mercaptopropyltrimethoxysilane were purchased from Sigma Aldrich (Munich, Germany). 

(1R,2R)- and (1S,2S)-trans-2-aminocyclohexane sulfonic acid (ACHSA) were kindly donated 

by Chiral Technologies Europe. Methanol (MeOH), hexane, diethyl ether, toluene and 

dichloromethane (DCM) used for the synthesis were technical grade and purchased from 

Brenntag (Essen, Germany). Acetonitrile (ACN) and methanol HPLC grade were used for 

HPLC analysis and ultrapure water was obtained by purification of demineralized water using 

Elga PureLab Ultra Purification System (Celle, Germany). Mobile-phase additives acetic acid, 

formic acid (FA), ammonium acetate (NH4Ac) and trifluoroacetic acid (TFA) were of analytical 

grade (Sigma-Aldrich). 

The analytes of the RP test, butylbenzene (BuB), pentylbenzene (PeB), N-tert-butoxycarbonyl-

prolyl-phenylalanine (BocProPhe) and the reagents O,O-diethylthiochlorophosphate (DETCP) 

and triethylamine for the synthesis of O,O-diethylthiophosphate (DETP), and of the HILIC tests 

(theophylline (Tp), theobromine (Tb), uridine (U) and 2’-deoxyuridine (2dU), adenosine, 

cytidine, guanosine, thymidine, ascorbic acid, nicotinic acid, pyridoxine, riboflavin, thiamine), 

as well as the void volume markers 1,3,5-tri-tert-butylbenzene (TTBB) and toluene (for HILIC) 

were purchased from Sigma Aldrich (Munich, Germany). 
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4.5.3.2. Instrumentation and Software 

The chromatographic tests were performed on an 1100 series HPLC instrument from Agilent 

Technologies (Waldbronn, Germany) equipped with a degasser, binary pump, column 

compartment with temperature control, a variable wavelength detector (VWD) and a charged 

aerosol detector (CAD, Thermo Scientific, Munich, Germany) or an Agilent Technologies LC 

MSD-SL ion-trap mass-spectrometer. Mobile phases for the chromatographic tests and other 

conditions are specified in respective figure captions. 

Nuclear magnetic resonance (NMR) spectroscopy experiments were done on a Bruker Avance 

400 MHz with methanol-d4, DMSO-d6, or CDCl3 as solvents. The chemical shifts are described 

in ppm. The software MestReNova (Mestrelab Research, Santiago de Compostela, Spain) was 

used for data processing. 

For chiroptical analysis, optical rotation (OR) was measured with an instrument from Anton 

Paar MCP 200 (Graz, Austria) at 589 nm (Na589) using a 1 dm quartz cuvette with 1 mL volume. 

Electrophoretic light scattering measurements for determination of the ζ-potentials were 

performed on a Zetasizer NanoZS particle analyzer equipped with a Universal Dip Cell 

(Malvern Instruments, Herrenberg, Germany). pKa values were calculated with Marvin Sketch 

(14.12.15.0). The software by SIMCA Multivariate Data Analysis Solution (Version 

15.0.2.5959, Sartorius Stedim Data Analytics AB, Umeå, Sweden) was used for the principal 

component analysis with the following parameters: level of significance: 95 %, normalized in 

units of standard deviation, no weighting, autoscaled, centered. 

 

4.5.3.3. Synthesis of the Chromatographic Ligands 

The synthesis of the chromatographic ligands followed procedures as described for the ZWIX 

phases [44]. 

General Procedure (A) for the synthesis of carbonate derivatives 1, 2 and 3: 

To a solution of the appropriate alcohol, quincoridine, quincorine or 5-hexen-1-ol, (8.97 mmol) 

in dry toluene (56 mL) 4-nitrophenyl chloroformate (1.8 g, 9.06 mmol) was added portionwise. 

A precipitate was quickly formed after addition of the chloroformate. To complete the reaction, 

it was stirred at room temperature for 16 hours. The precipitate was collected by filtration and 

washed with n-hexane (3 × 20 mL). The solid residue was dried under vacuum at room 

temperature for 16 hours. The desired product was used directly for the next step without 

further purification because of limited stability. 
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(2R,4S,5R)-2-[(4-Nitrophenyloxycarbonyl)oxy]methyl)-5-vinylquinuclidin-1-ium chloride (1) 

Starting from quincoridine (1.5 g, 8.97 mmol) and 4-nitrophenyl chloroformate (1.8 g, 9.06 

mmol) following the general procedure A, the desired product 1 was obtained as white solid 

(3.02 g, yield 91 %). 

(2S,4S,5R)-2-([(4-Nitrophenoxycarbonyl)oxy]methyl)-5-vinylquinuclidin-1-ium chloride (2) 

Starting from quincorine (1.5 g, 8.97 mmol) and 4-nitrophenyl chloroformate (1.8 g, 9.06 mmol) 

following the general procedure A, the desired product 2 was obtained as white solid (3.74 g, 

yield 100 %). 

Hex-5-en-1-yl (4-nitrophenyl) carbonate (3) 

Triethylamine (Et3N) (5.4 mL, 38.85 mmol) was added to a solution of hex-5-en-1-ol (1.3 g, 

12.95 mmol) in dry DCM (45 mL). Afterwards, the mixture was cooled to 0°C and 4-nitrophenyl 

chloroformate (2.9 g, 14.24 mmol) was added in one portion. The reaction was stirred at room 

temperature for 16 hours. Then, the reaction mixture was directly used for the next step without 

any purification step. An aliquot, however, was purified for characterization. For this purpose, 

the reaction was diluted with DCM and it was washed with aqueous 10% citric acid (3 × 20 

mL) and aqueous saturated NaHCO3 (3 × 20 mL). The organic phase was dried over Na2SO4, 

filtered and concentrated under reduced pressure. The desired product 3 was obtained as 

yellowish oil (3.46 g, 40% yield) and it was used directly for the next step. 1H-NMR (CDCl3, 400 

MHz) δ 1.46-1.62 (m, 3H), 1.76-1.84 (m, 2H), 2.06-2.17 (m, 2H), 4.32 (t, Jt = 6.8 Hz, 1H), 4.96-

5.08 (m, 2H), 5.78-5.88 (m, 1H), 7.40 (d, Jd = 9.2 Hz, 2H), 8.30 (d, Jd = 9.2 Hz, 2H). 

General Procedure (B) for the synthesis of carbamate derivatives 4 – 9 (selectors of QCDRR 

(4), QCISS (5), QCDTAU (6), QCITAU (7), SS-ACHSA (8) and TAU (9)): 

To a finely ground suspension of the appropriate 2-amino-1-sulfonic acid (5.96 mmol) in dry 

DCM (100 mL), BSA (4.4 mL, 17.88 mmol) was added dropwise. Then the mixture was stirred 

and heated to reflux (42°C) for 48 hours. After this time, the reaction was cooled to room 

temperature and the appropriate carbonate derivative (1-3) (2.20 g, 5.96 mmol) was added 

portionwise. Stirring of the reaction was continued for 16 hours at room temperature. Then the 

mixture was cooled to room temperature, quenched with MeOH (3 mL) and stirred for a few 

more minutes. The reaction was filtered in order to eliminate unreacted free amino sulfonic 

acid. The organic phase was concentrated under vacuum and the crude product was purified 

through further work up. 

In detail, for compounds 4-7, the main impurity, 4-nitrophenol, was removed by liquid-liquid 

extraction with basified water (saturated solution of NaHCO3, pH 8) and ethyl acetate. Then, 

the aqueous phase, which was produced after extraction with ethyl acetate, was firstly acidified 
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with HCl (3 mol/L) (pH adjusted to approx. 5/6), concentrated under vacuum and co-

evaporated several times with ethanol (note, the product turned out to be too polar to be 

extracted from water with organic solvents; possibly salting out with ammonium or sodium 

sulfate could improve extraction yields but was not tested in this work). The product was then 

solubilized in DCM/MeOH. After that, it was filtered in order to eliminate inorganic salts and 

concentrated under vacuum. Finally, the product was dried under vacuum at room temperature 

over the weekend. 

For compounds 8 and 9, flash chromatography on RP phase (C18-modified silica, mobile 

phase methanol/water) was employed for further purification and removal of 4-nitrophenol. 

 

4.5.3.4. Immobilization of the Ligands on Thiol-Modified 

Silica Particles 

Typically 2.0 g of the thiol-modified silica gel were suspended in MeOH (8 mL), degassed and 

added to a solution of the chiral selector (0.3 mmol/g of silica, except for WAX-type QN phase 

0.25 mmol/g) in MeOH (4 mL) under nitrogen. Then, azobisisobutyronitrile (AIBN 4 mM, 8 mg) 

was added to the mixture and it was heated to reflux (66°C) for 7 hours under nitrogen with 

mechanical stirring. The modified silica was isolated by filtration (glass filter funnel porosity 4) 

and washed with hot methanol (4 × 3 mL). It was dried in the vacuum oven at 65°C for 24 

hours. The modified silica gels were subjected to elemental analysis and the results are given 

in Table 1. 

 
Table 1. Elemental analysis data and selector coverages of the new mixed-mode stationary phases. 

Chromatographic 
ligand (selector) 

Class  C(%)  H(%)  N(%)  S(%) 
 Coverage 
(µmol/g) 

QN WAX 8.85 1.34 0.69 2.07 236 

QCITAU ZWIX 8.35 1.73 0.68 2.37 236 

QCDTAU ZWIX 8.03 1.69 0.61 2.35 211 

QCISS ZWIX 8.61 1.77 0.55 2.36 190 

QCDRR ZWIX 8.96 1.80 0.6 2.41 208 

SS-ACHSA SCX 5.81 1.32 0.32 2.50 199 

TAU SCX 5.63 1.41 0.23 2.71 146 

Mean (of all SPs)      204 

Standard deviation           31 

 

The modified silica gels were finally slurry packed into stainless steel columns (150 × 3 mm 

ID). 
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4.5.3.5. ζ-Potentials 

pH-Dependent ζ-potential determinations were carried out with a suspension of 0.2 mg/mL 

particles in 10 mM KCl solutions containing 1 mM of the following buffers: formic acid/sodium 

formate, acetic acid/sodium acetate, histidine (titrated with HCl to pH), tris/tris-HCl, boric 

acid/sodium borate. The dip cell was thermostated to 25°C. All measurements were performed 

in triplicates. The Von Smoluchowski equation (Supplementary, Equ. S1) was used for the 

calculation of the ζ-potentials. 

 

4.5.3.6. Determination of Effective Electrophoretic Mobilities 

by CE 

The effective mobility of the analytes was determined by capillary electrophoresis using a 

Hewlett Packard 3D Capillary Electrophoresis system (Agilent, Waldbronn, Germany) at 

different pH values. The background electrolytes were the same as described above for the ζ-

potential measurements (10 mM KCl in 1 mM buffer solutions). Thiourea was used as EOF 

marker. Experiments were carried out in positive mode, applying a voltage of 15 kV, or in 

negative mode, applying a voltage of -10kV, respectively, using a bare fused-silica capillary 

(ID 50 µm) of 50.5 cm total length and 42.0 effective length. The temperature was adjusted to 

20°C and detection was carried out at 210 nm for all analytes except for SS-ACHSA. For 

experiments with SS-ACHSA 0.5 mM sodium p-toluene sulfonate was added to the buffer 

systems and SS-ACHSA was detected by indirect UV detection at 200 nm (Ref. 235 nm). 

Hydrodynamic injection was performed by applying 50 mbar for 5 s. Preconditioning was done 

by flushing the capillary with 0.1 M NaOH for 2 min, followed by MilliQ water for 2 min and 

finally with the respective buffer for 3 min prior to each run. Postconditioning was done by 

flushing the capillary for 3 min with MilliQ water at the end of each run. 

 

4.5.3.7. Molecular Modelling Methods 

The Maestro 12.1 graphical interface of the Schrödinger Suite 2019-3 (Schrödinger, LLC, New 

York, NY) was used. As reported in the previous work [47] a cubic box was built with a 30 Å 

side length. For a realistic reproduction of the stationary phase environment, four 3-

mercaptopropyl-functionalized silanols (~1.97 mol m−2), eight free silanols (~8.0 mol m−2) and 

forty-five silicon atoms were considered for each grafted selector (SO) unit (~0.5 mol m−2), at 

the base of the box. All the silicon atoms and their bonded hydrogen atoms in the base layer 

were set frozen during the molecular dynamics. The box was solvated with water. The three 

simulations with the three CSP systems were performed in the canonical ensemble at 298 K. 

The temperature in the simulation cell was maintained constant through use of a Nosé-Hoover 

thermostat [48,49]. All the other parameters in the simulation study were left to default values 
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in the Desmond Molecular Dynamics System (version 5.9, Schrödinger, LLC, New York, NY) 

present in the Schrödinger Suite 2019-3 [50]. A production run produced 3000 frames during 

the 1 µs dynamics, with an integration time of 2 fs. All the conformations of the three simulated 

SOs, namely ZWIX(+), QCISS and QCITAU, were extracted by each frame and used to 

calculate different molecular properties. In particular, intramolecular salt-bridges (SB) and H-

bonds (HB) were counted for each conformation analyzed, together with the relative 

conformational energy of the SO (SELF-SO, obtained subtracting the energy minima recorded 

along the trajectory by the energy of the frame, in kcal mol−1), and the Polar Surface Area 

(PSA, in Å2). The latter surface descriptor was calculated by the QikProp package (version 6.1, 

Schrödinger, LLC, New York, NY, 2019). A k-mean clustering protocol using KNIME 4.0 

software (KNIME, Konstanz, Germany) was used on three numeric matrices containing the 

frame number, the SELF-SO and the distance measured between the sulfur atom of the 

sulfonic acid group and the nitrogen of the quinuclidinium moiety of each frame. Five clusters 

were set and plotted as a bubble graph. 
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4.5.4. Results and Discussion 

4.5.4.1. Design, Synthesis of Ligands and Immobilization by 

Thiol-ene Click Reaction 

The design of the new WAX-type, SCX-type and ZWIX-type MMC ligands is outlined in Fig. 1. 

It was based on the fragmentation of the Chiralpak ZWIX(+) (quinine-derived; 

1S,3R,4S,8S,9R) and ZWIX(-) (quinidine-derived; 1S,3R,4S,8R,9S) selectors [44]. Leaving 

out the 2-sulfocyclohexyl residue of ZWIX(+) along with its carbamate moiety yielded a WAX-

type ligand and quinine-based stationary phase, respectively. Its chiral separation capability 

was already described previously [45, 46, 51]. Replacement of the 2-sulfocyclohexyl moiety of 

ZWIX(+) by a tert-butyl carbamate residue gave the WAX-type ligand which is part of the 

commercial chiral stationary phase Chiralpak QN-AX and served as reference material in some 

of the following studies. ZWIX(+) and ZWIX(-) have a bulky, hydrophobic methoxyquinoline 

ring. Upon its removal, ligands retaining their zwitterionic nature, thus termed RP/ZWIX-type, 

were obtained. They have been synthesized from either quincorine (QCI) or quincoridine 

(QCD) (with configurations as in quinine and quinidine, respectively, but one stereogenic 

center less; see experimental section for specification of absolute configurations). WAX-type 

quincorine-derived ligands have been proposed as chemoaffinity type stationary phases for 

plasmid DNA isoform and topoisomer separations [52]. Through this structural change the 

resultant RP/ZWIX selectors, QCISS and QCDRR, lose their π-π-interaction capabilities and 

further a steric barrier which may significantly influence their conformational flexibility. By 

replacement of the 2-sulfocyclohexyl residue by a 2-sulfoethyl residue, taurine-derived 

zwitterionic RP/ZWIX-type MMC materials, termed QCITAU and QCDTAU, were obtained 

having four carbons less. Taurine-analogs of Chiralpak ZWIX have been reported by Lindner 

and coworkers as zwitterionic chiral stationary phases [44]. Taurine-derivatized 

polyaspartamide-modified silica is a commercial SCX-type stationary phase (Polysulfoethyl A) 

[53] frequently used as first dimension separation material in 2-dimensional peptide 

separations. In order to further explore the influence of the quinuclidine moiety of the QCI/QCD-

derived RP/ZWIX phases on retention profiles and MMC behavior, respectively, it was 

replaced by 5-hexen-1-ol as O-carbamate residue resulting in SCX-type MMC ligands (SS-

ACHSA and TAU) (Fig. 1). The synthesis of these RP/ZWIX and RP/SCX MMC ligands 

followed the procedures reported by Hoffmann et al. for ZWIX(+) and ZWIX(-) [44]. Reaction 

schemes can be found in the suppl. material and detailed protocols for ligand synthesis in the 

experimental part. 
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Fig. 1: Surface chemistries of the investigated zwitterionic, strong cation and weak anion-exchange type mixed-
mode stationary phases. 

All new MMC selectors were immobilized on 3-mercaptopropyl-modified silica (Fig. 1) following 

a well-established procedure which allows adjustment of dedicated selector coverages, 

whereby herein a ligand coverage of 200 µmol/g was targeted. Thiol-ene click reaction using 

thermal initiation and azobisisobutyronitrile (AIBN) as radical initiator was employed (see 

Experimental for details). In general, 68±16% of the ligand added to the reaction mixture was 

bonded to the thiol silica, as confirmed through elemental analysis. The detailed results of the 

elemental analysis and the calculated selector coverages are given in Table 1. It can be seen 

that all ligand coverages are in a comparable range (204±31 µmol/g; mean and standard 

deviation over all distinct phases listed in Table 1). 
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4.5.4.2. ζ-Potentials 

In mixed-mode chromatography, the surface charge of the chromatographic particles under 

employed conditions plays a decisive role for the separation of charged compounds. It can be 

conveniently characterized by pH-dependent ζ-potential determinations using electrophoretic 

light scattering measurements as recently proposed [16, 26, 54-57]. Particles with charged 

surface suspended in electrolyte solutions (e.g. buffered mobile phases) build up an electrical 

double layer which consists of a uniform layer of counter-ions (Stern layer) followed by a 

heterogeneous layer of mixed ionic species at the surface. In this diffusive layer counterions 

are enriched as compared to the solution surrounding the solvated particle in which the ions 

are in equilibrium like in the employed background electrolyte solution. If an electric field is 

applied, the charged particles will start moving in the solution and a shear plane is formed on 

the solvated particle. The potential at this slipping plane is defined as the ζ-potential [58-60] 

and can be used to characterize the surface charge of the particles in presence of the given 

electrolyte solution. The particle radius of the investigated MMC materials is large compared 

to the thickness of the double layer, which can be characterized by the Debye length (1/κ), i.e. 

κr >> 1. For such cases, the Smoluchowski model for calculation of the ζ-potentials (see Suppl. 

Material chapter 2 for more details) is considered valid under the assumption that 

complications arising from particle porosity, surface conductance and surface roughness are 

negligible under the employed conditions. Since ionizable groups on the surface can change 

their dissociation state under different chromatographic conditions, determination of ζ-

potentials over a wide pH-range typically employed in LC is most meaningful and was 

performed between pH 3.5 and 9.5 with 1 mM buffers in 10 mM KCl to keep ionic strength 

constant during all measurements. The results are depicted in Fig. 2. 

The WAX-type QN and QN-AX phases behave quite similarly in terms of their ζ-potentials 

(Fig. 2a). They showed positive ζ-potentials at low pH values due to the presence of the tertiary 

amine of the quinuclidine ring (pKa (QN/QN-AX) = 8.91/8.43, pKa (QN/QN-AX) of 

quinoline = 4.06/4.08 as calculated with Marvin Sketch 14.12.15.0). In general, ζ-potentials of 

these WAX-type materials remained positive up to pH 7.5 and turned negative due to the 

dominating influence of residual silanols at pH above 8. 
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Fig. 2: ζ-Potentials determined in dependence of pH. (a) Cationic selectors (QN, QN-AX) in comparison to ZWIX(+), 
ZWIX(-) and supporting silica as well as thiol-modified silica, (b) all zwitterionic selectors in comparison, (c) anionic 
ligands in comparison to ZWIX(+). 

The introduction of the sulfonic acid moiety (pKa = -0.97, calculated with Marvin Sketch) of the 

2-sulfocyclohexyl residue in ZWIX(+) and ZWIX(-) resulted in a significant negative offset of 

the ζ-potentials of around -30 to -50 mV thus adopting negative values over the entire pH 

range. It indicates a negative surface charge and demonstrates that it is mainly dominated by 

the fully dissociated sulfonic acid moiety. This is in line with former publications on zwitterionic 

stationary phases for HILIC, such as ZIC-HILIC [61], which have shown that these materials 

are cation-exchangers under low ionic strength conditions, i.e. at salt levels below 20 mM [62]. 
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This observation has been often ascribed to the proximity of the anionic group (the sulfonate) 

of the ligand on the surface while the cationic moiety is shielded in the interior on these 

stationary phases. However, inversion of the cationic and anionic groups of the ligand, e.g. in 

ZIC-cHILIC did not lead to surface charge reversal; ZIC-cHILIC still exhibits negative ζ 

potential, albeit not as extreme as that of ZIC-HILIC [63, 64]. Fragmentation of the ZWIX 

selector was supposed to give additional insight. 

Thus, Fig. 2b compares all the QCI/QCD-derived RP/ZWIX phases with Chiralpak ZWIX(+) 

and ZWIX-(-). By eliminating the quinoline ring of ZWIX(+) and ZWIX(-), respectively, furnishing 

quincorine- (QCI) and quincoridine-derived (QCD) MMC phases with 2-sulfocyclohexyl residue 

(QCISS and QCDRR) a significant positive shift in ζ-potentials of around +15 to +20 mM was 

observed yielding positive values in the pH range < 5. Above pH 5 the surface charge changed 

its sign and was still negative indicating that there is a pH-dependent charge reversal at mild 

conditions easily possible in these materials. Upon replacement of the 2-sulfocyclohexyl 

residue by a 2-sulfoethyl group furnishing QCITAU and QCDTAU a further but smaller positive 

shift of the ζ-potentials of around 5 to 15 mV was found. For the quincorine-derived taurine-

based QCITAU, relatively stable ζ-potentials of around +20 mV were obtained in the pH range 

between 3.5 and 6.5. The ζ-potential of this material turned negative only above pH 7. Overall, 

it appears that group contributions are largely additive but there are some interesting delicate 

group effects which are not simple to explain. For instance, the absence or presence of the 

quinoline ring does not explain the large shift between ZWIX(+)/ZWIX(-) and QCI/QCD phases. 

It is hypothesized that due to the quinoline ring conformational freedom of the ZWIX selectors 

is constrained which presents this selector in an extended open conformation exposing the 

sulfonate moiety towards the outer surface of the particles and the positively charged 

quinuclidinium ring closer to the interior i.e. silica surface. Since 1:1 intramolecular ion-pair 

formation is not easily possible in this ligand due to constrained conformations, the surface is 

net negatively charged from the dominating effect of the surface sulfonate (SCX). On the other 

hand, absence of the quinoline ring gives the QCI- and QCD-derivative much larger 

conformational flexibility. This should enable much better intramolecular charge saturation by 

intramolecular ion-pair formation. Consequently, the sulfonate moiety gets less exposed to the 

surface leading to less negative or even positive ζ-potentials. The effect seems to be more 

pronounced in the corresponding QCI/QCD-TAU ligands in which the sulfonic acid side chain 

is less constrained compared to the sulfocyclohexyl side chain, thus favorable for 

intramolecular ion-pair formation and charge compensation. 

Fig. 2c depicts the ζ-potentials of SCX-type MMC materials in comparison to ZWIX(+). The 

SCX-type MMC phases SS-ACHSA and TAU have a stable negative ζ-potential of around -

40 mV over the entire pH range. On the contrary, the weak anion exchange moiety of ZWIX(+) 
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has a modulating effect which depends on the pH owing to its weakly basic quinuclidine group 

that changes its dissociation state over the investigated pH range. 

Notably, the ζ-potentials (around pH 5) agree relatively well with the LSER d- terms recently 

measured by SFC on the same set of columns [65] which validates that the above presented 

ζ-potential measurements are representative also for the employed chromatographic 

situations. In general, the currently investigated MMC stationary phases differ not only in 

surface hydrophilicity/hydrophobicity but also in surface charge. Thus, a set of new mixed-

mode ion-exchangers becomes available which will allow a fine tuning of separations due to 

their slightly distinct surface charge character. 

 

4.5.4.3. Net Charge of Zwitterionic Selectors as Measured by 

Electrophoresis 

To deconvolute the contribution of silica and of surface effects (selective ion accumulation 

effects on the surface) from the net charge of the chromatographic ligands, electrophoretic 

measurements of the ligands attached to thiol silica were performed in free solution by CE 

using the same background electrolyte (BGE) as for ζ-potential determinations. Fig. 3a shows 

the results of the determination of effective electrophoretic mobilities of the ligands in 

dependence on the pH of the BGE. The cationic ligands QN and QN-AX exhibit positive 

mobilities over the entire pH range (except for QN-AX at pH 9.5). The lower mobilities of QN-

AX (with its tert-butylcarbamoyl residue) can be explained by a larger hydrodynamic radius. 

On the other hand, the anionic ligand SS-ACHSA has stable negative mobilities over the entire 

investigated pH-range, as expected. The ZWIX ligands possess positive mobilities in the pH 

range 3.5 to 4.5, negative mobilities in the pH range 7.5 to 9.5 and migrate with the 

electroosmotic flow (EOF) between pH 5.5 and 6.5. QCISS and QCITAU migrate with the EOF 

over the entire pH-range (Fig. 3a). These results seem to disprove that the excess negative 

charge of the ZWIX phases revealed by above ζ-potential measurements is due to excess 

negative charge on the zwitterionic selectors. 
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Fig. 3. Effective electrophoretic mobilities of ligands in free solution by CE using the same electrolytes as for ζ–
potential measurements in Fig. 2 . (a) Effective mobilities at 10 mM KCl in 1 mM buffer, (b) selected ligands and 
their change in effective mobilities with ionic strength at pH 6.5, (c) effect of ionic strength on effective mobilities of 
ZWIX(+) at three different pH-values (3.5, 6.5 and 9.5). 

The question then arises why differences in the ζ-potentials are observed between ZWIX(+), 

QCISS and QCITAU in spite of their same number and type of ionizable groups (always 

quinuclidinium and sulfonate) in the same bonding distance (always same 7 atom spacer 

between N+ and sulfonate), respectively. A concept worth considering is the chaotropic effect. 
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It is known that the elution order in ion chromatography is from least to most chaotropic, i.e. 

chaotropes give stronger electrostatic interactions than kosmotropes [30]. Alpert has pointed 

out [66] that chaotropic ions are less well hydrated than are kosmotropic ions. This correlates 

with the strength of ionic interactions. This phenomenon also accounts for the worse retention 

of chaotropes in HILIC [30]. Chaotropic and kosmotropic effects are well described for 

inorganic ions but unfortunately our understanding of such lyotropic and solvation effects is not 

very well developed for organic molecules. It is therefore difficult to apply to the current 

situation but may play a role. Another effect, however, may be invoked as well. Materials with 

zwitterionic functional groups lose their ion-exchange capacity when the mobile phase contains 

a sufficiently high concentration of salt.  The mechanism is that the concentration of potential 

counterions is high enough to titrate the charged groups of the bonding.  Distinct ionic 

functionalities may be differently solvated and may have different affinities for counterions [30]. 

Pavel Nesterenko claimed in his work on ion chromatography media that cationic groups 

(amines) are titrated at significantly lower concentrations of salt than are anionic groups [38]. 

In fact, this would account for the net negative potential exhibited at low salt concentrations by 

both ZIC-HILIC, ZIC-cHILIC and related media such as current ZWIX materials; the amine 

groups (here quinuclidinium) are titrated by their counterions at lower salt concentrations than 

are the acidic groups (here, sulfonates). The low salt concentrations that is used herein for ζ-

potential measurements would tend to accentuate this disparity. It is conceivable that the 

difference between ZWIX, QCISS and QCITAU can be explained in these terms 

notwithstanding the structural elements (quinuclidinium and sulfonate) being the same, just 

due to distinct solvation effects originating from different neighbor moieties. A disparity in 

polarity (and hydration) between the taurine ligand in QCITAU and the cyclohexylsulfonate 

ligand in QCISS could lead to the effect that they are titrated at different concentrations of 

counterions. Therefore, their charge potentials would differ at low concentrations of salt. 

However, it may be argued that if this is the case it should be visible by electrophoretic 

mobilities as well which were performed under the same conditions. Obviously, this is not the 

case, as can be seen from Fig 3a, i.e. the curve for ZWIX selectors; unlike ζ-potentials of the 

modified particles, effective mobilities of the mere ligands do not exhibit a negative sign over 

the entire pH range. 

In order to have a deeper look into the ion titration effect, electrophoretic mobilities were 

measured at distinct ionic strengths (Fig. 3b and 3c). A convenient way to test for the ion 

titration effect, i.e. the change in effective charge with ionic strength, is to apply the Debye-

Hückel-Onsager (DHO) limiting law of conductance and its transformation into mobilities [67]. 

In a simplified form it is written as a function of the ionic strength according to (Eq. 1) 

𝜇𝑎𝑐𝑡,𝑖 = 𝜇0,𝑖 − 𝐴√𝐼     (1) 
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wherein A is the Onsager slope, I the ionic strength, µact,i and µ0,i are the actual and absolute 

electrophoretic mobilities at actual and zero ionic strength. For sake of simplicity, we report 

ionic strength effects for effective mobilities µeff which are related to µact,i by Eq 2 

𝜇𝑒𝑓𝑓 =
∑ 𝑐𝑘∙𝜇𝑎𝑐𝑡,𝑖∙𝑧𝑘

𝑛
𝑘=1

𝑐
     (2) 

Wherein, for a compound with n ionic forms, ck, zi and c are the concentration and charge 

number of the kth ionic species and c the total concentration of the compound. Mobilities 

depend on the ion-solvent interactions which determine the size of the solvated ions and thus 

the Stokes radii for frictional resistance. They further depend, amongst other things, on ion-ion 

interactions between analyte ion and ionic species of the BGE which reduce the mobility in 

solutions with finite ionic strength relative to the limiting case at infinite dilution. These ion–ion 

interactions were initially described by the theory of Debye, Hückel and Onsager, based on the 

model of the ion cloud with the introduction of electrophoretic and relaxation effects (see Eq. 1). 

It was recently reported that the Onsager slope A of mobility vs √𝐼 is linearly correlated with 

the solute charge. Herein, we use this relationship to get an idea whether the cationic site 

(quinuclidine) and anionic site (sulfonate) are titrated to different extents. The absolute values 

of effective mobilities at zero ionic strength depend on solvation effects and hydrodynamic 

radius and are not suitable parameters for such a comparison. However, the slope of the 

simplified Onsager Eq. 1 at pH 6.5 for individual selector moieties (QN and SS-ACHSA) might 

give some indication for this effect (note, in the zwitterionic ZWIX(+) selector the two 

contributions cancel out each other completely, giving 0 effective mobilities). K+ and Cl− have 

about the same hydrodynamic radius (K+ 1.25 Å and Cl− 1.20 Å, [68]) and same charge 

number; they should therefore be equivalent in strength for titrating respective counterions. 

The graphical results are given in Fig. 3b for pH 6.5. It can be seen that the ion-ion titration 

effect as revealed by the Onsager slope is stronger for the sulfonate compound (SS-ACHSA) 

than the quinuclidinium compound (QN), which does not support the idea that ammonium ions 

are titrated at lower concentrations than anions. The same trend is seen for the ZWIX(+) 

selector in Fig. 3c for different pH values (pH 3.5 and 9.5) which again shows that the ZWIX 

selector in its anionic form is stronger affected by titration with counterions than in its cationic 

form at pH 3.5. Unfortunately, the relevant zwitterionic selectors (ZWIX, QCISS, QCITAU) do 

not show any mobility at pH 6.5 (i.e. the opposite charges fully compensate each other) and 

therefore a direct proof of the counterion tirtration effect in zwitterionic selectors is not possible 

by this method. However, it can be concluded that other factors could play a role as well. 
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4.5.4.4. Molecular Modelling 

The distinct surface charges of the zwitterionic phases under investigation, as measured by ζ-

potentials, cannot be sufficiently explained by the immobilized functional groups alone and 

above considerations. Molecular modeling was therefore selected to support the hypothesis 

raised above that conformational differences and intramolecular ion-pairing are responsible for 

distinct surface net charges. In particular, molecular dynamics (MD) calculations were 

performed for three selectors: ZWIX(+), QCISS, QCITAU. 

From the MDs, 3000 frames were extracted for each selector and individually analyzed 

counting the intramolecular salt-bridges (SB) and H-bonds (HB) present in that specific 

conformation, together with its PSA (polar surface area). The HB and SB measurement results 

are reported in a bar graph in Suppl. Material. From Suppl. Fig S19 it is possible to note that 

the sum of the intramolecular interactions (HB+SB) is larger for QCITAU (793) than ZWIX(+) 

(733), which in turn is larger than for QCISS (713). Comparing the exposed polar surface area 

of the selectors may give some idea about the compactness of the chromatographic ligand. 

Indeed, the mean polar surface area (PSA) is 142 (±2.9) Å2 for ZWIX(+), 125.3 (±3.7) Å2 for 

QCISS and 130.4 (±3.4) Å2 for QCITAU. In general, QCITAU displays a high number of 

intramolecular interactions (HB+SB) and a quite low PSA exposed. On the other hand, QCISS 

has similar HB+SB value compared to ZWIX(+), but a lower PSA exposed. However, these 

data do not fully explain the trends in surface charge shown in Fig. 2. 

For this reason, a different analysis was performed. Each of the three series of 3000 molecules, 

one for each SO trajectory, were clustered (k-mean) into 5 groups according to the frame 

relative conformational energies (SELF-SO) and the distance measured between the sulfur 

atom of the sulfonic acid group and the nitrogen of the quinuclidinium moiety. The results are 

shown in Fig. 4. 
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Fig. 4. Results of MD calculations of ZWIX(+), QCISS and QCITAU selectors: (a) Intramolecular distances between 
S of sulfonic acid and N of quinuclidinium moiety measured for the 3000 frames and grouped into 5 clusters, (b) 
exemplary conformer of the lowest energy cluster of ZWIX(+), (c) of QCISS and (d) of QCITAU. 

Fig. 4a shows a scatter plot of the measured distance versus the relative conformational 

energies (calculated with Schrödinger Suite) in the form of a bubble graph (note, in particular, 

we used a utility aiming at the analysis of MD trajectories called Simulation Event Analysis that 

can monitor energies and interactions along time. Relative values were created by subtracting 

the minimum energy recorded for the examined selector from the values of all the frames). The 

size of the bubbles represents the cluster population. It can be seen that QCITAU and QCISS 

behave similarly, while ZWIX(+) shows significantly different profile. ZWIX(+) reveals 

exclusively conformers embedded by a long sulphur-nitrogen distance (>6.0 Å), indicating the 

presence of a very weak intramolecular electrostatic interaction. On the other hand, both 

QCITAU and QCISS exhibit favorable low energy clusters with short distance conformers (~4 

Å between S and N) which is indicative for a strong intramolecular ion-pairing. The main 

difference that can be seen between QCITAU and QCISS clusters is that QCITAU displays 

barycenters characterized by 3-4 kcal/mol lower conformational energy distribution compared 

to that of QCISS. This outcome could indicate that, on average, conformers displaying short 

sulphur-nitrogen distances are energetically more stable (see Fig. 4a). Fig 4b-4d illustrate the 
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energy minima conformer for each selector, ZWIX(+) (Fig. 4b), QCISS (Fig. 4c) and QCITAU 

(Fig. 4d). Overall, these results support to some extent the above raised hypothesis that more 

favorable intramolecular ion-pairing may lead to less negative surface charge of the 

zwitterionic selectors by shielding the sulfonic acid group intramolecularly. 

While this remains an unproven hypothesis, it may be worth to be considered as hypothesis 

for explanation of the ζ–potential differences of the distinct zwitterionic phases. In general, the 

set of data presented herein always explains some but not all effects observed. 

Overall, three possible explanations have been presented: i) differential solvation and titration 

of cations and anions by respective counterions, ii) surface effects such as specific ion 

gradients due to more complex double layers, and iii) intramolecular charge neutralization by 

intramolecular ion-pairing to a characteristic extent when the conformational flexibility and 

solvation is altered by different structural elements due to other neighboring effects. Yet, finally 

it remains open which one is responsible for the observed ζ-potential shifts within the series of 

congeneric zwitterionic materials or whether all partially contribute to it. 

 

4.5.4.5. Chromatographic Characterization 

Simple test mixtures were injected in RP and HILIC elution mode to examine the multimodal 

applicability of the new MMC phases for i) RP-type separations, ii) HILIC utility, and iii) ion-

exchange properties. The results will be mainly discussed in the form of chromatographic 

parameters of binary analyte combinations. 

The surface lipophilicity and capability of the MMC phases to serve for LC separations based 

on lipophilicity differences of analytes in RP elution mode can be well expressed by the 

separation factors of an analyte pair differing by a methylene increment. Thus, butylbenzene 

(BuB) and pentylbenzene (PeB) were part of an RP test mixture along with two acids with 

different lipophilicity (DETP and BocProPhe). In general, α(CH2) values of the new MMC 

phases ranged between 1.33 for the TAU RP/SCX phase and 1.47 for the QN RP/WAX phase. 

Thus, it can be concluded that the current MMC phases have moderate hydrophobicities and 

methylene selectivities as compared to RP phases (e.g. α(CH2) of the polar RP phase Synergi 

Fusion RP is 1.79 [25]). On the other hand, this is characteristic for mixed-mode phases, being 

indicative of their hydrophilicity-lipophilicity balance, which makes them applicable in both RP 

and HILIC elution modes (vide infra). Exemplary chromatograms are given for QCITAU, 

QCISS and QN in Fig. 5 which documents that separations of analytes that differ just by a 

methylene increment are still feasible on these MMC phases. Peaks 3 and 4 are butyl- and 

pentylbenzenes; their retention and methylene selectivities increase in the order QCITAU < 

QCISS < QN. Also, the two acids elute in the order of their lipophilicity (DETP 1 < BocProPhe 
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2). However, as far as the anion-exchange capacity of the distinct MMC phases is concerned, 

there are significant differences. The general retentivity of the acids and anion-exchange 

capacity follows the same order as described for the ζ-potentials (vide supra): QN > QCITAU 

> QCISS (Fig. 5). The significantly higher anion-exchange retention increment of the QCITAU 

vs QCISS is remarkable as these two MMC phases differ just in a tetramethylene bridge which 

gives the former more conformational flexibility, obviously with some significant effect on net 

surface charge. 

 

Fig. 5. Chromatographic characterization: Reversed-phase elution mode. Mobile phase: a mixture of ACN and H2O 
(40:60, v/v), containing 50 mmol acetic acid in 1 L mobile phase, apparent pH 6, adjusted with ammonia in the polar 
organic mixture; Flow rate: 0.5 mL/min, 25 °C, 0.8 mg/mL of each analyte (1. DETP, 2. BocProPhe, 3. BuB, 4.PeB), 
injection volume: 5 μL, 220 nm 

The HILIC applicability was characterized by a test mixture consisting of toluene (1), caffeine 

(2), theobromine (3), theophylline (4), 2-deoxyuridine (5), 5-methyluridine (6) and uridine (7) 

[69] (Fig. 6). In the chromatograms of Fig. 6 it can be seen that all of the tested new MMC 

phases can well baseline-resolve the peak pair uridine (7) and 2-deoxyuridine (5) indicating a 

good hydroxy group selectivity for all of them. The methyl group selectivity in HILIC significantly 

varied between the distinct phases. It was for instance better on QCDTAU than on QCDRR 

(both ZWIX-type MMC), TAU (SCX-type) and QN (WAX-type). Overall, QCDTAU showed the 

best separation in HILIC for this test mixture with a baseline separation of all seven peaks. 

These results confirm the multimodal applicability of the current MMC phases in RP and HILIC 

elution modes. The chromatographic efficiencies of these mixed-mode ion-exchangers are, 

however, slightly lower than those of corresponding RP particles due to a slow adsorption-

desorption kinetics (significant C-term from slow adsorption-desorption rate constants), in 
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particular for ionic analytes. This is in line with the general characteristics in terms of 

chromatographic efficiencies of ion-exchange processes. 

 

Fig. 6: Chromatographic characterization: HILIC elution mode. Mobile phase: 90 %(v) ACN / 10 % (v) aqueous 20 
mM NH4Ac (pH 4.7) solution, flow rate: 0.21 mL/min (linear flow velocity: 0.66 mm/s*), T=30°C, injection volume: 

2µL,  = 254 nm, 1. Toluene (1µL/mL), 2. Caffeine, 3. Theobromine, 4. Theophylline, 5. 2’-Deoxyuridine, 6. 5-
Methyluridine, 7. Uridine (0.1 µg/mL), dissolved in ACN:H2O (90:10; v/v). *[69] 

 

4.5.4.6. Benchmark Study 

The final question that was addressed in our study was related to the relative chromatographic 

characteristics compared to formerly described commercial and non-commercial mixed-mode 

phases as well as in comparison to popular HILIC phases. 

The results are first discussed based on simple binary plots of chromatographic parameters 

[70]. Fig. 7 depicts a plot of surface acidity (as probed by the separation factor between 

theobromine, Tb, and theophylline, Tp) versus surface hydrophilicity as measured by the 

retention factor of uridine (both measured under HILIC conditions). Theophylline is weakly 

acidic while both theophylline and theobromine are dimethylxanthines with comparable 

hydrophilicity. If the surface is acidic, then Tp is less retained due to electrostatic repulsion 

effects. Again here it becomes evident that the quincorine- and quincoridine-based zwitterionic 

mixed-mode phases are less acidic than ZWIX(+) and ZWIX(-), as the points for QCITAU (16), 

QCDRR (17), QCISS (18) and QCDTAU (20) are placed lower on the y-scale of this acidity vs. 
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hydrophilicity plot than ZWIX(-) (33) and ZWIX(+) (34) (see Fig. 7). On the other hand, it is 

worthwhile mentioning that the latter are still less acidic than the popular zwitterionic 

sulfobetaine based ZIC-HILIC phase (1 and 2 in Fig. 7). 

 

 

Fig. 7. Comparative visualization of acidic and basic surface properties of the tested stationary phases using the 

example of the selectivity of theobromine and theophylline ((Tb/Tp) against their surface hydrophilicity measured 
on the retention of uridine (k(uridine). Chromatographic test conditions can be found in Supplemental Material 
4.5.7.3.1 in accordance to ref.[25]. 1. ZIC-HILIC (5µm); 2. ZIC-HILIC (3.5 µm); 3. Nucleodur HILIC (3 µm); 4 TSKgel 
Amide-80 (5 µm); 5. TSKgel Amide-80 (3 µm); 6. XBridge Amide (3.5 µm); 7. PolySULFOETHYL A (3 µm); 8. 
PolyHYDROXYETHYL A (3 µm); 9. CYCLOBOND I (5 µm); 10. LiChrospher Diol (5 µm); 11. Chromolith Si; 12. 
HALO HILIC (2.7 µm); 13. COSMOSIL HILIC (5 µm); 14. Sugar-D (5 µm); 15. NH2-MS (5 µm); 16. QCITAU (3 µm), 
17. QCDRR (3 µm); 18. QCISS (3 µm), 19. QN (3 µm), 20. QCDTAU (3 µm), 26. Chiralpak QN-AX, 33. ZWIX(-) (3 
µm), 34. ZWIX(+) (3 µm); 35. TAU (3 µm); 36. SS-ACHSA (3 µm) Surface chemistries of other stationary phases 
are depicted in Suppl. Fig. S17 and S18. 
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Fig. 8 shows a plot of the methylene selectivity (from RP elution mode) indicating phase 

hydrophobicity against the retention factor of uridine (from HILIC) denoting the hydrophilicity 

of the stationary phase surface. Four clusters can be assigned: i) Cluster I: The commercial 

HILIC phases ZIC-HILIC, TSKgel Amide-80, Polysulfoethyl A and the amino phase Luna NH2 

show strong retention of uridine but low methylene selectivity in RP due to their high 

hydrophilicity. ii) Cluster II: Chromolith Si and Biobasic AX are both hydrophilic as indicated by 

their low methylene selectivity. However, they show at the same time modest retention for 

uridine in HILIC mode. iii) Cluster III: A series of WAX-type mixed-mode phases all exhibit 

relatively high methylene increments (around 1.5 to 1.6) but are widely spread on the k(uridine) 

scale (hydrophilicity scale) in HILIC. The Acclaim Mixed-mode WAX-1 phase and a non-

commercial N-undecenyl-3-aminoquinuclidine based RP/WAX phase (WAX AQ360) [25] also 

reveal reasonable retention for uridine and thus good HILIC behavior. They were even 

outperformed in terms of HILIC behavior by a similar N-undecenyl-2-

dimethylaminoethylamide-bonded RP/WAX phase (WAX DMAE) [25]. iv) Cluster IV: The 

current zwitterionic MMC phases cluster together at low k(uridine) and intermediate levels of 

methylene selectivity. It demonstrates that these phases are not the best choice for HILIC 

separations of neutral compounds but may be quite useful for HILIC separations of charged 

(anionic, cationic and zwitterionic) analytes. They still show potential for RP-type separations 

of both neutral and ionic analytes. 
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Fig. 8. Characterization of hydrophilic and hydrophobic surface properties (hydrophilic-lipophilic balance, HLB) 

based on the retention factor of uridine (k(uridine) and the methylene selectivity ((PeB/BuB) of selected stationary 

phases. Chromatographic test conditions were as stated in Figure 5 for methylene selectivity ((PeB/BuB)) and 
Figure 6 (k(uridine) in accordance to ref. [25] and can be found in the Supplemental Material sub-chapter 4.5.7.3.1. 
1. ZIC-HILIC (5µm); 4 TSKgel Amide-80 (5µm ); 7. Poly-SULFOETHYL (3 µm); 11. Chromolith Si; 16. QCITAU 
(3µm), 17. QCDRR (3µm); 18. QCISS (3µm), 19. QN (3µm), 20. QCDTAU (3µm), 21. Acclaim Mixed Mode WAX-
1; 23. Primesep B2; 24. Obelisc R; 25. Obelisc N; 26. Chiralpak QN-AX, 27. Luna NH2; 28. BioBasic AX; 30. WAX 
AQ360; 31. WAX DMAE; 32. WAX BAMQO 33. ZWIX (-) (3µm), 34. ZWIX (+) (3µm); 35. TAU (3µm); 36. SS-ACHSA 
(3µm). Surface chemistries of stationary phases can be found in the Supplemental Material Suppl. Fig. S17 and 
S18. 

This is underpinned by Fig. 9 which shows a plot of log k of nicotinic acid (mostly retained due 

to anion exchange retention) vs log k of thiamine (mainly due to cation exchange) under HILIC 

conditions. WAX-type QN phase has pronounced anion-exchange capacity while SCX-type 

TAU and ACHSA are classified as cation-exchangers as expected. The zwitterionic mixed-

mode phases of this work are in the middle of a diagonal line between the SCX-type and WAX-

type phases. They have moderate anion and moderate cation exchange capacity. The  

ZWIX(-) phase is shifted on the cation exchange scale to larger values, indicating again its 

stronger acidic character as compared to the quincorine- and quincoridine-derived zwitterionic 

MMC phases. Furthermore, it is striking that there is a slight shift to higher cation-exchange 

character when the quincorine (QCI) moiety in the zwitterionic MMC phases is exchanged for 

the quincoridine moiety (QCD) (Fig 9). 
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Fig. 9: Chromatographic categorization of the surface charge properties of the investigated mixed-mode columns: 
Anion-exchange as measured by log k for nicotinic acid and cation-exchange as determined by log k of thiamine. 
Conditions and stationary phase chemistries can be found in the Supplemental Material Chapter 4.5.7.3.1 (analysis 
of vitamins). Labels (numbers) as defined in Fig. 6 and 7. 

Last but not least, a principal component analysis (PCA) was performed to classify the columns 

along with commercial RP, HILIC and mixed-mode phases. Retention factors of the 

chromatographic test mixture of the RP test (Fig 5), of nucleosides from a HILIC test, purines 

in HILIC mode, and vitamins in HILIC mode as factors (variables) were subjected to PCA. The 

score plot of the first two principal components PC1 and PC2 is shown in Fig. 10. PC1 and 

PC2 explain 51.1% and 18.3 % of the variance in the data, both together 69.4%. Columns with 

similar retention behavior are located on this score plot in close proximity. The more different 

the retention behavior, the greater is the distance from each other. In this particular case, the 

PC1 axis is a descriptor of the hydrophilicity, the PC2 axis represents the effective charge of 

the modified silica particles. Stationary phases with polar surfaces can be found at high PC1 

values (e.g. HILIC phases like Luna NH2, ZIC-HILIC, Polysulfoethyl A, PC-HILIC and TSKGel 

Amide-80). On the opposite end of the PC1 axis, stationary phases with a predominantly apolar 

surface are found, like the polar RP phase Synergi Fusion-RP or the mixed-mode phase 

Uptisphere 5 MM3 which is an RP phase with quaternary ammonium endcapping. Mixed-mode 

phases such as Primesep B2, Obelisc R and N, including the current zwitterionic MMC phases, 

are located in the middle of the PC1 axis, indicative of their hydrophilicity-lipophilicity balance 

(see Fig. 10). The PC2 axis, in contrast, primarily quantifies the effective charge state of the 

surface of the stationary phases. Mixed-mode anion exchange columns like Acclaim Mixed 

Mode WAX-1 are found at high PC2 values and net negatively charged phases like PC-HILIC 
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at low (i.e. negative) PC2 values. The current mixed-mode phases are aligned on PC2 in 

accordance to the ζ-potentials measured at around pH 7.5. The WAX-type QN phase has the 

highest score, then the WAX-type QN-AX, followed by the zwitterionic quincorine and 

quincoridine MMC phases (QCITAU, QCDTAU, QCDRR, QCISS). ZWIX(+) and ZWIX(-) are 

already on the negative scale i.e. they have acidic excess on the surface. SCX-type SS-

ACHSA and TAU have the lowest score on PC2 and thus the most acidic character, as 

expected. 

 

Fig. 10. Benchmarking study by principal component analysis (PCA): Score plot of first two principal components. 
Chromatographic conditions and evaluated stationary phases can be found in the Supplementary Material. 

 

It can be concluded that PCA is a useful tool to characterize and classify stationary phases. It 

confirms what was discussed before by ζ-potentials and binary chromatographic plots. The 

new set of MMC stationary phases span a reasonably wide surface character and represent a 

useful supplement to the toolbox of stationary phases. To document their utility in practical 

applications will be the topic of future works. 
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4.5.5. Conclusions 

A series of new silica-based stationary phases for mixed mode chromatography have been 

synthesized in this study. They were obtained by a fragment-based design through incremental 

fragmentation of the chromatographic ligand of the commercial chiral columns Chiralpak 

ZWIX(+) and ZWIX(-). These chiral stationary phases consist of a zwitterionic chromatographic 

ligand and show MMC behaviour. They exhibit utility for achiral separations with selectivity 

orthogonal to that of RP and HILIC phases. The removal of certain structural elements of these 

zwitterionic selectors has led to RP/ZWIX, RP/WAX and RP/SCX-type MMC phases with 

modulated surface charge and hydrophilicity/lipophilicity. They showed sufficient methylene 

selectivity under RP elution conditions for RP-type separations as well as enough retention for 

neutral polar compounds under HILIC conditions to allow for multimodal applicability. Besides, 

the RP/ZWIX phases possess both moderate anion- and cation-exchange capacity with low 

retentivity which could be advantageous in practical applications especially under mild elution 

conditions such as those required for ESI-MS detection. Their practical utility is currently being 

elucidated and will be reported elsewhere. 
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4.5.7. Supplementary Materials 

 
Scheme 1. Selector structures of this work with removed parts indicated in light grey. Blue frame means 
configurations derived from quinidine and red frame configurations derived from quinine. 
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4.5.7.1. Synthesis of Mixed-mode Stationary phases and their 

Characterization 

 

 

Fig. S1. Synthesis of (2S,4S,5R)-2-((((4-nitrophenoxy)carbonyl)oxy)methyl)-5-vinylquinuclidin-1-ium chloride QCI 
carbonate. Reagents and conditions: (a) Toluene, r.t., 16h. 

 

 

Fig. S2. Synthesis of (2S,4S,5R)-2-((((2-sulfoethyl)carbamoyl)oxy)methyl)-5-vinylquinuclidin-1-ium (QCITAU). 
Reagents and conditions: (a) CH2Cl2, BSA, reflux 48h. then (b) CH2Cl2, r.t., 16h. 

 

 

Fig. S3. Synthesis of (2R,4S,5R)-2-((((4-nitrophenyl)carbamoyl)oxy)methyl)-5-vinylquinuclidin-1-ium chloride QCD 
carbonate. Reagents and conditions: (a) Toluene, r.t., 16h. 
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Fig. S4. Synthesis of (2R,4S,5R)-2-((((2-sulfoethyl)carbamoyl)oxy)methyl)-5-vinylquinuclidin-1-ium chloride 
(QCDTAU). Reagents and conditions: (a) CH2Cl2, BSA, reflux 48h. then (b)  CH2Cl2, r.t., 16h. 

 

Fig. S5. Synthesis of (2R,4S,5R)-2-(((((1R,2R)-2-sulfocyclohexyl)carbamoyl)oxy)methyl)-5-vinylquinuclidin-1-ium 
chloride (RRQCD). Reagents and conditions: (a) CH2Cl2, BSA, reflux 48h, then (b) CH2Cl2, r.t., 16h. 

 

Fig. S6. Synthesis of (2S,4S,5R)-2-(((((1S,2S)-2-sulfocyclohexyl)carbamoyl)oxy)methyl)-5-vinylquinuclidin-1-ium 
(SSQCI). Reagents and conditions: (a) CH2Cl2, BSA, reflux 48h, then (b) CH2Cl2, r.t., 16h. 
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Fig. S7. 3D-alignment using MarvinSketch 14.12.15.0 of new derivative with hexen-5-ol chain and the quinuclidine 
precursor. 

 

 

Fig. S8. Synthesis of hex-5-en-1-yl (4-nitrophenyl) carbonate. Reagents and conditions: (a) CH2Cl2, Et3N, 0°C then 
r.t., 16h. 
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Fig. S9: Synthesis of 2-(((hex-5-en-1-yloxy) carbonyl) amino)ethane-1-sulfonic acid (HEXTAU) , Reagent and 
conditions: (a) CH2Cl2, BSA, reflux 48h, then (b) CH2Cl2, r.t., 16h. 

 

 

Fig. S10. Synthesis of (1R,2R)-2-(((hex-5-en-1-yloxy)carbonyl)amino)cyclohexane-1-sulfonic acid (HEXRR). 
Reagents and conditions: (a) CH2Cl2, BSA, reflux 48h, then (b)CH2Cl2, r.t., 16h. 
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4.5.7.1.1. Detailed Characterization of the Synthesized Selectors 

(2R,4S,5R)-2-{[(((1R,2R)-1-Sulfocyclohexyl)carbamoyl)oxy]methyl}-5-vinylquinuclidin-1-ium 

chloride (QCDRR, 4)  

Starting from RR-ACHSA (1.07 g, 5.96 mmol) and 1 (2.20 g, 5.96 mmol) following the general 

procedure B, the title compound 4 was obtained as yellowish oil (2.7 g, yield 90%).  

Specific rotation: + 15.77 (10 mg/mL in MeOH)  

1H-NMR (CD3OD, 400 MHz): δ 1.24-1.37 (m, 3H), 1.49-1.64 (m, 3H), 1.78-1.80 (m, 2H), 1.89-

1.92 (m, 2H), 2.03-2.11 (m, 4H), 2.35 (d, Jd = 13.6 Hz, 1H), 2.56 (td, Jt = 12.4 Hz, Jd = 4.0 Hz, 

1H) 2.82 (q, Jq = 8 Hz, 1H), 3.36-3.39 (m, 3H), 3.50-3.54 (m, 1H), 3.81.3.85 (m, 2H), 5.23-5.29 

(m, 2H), 5.91-6.00 (m, 1H) ppm. 

13C-NMR (CD3OD, 100.6 MHz): δ 20.94, 22.90, 24.41, 24.91, 26.28, 27.41, 33.49, 36.56, 

45.03, 50.50, 56.71, 59.31, 60.64, 63.14, 116.16, 136.71, 155.43 ppm.  

HRMS (ESI-QTOF, negative mode): m/z calcd for C17H27N2O5S [M-H]-, 371.1641; found, 

371.1630; HRMS (ESI-QTOF, positive mode): m/z calcd for C17H29N2O5S [M+H]+, 373.1797; 

found, 373.1814 

 

 (2S,4S,5R)-2-{[(((1S,2S)-1-Sulfocyclohexyl)carbamoyl)oxy]methyl}-5-vinylquinuclidin-1-ium 

(QCISS, 5)  

Starting from SS-ACHSA (1.07 g, 5.96 mmol) and 2 (2.20 g, 5.96 mmol) following the general 

procedure B, the title compound 5 was obtained as yellowish oil (2.3 g, yield 90%).  

Specific rotation: + 20.00 (10 mg/mL in MeOH)  

1H-NMR (CD3OD, 400 MHz): δ 1.28-1.41 (m, 4H), 1.45-1.57 (m, 1H), 1.78-1.80 (m, 2H), 1.89-

1.91 (m, 2H), 1.97-1.99 (m, 2H), 2.08-2.11 (m, 1H), 2.15-2.24 (m, 1H), 2.33-2.37 (m, 1H), 2.56 

(td, Jt = 10.8 Hz, Jd = 4 Hz, 1H), 2.80-2.87 (m, 1H), 3.14-3.22 (m, 1H), 3.28-3.30 (m, 1H), 3.58-

3.65 (m, 3H), 3.81-3.92 (m, 2H), 5.24-5.31 (m, 2H), 5.93-6.00 (m, 1H) ppm.  

13C-NMR (CD3OD, 100.6 MHz): δ 21.17, 23.45, 24.42, 24.92, 26.16, 27.42, 33.53, 36.70, 

40.72, 50.53, 52.67, 56.75, 61.27, 63.13, 115.94, 137.70, 155.15 ppm.  

HRMS (ESI-QTOF, negative mode): m/z calcd for C17H27N2O5S [M-H]-, 371.1641; found, 

371.1619; HRMS (ESI-QTOF, positive mode): m/z calcd for C17H29N2O5S [M+H]+, 373.1797; 

found, 373.1795 
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(2R,4S,5R)-2-{[((2-Sulfoethyl)carbamoyl)oxy]methyl}-5-vinylquinuclidin-1-ium chloride 

(QCDTAU, 6)  

Starting from taurine (0.746 g, 5.96 mmol) and 1 (2.20 g, 5.96 mmol) following the general 

procedure B, the desired product 6 was obtained as yellowish oil (2.25 g, yield 90%).  

Specific rotation: + 29.7 (10 mg/mL in MeOH)  

1H-NMR (CD3OD, 400 MHz): δ 1.60-1.67 (m, 1H), 2.01-2.11 (m, 4H), 2.81-2.84 (m, 1H), 2.91 

(t, Jt = 5.20 Hz, 1H), 2.97-3.01 (m, 1H), 3.36-3.54 (m, 4H), 3.65-3.85 (m, 2H), 4.16-4.47 (m, 

2H), 5.22-5.29 (m, 3H), 5.91-6.00 (m, 1H) ppm.  

13C-NMR (CD3OD, 100.6 MHz): δ 21.03, 22.89, 26.31, 36.64, 36.92, 51.13, 56.73, 59.32, 

60.76,´61.12, 116.49, 136.64 ppm.  

HRMS (ESI-QTOF, negative mode): m/z calcd for C13H21N2O5S [M-H]-, 317.1171; found, 

317.1165; HRMS (ESI-QTOF, positive mode): m/z calcd for C13H23N2O5S [M+H]+, 319.1328; 

found, 319.1321 

 

 (2S,4S,5R)-2-{[((2-Sulfoethyl)carbamoyl)oxy]methyl}-5-vinylquinuclidin-1-ium (QCITAU, 7)  

Starting from taurine (0.746 g, 5.96 mmol) and 2 (2.20 g, 5.96 mmol) following the general 

procedure B, the desired product 7 was obtained as a yellowish oil (1.73 g, yield 90%).  

Specific rotation: + 6.77 (10 mg/mL in MeOH)  

1H-NMR (CD3OD, 400 MHz): δ 1.31-1.44 (m, 1H), 2.00 (m, 2H) 2.06-2.25 (m, 2H), 2.88 (m, 

1H), 2.92 (t, Jt = 4 Hz, 1H), 3.00 (t, Jt = 8 Hz, 1H), 3.22-3.28 (m, 2H) 3.54-3.69 (m, 4H), 3.74-

3.85 (m, 1H), 4.22-4.39 (m, 2H), 5.26 (t, Jt = 12 Hz, 2H), 5.94-6.03 (m, 1H) ppm.  

13C-NMR (CD3OD, 100.6 MHz): δ 21.26, 23.44, 26.10, 36.71, 36.91, 49.85, 51.12, 52.71, 

56.61, 61.46, 116.05, 137.60 ppm.  

HRMS (ESI-QTOF, negative mode): m/z calcd for C13H21N2O5S [M-H]-, 317.1171; found, 

317.1169; HRMS (ESI-QTOF, positive mode): m/z calcd for C13H23N2O5S [M+H]+, 319.1328; 

found, 319.1309 
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(1S,2S)-2-{[(Hex-5-en-1-yloxy)carbonyl]amino}cyclohexane-1-sulfonic acid (SS-ACHSA, 8)  

Starting from SS-ACHSA (1.00 g, 5.58 mmol) and 3 (2.05 g, 7.76 mmol) following the general 

procedure B, the title compound 8 was obtained as yellowish oil (0.4 g, yield 40%).  

1H-NMR (CD3OD, 400,MHz): δ=8.24 (bp,OH), 5.81 (m,5H), 4.95 (dd,2H), 3.99 (d,2H), 3.32 

(m,1H), 2.36 (m,1H), 2.10 (m,2H), 1.83 (m,2H), 1.65 (m,2H), 1.51 (m,2H), 1.51 (m,2H), 1.51 

(m,2H), 1.35 (m,2H) ppm 

13C-NMR (CD3OD, 400,MHz):δ=164.39, 140.11, 115.35, 63.98, 51.25, 49.25, 46.51, 36.62, 

33.19, 28.60, 25.12, 25.09, 22.87 ppm 

HRMS (ESI-QTOF, negative mode): m/z calcd for C13H22NO5S [M-H]-, 304.1219; found, 

304.1225 

 

2-{[(Hex-5-en-1-yloxy)carbonyl]amino}ethane-1-sulfonic acid (TAU, 9)  

Starting from taurine (1.30 g, 10.10 mmol) and 3 (2.05 g, 7.76 mmol) following the general 

procedure B, the title compound 9 was obtained as yellowish oil (0.25 g, yield 20 %). 

1H-NMR (DMSO-d6, 400 MHz): δ 9.24 (bp, OH), 6.56 (bp, NH), 5.78 (m, 5H), 4.90 (dd, 2H), 

3.90 (t, 3H), 3.25 (m, 2H), 2.58 (m, 2H), 2.047 (m, 2H), 1.53 (m, 2H), 1.37 (m, 2H) ppm. 

13C-NMR (DMSO-d6, 100MHz): δ 164.43, 138.94, 115.37, 63.79, 51.08, 46.22, 37.62, 28.60, 

25.09 ppm. 

HRMS (ESI-QTOF, negative mode): m/z calcd for C9H16NO5S [M-H]-, 250.0749; found, 

250.0742 
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Fig. S11: Synthesis scheme for the immobilization of the selectors. 

 

Fig. S12: Thiol-ene-click reaction to obtain immobilized derivatives. Reagents and conditions: a) MeOH, AIBN, 
reflux, 7h. 

 

Fig. S13. Thiol-ene-click reaction to obtain immobilized derivative (QN3, QN5). Reagents and conditions: a) MeOH, 
AIBN, reflux, 7h. 
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Fig. S14. Thiol-ene-click reaction to obtain immobilized derivative. Reagents and conditions: a) MeOH, AIBN, reflux, 
7h. 

 

4.5.7.1.2. Synthesis Control by MS Analysis  

The chromatographic separation for the structure elucidation was performed on a Kinetex C18, 

50 x 2.1 mm, 2.7 µm column (Phenomenex, Torrance, CA, USA). The measurement was 

carried out with 0.1% FA in acetonitrile and water with the following gradient profiles. The 

gradient, which was used for structure elucidation via UHPLC-QTOF-MS/MS (Agilent 1290 

UHPLC instrument coupled to Triple TOF 5600+ from Sciex with CTC Pal autosampler), 

started at 5% B and increased to 95% B in 4.0 min and to 99% B in additional 0.5 min, followed 

by re-equilibration with 5% B for 1.5 min. The electrospray (ESI) settings were chosen as 

follows: curtain gas (CUR): 30, Ion Source Gas 1 (GS 1): 50 and Ion Source Gas 2 (GS 2): 40, 

IonSpray Voltage Floating (ISVF) 4500 and temperature was 500 °C. The QTOF was operated 

in negative mode and the m/z range 30 to 2000 was scanned. The TOF experiment had an 

accumulation time of 100 ms and was combined with 20 TOF MS2 experiments using 

information dependent acquisition (IDA) leading to a period cycle time of 551 ms. 
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4.5.7.1.3. Characterization of Modified Silica Gels by FTIR-Spectroscopy 

 

Fig. S15. FTIR spectra of the two RP/ZWIX MMC phases QCISS (black) and QCDRR (red). The IR-band at 1731 
cm-1 is the C=O stretching vibration of the carbamate group and indicates successful immobilization of the 
corresponding zwitterionic ligands. 
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Fig. S16. FTIR spectra of the two RP/ZWIX MMC phases QCITAU (blue) and QCDTAU (red) as well as of the 
WAX-type QN phase (black). The IR-band at 1731 cm-1 is the C=O stretching vibration of the carbamate group and 
indicates successful immobilization of the corresponding zwitterionic ligands while this band is absent for QN which 
has no carbamate group. The band at 1624 cm-1 of the QN material indicates the C=C stretching vibration of the 
quinoline ring which is absent in the zwitterionic QCITAU and QCDTAU. 
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4.5.7.2. -Potential Determination 

 

Helmholtz-Smoluchowski equation: 

𝝁𝑬 = 𝑪
𝜺𝟎∙𝜺𝒓∙𝜻

𝜼
    Equ. S1 

µE: mobility of a particle  

C: The constant C becomes 2/3 for r<0.1 (, Debye parameter; -1, Debye length) (Hückel 

approximation) and 1 for r>100 (Smoluchowski approximation). 

R: relative permittivity 

0: permittivity of vacuum 

: viscosity 

 

4.5.7.3. Chromatographic Characterization under HILIC and 

RP Conditions for Column Classification 

4.5.7.3.1. Material and Methods 

The stationary phases which were included in the test set for the evaluation of the 

chromatographic properties comprised all stationary phases depicted in Fig S2. 

The RP-HPLC separations were carried out using a mobile phase consisting of ACN/H2O (2:3, 

v/v) and 0.29 % acetic acid (Ctot = 50 mM). The apparent pH value was adjusted to 6 with 

ammonia in the polar organic mixture. The mobile phases of the HILIC measurements 

consisted as follows: The organic modifier ACN was mixed with water in the ratio 95:5 (v/v) for 

the analysis of xanthines and 90:10 (v/v) for the nucleosides and vitamins, containing 

ammonium acetate (5 mM referred to the total volume) as buffer. The pH was not adjusted and 

remained at approximately 8 in the polar organic mixture. The mobile phase was used for 

dissolving the analytes. For the RP test the concentration was 0.8 mg mL-1 (injection volume 

5 µL) and for the HILIC tests 1.0 mg mL-1 (injection volume 2 µL). The flow rate was 1.7 mm s-

1 at 25°C. The detection wavelength was 220 nm. The void volume was determined with uracil 

(RP) and toluene (HILIC). 
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4.5.7.3.2. Commercial Columns of Benchmarking Study 

 

Fig. S17: Surface structure of investigated a) RP, b) mixed mode and c) HILIC stationary phases which were 
chromatographically evaluated for the principal component analysis. 

 

 

Fig. S18: Surface structures of investigated non-commercial RP/WAX mixed mode phases.  
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4.5.7.4. Molecular Modeling 

 

 

Fig. S19: Intramolecular interaction count (salt-bridges and H-bonds) measured for all the 3000 conformations 
extracted for each selector by the molecular dynamics trajectories. The single contribution of each interaction type 
is also reported inside the bar. 
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