
A parametrized numerical model to simulate the

semiconductor influence of thick film metal oxide

gas sensors

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Peter Bonanati

aus Mainz

Tübingen

2020

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der

Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 03.08.2020

Dekan: Prof. Dr. Wolfgang Rosenstiel

1. Berichterstatter: Prof. Dr. Udo Weimar

2. Berichterstatter: Prof. Dr. Reinhold Fink

Jupyter for scientific research

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Jupyter Notebooks . 5

1.2.1 Installation guide . 6
1.2.2 Example Notebook - Sneak preview . 6

1.3 SMOX based gas sensors . 8
1.3.1 SMOX material . 8
1.3.2 SMOX based thick film sensors . 9
1.3.3 Surface potential . 9
1.3.4 Numerical model . 10

2 Summary 10

3 About the PDF-Version of this work 10
3.1 Equations . 10
3.2 Tables . 11

3.2.1 Before the patch . 12
3.2.2 The patch . 12
3.2.3 Prettier tables after the patch . 12

4 Bibliography section 13

1

1 Introduction

1.1 Motivation

In the beginning of my academical career I was aiming at an educational degree in math and
physics. While studying at the University of Tübingen I also worked as a research assistant at
the Institute of Physical Chemistry. In the course of my studies, I had the opportunity to spend
4 months in a school to gain first experiences in teaching physics and math to students between
the ages 12 and 20. Even though it was a great experience and I enjoyed bringing new ideas and
concepts to the students, I also felt a strong urge to continue learning and being able to explore. At
this time the possibilities I saw in focusing on scientific research and development seemed more
attractive to me. My reasoning was, that I might be able to combine my preference for teaching
and research rather at the university than at school. Long story short, after some years I started
my doctoral thesis in the “Institute of Theoretical and Physical Chemistry” at the University of
Tübingen. I directly got the possibility to work in a project with an industrial partner. The focus
was on building state of the art gas sensors. Besides the benefits of working in a great teams,
having enough financial support for research activities and learning to present and report my
results on a regular basis, it also imposed some new problems to be solved. One of the biggest
challenges was the continuous increase of experimental data in ever shorter intervals. With the
increasing industrialization and automatization of sensor production and testing, the quantity of
high quality data increased dramatically.

With the increased global interest in “data science”, I was not the only one facing problems with
the increasing amount of data needed to be processed and analyzed. At the beginning of each
analysis, the specific task was not fully defined. It was rather an exploratory research to gain an
idea about possible hidden opportunities. In this case the traditional way of creating well defined
software algorithms for specific tasks was not adequate.

I rather had the need for efficient tools to reduce time consuming parts regarding the data anal-
ysis, which had been performed manually until now. I was looking for a platform to combine
multiple tools efficiently. So at this point of my career with my very basic knowledge in the area
of programming and the need to solve urgent tasks, I was looking for efficient solutions with a
steep learning curve.

Until then my standard procedure of working with data was mainly based on manual feature
extraction and analysis. When Working with a limited amount of samples, manually doing these
steps was acceptable and efficient. With the industrial cooperation accelerated, the number of
samples increased also rapidly. Soon we reached the point where the pre-processing of the data
would easily consume a large amount of time. And that without even having started with a
deeper analysis. In parallel to this, a project from the Python community gained more and more
interest. Articles like [Unp14] pointed me to a new way of dealing with data and indicated, that
the Python programming language might be very helpful. Regarding the fact, that Python was
already a well established programming language, the introduction of the “I(nteractive)Python
notebook ecosystem” was making the use of Python for in an scientific work flow very attractive.

As mentioned in this article related to IPython: [Dav13]

“. . . what they do offer is an environment for exploration, collaboration, and visual-
ization.”

“Python at Cern” describes for instance the use of Python at the Large Hadron Collider (LHC) at

2

https://cds.cern.ch/record/2274794

Cern. As the article mentions, “The interesting bits of data have to be stored, analyzed, shared
and published”. “The ease of use and a very low learning curve makes Python a perfect program-
ming language for many physicists and other people without the computer science background”.
Python has been used at the LHC now for more than 20 years. Now in 2020 the general technolog-
ical improvements allows also smaller institutions to work in a comparable way as for instance at
the LHC. High computational power combined with large data storage facilities do not require a
large financial investment anymore. As a consequence, in many research fields this “data driven
scientific research” gains more and more interest. Nevertheless this is a slow process, and this
work intends to help improving it.

Already the initial attempts of using Python, the large potential also for my working field was
clear. By learning Python I got efficient tools for calculations, analysis and representations. Addi-
tionally the new tools have been build focusing on an simple way of reporting result while includ-
ing the way they have been gained. The environment around the so called “IPython notebooks”
was the ideal piece, which I experienced as a missing block in the scientific work I was doing.
In 2015 toolset around IPython notebooks have been unified along with other programming lan-
guages in a project called Jupyter. In the following part of this work, IPython and Jupyter will be
treaded as synonyms.

Besides my work for our industrial partner I also conducted fundamental research about semicon-
ducting metaloxide gas sensors. Based on great research before my time on gas sensors, my focus
was now on numerical calculations of the gas sensors. Typically a theoretical model of a gas sensor
is developed and the predictions are compared with experimental results. When publishing the
results the peer review system assures, that the publications are well written and documented on
a solid and proven basis. But when reading such papers, I had the experience, many of them pre-
sented excellent ideas, but unfortunately practical instructions on how to implement the presented
models were often not given.

The work of rebuilding the model and recalculating the results was therefore often not possible
in a reasonable amount of time. In my experience this limits the direct comparison of new model
with experimental data from other sensors. It is also worth to mention, that in my experience the
average experimental oriented researcher does not have the required programming knowledge to
easily implement algorithm based on the presented work. But I am confident, that if an algorithm
was given in an appropriate way, most research would benefit from the presented code.

With the results I gained during my PhD. thesis, I was facing the same problem. Others under-
stood the value of my work but could not transfer it to their particular problem. At this point my
graphical representation in the form of presentations, my detailed description and the correspond-
ing algorithms of my work had been three separated parts. An appropriated way of representing
those results in unified matter did not exists yet. Thus, I decided to try and combine representa-
tion, description and algorithm in one unified way.

For this I used the powerful ecosystem around the “Jupyter notebooks” to calculate, represent and
describe the results for my thesis for this task. This is why my thesis is written with the large focus
on suppling an introduction to this excellent toolbox.

This work will allow more people to gain insight into sensing properties of semiconducting metal
oxide sensors (SMOX).Additionally this thesis is intended to be a useful introduction into Python,
specially IPython notebooks, for scientific work.

These hopes are not unfounded. While lecturing at the University of Tübingen the course, there

3

https://en.wikipedia.org/wiki/Project_Jupyter

was never enough time to use Python as a supporting programming language in e.g., the introduc-
tory course on data mining. In these cases classical tools like Excel (tm) or Origin (tm) were used
to analyze example datasets for hidden facts. While most students understood the general con-
cept of data mining, not being able to translate the general concept into machine understandable
instructions stopped them from using more advanced tools.

In cases where enough time was available, a short introduction into programming with Python
gained a lot of interest and was generally seen as a positive experience. With just a short intro-
duction already many advanced tasks can be performed, which would often even not have been
possible with the “traditional” tools.

This thesis is therefore structured in such a way, that I will present my research results from the
past years in a condensed form. Additionally I will use this opportunity to introduce and explain
the importance of applying programming tools in the common work flow of scientific work.

The potential of “outsourcing” repetitive tasks to machine executable scripts is huge. By focusing
on investing more time in creative and intelligent solutions, the overall quality of the results will
increase. My hope is to bring with this thesis not only a deeper insight in the understanding of
SMOX based gas sensors, but also help others to start a interesting journey into the wide area of
data mining and machine learning with python. This work is intentionally structured in a way,
to encourage modifications of the original work and simplify this process. The supplied program
code is based entirely on well establish standard tools available for all operation systems. This
makes this work easily reproducible for others.

The thesis is structured in three major “work packages”, each of them dealing with discrete ele-
ments of a typical scientific tasks. In a condensed form the following areas will be covered:

1. Numerical solving of differential equations and integrals
2. Using numerical models for simulation
3. Fitting numerical results with experimental data

I typically finish my introductions to Python by letting the students run their first commands. For
other introductions found around the globe, this is a program which outputs “Hello World”. For
Python I prefer to execute other commands which in essence is a philosophical question on how
instructions should be formulated.

In a “Jupyter notebook”, the next cell represents a “code block” and can be executed along the
text of the document. The output of the executed code is then visible along with the text of the
document. The import statement in Python is used to add functionality or features to the current
programming environment. import this is a special “easter egg” hidden in every Python version.
It adds some Zen to the work space.

[1]: import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.

4

Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

1.2 Jupyter Notebooks

“The Zen of Python” might not always be the primary directive of each scientist, but the Python
community consists most probably of many people who would consider the latter points as im-
portant. So did also the inventors of the IPython and Jupyter. A quick search in the world wide
web will provide a detailed picture about what “IPython Notebooks” are and how Jupyter in con-
nected with them. Here I will not try to give a general overview of this tool but rather stick to the
phrase “Learning by doing”. A minimal understanding of working with Python will definitely be
helpful for this thesis, but is not necessarily required. I will try to explain the used features this
notebooks to guide an interested reader to the point where students can:

• understand the fundamental instructions of Python
• use the basic functionality of the Notebooks
• have a understanding of SMOX based gas sensors

It is worth mentioning, that the intention of such notebooks is to merge the essential tools of sci-
entific work flows with data acquisition, preparation, analysis, representation and documentation
all available in one place. The strength of not just sharing final conclusions in a nicely formatted
way, but also being able to share the full stack of steps necessary to reach the final conclusion is
essentially the strength of the Jupyter notebooks. This feature is already changing the way how
scientific results are shared/published and was intentionally designed this way [RPGB17].

5

The default format of representing anything in a notebook is based on “Markdown”. Wikipedia
summarizes Markdown like this:

Markdown is a lightweight markup language with plain text formatting syntax.
Wikipedia

This means a document is formatted by writing plain text and special text blocks are interpreted
as formatting commands. E.g. BOLD letters are generated by encapsulating the text with ** Text
here **, headings are generated by starting the heading with #. Depending on the number of
#, subsections are created. I will not go into detail here about the features of Markdown. Many
features are used in this notebook and are directly accessible by double-clicking the text element.
By doing this, the formatted text will switch back to the “plain text representation” and will reveal
the way it was created. By again executing the cell with CTRL+ENTER, its Markdown formatted
representation is again rendered.

One other handy feature of the Jupyter ecosystem I use is the ability to transform notebooks into
multiple other formats. Just to name some: HTML, WORD (DOC, DOCX), Latex and PDF. The
tool nbconvert is used internally to convert the Markdown formatted representation into other
formats. For this thesis the default option “Export as PDF” under the File option generates a Latex
based PDF file. Mastering-markdown is a web page, where I found some hints on how to format
my notebook. This example on web page demonstrates for instance how to generate block quotes:

As Kanye West said:

We’re living the future so the present is our past.

To learn how to use notebooks it is best to use them in an interactive environment. The next section
will explain how to obtain one for free!

1.2.1 Installation guide

The easiest way to get started would be to use the Anaconda distribution. Anaconda bundles
multiple different tools and installs them in the operation system. Anaconda will take care of
cross dependencies and handle the update process of the software. This is not the only way to get
started with “Jupyter Notebooks” but surely an very fast and easy one. HERE are the slides I use
for my lectures to guide students into the world of Python and here one example of it’s usage.

1.2.2 Example Notebook - Sneak preview

Besides the first example import this, here is a very basic example to demonstrate some features
of the notebook.

“Simple is better than complex.”: The Jupyter environment is equipped with “magic com-
mands” which are not part of the Python programming language, but rather instructions to sim-
plify common tasks. Magic commands always start with % and are followed with an instruction.
I will demonstrate in this example using the %pylab inline instruction. This modifies the cur-
rent programming space to become a lab nicely equipped for scientific work tasks. For instance, a
chemistry lab is commonly equipped with a balance, a water tab and a fire extinguisher. Similarly,
a “pylab” is equipped with a data handing, a plotting and a calculation tool (besides many others).
The additional parameter inline makes sure that the figures will be along with this document. So

6

https://guides.github.com/features/mastering-markdown/
media/presentations/InstallAnaconda/Python�bung.zip

let’s setup a “pylab” and run some lines of code. (The plotting is handled in the background by
Matplotlib [Hun07])

[2]: %pylab inline

#The Python way of adding a comment is by starting a line with the '#' character

#get a list of 5000 points between -50 and 50
xs = linspace(start=-50, stop=50, num=5000)

Python way of writer 'x to the power of y' is x**y
here I am calculating the third power of x for 5000 points between -50 and 50
ys = xs**3

#plot it
fig = figure(figsize=(16,8))
plt.plot(xs,ys,'b');

#name axes
plt.xlabel('X', fontsize = 25)
plt.ylabel('Y', fontsize = 25);

Populating the interactive namespace from numpy and matplotlib

The linspace function generates a 5000 linear distributed points in the interval [-50,50) and saves
those points in the xs variable. ys is a list holding the third power of each point in xs. plt.
is a submodule defined by the magic command %pylab which handels data plotting in a very
simple way. plt.plot(x,y,'r-') for example plots x vs. y with a red line. The thesis is done in

7

the notebook to offer the reader the possibility to directly work with newly gained knowledge.
Therefore, the upper block is a good opportunity to take the fist steps in Python. For instance,
change the line format to ‘b’ (blue). Or to ‘b-.’. Change the exponent from 3 to 3.1. To do so:

• click on the code box above
• edit the code
• Add the following line plt.title('The power law')
• go back with CTRL-Z to correct your mistakes
• hit CTRL-ENTER to execute the code

1.3 SMOX based gas sensors

In this section a very short summary about Semi conducting Metal OXide (SMOX) based gas sen-
sors is provided. Relevant aspects for this thesis will be presented in a general way and additional
literature references will be provided. The intention is to provide the minimum amount of infor-
mation needed to follow this work. The supplied references are a good staring point to gain a
detailed understanding of SMOX based gas sensors.

1.3.1 SMOX material

A typical definition of a sensors describes two elements. The receptor and the transducer. The
receptor interacts with the external stimulus, while the transducer translates this stimulus into a
measurable response. In the case of SMOX sensors those two “parts” can’t be separated directly,
since the SMOX material takes over the role of both. Generally, the gas sensing with SMOX ma-
terials is based on the interaction of target molecules at its surface and a resulting change of the
semiconductor itself [BW03].

Nevertheless, the chemistry at the surface, like the adsorption/desorption of molecules, may be
seen as the receptor of the sensor. In the process of adsorption/desorption at the surfaces, typically
charges from the inside of the material are involved. In general this results in a modification of
the charge distribution inside the semiconductor. As a consequence of an increase/decrease of
the free charge carrier concentration, the overall resistance of the material changes. The processes
related to changes inside the semiconductor, and hence the resistance, could be associated to the
“transducer” part of the sensor. A detailed description of the physical and chemical properties
that make tin oxide a suitable material gas sensing is described here:"[BD05].

For most SMOX, the intrinsic electrical conductivity is very low due to a high band gap of the
semiconductor. Typical preparation methods of the SMOX material generate defects inside the
crystal structure due to missing oxygen atoms. For SnO2 these defects act as additional electron
donors and increase the number of free charge carriers and hence increase the conductivity.

Typically, the density of additional donors ND or acceptors NA plays a significant role in the sens-
ing properties. The availability of additional free charge carriers resulting from such defects de-
pends also on the overall temperature of the sensor. Typical operation temperatures are around
300°C, but also higher and lower operations temperatures may be suitable depending on the use
case. Besides effecting the semiconductors properties, the reactions at the surface of the sensor are
also strongly dependent on the temperature.

8

1.3.2 SMOX based thick film sensors

The model of this work focuses on describing thick film SMOX gas sensors. In the case of such
sensors the SMOX material is deposited as an porous thick film on top of a electric structure suit-
able to measure the resistance of the film. The film itself consists of multiple nano-sized grains
in direct contact with each other. To measure the resistance of the film, a bias voltage is applied
and the resulting current which passes through the network of multiple grains is measured. De-
pending on the percolation path, the total resistance of the sensor RSensor can be approximated as
the product of a geometrical factor G associated to the film morphology and the resistance of one
grain RGrain as:

RSensor ∝ G ∗ RGrain (Resistance of sensor)

The following sketch represents the typical setup of a thick film sensor:

1.3.3 Surface potential

To better understand the processes related to the changes in the free charge carrier concentration
inside the semiconductor, the semiconductor is typically described in a energy bands represen-
tation. For instance for SnO2, trapping electrons at the surface results in an upward bending of
the conduction band. The position of the conduction band at the surface is typically expressed in
units ES = −eVS (e is the charge of an electron). VS is called the surface potential. In regard to a
non-bended conduction band, the number of electrons are reduced in regions, where the band is
elevated.

Experimentally the Kelvin probe method can be used to measure the change in the surface poten-
tial ∆VS. The experimental setup and the requirements to obtain the value of ∆VS are described in
detail here: [OBW09]

The relation between ∆VS and the resulting change in the resistance of the semiconductor R is
then only determined by the semiconductor. The relation between ∆VS and the resistance R of
the semiconductor is defined independently of the actual surface chemistry. The relation depends
strongly on the temperature T, the defect concentration ND and the shape of the underlaying
material. This work focuses on deriving a model to predict the theoretical value of ∆RVS =

RVS
RVS=0

from a change in the surface potential ∆VS.

With the definition of (Resistance of sensor) the value of ∆RVS of one grain can be directly calcu-
lated by the ratio of the experimentally measured value of the sensors RSensor.

RSensorVS

RSensorVS=0

=
G ∗ RGrainVS

G ∗ RGrainVS=0

= ∆RVS (1)

9

1.3.4 Numerical model

Based on the example of SnO2 as SMOX material, a numerical model describing effects of shape,
size, defect concentration and temperature is developed for spherical grains. With such a model,
multiple conclusions about the dependency of these parameters on the sensitivity and perfor-
mance of a sensor can be derived. Additionally, the numerical model is able to provide the num-
ber of charges involved in the sensing process. This number is an important parameter involved
in the description of the chemical reaction at the surface.

When solving this problem numerically, some assumptions will need to be introduced. These
assumptions simplify the problem to a level where a numerical calculation is possible, but will
reduce the validity of the results only to a small subset of all possible situations. The calculations
in this thesis are also packed with assumptions and boundary conditions. My intention is to
supply enough information to understand the relevance of the assumption and it’s implications
along with the supplied code. The way of presenting this knowledge should lead/motivate others
to adapt the presented work to individual other cases with different boundary conditions.

2 Summary

Since the motivation for this “interactive” thesis should be clear now, I would like to now move
to my actual research topic in the next section:

“A parametrized numerical model to simulate the semiconductor influence of thick film metal
oxide gas sensors”.

In the next notebook I will demonstrate how theoretical numerical calculations of chemical sensors
are used to better understand experimental results.

Follow this link to come to the next section.

3 About the PDF-Version of this work

This notebook was not intended to be used as a printed hard copy or as a PDF. Its main intention
is to serve as an easy entry point to Python supported science. Many of the implemented features
in these notebooks like interactive widgets, animated data representations and live code examples
will not work in the PDF-version. Only a static snapshot of the interactive representation can be
represented outside the Jupyter notebook, at best. The benefits of interacting with the presented
work in a notebook should motivate the reader to use the notebook.

Nevertheless, the integrated function to export a notebook to a latex based version offers a very
nice way to publish results in a printable way. So please keep in mind that the PDF-version may
not be able to represent all the features of the notebook as intended and some links might not work
as expected. You are strongly encouraged to switch to the Jupyter presentation of this work and
experience the full potential of such notebooks. A snapshot of the current folder can be down-
loaded here: Num_smox_sensor.zip

3.1 Equations

In a typical scientific thesis and textbook, relevant equations are referred by numbers of identifiers.
In Latex this is done by assigning a label and a tag to an equation. If this equation needs to be

10

2-Grain-SMOX.ipynb
2-Grain-SMOX.ipynb
https://ipfs.io/ipfs/QmWfNfd5vY4dG54E7TJ4FGGFM6t3LRSpA7KYxxKEisedSM/thesis_2020_10_20_public.zip

referred to, a pointer to the reference is added, and the tag is used for the representation of this
equation. As an example, an arbitrary equation from this thesis is used. The (internal) reference
of this equation is ‘example’, while the printed representation (tag) is “Example Equation”.

dV∗

dr∗2 = 1 − n∗(V∗)− 2
r∗

dV∗

dr∗
(Example Equation)

To refer to this equation, a reference can be added which will look like this (Example Equation).
The underlying mechanisms will link the reference with the equation, print the label, and add
an hyperlink allowing to directly jump to the equation. This feature works either in notebook
or PDF representations. One drawback of the notebook representation is, that the equation and
reference need to be in the same code block/cell. Otherwise the reference is not working. Instead
of linking the equation correctly, ??? will be represented. My opinion is that this will change with
future versions of Jupyter. Since the PDF version is processed by a Latex interpreter in total, the
“one code block” limitation does not exist there. To demonstrate this, I will try to reference the
equation in the next code block.

Here the same reference to the equation: Example Equation. In the PDF-Version this will work
correctly and in the Notebook-Version only ??? should be visible (until now).

3.2 Tables

With the numerical calculations performed in this thesis, data will need to be represented also.
One way of doing this is by plotting the data. This is also suitable for a static PDF-Version of this
thesis, which often is useful/necessary to have. This feature is well implemented and the transfer
from Notebook to PDF version works well. Another way to display data are tables. Similar to the
well known, omnipresent tool for working with tables, Microsoft Excel (tm), the Python universe
has its own but similar tool. It’s called Pandas. As a primer, I will give here a very short introduc-
tion to Pandas. What sheets are for Excel, Dataframes are for Pandas. Here a simple example how
to create a Dataframe in analogy to the previous programming example:

[3]: %pylab
import pandas

#create some x values
x = linspace(start=0,stop=5,num = 10)

#the y values will the the square of the x values
y = x**2

#Put them in a Dataframe and reference this new Dataframe with the variable `dF`
dF = pandas.DataFrame({'x':x, 'y':y})

Using matplotlib backend: Qt5Agg
Populating the interactive namespace from numpy and matplotlib

This simple example of a Dataframe should demonstrate the basic concept of Dataframes. Once
data is in the DataFrame format, there are infinite ways to transform/slice/merge/. . . it, to bring

11

it into the desired shape. Along this thesis, some of the functionalities of Dataframes will be
used and explained. Since the Jupyter environment is still “under construction”, the transfer from
Juypter to PDF for notebooks does not work well until now. This does not mean that is is not
possible, it is just not yet implemented in the default/vanilla environment. This is why I want to
highlight the small tweak that is at this point still needed to have a comparable output in Juypter
notebooks and printed PDFs. To bypass this obstacle, the default behavior of pandas needs to be
altered (similar to this post: Latex-Tables Monkey Patch). This following patch brings DataFrames
in the appropriate shape in both representations.

3.2.1 Before the patch

[4]: display(dF)

x y
0 0.000000 0.000000
1 0.555556 0.308642
2 1.111111 1.234568
3 1.666667 2.777778
4 2.222222 4.938272
5 2.777778 7.716049
6 3.333333 11.111111
7 3.888889 15.123457
8 4.444444 19.753086
9 5.000000 25.000000

3.2.2 The patch

[5]: import pandas
pandas.set_option('display.notebook_repr_html', True)

def _repr_latex_(self):
return r"""
\begin{center}
{%s}
\end{center}
""" % self.to_latex()

pandas.DataFrame._repr_latex_ = _repr_latex_ # monkey patch pandas DataFrame

3.2.3 Prettier tables after the patch

[6]: display(dF)

12

https://stackoverflow.com/a/24167756

x y

0 0.000000 0.000000
1 0.555556 0.308642
2 1.111111 1.234568
3 1.666667 2.777778
4 2.222222 4.938272
5 2.777778 7.716049
6 3.333333 11.111111
7 3.888889 15.123457
8 4.444444 19.753086
9 5.000000 25.000000

In Jupyter notebooks the output will look very similar. In the PDF version of this thesis, those two
output will differ(, unless a newer version of Jupyter fixed this issue.) To have this thesis in a PDF
printable form, I will use the presented patch to unify the output. On the other side, I suggest not
to use this patch and rather work with the Jupyter notebooks and its default representation, since
the patch has also its downsides. But this would go beyond the scope of this remark about the
patch.

4 Bibliography section

References

[BD05] BATZILL, Matthias ; DIEBOLD, Ulrike: The surface and materials science of tin oxide. In:
Progress in Surface Science 79 (2005), Nr. 2-4, S. 47–154. http://dx.doi.org/10.1016/j.
progsurf.2005.09.002. – DOI 10.1016/j.progsurf.2005.09.002. – ISBN 0079–6816

[BW03] BÂRSAN, N. ; WEIMAR, U.: Understanding the fundamental principles of metal oxide
based gas sensors; the example of CO sensing with SnO2 sensors in the presence of
humidity. In: Journal of Physics Condensed Matter 15 (2003), Nr. 20, R813–R839. http:
//dx.doi.org/10.1088/0953-8984/15/20/201. – DOI 10.1088/0953–8984/15/20/201.
– ISBN 0953–8984

[Dav13] DAVENPORT, Thomas H.: The Rise of Data Discovery. https://www.datanami.com/
2016/05/04/rise-data-science-notebooks/. Version: 2013

[Hun07] HUNTER, John D.: Matplotlib: A 2D graphics environment. In: Computing in Science and
Engineering 9 (2007), may, Nr. 3, 99–104. http://dx.doi.org/10.1109/MCSE.2007.55.
– DOI 10.1109/MCSE.2007.55. – ISSN 15219615

[OBW09] OPREA, Alexandru ; BÂRSAN, Nicolae ; WEIMAR, Udo: Work function changes in
gas sensitive materials: Fundamentals and applications. In: Sensors and Actuators, B:
Chemical 142 (2009), Nr. 2, 470–493. http://dx.doi.org/10.1016/j.snb.2009.06.043.
– DOI 10.1016/j.snb.2009.06.043. – ISSN 09254005

[RPGB17] RANDLES, Bernadette M. ; PASQUETTO, Irene V. ; GOLSHAN, Milena S. ; BORGMAN,
Christine L.: Using the Jupyter Notebook as a Tool for Open Science: An Empiri-
cal Study. In: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries (2017).

13

http://dx.doi.org/10.1016/j.progsurf.2005.09.002
http://dx.doi.org/10.1016/j.progsurf.2005.09.002
http://dx.doi.org/10.1088/0953-8984/15/20/201
http://dx.doi.org/10.1088/0953-8984/15/20/201
https://www.datanami.com/2016/05/04/rise-data-science-notebooks/
https://www.datanami.com/2016/05/04/rise-data-science-notebooks/
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1016/j.snb.2009.06.043

http://dx.doi.org/10.1109/JCDL.2017.7991618. – DOI 10.1109/JCDL.2017.7991618.
– ISBN 9781538638613

[Unp14] UNPINGCO, José: Python for signal processing: Featuring IPython notebooks.
Bd. 9783319013. Cham : Springer International Publishing, 2014. – 1–128
S. http://dx.doi.org/10.1007/978-3-319-01342-8. http://dx.doi.org/10.1007/
978-3-319-01342-8. – ISBN 9783319013428

14

http://dx.doi.org/10.1109/JCDL.2017.7991618
http://dx.doi.org/10.1007/978-3-319-01342-8
http://dx.doi.org/10.1007/978-3-319-01342-8
http://dx.doi.org/10.1007/978-3-319-01342-8

Solving the poisson equation for spherical grains

Contents

1 Abstract 16

2 Motivation 16

3 Numerical calculation of semiconductors gas sensors 17
3.1 Introduction . 17
3.2 Semiconductor properties of the SMOX grains . 18
3.3 Choice of geometric model . 18
3.4 Poisson’s equation . 19
3.5 Charge density . 20
3.6 Poisson equation as system of ODEs . 23
3.7 Constants . 24
3.8 Materials . 25

3.8.1 Solving integrals numerically . 25
3.8.2 Numerical description of the semiconductor 28
3.8.3 Numerical description of the semiconductor grains 35
3.8.4 Additional relevant parameters . 43

3.9 Putting the pieces together . 45
3.9.1 Defining the parameters to be screen . 46
3.9.2 Starting a parallelized calculation . 47
3.9.3 Export/Import data . 48
3.9.4 Refine algorithm . 49
3.9.5 Recalculating the incorrect minima (with boundaries) 53
3.9.6 Checking the corrected solutions . 54

3.10 Shape of the potential drop inside the grain . 54

4 Summary 58

5 Bibliography section 59

15

1 Abstract

A semiconducting metal oxide (SMOX) based gas sensor translates chemical reactions at the sur-
face into a change of resistance. Free charge carriers being trapped or injected in the material due
to the surface reactions, result in a change in resistance. While the specific chemistry at the sur-
face is by itself a large research topic being actively investigated, the effect inside the grain can be
investigated, to some extend, separately. Even if it is not possible to fully describe a SMOX sensor
without combining the (chemical) effects related to the surface reactions with the processes inside
the semiconductor, such work will still provide new insights.

The topic of the next two chapters of this work will be focusing on deriving such a numerical
model describing the processes happening inside the semiconductor. By applying well known
theoretical models about semiconductors to the SMOX sensor, the influence of the material and it’s
shape will result in a better understanding of the transduction mechanism of chemical reactions
into measurable resistances.

Besides the resistance of the semiconductor, it is also possible to measure with the Kelvin Probe
method one additional parameter crucial for a deeper understanding: the work function of the
semiconductor. The goal of this thesis is to provide a tool, with which experimental data from
simultaneous work function and resistance measurements can be analyzed in detail to gain a
better understanding about the overall processes involved in sensing with SMOX materials.

2 Motivation

The research on semiconducting metal oxide gas sensors was focusing in the past mostly on sce-
narios, where oxygen is the most dominant reactive, gaseous, species in the proximity of the sen-
sor. It is assumed that adsorbed oxygen at the surface of the semiconductor lead to an interaction
with the charges inside the thick film grains. By the adsorbed oxygen at the surface charge carriers
are trapped at the surface and a depletion layer forms. Based on this depletion layer assumption,
many investigations have successfully lead to a deep understanding of the sensing mechanism.

Nevertheless,the existence of an depletion layer is not always valid. Recent experimental results
have shown that even under atmospheric conditions, which are common in real live, the domi-
nant impact of oxygen may be gone. For example, it could be shown that for an SnO2 based gas
sensor under conditions of 50% r.h. and low concentrations of CO (<100 ppm) in synthetic air, the
depletion layer is not present anymore and a accumulation layer manifests [BRW15].

The following figure shows the experimental results from this publication. In the very beginning
of the experiment, a SnO2 based gas sensor was exposed to pure nitrogen. It is assumed that the
resistance under nitrogen corresponds to the flat band situation. It should be mentioned that this
may not always be the case for all sensor materials. Nevertheless an increase of the resistance
then indicates the presence of a depletion layer since less free charge carriers are available for the
conductions. A decrease of the resistance would indicate the presence of an accumulation layer
which injects additional free charge carriers in the conduction band. In the following figure we
clearly see that a conduction band switch is present.

16

With the absence of the depletion layer also most of the commonly used simplifications are not
valid anymore. Mainly the validity of the Schottky and Boltzmann approximation may not be
given anymore. Facing those facts, the equations to describe the transduction mechanism for
a specific surface condition needs a more general descriptions, which includes a depletion and
accumulation layer controlled transduction mechanism.

The processes inside a semiconductor can be described by a set of differential equations avail-
able in literature. As mentioned, common simplifications are not valid for a generalize solution
of the equations. Additionally finding an analytically solution exceeded by far my intellectual
capabilities. Therefore, a numerical solution for this problem was developed.

While working in the field of SMOX sensors already some years, I was used to describe trans-
duction processes by assigning different parts of an analytical solution to properties of the sensor.
With a numerical solution this is not possible anymore which is certainly a drawback of this nu-
merical method. On the other side, the relation between intrinsic properties can still be studied
also in detail. By solving the equations numerically for multiple combinations of the intrinsic
properties, the resulting dataset can then again be used to gain insights about the fundamental
relations of the parameters. Also the comparison of the numerical results with experimental data
might reveal properties which can not be measured easily otherwise. Therefore, the goal was first
to break the problem of describing a SMOX sensor into smaller discreet parts and second trying
to solve each of it individually.

In the upcoming chapters those different parts and how they have been simplified, solved and
combined again will be described. In the last chapter of the thesis, experimental data is compared
with the numerically gained results.

3 Numerical calculation of semiconductors gas sensors

3.1 Introduction

To elaborate the modeling of sensing, equations such as the shape dependent Poisson equation, the
electro-neutrality equation and the geometry dependent electrical current path must be solved. In
most cases this requires an extensive mathematical effort and therefore, the numerical computing
environments Python will be used to derive numerical solutions for equations, which cannot be
solved analytically, as shown below. From literature [RK04] it is known that the grain size and the
number charges trapped at the surface have strong impact on the potential and charge distribution

17

inside the grain. For large grains, compared to their Debye length (LD), additional charges trapped
at the surface may leave the bulk region unaffected. In contrast to the large grains, relative small
grains may be affected through the whole grain by surface charges. The simulation of this effect
will be the major goal of this chapter and a graphical representation this is shown at the end.

With those results the influence of the charge transfer at the surface on the resulting charge density
inside the grain can be described. Hence the free charge carrier concentration and a position
dependent resistivity inside the grain can be calculated.

When investigating the total resistance of the SMOX material, the pathway of the current through
the material plays a major role. With the results presented in this chapter the anisotropic resistivity
distribution inside the material can be used to derive the total resistance of the grain.

3.2 Semiconductor properties of the SMOX grains

The advantages of industrialized production techniques are inline with general advantages of the
SMOX-based sensor technology. Both are:

• upscalable

• highly reproducible

• low cost

Besides the benefits for the industrialization of such a material, also the resulting morphologi-
cal, are beneficial for a good sensor performance. Typical production techniques result in almost
spherical grains with a narrow size distribution and a high surface to volume ration beneficial for
high reactive surface area. When deployed as a thick film the high number of grain-grain contacts
have an additional positive effect on the sensitivity of the sensor due to the high number of back
to back Schottky barriers. As described in [BW03] [BHW11] such barriers are of major importance
for the sensing properties.

In the literature, other geometries claim exceptional performances for multiple other shapes. As
from hollow spheres to nano-rods, often the mechanism which explains the desired increase in
performance is not explained. Since the aim is to gain a fundamental understanding of the shape
influence while staying close to an industrialize material I will keep the focus in this work on
spherical grains, which are commonly used in commercial products. Nevertheless, the techniques
described in this work are transferable to arbitrary and more complex shapes.

Besides the shape, also the defect concentration and stochastic composition varies a lot with the
preparation process. One additional goal of this thesis is to gain a better understanding about the
relation of these two properties and the sensor performance.

3.3 Choice of geometric model

Most SMOX grains can be well approximated as spherical grains. The typical diameters of the
grains are from 5nm to 200nm. The benefit by choosing of such a shape with a the rotational
symmetry is the reduction of the complexity for the numerical calculation. Therefore the approx-
imation of the SMOX particles as spheres was chosen. The second benefit of choosing materials
prepared by rather standardized preparation routes is the availability of multiple different mate-
rials form varying laboratories around the world. These materials may vary in sizes and defect

18

concentration but are often similar in shape. This fact is favorable when the numerical results are
compared and validated with experimental data.

Other available materials with more specialized shapes as hallow spheres or fibers do exist, but
will not be investigated in the research. In the first place, the complex numerical description of
such geometries will increase the calculation duration. Also, the limited variety in parameters like
diameter, doping level, band gap and material composition are not favorable for understanding
their influence on the overall sensing properties by comparing the numerical model with experi-
mental data.

3.4 Poisson’s equation

Surface reactions induce a charge transfer between the bulk and the surface of the grain. This
modification of the charge density distribution inside the grain causes again a change in resis-
tivity. By moving charges to/away from the surface, electrical potentials through the grain are
generated. The electrical potential at the surface and therefore the work function of the semicon-
ductor changes. A detailed description of work function measurements with the Kelvin Probe
method is described here [OBW09].

Previous studies have described the direct relation between surface potential, surface charge
and resistance exists. The latter studies initially define certain approximations which have been
adapted and are reasonable for the investigated cases, but do not allow predictions outside the
boundaries of the pre-assumption. Also the direct impact of size and geometric on the transduc-
tion is not taken fully into consideration. In order to have a more general model of the SMOX
materials and to include the geometric effects, the charge distribution has to be solved in a more
general way.

Identical to the previous studies, the relation between surface potential and charge distribution
has to be solved initially. This relation is defined by the Poisson-Law:

∇2φ = − ρ

εε0
(Poisson)

φ=electrical potential, ρ=free charge density, ε=vacuum permittivity, ε0=relative permittivity.

It is assumed that ε does not vary inside the grain. The charge destiny ρ on the other side is
directly influenced by the charge transfer. Since the transfer of charges to the surface influences
the work function and the energetic position of the conduction band, ρ is a function of φ. φ again
depends on the position in the grain. At the surface φ(r = rS) corresponds to the surface potential
φs while in the center φ(r = 0) = φb may have a different value. The exact shape of φ(r) is gained
from solving the Poisson equation (Poisson).

It will be assumed that the reactions take place at the surface of the crystal and bulk diffusion will
be neglected. Even if there are reports of oxygen bulk diffusion for certain materials , this is not
the general behavior and does not apply for SnO2. Since all surface sites will be accessible by the
gas, the solution of equation: (Poisson) should have a rotational symmetry.

In case of an rotational symmetric shape of a SMOX grain, equation (Poisson) can be expressed as
a ordinary differential equation of only the radius:

19

(
1
r

)
d
dr

rdφ(r)
dr

= −ρ(r)
εε0

(Poisson spherical 1)

3.5 Charge density

As mentioned, the scope of this work is to investigate the transduction mechanism. Specially
including the phenomena of a switch from a depletion- to accumulation layer controlled trans-
duction. The previously shown measurement demonstrated the conduction mechanism switch
under application relevant environmental conditions (50% r.h. and ~3 ppm CO). The findings are
described in detail in [BRW15].

In cases of depletion layer controlled transduction, the Schottky-Approximation was proven to be
an effective way to describe and simplify the Poisson equation. In the case of an accumulation
layer the assumption of a fully depleted space charge layer is not valid anymore.

It should be mentioned that a common second approximation often used together with Schot-
tky’s approximation is Boltzmann’s approximation. The Boltzmann approximation is valid if the
energetic difference between the conduction band EC and the Fermi level energy EFermi is high
enough:

EC − EFermi � 3kBT (1)

In such a case, the Fermi-Dirac distribution f (E) can be expressed with the Boltzmann distribution
b(E):

f (E) =
1

exp(E−EFermi
kBT) + 1

Boltzmann Conditions−−−−−−−−−−−→ b(E) = exp(− (E− EFermi)

kBT
) (2)

Based on the findings that the flat band situation is reached in application relevant conditions,
the Boltzmann approximation is not always valid anymore. Operando Kelvin Probe experiments
indicate that the surface potential may drop up to 1eV below the nitrogen level [BRW15]. The
typical difference EConduction− EFermi is between 50meV and 300meV. It is reasonable to expect that
the conduction band may even cross the Fermi level and therefore also the conditions necessary for
the Boltzmann approximation do not exist. In the upcoming calculations it will be demonstrated
when using the Boltzmann approximation is a good approximation of the Fermi-Dirac function
and when not.

Since the goal of this work is to unify the calculations for both transduction mechanism, the Fermi-
Dirac distribution, without further simplification, is used to calculate the charge distributions.

The Fermi-Dirac equation is transformed to a suitable format, which will reflect the the occupation
probability at energies relative to the initial conduction band position EC:

Fermi-Dirac:

f (E) =
1

exp(E−EFermi
kBT) + 1

=
1

exp(E−EC+EC−EFermi
kBT) + 1

=
1

exp(EC−EFermi
kBT) ∗ exp(E−EC

kBT) + 1
(Fermi)

20

The density of states gEC (E) with the energy E and the conduction band at EC is given by [SN07]
as followed:

gEC (E) =
√

2
Π2

√
E− EC

h̄3 m∗
3
2 = 4Π ∗ (2 ∗m∗)

3
2

h3 ∗
√

E− EC (3)

The integral of the Fermi occupation probability f (E) (Fermi) and the density of states gEC (E)
results in the the number of charges in the conduction band:

n (EC) =

in f∫
EC

gEC (E) ∗ f (E) dE (n(EC))

Typically this equation is simplified to the following form:

n(EC) = NCexp
(

EF − EC

kBT

)
(4)

with NC = 2
(

2Πm∗e kBT
h

) 3
2
, the effective density of states in the conduction band. Such an analyt-

ical equation is useful for further theoretical calculations but is not necessary for our numerical
approach of this thesis. It is worth-wise to mention that this simplification is only valid if the
Boltzmann approximation is also valid.

Equation n(EC) is solved numerically and compared with the results obtained with the common
approximations. m∗e = 0.3me for SnO2 was chosen based on [BD05].

Above a operation temperature of 300°C, all donors are ionized and available as free charge car-
riers in the conduction band [BRW15]. If some of those electrons are trapped at the surface due
to surface reaction, a positive charge remains localized in the crystal at the donors position. Ad-
ditionally the energetic position of the conduction band increases with electron trapped at the
surface. Out of the combination of conduction band shift E = EC − ECb and equation n(EC), one
can calculate the free charge carrier density ρ from Poisson’s equation.

In the case of an unaffected bulk, n(ECb) ≡ nb is the density of electrons in the conduction band. In
case of a charge transfer to/from the surface, the number of electrons in the conduction band will
change. The relation between the density of charges in the conduction band n(EC) and the shifted,
new energetic position of the conduction band EC is fixed by equation n(EC). The difference
between nb and n(EC) is the density of the positive, ionized donors remaining in the crystal. Those
remaining donors are the cause of the electrical shielding of the surface potential. The decay of
the energetic conduction band position from the surface energy level back to the ‘bulk position’
depends directly on that number. With this relation a energy dependent charge density can be
formulated as followed:

ρ(E)
e

= n(ECb)− n(E) = nb − n(E) (5)

21

Equation Poisson spherical 1 becomes then:

(
1
r

)
d
dr

rdφ

dr
= −ρ (E (r))

εε0
= −

e (n (ECb)− n (E))
εε0

= − e (nb − n (E))
εε0

(Poisson spherical 2)

With E = V ∗ e = (Φ0 −Φ) ∗ e

“In discussions of semiconductos, it is useful to define a”band bending" function V such that eV
is related to the potential energy of an electron”[Bel07]::

V = φb − φ, E = V ∗ e

With this relation equation (Poisson spherical 2) becomes:

(
1
r

)
d
dr

rdV
dr

=
e (nb − n (E))

εε0
(Poisson spherical (V))

With the latter equation it is possible to calculate how the surface potential is electrically screened
by the remaining positive charges inside the grain. An important parameter for such calculations
is the Debye length. In cases where the Boltzmann approximation is valid, the Debye length can
be approximated with the following formula:

LD =

√
εε0kBT

nbe2 (6)

In this case the Debye length is the distance required to screen a potential V until its value reaches
V
e . Even if the Boltzmann approximation may not be valid in all cases, the Debye length can still

be used as material specific property. However it will most likely not represent the characteristic
screening distance anymore, which is required to reduce the surface potential by the factor 1

e .

With the definition of the Debye length all relevant variables of the calculation can be express
without physical units as ratios of material specific parameters.

• The distance inside the grain r is expressed in units of the Debye length LD :

r∗ = r
LD

, dr∗
dr = 1

LD
−→ dr = dr∗ ∗ LD

• The position of the conduction band inside the grain in units of the kBT
e :

V∗ = e
kBT ∗V, dV∗

dV = e
kBT −→ dV = dV∗ ∗ kBT

e

• And the number of free charge carries in units of the intrinsic number of charges nb:

n∗(V∗) = n(V)
nb

By substituting those unit-less parameters in equation (Poisson spherical (V)), one obtains the a
unit-less Poisson equation suitable for the numerical calculations:

22

1
r∗2

d
dr∗

r∗2 dV∗

dr∗
= 1− n∗(V∗) (Unitless Poisson equation)

This step of substituting the equation with unit less parameters is not obligatory for the the nu-
merical calculations. It will be shown in the next part of this thesis that the numerical calculation is
also possible with the initial spherical Poisson equation (Poisson spherical (V)). However without
using the unitless representation of the Poisson equation the material specific parameters need to
be given to the algorithm. The downside would be, that for every new material with any parame-
ter changing, the necessary calculations would need to be redone. The benefit of the latter derived
unitless equation is that it is valid for multiple combinations of intrinsic parameters. The solution
would only depend on three parameters:

• Grainsize R in units of LD
• Temperature T as in kBT

e
• The doping level of the semiconductor described with nb

A direct advantage of the numerical approach is now, that for typical values of these parameters
the solution are computed and used for further understanding of their influence on sensing with
SMOX material. Typical values of the relevant parameters are:

• Typical grainsizes reach from 0.1 to 100 LD
• Typical temperatures are in the range of 100°C to 400°C
• The doping level nb range from 1020 1

m3 to 1025 1
m3

This indicates just the typical materials, but solutions for other parameters are alos possible. For
the scope of my work I will nevertheless concentrate on the gives ranges.

3.6 Poisson equation as system of ODEs

The Python SciPy package ([JOPO15], [VGO+20]) will now be used to numerically solve the
derived equations. The “odesolvers” of SciPy are able to solve first order ODEs, or systems of first
order ODES. To solve a second order ODE, if must first by converted by changes of variables to a
system of first order ODES.

Equation (Unitless Poisson equation) is an ODE of second order, so it it needs to be express as a
system of first order ODES.

Practically a functions needs to be defined, which gets as input an list of functions and returns an
list of the derived functions:

derive_ f unc
(

V∗,
dV∗

dr∗

)
−→ dV∗

dr∗
,

d2V∗

dr∗2
(7)

The second input term dV∗
dr∗ corresponds already to the first output term. So no special work needs

to be done here. But also the second output parameter can be calculated with the given input
parameters by using (Unitless Poisson equation).

23

1
r∗2

d
dr∗

r∗2 dV∗

dr∗
= 1− n∗(V∗) =

2r∗

r∗2
dV∗

dr∗
+

r∗2

r∗2
dV∗

dr∗2
=

2
r∗

dV∗

dr∗
+

dV∗

dr∗2
= 1− n∗(V∗) (8)

dV∗

dr∗2
= 1− n∗(V∗)− 2

r∗
dV∗

dr∗
(Second derivative)

The odesolver needs beside the derive-function additional parameters. Namely a set of initial
start values for V∗ and dV∗

dr∗ and boundaries in between the solver should calculate the solution.
To calculate the shape of the conduction band resulting from different surface potentials V∗Sur f ace,
the initial parameter V∗init is already defined as V∗Sur f ace. Also the boundaries should be the full

grain, so rˆ* is between 0 and the grain radius R∗. Only the dV∗
dr∗ |init can not directly be defined.

Nevertheless a the correct solution of the differential equation can still be found. This will be done
by solving the equation for multiple initial values of dV∗

dr∗ |init and “picking” the right solution. This
step will be described in detail in a later part of this chapter.

odesolver(derive_ f unc, [V∗init, dV∗
dr∗ init], r) −→ V∗(r∗), dV∗

dr∗ (r∗)

3.7 Constants

For the numerical calculations some physical constants are required. To structure this notebook it
is favorable to concentrate the definition at a single point and refer always back to this definition.
This reduces the potential error of typos when using some constants over and over again.

One way to generate a global object which groups the relevant information together and allows
to access them easily are classes. Such classes do not only store the relevant information but offer
also some useful functionalities related to the stored information.

In the following code block, the class is defined with the statement class following the name of
the class. By convention class names start with a capital letter. Inside the class initially one func-
tion called __init__ is defined with the def __init__(self): statement. This special function is
always automatically executed when an instance of the class is created. Here I define some con-
stants, which are relevant for the course of this thesis. Additionally some useful functions, e.g. the
conversion from Celsius to Kelvin and vise versa are added. Such functions will be of major im-
portance when transferring gained knowledge in the ‘semiconductor regime’ (Kelvin is the useful
scale here) to application relevant conditions (where Celsius is the common temperature scale).

Before implementing a custom class for the constants, a already available class of constants is im-
ported from SciPy package. SciPy is library, which includes fundamental algorithms for scientific
computing [VGO+20] (SciPy 1.0: fundamental algorithms for scientific computing in Python).
This package is a very powerful and well established set of tools, which will be used for most
calculations in this work. With the line: from scipy import constants as scipyConst, the class
constants is imported from the scipy package. The as statement is used, to give this imported class
a unique name which includes the SciPy package in its name.

[1]: from scipy import constants as scipyConst
class Constant:

def __init__(self):

24

https://www.nature.com/articles/s41592-019-0686-2.pdf

self.K0 = scipyConst.convert_temperature(0,'C','K')
self.kB=scipyConst.k
self.EPSILON_0 = scipyConst.epsilon_0
self.E_CHARGE = scipyConst.elementary_charge
self.h = scipyConst.h
self.MASS_E = scipyConst.electron_mass
self.NA= scipyConst.N_A
self.VOL_mol = 22.4
self.mole_per_l = self.NA/self.VOL_mol

def K_to_C(self, K):
return scipyConst.convert_temperature(K, 'K', 'C')

def C_to_K(self, C):
return scipyConst.convert_temperature(C, 'C', 'K')

def eV_to_J(self,eV):
return eV*self.E_CHARGE

def J_to_eV(self,J):
return J/self.E_CHARGE

CONST = Constant()

3.8 Materials

Once the basic constants are defined, a simplified numerical representation of the investigated
semiconducting material is implemented. As explained in the theoretical section, the charge dis-
tribution n, depends on the position of the conduction band and is the result from solving an
integral. For our calculations this integral will be solved numerically. So before all the relevant
parameters of the SMOX material can be defined, a short introduction into solving integrals with
Python is useful.

Starting again with setting up a numerical python lab, which will output all results “inline” with
this document. As shown in the introduction this is done by using the magic command %pylab
inline

[2]: %pylab inline

Populating the interactive namespace from numpy and matplotlib

3.8.1 Solving integrals numerically

Introduction: Many observables in nature can be predicted with the solution of an integral. In
this section I will make a short excursion on how to solve integrals numerically.

From my experience, many students and researches are excellently trained to define the set of
equations describing their model mathematically. Second, also the evaluation of the individual

25

equations with multiple variables imposes no problems. And third, it is also part of the common
knowledge, that the integral of any function is equivalent to the area below the curve. A college
of mine once told me, that she learn calculating the integral in school by:

1. drawing the function for multiple points on a paper
2. combine them with a line
3. count the squares below the curve

Nothing else is done, when solving integrals numerically with Python. And we will see, that this
method is quite accurate.

On the other side solving an integral analytically requires in many cases advanced mathematical
skills and often approximation/simplifications are introduces to be able to solve the problem.
Those tasks are often hard to master for many people (including me) and the simplifications often
reduce the solution only to specific boundary conditions.

As mentioned solving integrals numerically is fairly easy, even if one might not feel very comfort-
able with counting squares. But if counting is not an option, there are modern tools to solve this
task very efficiently! If haven’t been introduced yet, here they come!

So if the function to be integrated can be evaluated for each point between the boundaries of the
integral, not much stands in the way to solve the integral numerically. Here a simple example of
solving:

5∫
3

x5dx (9)

The analytical solution solution is:[
1/6x6]5

3 = 1/6 ∗ 56 − 1/6 ∗ 36 w 2482.67 (10)

The quad function: The quad function from the scipy.integrate package will be used to inte-
grate the given function. quad needs as comma separated inputs the

1. function to integrate
2. the lower integration boundary
3. the upper integration boundary

From following description comes from the documentation of quad:

Integrate func from a to b (possibly infinite interval) using a technique from the Fortran
library QUADPACK.

This description reveals, that the Fortran library QUADPACK is used in the background. So noth-
ing new is demonstrated here from the “scientific” point of view. I’d rather like to point out,
how easy this can be applied in a Jupyter notebook. From discussion with colleagues I know,
that the biggest challenge for most of them is how to technically implement the numerical solving
algorithm in Python/code. So here it comes:

26

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html

[3]: from scipy.integrate import quad

def f(x):
return x to the power 5
return x**5

#numerical solution
num_sol, num_error = quad(f,3,5)

#analytical solution
ana_sol = 1/6*(5**6-3**6)

print(f'Numerical solution: {num_sol:.2f} +- {num_error:.2f}')
print(f'Analytical solution: {ana_sol:.2f}')

Numerical solution: 2482.67 +- 0.00
Analytical solution: 2482.67

In this case, the numerical and the analytical solution result in the same value. It is worth to
mention, that quad not only returns the actual value of the integral, but also “an estimate of the
absolute error in the result.”.

How about a more complex problem? Let’s look at the “normal probability distribution” function:

f (x) =
1√
2Π
∗ e−

x
2 (11)

By definition a probability distribution is normalized and the integral from −∞ to ∞ is 1:

∞∫
−∞

f (x)dx = 1 (12)

Finding the analytical solution of this integral is already a rather advanced task, but still solvable.
In the following cell the algorithm to solve this integral numerically is demonstrated.

[4]: def f(x):
return 1/(2*pi)**0.5*e**(-(x**2/2))

num_sol, num_error = quad(f, -inf,inf)
ana_sol = 1

print(f'Numerical solution: {num_sol:.12f} +- {num_error:.12f}')
print(f'Analytical solution: {ana_sol:.12f}')

Numerical solution: 1.000000000000 +- 0.000000010178
Analytical solution: 1.000000000000

27

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html

Also here a numerical solution is in line with the expected result from the analytic solution, if we
can accept and error of 10ppb. In may cases such a small error is acceptable.

These two examples cover functions, where a analytical solution is known. In the following parts
of this thesis, many analytical solutions are not known. In this case the shortcut of using a numer-
ical solution instead of relaying on the exact solution is reasonable.

Side-Note: The print() statement is used to add the results in the output of the notebook. The
print command requires a text string between its parenthesis. In Python a string consists of multi-
ple characters between quotation marks: e.g. 'L3TT3R5'. Additionally another rather new feature
of Python is used here. This feature is called formatted strings. Formatted strings are constructed
with an f in front of the string: f'L3TT3R5'.

Inside a formatted string any variable name surrounded by curly parenthesis is replaced with its
string representation. The formatting of the representation may be given after :. For example .12f
tells the formatter to represent the variable as a float with 12 digits after the decimal separator.
When reading this as an interactive notebook, feel free to modify the formatting statement and
check the result.

3.8.2 Numerical description of the semiconductor

Helper functions for semiconductor calculations: Dr. Michael Hübner derived in his thesis
[Hue11] a way to calculate the energetic position of the conduction band EC relative to the Fermi-
Energy level EF from the temperature T, concentration of defects in the bulk ND and the effective
mass of electrons in the semiconductor m∗e :

∆ECF = EC − EF (13)

Since ∆ECF mainly defines the occupation probability of the states in the conduction band, this
term is of major importance. It should be pointed out, that the calculation in the thesis are based
on special assumption only valid for SnO2. The definition from [Hue11] is translated into a Python
algorithm and used as a starting point for further calculations. Besides this function also two other
“helper functions” are defined which will be used at multiple places in the upcoming calculations.

[5]: import scipy
def calc_kT(T_C):

"""
Calculate the kT value for a temp. in °C
T_C = Temp in °C
"""

kT = CONST.kB*(CONST.C_to_K(T_C))
return kT

def calc_eff_density_of_states(T_C,mass_e_eff_factor):
"""
Calculate the eff. densitiy of states in the conduction band
T_C = Temp in °C

28

mass_e_eff_factor = material specific factor to calculate the effective mass
from the electron mass

"""

kT = calc_kT(T_C)
MASS_E_EFF = mass_e_eff_factor*CONST.MASS_E
NC = 2*(2*np.pi*MASS_E_EFF*kT/(CONST.h**2))**(3.0/2.0)
return NC

def calc_EDCF_by_temp(T_C, ND,mass_e_eff_factor):
"""
T_C = Temperature in °C

ND = number of donors per m³
ND = 9e21 # 9*10**15 cm**3 Michi's Thesis page 50

mass_e_eff_factor = material specific factor to calculate the effective mass
from the electron mass

"""

kT = calc_kT(T_C)

NC = calc_eff_density_of_states(T_C,mass_e_eff_factor)

ED1C_eV = 0.034
ED2C_eV = 0.140

a = np.exp(CONST.eV_to_J(ED1C_eV)/kT)
b = np.exp(CONST.eV_to_J(ED2C_eV)/kT)
t3 = 1.0
t2 = (1.0/b-0.5*NC/ND)
t1 = -1.0/b*NC/ND
c = -1.0/(2*a*b)*NC/ND

poly_params = (c,t1, t2, t3)

solutions=numpy.roots(poly_params)
EDCFs = []
for sol in solutions:

if sol.imag == 0:
EDCF = np.log(sol.real)
EDCFs.append(-EDCF*kT/CONST.E_CHARGE)

if len(EDCFs)>1:
raise Exception('Should not be...')

else:

29

return EDCFs[0]

T_C = 300
ND = 1e22
mass_e_eff_factor =0.3

EDCF_eV = calc_EDCF_by_temp(T_C, ND, mass_e_eff_factor)
print(f'Distance between conduction band and fermi level: {EDCF_eV:.2f}eV')

Distance between conduction band and fermi level: 0.31eV

Define the smox-material class: With the helper functions a new class describing the actual
SMOX material can be defined. Besides combining the relevant parameters of the semiconduc-
tor, the new class Material should also hold a method to calculate the concentration of charge
carries in the conduction band.

[6]: from scipy.integrate import quad
from scipy.interpolate import interp1d
import scipy
from functools import lru_cache
import numpy as np
import pandas as pd
from patch_pandas_latex import *

class Material:
def __init__(self,T_C,ND,

mass_e_eff_factor = 0.3, EPSILON = 9.86, DIFF_EF_EC_evolt =␣
↪→None):

'''
T_C = Temperature of the material
ND = number of donors per m³
DIFF_EF_EC_evolt = E_condution - E_Fermi
'''
self.EPSILON = EPSILON
self.ND = ND
self.MASS_E_EFF = mass_e_eff_factor*CONST.MASS_E
self.T_C = T_C
self.kT = calc_kT(self.T_C)
self.NC = calc_eff_density_of_states(T_C,mass_e_eff_factor)

if DIFF_EF_EC_evolt:
self.Diff_EF_EC_evolt = DIFF_EF_EC_evolt

else:
self.Diff_EF_EC_evolt = calc_EDCF_by_temp(T_C, ND, mass_e_eff_factor)

self.Diff_EF_EC = CONST.eV_to_J(self.Diff_EF_EC_evolt)

30

self.nb, self.nb_err = self.n(0)
self.LD = np.sqrt((self.EPSILON*CONST.EPSILON_0*self.kT)

/(self.nb*(CONST.E_CHARGE**2)))

def J_to_kT(self,J):
return J/self.kT

def kT_to_J(self,E_kT):
return E_kT*self.kT

def densitiy_of_states(self,E, E_c):
return 4*np.pi*(2*self.MASS_E_EFF)**(3.0/2.0)/CONST.h**3*(E-E_c)**0.5

def fermic_dirac(self,E_c):
'''
Calculate the value for the Fermi-Dirac distribution for an energetic
position relative to the material specific conduction band E_c
E = E_c+Diff_EF_EC+E_Fermi
So the term in the Fermi-Dirac distribution E-E_Fermi will become
E_c+Diff_EF_EC+E_Fermi-E_Fermi = E_c+Diff_EF_EC
TODO: THIS SHOULD BE IN THE TEXT ABOVE SOMEWHERE
'''
if (E_c+self.Diff_EF_EC)/self.kT>100:

f = 0
else:

f=1.0/(1+np.exp((E_c+self.Diff_EF_EC)/self.kT))

return f

def n_E(self,E,E_c):
if E<E_c:

n = 0
else:

n = self.densitiy_of_states(E, E_c)*self.fermic_dirac(E)
return n

@lru_cache(maxsize=512*512*512)
def n(self, E_c):

'''
Calculate the number of charges in the conduction band at the position␣

↪→E_C
E_C = the postition of the conduction band in J
'''
n, n_err = quad(lambda E:self.n_E(E, E_c),E_c,E_c+self.kT*100)
return n, n_err

31

T_C = 300
ND = 1.16e23
mass_e_eff_factor =0.3

EDCF_eV = calc_EDCF_by_temp(T_C, ND, mass_e_eff_factor)

print(f'''For SnO2 at {T_C}°C with a defect concentration of {ND} 1/m³,
the value of EDCF_eV is {EDCF_eV:.3f} eV''')

material = Material(T_C,ND, DIFF_EF_EC_evolt=EDCF_eV)

For SnO2 at 300°C with a defect concentration of 1.16e+23 1/m³,
the value of EDCF_eV is 0.190 eV

Hint: @lru_cache(maxsize=512*512*512) is a decorator for the function n(self, E_c).

“By definition, a decorator is a function that takes another function and ex-
tends the behavior of the latter function without explicitly modifying it.”
(https://realpython.com/primer-on-python-decorators/)

This Python decorator is used to speed up the calculation process. The lru_cache (“Last Recently
Used”) is used to cache the input and output of a certain function. As the description of the
function says:

“It can save time when an expensive or I/O bound function is periodically called with
the same arguments”

Since in our numerical calc. we will often need to derive the charge density the @lru_cache is of
great use here. The maxsize argument in the brackets defines the maximal size of the cache in the
memory of the computer in bytes.

Relation between nb and ND In the thesis of Julia Rebolz [Reb16] some values for nb and LD and
the distance of the conduction band to the Fermi-Level (EC,Flatband − EF)in units of [eV] have been
calculated. Those values will be used to check the results calculated from the Material class. The
numerical calculation are in good agreement with the presented results. The code cell below can
be used to check values found in literature with the presented model.

[7]: T_C = 300
a = np.array([(Material(T_C, ND_temp).nb, ND_temp) for ND_temp in np.

↪→logspace(21, 25)])
fig, axe = subplots(figsize = (((1+5**0.5)/2)*9,9))
x = a[:,0]
y = a[:,1]
axe.plot(x,y)
axe.set_yscale('log')
axe.set_xscale('log')
axe.set_ylabel('N_D $[m^{-3}]$', fontsize=22)
axe.set_xlabel('n_b $[m^{-3}]$',fontsize=22)

32

axe.grid()
axe.set_title('N_D as a function of n_b', fontsize = 22)

To calcaulte the ND from nb, the numiercal data is interpolated.
Generally this way is much simpler than deriving the inverse function to␣

↪→calculate ND from a given nb
ND_from_nb = scipy.interpolate.interp1d(x,y, kind='cubic')

#Checking one value from the Thesis of Julia Rebholz
#is done here
nb_check = 2.14e24
ND_check = ND_from_nb(nb_check)
mat_check = Material(T_C, ND_check)
LD_check = mat_check.LD
Ec_Ef_eV_check = mat_check.Diff_EF_EC_evolt
axe.scatter(nb_check, ND_check)
axe.text(nb_check,ND_check/2,

f'n_b={nb_check:.2e} $1/m^3$\nN_D={ND_check:.2e} $1/
↪→m^3\nL_D$={LD_check*1e9:.2f} nm\n$E_C-E_F$={Ec_Ef_eV_check*1000:.2f}meV',

verticalalignment='top', horizontalalignment='center');

33

Free charge carrier conc. using the Boltzmann approximation Besides the full numerical solu-
tion, also the solutions derived from the Boltzmann approximations need to be defined. This will
allow to compare the different solutions and check the validity of the different approximations.

[8]: def boltzmann_acc(material, E_c):
return np.exp(-(E_c+material.Diff_EF_EC)/(material.kT*2))

def boltzmann(material,E_c):
return np.exp(-(E_c+material.Diff_EF_EC)/material.kT)

def densitiy_of_states(material,E, E_c):

return 4*np.pi*(2*material.MASS_E_EFF)**(3.0/2.0)/CONST.h**3*(E-E_c)**0.5

def n_boltzmann(material,E_c):

return boltzmann(material,E_c)*material.NC

def n_boltzmann_acc(material,E_c):

return boltzmann_acc(material,E_c)*material.NC

Compare the numerical solution with the approximations: With all the definitions in place,
the different solutions can be compared. This will be done be representing the charge carrier
concentration n in the conduction band as a function of EC in units of kT. EC = 0 represents the
position of the conduction band in a unaffected bulk.

[9]: def plot_material_char(mat):
ns = []
n_boltzs = []
n_boltzs_acc = []
E_c_kts = []
for i in np.linspace(-20,20):

E_c = mat.kT_to_J(i)
E_c_kts.append(i)
ns.append(mat.n(E_c)[0]/mat.nb)
n_boltzs.append(n_boltzmann(mat, E_c)/mat.nb)
n_boltzs_acc.append(n_boltzmann_acc(mat, E_c)/mat.nb)

fermi_level_pos_kt = -mat.J_to_kT(mat.Diff_EF_EC)

fig, axe = subplots(1,figsize = (16,9))

axe.plot(E_c_kts, ns, label='No approx. ')
axe.plot(E_c_kts, n_boltzs, '--', label='Boltzmann approx.')
axe.plot(E_c_kts, n_boltzs_acc, '-.', label='Accumulation-Boltzmann approx.')

34

axe.set_yscale('log')
axe.set_title('$\\frac{n(E_C)}{n(0)}$ as a function of the band bending␣

↪→E_C', fontsize=22)
axe.set_xlabel('Band bending E_C [kT]', fontsize=22)
axe.set_ylabel('$\\frac{n(E_C)}{n(0)}$', fontsize=22)
axe.axvline(fermi_level_pos_kt, label='Fermi Level', alpha=0.5)
axe.tick_params(axis='both', which='major', labelsize=22)
axe.legend()
axe.grid(b=True)
return fig

material = Material(300,1e23)
fig = plot_material_char(material)

The numerical solution and the approximations are inline with each other in their specific regions
of EC. The Boltzmann approximation is identical to the numerical solution starting ~3kT above
the Fermi energy level. The approximation for the accumulation layer has its validity in a region
where an accumulation is present. This was already shown in [BHW11].

3.8.3 Numerical description of the semiconductor grains

In this section we define a SMOX grain. We approximate the grain as a sphere composed out
of a material defined by the Material class. For one grain, the Poisson equation with spherical
symmetry is solved for the positions inside the grain. Deriving from the properties of a material
the implications for an actual three dimensional grain are important for multiple reasons.

On the one side the ratio of the available surface sites to react with the semiconductor and its
bulk volume play an important role. Very small grains may have relatively high concentration of

35

surface sites but lack the electrons needed for the reaction at the surface. In such a case a grain
may get fully depleted which has significant influence on the overall conduction.

On the other side, the conduction path through the grain differers depending on the free charge
carrier concentration. Depending on the size of the grain and the charge distribution, the charge
current may have its conduction path along the center of the grain, or along the surface.

These effects of grain size can only be analyzed, if the transition from a material to an actual grain
is performed.

To solve the Poisson equation, the solver will need to be feed with the initial values. As described,
two values need to be supplied. One is the surface potential. This value can experimentally be
measured with the Kelvin Probe method. The second start parameter, which needs to be supplied
is the slope of the potential at the surface. With these two parameters, the solver iterates from the
starting condition stepwise though the grain and calculates for each step new values based on the
previous iteration.

This “inital value problem” is solved with the scipy tool solve_ivp.

[10]: from scipy.integrate import solve_ivp
class Grain:

def __init__(self,grainsize_radius,material,rPoints=1000):
self.R = grainsize_radius
self.material = material
self.rs = np.linspace(self.R/1000, self.R, rPoints)

def solve_with_values(self,E_init, E_dot_init):
r_LD = self.rs/self.material.LD
E_init_kT = self.material.J_to_kT(E_init)
E_dot_init_kt = self.material.J_to_kT(E_dot_init)

#the solver should stop, when the slope is zero.
#This is reasonable since if the slope is zero, this should be the lowest
#point of the graph so, when we "hit_ground" the solver should stop,
#to save some computational time
#and directly discard non physical solutions
#Also crossing the flatand is not realistic and should be stopped

def hit_ground(t, y):
#print(y)
if y[0]:

if E_init_kT<0:
if y[0]>0:

return 0
if y[0]<E_init_kT:

return 0
else:

if y[0]<0:

36

return 0
if y[0]>E_init_kT:

return 0

if y[1]:
if abs(y[1])<0.0001:

return 0
return y[1]

hit_ground.terminal = True

#see the docstring why I chose the metohd BDF
data = solve_ivp(fun = self.deriv_E_E_dot,

t_span = (r_LD[-1],r_LD[0]),
y0 = [E_init_kT,E_dot_init_kt],
t_eval=r_LD[::-1],
events=hit_ground,
method = 'BDF')

#since we start from the surface and iterate towards
#the center, the results have to be revered to be again
#sorted by increasing values of r*

r = data.t[::-1]
v = data.y[0][::-1]
v_dot = data.y[1][::-1]

#since the evaluation might stop earlier
#the missing elements need to be fileed up again
missing_elements_count = len(r_LD)-len(r)
r = np.concatenate((r_LD[:missing_elements_count], r))
v = np.concatenate((np.ones(missing_elements_count)*v[0],v))
v_dot = np.concatenate((np.ones(missing_elements_count)*v_dot[0],v_dot))

return r,v, v_dot, data

def deriv_E_E_dot(self,r_, U_U_dot):
U = U_U_dot[0]
U_dot = U_U_dot[1]
E = self.material.kT_to_J(U)
n = self.material.n(E)
U_dot_dot = 1-n[0]/self.material.nb -2/r_*U_dot
return [U_dot, U_dot_dot]

37

Example of differnt grains: Now with the Grain class defined, actual numerical gains can be
initialized . Here an example on how to use the Grain class is provided.

[11]: #define a grain with a specific material
def create_grain(grainsize, T_C, ND):

mass_e_eff_factor =0.3
material = Material(T_C,ND)
grain = Grain(grainsize_radius=grainsize,material=material)
return grain

#Check the influence of LD

g = create_grain(50e-9, T_C=300, ND=9e24*4)
print(f'This grain has a size of {g.R/g.material.LD:.2f} LD')

This grain has a size of 45.48 LD

In the next example a grain is defined with a fixed surface potential. Based on this fixed potential
3 different “guesses” of the initial slope are used to simulate the shape of the conduction band
inside the grain.

[12]: #defining a new grain
T_C = 300
ND = 1e23
grain = create_grain(110e-9, T_C, ND)

#initalize the plot
fig, axe = subplots(figsize = (16,9))
axe.set_ylim(-10,10)

#fix the surface potential to 8kT
E_init_kT = 8
#express the surface potential in J
E_init = grain.material.kT_to_J(E_init_kT)

#for 3 values of the inial slope in units of 1kT/LD
#calculate the conduction band
In 1LD the potential drops of the factor 1/e in a infite plane
#8/e ~ 3; so 1,2,4 should be fine as a guess
for E_dot_init_kT in [1,2,3,4]:

#convert to SI units for the numerical calc.
E_dot_init = grain.material.kT_to_J(E_dot_init_kT)

#solve with the inital values
r,v, v_dot, data = grain.solve_with_values(E_init, E_dot_init)

axe.plot(r,v, label=f'Initial slope: {E_dot_init_kT} [kT/L_D]')

38

axe.set_xlabel
axe.set_ylabel('$E_C(r^*)$ [k_BT]', fontsize =22)
axe.set_xlabel(

f'Position in grain [L_D = {grain.material.LD*1e9:.2f}nm],R={grain.R*1e9:.
↪→2f}nm', fontsize =22

)
leg = axe.legend()

From this graph it is obvious, that the initial slope has a major influence on the final result.

Unfortunately this value is in most cases unknown. To solve this problem the previously derived
function (Second derivative) can be used:

dV∗

dr∗2
= 1− n∗(V∗)− 2

r∗
dV∗

dr∗
(Second derivative)

This equation is transformed into following form:

R∫
0

dV∗

dr∗2
dr∗ =

[
dV∗

dr∗

]R

0
=

dV∗

dr∗

∣∣∣∣
R
= (14)

dV∗

dr∗

∣∣∣∣
Sur f ace

=

R∫
0

1− n∗(V∗)− 2
r∗

dV∗

dr∗
dr∗ (Surface slope)

39

With this relation each solution can be verified. For a pair of valid starting conditions the resulting
solution should also be a valid solution for equation: (Surface slope).

The right side of (Surface slope) will again be evaluated numerically. The expression n∗(V∗) can
be calculated for each V∗ with the function defined in class material. From the ode_solver the
values of dV∗

dr∗ are known inside the grain at the positions of r∗. Since all the elements of the integral
are known, the numerical evaluation is not difficult.

However the elements of the integral in this case are not functions anymore and can’t be evaluated
individually for each point. From the iterative solving algorithm of the ode_solver only lists
of values are available. In such a case the integration is slightly different. For the numerical
integration of a list of values y corresponding to a set of x values, the numpy function trapz is
used:

numpy.trapz(y, x=None, dx=1.0, axis=-1)

Integrate along the given axis using the composite trapezoidal rule.

Example usage of np.trapz
[13]: x = [0,1,1,2,3,4,5,5,6]

y = [0,0,1,1,1,1,1,0,0]
fig, axe = subplots(figsize = (9,4))
axe.plot(x,y)
axe.set_xlabel('X')
axe.set_ylabel('Y')
numerical_integral = np.trapz(y,x)
axe.text(3, 0.5, f'Integral: {numerical_integral}');

From equation Surface slope the following condition to validate the solution is defined :

40

dV∗

dr∗

∣∣∣∣
R∗
−

R∗∫
0

(
1− n∗(V∗)− 2

r∗
dV∗

dr∗

)
dr∗ = 0 (Validation)

The left side of the equation can be calculated for multiple values of the inital slope at the surface
dV∗
dr∗

∣∣∣
R∗

. With the correct value of dV∗
dr∗

∣∣∣
R∗

the left side of the equation will be minimized. Since
similar minimization problems have been solved before, Python/SciPy has already a solution for
this ready.

The tools needed to solve this problems can be found in the scipy.optimize package. The func-
tion minimize_scalar will be used to minimize the left side of the equation by varying the scalar
parameter dV∗

dr∗

∣∣∣
R∗

.

The following line is used to load the required function from the SciPy package:

from scipy.optimize import minimize_scalar

To use minimize_scalar, an additional function needs to be defined. The new function fulfills
two steps. First the initial value problem (ivp) is solved with the supplied initial slope for a fixed
surface potential. With the solution of the ivp, the error defined by (??) is calculated and returned.
The function minimize_scalar then takes care of varying the initial slope to minimize the error.

[14]: from scipy.optimize import minimize_scalar

def min_vdot(vdot_init, grain, vinit, debug = False):
#solve the ivp with the given values
r,v,vdot, data = grain.solve_with_values(grain.material.kT_to_J(vinit),

grain.material.kT_to_J(vdot_init))

#for each point of the solution the element in the integral is calculated
integrand = [(1-grain.material.n(grain.material.kT_to_J(v_i))[0]/grain.

↪→material.nb)-2/r_i*vdot_i for r_i,
v_i, vdot_i in zip(r, v, vdot)]

#the integral is numerically calculated
dV = np.trapz(y=integrand,x=r)

#The integral should be the same as the slope at the surface,
#the difference is the error to be minimized
res = abs((dV-vdot[-1]))

if debug:
print(vdot_init, dV, vinit, res)

return res

def find_best_E_dot_init(E_init_kT, grain,debug = False, bounds = None):

41

#if bounds are given as a hint for the minimize algorithm,
#then the method='Bounded' can be used
#In this case the algorithm will search in the biven interval
if bounds:

res = minimize_scalar(fun = min_vdot,
args=(grain, E_init_kT, debug),
method = 'Bounded',
bounds = bounds

)
else:

res = minimize_scalar(fun = min_vdot,
args=(grain, E_init_kT, debug)

)
return res

So the previous example with randomly guessed initial values can be extended with a better guess.

[15]: #grain = Grain(100e-9,material)

T_C = 300
ND = 1e23
grain = create_grain(110e-9, T_C, ND)

fig, axe = subplots(figsize = (16,9))
axe.set_ylim(-1,10)

E_init_kT = 8
E_init = grain.material.kT_to_J(E_init_kT)

for E_dot_init_kT in [1,2,4]:
E_dot_init = grain.material.kT_to_J(E_dot_init_kT)
r,v, v_dot, data = grain.solve_with_values(E_init, E_dot_init)
axe.plot(r,v,'--', label='$\dotE_{Surface}$'+ f'= {E_dot_init_kT:.2f}[k_BT/

↪→L_D]')

#Now we will try to find the best inital slope to solve the equation
res = find_best_E_dot_init(E_init_kT, grain)

E_dot_init_kT = res.x
E_dot_init = grain.material.kT_to_J(E_dot_init_kT)
r,v, v_dot, data = grain.solve_with_values(E_init, E_dot_init)
axe.plot(r,v, '-',

label='$\dotE_{Surface}$'+ f'= {E_dot_init_kT:.2f}[k_BT/L_D]␣
↪→minimized',

linewidth = 5)

42

axe.set_ylabel('$E_C(r^*)$ [k_BT]', fontsize =22)
axe.set_xlabel(f"""Position r from the center of the grain [L_D = {grain.

↪→material.LD*1e9:.2f}nm]""",fontsize =22)

axe.set_title(f"""R={grain.R*1e9:.2f}nm""", fontsize =22)

axe.legend(fontsize = 15,loc = 2);
axe.grid()
axe.tick_params(axis='both', which='both', labelsize=22)

The thick line is the result corresponding to the solution minimal error

3.8.4 Additional relevant parameters

From the above solution for spherical grains, additional properties can already be calculated with-
out much computational effort. For instance the total number of free charge carries left inside the
grain. From the charge distribution inside the grain, a simple integral over the volume of the
sphere will reveal this value. The difference of this value to the value from the flatband situation
will reveal the number of charges N−Sur f ace involved and trapped by the surface reactions.

[54]: def calc_sum_of_charges(grain, r, v):
ser = {}
#Geometric properties
ser['R'] = grain.R
grain_volume = 4.0/3.0*pi*(grain.R**3)

43

grain_surface = 4.0*pi*(grain.R**2)
ser['grain_vol'] = grain_volume
ser['grain_surface'] = grain_surface

calcualte the acctual free charge carrier conc. from the position inside␣
↪→the grain

n = [grain.material.n(v_J)[0] for v_J in grain.material.kT_to_J(v)]
ser['n'] = n

charges in grain and at the surface
all_c_at_flatband = 4.0/3.0*pi*(grain.R**3)*grain.material.n(0)[0]
charges_at_surface = all_c_at_flatband-np.trapz(n,

(r*grain.material.LD)**3*4/
↪→3*pi

)

ND_projection_surf = grain.material.ND*((grain.R+0.1*1e-9)**3 - grain.
↪→R**3)*4/3*pi

ser['all_c_at_flatband'] = all_c_at_flatband
ser['charges_trapped_at_surface'] = charges_at_surface
ser['surface_vacancies_projection'] = ND_projection_surf

#additional paramters
ser['temp'] = grain.material.T_C
ser['mass_eff'] = grain.material.MASS_E_EFF
ser['ND'] = grain.material.ND
ser['EPSILON'] = grain.material.EPSILON
ser['nb'] = grain.material.nb
ser['E_Fermi_kT'] = -grain.material.J_to_kT(grain.material.Diff_EF_EC)

return ser

calc_charges = calc_sum_of_charges(grain, r, v)

calc_charges_latex_friendly_format = {k.replace('_','-'):calc_charges[k] for k␣
↪→in calc_charges.keys()}

display(pd.DataFrame(pd.Series(calc_charges_latex_friendly_format)))

44

0

R 1e-07
grain-vol 4.2e-21
grain-sur... 1.3e-13
n [1.68046...
all-c-at-... 7.8e+03
charges-t... 4.8e+03
surface-v... 13
temp 3e+02
mass-eff 2.7e-31
ND 1e+24
EPSILON 9.9
nb 1.9e+24
E-Fermi-kT -1.7

3.9 Putting the pieces together

With a description of the semiconductor itself by the class Material and the semiconductor grain
by the class Grain the screening of multiple parameters can start. In the following combinations
will be screened:

• 4 different defect concentrations ND: [1021, 1022, 1023, 1024] [1
m]

• Temperature of the material: 300°C.
• Surface potentials [-20,20] kBT
• Grain radii (R): 6.25nm, 12.5nm, 25nm, 50nm and 100nm.

Those results will lead to an understanding of the relation between surface reaction, resistance
change and grain size. But for now, data for further analysis will be generated. This part has a
high computational effort. Since the solutions of each combination do not depend on each other,
this job can be parallelized easily.

To do the time consuming calculations (finding the right start conditions) only once, each correct
solution we will save in a DataFrame. A DataFrame is a data structure to organize information
similar to Excel Worksheets (tm). As in “Excel Worksheets” data can be stored, accessed and
manipulated. A Dataframe is a part of the pandas Python library. To shorten the command for
pandas I will import it and add an alias to it. The following code part import pandas and creates
a Dataframe, where all our results will be stored.

[17]: import pandas as pd
dF_calc = pd.DataFrame()

In the following code cell helper functions, which are needed for the parallelization of the jobs are
defined.

[18]: def solve_grain_for_E_init_kT(E_init_kT,grain, debug = False, bounds = None):
res = find_best_E_dot_init(E_init_kT, grain,debug = debug, bounds = bounds)

ser_temp = pd.Series(dtype=float)
ser_temp['Einit_kT'] = E_init_kT

45

ser_temp['E_dot_init_kT'] = res.x
ser_temp['res'] = res.fun

E_init_J = grain.material.kT_to_J(E_init_kT)
E_dot__init_J = grain.material.kT_to_J(res.x)
r,v,vdot, data = grain.solve_with_values(E_init_J,E_dot__init_J)

ser_temp['v'] = v
ser_temp['v_dot'] = vdot
ser_temp['r'] = r

derived_values_dict = calc_sum_of_charges(grain, r, v)
ser_temp = ser_temp.append(pd.Series(derived_values_dict))
return ser_temp

def calcualte_conduction_band(grain):
dF_calc_temp = pd.DataFrame()
#for E_init_kT in [-8,0,8]:
#for E_init_kT in [-8,-4,-2,-1,0,1,2,4,8]:
for E_init_kT in list(list(range(-20,21))):

ser_temp = solve_grain_for_E_init_kT(E_init_kT,grain)
dF_calc_temp = dF_calc_temp.append(ser_temp, ignore_index=True)

return dF_calc_temp

def calc_solution_by_parameters(T_C, ND, grainsize):
grain = create_grain(grainsize, ND=ND, T_C=T_C)
dF_calc_temp = calcualte_conduction_band(grain)
return dF_calc_temp

3.9.1 Defining the parameters to be screen

The function calc_solution_by_parameters(T_C, ND, grainsize) will calculate a specific grain
defined by the following parameters:

• T_C = Temperature
• ND = number of donors
• grainsize = Radius of the SMOX grain

For the screening of the multiple combinations of those 3 parameters, first a list of all combina-
tions is generated. In Python a fast way to achieve this is itertools.product. This function will
generate a list of all combination of its arguments.

[22]: import itertools
import pprint

Ts = [300]

46

ND_ref = 1e21
NDs = [ND_ref, ND_ref*1e1, ND_ref*1e2, ND_ref*1e3]
Rs = [6.25e-9, 12.5e-9, 25e-9, 50e-9, 100e-9]

combinations = list(itertools.product(Ts,NDs,Rs))
print("T_C, ND, grainsize")
pprint.pprint(combinations)

T_C, ND, grainsize
[(300, 1e+21, 6.25e-09),
(300, 1e+21, 1.25e-08),
(300, 1e+21, 2.5e-08),
(300, 1e+21, 5e-08),
(300, 1e+21, 1e-07),
(300, 1e+22, 6.25e-09),
(300, 1e+22, 1.25e-08),
(300, 1e+22, 2.5e-08),
(300, 1e+22, 5e-08),
(300, 1e+22, 1e-07),
(300, 1e+23, 6.25e-09),
(300, 1e+23, 1.25e-08),
(300, 1e+23, 2.5e-08),
(300, 1e+23, 5e-08),
(300, 1e+23, 1e-07),
(300, 1e+24, 6.25e-09),
(300, 1e+24, 1.25e-08),
(300, 1e+24, 2.5e-08),
(300, 1e+24, 5e-08),
(300, 1e+24, 1e-07)]

3.9.2 Starting a parallelized calculation

In the next cell block the actual calculation will take place. The first line: from multiprocessing
import Pool, adds multi processing capabilities to the programming environment. The imported
class Pool represents a pool of worker processes, which are used to execute the task in parallel.
In line 11 Pool(8) initializes a pool with 8 parallel processes. On this pool the function starmap
takes care of executing a certain function with specific arguments. In this case the function will
be calc_solution_by_parameters and the ‘parameters’ will be the list of combinations we just
created in the cell above. Additionally the duration of for the full process is measured. The output
shows, that the total calculation time is around 1h, when using 8 processes in parallel. This was
performed on a desktop PC with the following configuration:

• Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz
• 10 cpus
• 64GB memory

This examples shows, that performing scientific numerical calculations do not need necessarily
special dedicated hardware to get started. Regarding the low workload most computer have in

47

average over a day, most modern PCs should be very well suited for such a task.

[24]: #using multiple processors of the system to calculate the solutions in parallel.
from multiprocessing import Pool
import time

#save the start timestamp
start_calc_time = time.time()

#use 8 cores of the cpus
#starmap takes over the work of running the tasks
#The pool of 8 cores is used to distribute the work
with Pool(8) as p:

all_res_list = p.starmap(calc_solution_by_parameters, combinations)
pass

#All solution is are returned in a list, which needs then to be combined again
dF_calc = pd.concat(all_res_list)
dF_calc.index = range(len(dF_calc))

calc_duration_sec = time.time()-start_calc_time
print(f'Calc duration: {calc_duration_sec/60:.1f}min.')

Calc duration: 104.4min.

3.9.3 Export/Import data

The date will be saved for later use to avoid a re-calculation. It is helpful to directly re-import the
data to see if any mistakes have happened while saving the date. As a sanity check,some parts of
the re-imported data are displayed as a table.

[25]: resultname = 'results.h5'
dF_calc.to_hdf(resultname, 'raw', mode='w')

/usr/lib/python3.8/site-packages/pandas/core/generic.py:2431:
PerformanceWarning:
your performance may suffer as PyTables will pickle object types that it cannot
map directly to c-types [inferred_type->mixed,key->block1_values]
[items->Index(['n', 'r', 'v', 'v_dot'], dtype='object')]

pytables.to_hdf(

[36]: calc_dF_all = pd.read_hdf(resultname, 'raw')

With all the results now in single DataFrame, we will analyze and represent individual rows of
the full set to gain some insides about the data. Since the DataFrame only saves the resulting
numbers, but not the corresponding classes Grain and Material, we need to create the numerical
Grain again from this numbers. A helper function, which takes one or multiple rows and returns

48

the corresponding numerical Grain class, will be very handy an is constructed in the next cell.

[27]: def create_grain_from_data(dF):
if type(dF)==pd.Series:

dF = pd.DataFrame([dF])

if len(dF['temp'].unique())==1:
T_C = dF['temp'].unique()[0]

else:
raise Exception('Multiple paramters for one grain are invalid.')

if len(dF['ND'].unique())==1:
ND = dF['ND'].unique()[0]

else:
raise Exception('Multiple paramters for one grain are invalid.')

if len(dF['mass_eff'].unique())==1:
mass_e_eff_factor = dF['mass_eff'].unique()[0]/CONST.MASS_E

else:
raise Exception('Multiple paramters for one grain are invalid.')

if len(dF['R'].unique())==1:
grainsize_radius = dF['R'].unique()[0]

else:
raise Exception('Multiple paramters for one grain are invalid.')

material = Material(T_C,ND)
grain = Grain(grainsize_radius=grainsize_radius,material=material)

return grain

3.9.4 Refine algorithm

Visualize incorrectly found minimum: Sometimes the minimization algorithm does not work
as expected. In some cases the minimization algorithm will find “just” a local minimum and
miss the global one. Generally this problem could be solved by suppling additional hints to the
minimization algorithm, like a range where to look for the global minimum. To do so, first the
points, where the minimization “error” is still too high are identified and then recalculate with
additional hints.

Here again, a graphical representation is helpful for a better understanding. Since we have solu-
tion for multiple doping levels (ND) and multiple grain radii (R), I will represent each combina-
tion individually. The Pandas groupby function allows to split DataFrames temporally by a given
group label. By grouping all the results by the label-tuple (ND, R), Pandas will do the work and
we can represent the individual result separately. Since the data holds also a column named res

49

with the final “error” of the minimization, we can distinguish good and bad results easily.

In this representation the y-axis scaling is set to symlog. The description of symlog from Matplotlib
documentation describes symlog is: “The symmetrical logarithmic scale is logarithmic in both the
positive and negative directions from the origin.” This scaling type overcomes the problem of
representing exponential dataset with even negative values.

[57]: gs = calc_dF_all.groupby(['ND','R'])
fig, axe = subplots(len(gs)//5,5, figsize=(16,9), sharey=True)

calc_dF_all['E_dot_init_kT_estimation'] = None
for ax_i, ((ND,R), g) in enumerate(gs):

#select the axe
axe = fig.axes[ax_i]

#selecting on ly the good results by using the 'res' field
g_good = g[g['res']<2]

#the bad ones are the complent of the good ones; droping the good
#ones from all results leaves the bad ones back
g_bad = g.drop(g_good.index)

#plotting the good and bad results
axe.plot(g_good['Einit_kT'], g_good['E_dot_init_kT'],'bo-',

label='good solution')
axe.plot(g_bad['Einit_kT'], g_bad['E_dot_init_kT'],'go',

label='bad solution')

#some plotting sugar
axe.set_yscale('symlog')
axe.set_title(f'N_D:{ND}, R:{R*1e9:.2f}nm')
axe.set_xlabel(r'$E_{Surface}$ [k_BT]', fontsize = 15)
axe.set_ylabel(r'$\dot{E}_{Surface}$ [k_BT]', fontsize = 15)

fig.axes[0].legend()
fig.tight_layout()

50

https://matplotlib.org/3.1.3/api/scale_api.html#matplotlib.scale.SymmetricalLogScale
https://matplotlib.org/3.1.3/api/scale_api.html#matplotlib.scale.SymmetricalLogScale

Solutions with an high error after the minimization are represented in green, good results in blue.
Since enough results can be considered as good, an estimation of the better values for the "bad"

results can be derived.

Interpolate better solutions of incorrectly found minimum The good results can be distin-
guished well from the bad ones, where the algorithm failed. Additionally a trained eye is able
to estimate the interval, where the correct solution should lay. As humans can, so does Python.
For this problem the “good” solutions are used to estimate the correct values of the “bad” points.
In the following plot, this is done. Since we will need the predicted result as a starting point for a
second minimization, we will add this value to the DataFrame holding all solutions and naming it
appropriately . Since this function might become very handy to check the solution, we will wrap
it into a function and reuse it later.

[55]: from scipy.interpolate import interp1d
def check_solutions(calc_dF_all):

gs = calc_dF_all.groupby(['ND','R'])
fig, axes = subplots(len(gs)//5,5, figsize=(16,9), sharex=True, sharey=True)

calc_dF_all['E_dot_init_kT_estimation'] = None
for ax_i, ((ND,R), g) in enumerate(gs):

axe = fig.axes[ax_i]
g_good = g[g['res']<2]
g_bad = g.drop(g_good.index)
axe.plot(g_good['Einit_kT'], g_good['E_dot_init_kT'],'bo-',

label='Good solution')
axe.plot(g_bad['Einit_kT'], g_bad['E_dot_init_kT'],'go',

label='Bad solution')

51

axe.set_yscale('symlog')
axe.set_title(f'N_D:{ND}, R:{R*1e9:.2f}nm')
axe.set_xlabel(r'$E_{Surface}$ [k_BT]', fontsize =15)
axe.set_ylabel(r'$\dot{E}_{Surface}$ [k_BT]', fontsize =15)

x = g_good['Einit_kT']
y = g_good['E_dot_init_kT']
w = g_good['res']

#create the interpolation
interp = interp1d(x,y,kind='cubic',bounds_error=False,␣

↪→fill_value='extrapolate')

g_bad_correct_y = interp(g_bad['Einit_kT'])
axe.plot(g_bad['Einit_kT'], g_bad_correct_y, '*k',

markersize=10, alpha=0.5, label='Interpolated guess')

calc_dF_all.loc[g_bad.index, 'E_dot_init_kT_estimation'] =␣
↪→g_bad_correct_y

axe = fig.axes[0]
axe.legend(*axes[0][0].get_legend_handles_labels())
fig.tight_layout()

check_solutions(calc_dF_all)

52

Now the green stars represent the guesses of the correct solutions

3.9.5 Recalculating the incorrect minima (with boundaries)

By using the estimated correct values of the slope at the surface of the grain, the function
find_best_E_dot_init for the bad solutions is repeated.

[30]: def recalculate_by_index(index):
ser_temp = calc_dF_all.loc[index].copy()
grain = create_grain_from_data(ser_temp)
E_init_kT = ser_temp['Einit_kT']

#This is the estimated value from the interpolation of the good solutions
estim = ser_temp['E_dot_init_kT_estimation']

#Since the correct solution sould be in proximity of this solution, an␣
↪→interval

#is created from this value (here +-10%)
bounds = sorted((estim*0.9, estim*1.1))

ser_new = solve_grain_for_E_init_kT(E_init_kT,grain, debug = False, bounds =␣
↪→bounds)

ser_new.name = ser_temp.name
ser_temp.update(ser_new)
return ser_temp

[31]: #filter only rows which need to be recalculated
index_to_recalc = list(calc_dF_all[calc_dF_all['res']>2].

↪→dropna(subset=['E_dot_init_kT_estimation']).index)
from multiprocessing import Pool

if __name__ == '__main__':
p = Pool(8)
new_sers = p.map(recalculate_by_index, index_to_recalc)

And finally the old solutions in the DataFrame are replaced with the (hopefully) better ones and
saved again in a file.

[32]: for s in new_sers:
calc_dF_all.loc[s.name] = s

calc_dF_all.to_hdf(resultname, 'corr', mode='a')

/usr/lib/python3.8/site-packages/pandas/core/generic.py:2431:
PerformanceWarning:

53

your performance may suffer as PyTables will pickle object types that it cannot
map directly to c-types [inferred_type->mixed,key->block1_values]
[items->Index(['n', 'r', 'v', 'v_dot', 'E_dot_init_kT_estimation'],
dtype='object')]

pytables.to_hdf(

3.9.6 Checking the corrected solutions

Now the solution should all be available and a simple representation should reveal its quality.

[56]: calc_dF_all = pd.read_hdf(resultname, 'corr')
print(len(calc_dF_all[calc_dF_all['res']>5]))
check_solutions(calc_dF_all)
print(f'The maximal "error" of the minimization is :{calc_dF_all["res"].max()}')

6
The maximal "error" of the minimization is :1908.8429246759774

3.10 Shape of the potential drop inside the grain

Since all data is available now, the shape of the conduction band inside the grain can be repre-
sented for the different combinations of parameters.

[34]: for ND, calc_dF in calc_dF_all.groupby('ND'):
fig, axes= subplots(3,2,figsize = (16,9), sharex=True)

54

fig.suptitle(f'ND = {ND}'+ r'$\frac{1}{m^3}$', fontsize = 22)

for ax_i, (R, calc_dF_grainsize) in enumerate(calc_dF.groupby('R')):
axe = fig.axes[ax_i]
axe.set_ylim(-20,20)

grain = create_grain_from_data(calc_dF_grainsize)

axe.axhline(-grain.material.J_to_kT(grain.material.Diff_EF_EC),
linestyle='--',color='r', label='Fermi Level')

axe.axvline(grain.R/grain.material.LD,
linewidth=3, color='k', label='Grain surface')

axe.axhspan(-1,+1,color='r', alpha=0.2, label='$0\pm 1 [k_BT]$')

for vinit, ser_temp in calc_dF_grainsize.iterrows():

#discarde bad solutions from the plot
if ser_temp['res']>5:

continue

r = ser_temp['r']
v = ser_temp['v']
vdot = ser_temp['v_dot']

axe.set_title(f'Grain radius = {grain.R*1e9:.2f}nm', fontsize=22)

axe.plot(r,v, '-', label = "")
axe.set_ylabel('$E_C(r)$ [k_BT]', fontsize =22)
axe.set_xlabel(f'Position in grain [L_D = {grain.material.LD*1e9:.

↪→2f}nm]',
fontsize =22)

axe.legend()
axe.grid(b=True)

fig.axes[-1].set_axis_off()
fig.tight_layout()
fig.subplots_adjust(top=.85)
close()
display(fig)
for i in range(5):print()

55

56

57

This graph shows how a surface potential is shielded by the remaining ionized donors. In the case
of on deletion layer (ECSur f ace > 0)), the total number of charges shielding the surface potential
is rather small compared to the amount of charges in an accumulation layer (ECSur f ace < 0)). The
result of such an asymmetry is visible in the graph. The width of the accumulation layer is by far
smaller then the width of the depleted are.

4 Summary

In this notebook the flowowing steps have been accomplished:

• numerically calculate the charge density in a semiconductor
• solve the Poisson equation for spherical grains
• Calculate the solutions for multiple grain sizes and surface potentials

Those calculations have been derived with a standard set of Python tools. By using mainly the
numpy, scipy, matplotlib and pandas these results have been achieved.

To avoid to large blocks of information in one notebook, I like to introduce a breakpoint here. At
such breakpoints it is helpful to save all the relevant data in a DataFrame, save it to the filesys-
tem, and pick it up again in a fresh notebook. This keeps each notebooks close to one topic and
additionally introduces directly structure in the data.

In the next notebook this calculated data will be used derive the total resistance of a grain. The

58

anisotropic charge carrier distribution inside the grain has a mayor influence on the total resis-
tance. For two extreme cases, the conduction path inside the grain differs a lot. Those cases are:

1. Accumulation layer at the surface
2. Depletion layer at the surface

In the case of 1., the current will most likely run along the highly conductive surface of the grain.
In the second case, the current will need to overcome a highly resistive surface layer and then
propagate through the inside of the relatively low resistive bulk of the grain.

Since all information to numerically derive the effects are now pre-calcualted, the next notebook
will start at this point and continue to calcualte the total resistance.Non-PDF readers, could use
this link to guide them to the next notebook.

5 Bibliography section

References

[BD05] BATZILL, Matthias ; DIEBOLD, Ulrike: The surface and materials science of tin oxide.
In: Progress in Surface Science 79 (2005), Nr. 2-4, S. 47–154. http://dx.doi.org/10.
1016/j.progsurf.2005.09.002. – DOI 10.1016/j.progsurf.2005.09.002. – ISBN 0079–
6816

[Bel07] BELTON, P. S.: Preface. Plenum Press, New York, 2007. – 1–247 S. http://dx.doi.
org/10.1002/9780470995792. http://dx.doi.org/10.1002/9780470995792. – ISBN
1405121270

[BHW11] BÂRSAN, N. ; HÜBNER, M. ; WEIMAR, U.: Conduction mechanisms in SnO2 based
polycrystalline thick film gas sensors exposed to CO and H2 in different oxygen
backgrounds. In: Sensors and Actuators, B: Chemical 157 (2011), Nr. 2, S. 510–517.
http://dx.doi.org/10.1016/j.snb.2011.05.011. – DOI 10.1016/j.snb.2011.05.011.
– ISBN 0925–4005

[BRW15] BARSAN, Nicolae ; REBHOLZ, Julia ; WEIMAR, Udo: Conduction mechanism switch for
SnO<inf>2</inf> based sensors during operation in application relevant conditions;
Implications for modeling of sensing. In: Sensors and Actuators, B: Chemical 207 (2015),
feb, Nr. Part A, 455–459. http://dx.doi.org/10.1016/j.snb.2014.10.016. – DOI
10.1016/j.snb.2014.10.016. – ISSN 09254005

[BW03] BÂRSAN, N. ; WEIMAR, U.: Understanding the fundamental principles of metal oxide
based gas sensors; the example of CO sensing with SnO2 sensors in the presence of
humidity. In: Journal of Physics Condensed Matter 15 (2003), Nr. 20, R813–R839. http://
dx.doi.org/10.1088/0953-8984/15/20/201. – DOI 10.1088/0953–8984/15/20/201. –
ISBN 0953–8984

[Hue11] HUEBNER, Michael: New Approaches for the Basic Understanding of Semiconducting Metal
Oxide Based Gas Sensors : Sensing , Transduction and Appropriate Modeling. 2011. – 156 S.
– ISBN 978–3–8440–0893–7

59

./3-Resistance-sensor.ipynb
./3-Resistance-sensor.ipynb
http://dx.doi.org/10.1016/j.progsurf.2005.09.002
http://dx.doi.org/10.1016/j.progsurf.2005.09.002
http://dx.doi.org/10.1002/9780470995792
http://dx.doi.org/10.1002/9780470995792
http://dx.doi.org/10.1002/9780470995792
http://dx.doi.org/10.1016/j.snb.2011.05.011
http://dx.doi.org/10.1016/j.snb.2014.10.016
http://dx.doi.org/10.1088/0953-8984/15/20/201
http://dx.doi.org/10.1088/0953-8984/15/20/201

[JOPO15] JONES, Eric ; OLIPHANT, Travis ; PETERSON, Pearu ; OTHERS: SciPy: Open
Source Scientific Tools for Python, 2001 (http://www.scipy.org/). http://www.scipy.org/.
Version: 2015

[OBW09] OPREA, Alexandru ; BÂRSAN, Nicolae ; WEIMAR, Udo: Work function changes in
gas sensitive materials: Fundamentals and applications. In: Sensors and Actuators, B:
Chemical 142 (2009), Nr. 2, 470–493. http://dx.doi.org/10.1016/j.snb.2009.06.043.
– DOI 10.1016/j.snb.2009.06.043. – ISSN 09254005

[Reb16] REBHOLZ, Julia M.: Influence of Conduction Mechanism Changes and Related Effects on the
Sensing Performance of Metal Oxide Based Gas Sensors. Shaker Verlag, 2016. – 127 S. –
ISBN 978–3–8440–4832–2

[RK04] ROTHSCHILD, Avner ; KOMEM, Yigal: The effect of grain size on the sensitivity of
nanocrystalline metal-oxide gas sensors. In: Journal of Applied Physics 95 (2004), Nr. 11
I, S. 6374–6380. http://dx.doi.org/10.1063/1.1728314. – DOI 10.1063/1.1728314. –
ISSN 00218979

[SN07] SZE, S.M. ; NG, Kwok K.: Physics of Semiconductor Devices. 2007. – 293–373 S. http:
//dx.doi.org/10.1049/ep.1970.0039. http://dx.doi.org/10.1049/ep.1970.0039.
– ISBN 0471143235

[VGO+20] VIRTANEN, Pauli ; GOMMERS, Ralf ; OLIPHANT, Travis E. ; HABERLAND, Matt ;
REDDY, Tyler ; COURNAPEAU, David ; BUROVSKI, Evgeni ; PETERSON, Pearu ;
WECKESSER, Warren ; BRIGHT, Jonathan ; WALT, Stéfan J. ; BRETT, Matthew ; WIL-
SON, Joshua ; MILLMAN, K J. ; MAYOROV, Nikolay ; NELSON, Andrew R J. ; JONES,
Eric ; KERN, Robert ; LARSON, Eric ; CAREY, C J. ; POLAT, İlhan ; FENG, Yu ; MOORE,
Eric W. ; VANDERPLAS, Jake ; LAXALDE, Denis ; PERKTOLD, Josef ; CIMRMAN, Robert
; HENRIKSEN, Ian ; QUINTERO, E A. ; HARRIS, Charles R. ; ARCHIBALD, Anne M. ;
RIBEIRO, Antônio H ; PEDREGOSA, Fabian ; MULBREGT, Paul van ; SCIPY 1.0 CON-
TRIBUTORS: SciPy 1.0: fundamental algorithms for scientific computing in Python.
In: Nature methods (2020). http://dx.doi.org/10.1038/s41592-019-0686-2. – DOI
10.1038/s41592–019–0686–2. – ISSN 1548–7105

60

http://www.scipy.org/
http://dx.doi.org/10.1016/j.snb.2009.06.043
http://dx.doi.org/10.1063/1.1728314
http://dx.doi.org/10.1049/ep.1970.0039
http://dx.doi.org/10.1049/ep.1970.0039
http://dx.doi.org/10.1049/ep.1970.0039
http://dx.doi.org/10.1038/s41592-019-0686-2

From SMOx-grains to sensor resistance

Contents

1 Abstract 62

2 Review 62

3 Load the results 62

4 From charge distribution to resistance 66
4.1 The “numerical” grain . 66
4.2 Precalc the numerical grains for all conditions . 71
4.3 Relaxation . 75

4.3.1 Convolution algorithm . 75
4.3.2 Example with ‘convolve2d’ . 77
4.3.3 See how a single solution evolves . 78
4.3.4 Calculate total resistance . 80
4.3.5 Precalcualtion of all conditions . 82
4.3.6 Representing final results . 83

4.4 Summary . 85
4.4.1 Fully depleted small grains: . 85
4.4.2 Large grains: . 85
4.4.3 Flat band situation: . 86

4.5 Conclusion . 86

5 Bibliography section 86

61

1 Abstract

The type of gas sensors under investigation consist of multiple, small semiconducting grains. In
the previous chapter the effect of surface reactions onto the SMOX grain were simulated. The
results show that the charge distribution inside the grain depends on the surface potential, defect
concentration and radius. When such a grain is used as a sensor, a bias voltage is applied and the
resulting electrical current is measured to calculate the total resistance. The applied bias voltage
is selected in way, that it is not interfering with the semiconductor itself. Typically the voltage is
chosen to be below 1 kBT/e per grain.

To numerically derive the total resistance from a specific charge distribution inside the grain, the
actual electrical conduction path through the grain needs to be simulated first. In this part of
the thesis this conduction path will be first numerically simulated and in a second step the total
resistance of the grain will be derived from the simulated conduction path.

2 Review

In the last notebook/chapter the semiconductor part of the SMOX grains was addressed. This
included the numerical calculation of the charge carrier density by solving the Poisson equation
for spherical grains. The results for multiple grains have been saved to a file and can now be used
again without recalculating them. Additionally a Python module called part2.py was created
in which all the functions and variables from the previous notebook are merged together. By
importing this file, all important elements from the previous part will be accessible also in this
notebook. The following command will do the job: from part2 import *

[1]: %pylab inline
from part2 import *

Populating the interactive namespace from numpy and matplotlib

3 Load the results

[9]: calc_dF = pd.read_hdf('results.h5', 'corr')
calc_dF.index = range(len(calc_dF))
calc_dF_all = calc_dF[calc_dF['res']<2]

Again in this notebook the final results from the previous chapter are represented. The redun-
dancy of such a representation (especially in the printed version) may seem overexaggerated. But
when working with the interactive Jupyter notebook this choice seems legitimated, since each
notebook represents a self-contained element of research. It would be optimal if all data and rep-
resentation are available at place. Since the representation of the data as seen in the last chapter is
of essential importance, it should be added here again.

Finding the compromise of this thesis between the printed version and the interactive notebook
generates in this case some “glitches”. With the strong focus to introduce the Jupyter notebook
environment in this thesis the redundant representation of the figures was chosen in this case.

62

[10]: for ND, calc_dF in calc_dF_all.groupby('ND'):
fig, axes= subplots(3,2,figsize = (16,9), sharex=True)

fig.suptitle(f'ND = {ND}'+ r'$\frac{1}{m^3}$', fontsize = 22)

for ax_i, (R, calc_dF_grainsize) in enumerate(calc_dF.groupby('R')):
axe = fig.axes[ax_i]
axe.set_ylim(-20,20)

grain = create_grain_from_data(calc_dF_grainsize)

axe.axhline(-grain.material.J_to_kT(grain.material.Diff_EF_EC),
linestyle='--',color='r', label='Fermi Level')

axe.axvline(grain.R/grain.material.LD,
linewidth=3, color='k', label='Grain surface')

axe.axhspan(-1,+1,color='r', alpha=0.2, label='$0\pm 1 [k_BT]$')

for vinit, ser_temp in calc_dF_grainsize.iterrows():

#discarde bad solutions from the plot
if ser_temp['res']>5:

continue

r = ser_temp['r']
v = ser_temp['v']
vdot = ser_temp['v_dot']

axe.set_title(f'Grain radius = {grain.R*1e9:.2f}nm', fontsize=22)

axe.plot(r,v, '-', label = "")
axe.set_ylabel('$E_C(r)$ [k_BT]', fontsize =22)
axe.set_xlabel(f'Position in grain [L_D = {grain.material.LD*1e9:.

↪→2f}nm]',
fontsize =22)

axe.legend()
axe.grid(b=True)

fig.axes[-1].set_axis_off()
fig.tight_layout()
fig.subplots_adjust(top=.85)
close()

63

display(fig)
for i in range(5):print()

64

65

These graphs show how a surface potential is shielded by the remaining ionized donors. In the
case of on deletion layer (ECSur f ace > 0)), the total number of charges shielding the surface potential
is rather small compared to the amount of charges in an accumulation layer (ECSur f ace < 0)). The
result of such an asymmetry is visible in the graph. The width of the accumulation layer is by far
smaller then the width of the depleted are.

4 From charge distribution to resistance

4.1 The “numerical” grain

With the previous calculations the position of the conduction band inside the grain, resulting from
a specific band bending, is known. The previously defined Material class allows to calculate the
exact number of free charges in the conduction band. Using these information it is now possible
to assign to each position inside the grain a certain charge density n. From the charge density the
conductivity can be derived. The conductivity of a semiconductor is defined by:

Conductivity = σ = q ∗
(
n ∗ µn + p ∗ µp

)
(1)

Here q is the electrical charge of an electron, n the density of electrons, p the density of holes
and µn the mobility of the electrons. Focusing on the description of SnO2, which is an n-type
semiconductor with n >> p, the conductivity can be simplified to the following equation:

Conductivity = σ = q ∗ n ∗ µn (2)

66

The relation between resistivity ρ and the conductivity is given by:

Resistivity = ρ =
1
σ

(3)

To derive from the known conductivity inside the grain the total resistance of the grain, the cur-
rent path needs to be known. The current flow along the field lines inside the grain, which are
equivalent to the gradient of the potential. Therefore the potential distribution inside the grain
needs to be known first. To do this, the grain is represented by a numerical model. This model is
created by slicing it into equal distributed cubes of the same size. Each cube will have a defined
conductivity and potential. With this model a solid grain is approximated as a network for con-
nected small resistors. For each cube i with the dimension lxlxl, the resistance Ri of the cube can
be calculated as follows:

R =
ρ ∗ l

A
=

ρ ∗ l
l ∗ l

=
ρ

l
(4)

(5)

A is the area of one side of the cube.

The colored areas in the picture indicate the areas, where a bias potential will be applied to gener-
ate a virtual electrical field.

To simulate how the electrical field causes by the bias voltage propagates inside the grain, a tech-
nique called relaxation will be used. The general idea is to guess an initial potential distribution,
and then, based on the laws of physics, iteratively correct this guess. The correction is done by
re-calculating each time the potential U0 of one center-cube based on the potentials Ui and con-
ductivity σ of the direct neighbors.

67

By doing this for each “cube”, the potential distribution will more and more converge to the phys-
ical solution. When approaching to the solution, the overall changes in the potential of each cube
will get smaller and smaller. In an ideal case it will not change anymore. In this case the potential
of each cube will be just as it should be to fulfill the laws of physics.

This relaxation process can be supported by the means of modern matrix operations. For this I
will shorty derive how U0 is calculated from the surrounding Ui and then describe how a “matrix
convolution” will be used to solve the problem efficiently.

First we will need to combine Ohm’s law and Kirchhoff’s first law:

R =
∆U

I
(Ohm’s law)

∑
i

Ii = 0 (Kirchhoff’s first law)

→∑
i

Ii = ∑
i

∆Ui

Ri
= ∑

i

U0 −Ui

ρi

A
l
= 0 (6)

→∑
i

U0 −Ui

ρi

A
l
= 0 (7)

→∑
i

U0

ρi
= ∑

i

Ui

ρi
(8)

→ U0 ∑
i

1
ρi

= ∑
i

Ui

ρi
(9)

→ U0 =
∑i

Ui
ρi

∑i
1
ρi

(10)

→ U0 =
∑i Ui ∗ σi

∑i σi
=

∑i Ui ∗ q ∗ ni ∗ µn

∑i q ∗ ni ∗ µn
(11)

=
q ∗ µn

q ∗ µn

∑i Ui ∗ ni

∑i ni
=

∑i Ui ∗ ni

∑i ni
(U0 from Ui)

(12)

The cube’s face area A and l cube’s length vanish from the equation since all cubes have equal
sizes. Additionally µn is assumed to be constant inside the grain. This simplification is not neces-
sary for the further calculation and could also be treated as a position dependent variable like σi.
In the course of this thesis µn will be kept constant.

To calculate the value of each ni at arbitrary points r inside the grain, one additional step is re-
quired. Due to the nature of the numerical solution from the previous notebook we know the
value of n only at specific points. To gain the value between those fix-points, an interpolation
between the neighbors can be used. Again, SciPy and Python offer here also a easy to use and
robust solution. from scipy import interpolate adds the interpolate module into the kernel.
The interp1d function of this module is described (here) like this:

Interpolate a 1-D function.

x and y are arrays of values used to approximate some function f: y = f(x). This class
returns a function whose call method uses interpolation to find the value of new points.

68

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html

Since the values of n and r exist already precalculated for specific points in the Dataframe, the
following function is used to create the appropriate function for continuous values of r.

[11]: from scipy import interpolate

def get_interpolated_n_v(ser,grain):

v = ser['v']
r = ser['r']
n = ser['n']

r[0] = 0

n_int = interpolate.interp1d(r*grain.material.LD, n, kind='cubic')
v_int = interpolate.interp1d(r*grain.material.LD, v, kind='cubic')

return n_int, v_int

As mentioned earlier, the positions of the applied virtual bias potential will only be the cubes on
the far left and right, as indicated in the picture of the sliced cube. By arranging the bias voltage
like this, the potential inside the grain will have a rotational symmetry along the axis connecting
the two poles. The benefit of the resulting symmetry is that the potential inside the grain can be
described by a N × N matrix, where N are the number of cubes inside the grain. Since N × N
data structures are very common in modern application fields like computer vision and image
recognition, many algorithm dealing with such data structures are available and optimized. In
this notebook we will not reach out for potentially even faster state-of-the-art implementations
like PyTorch or Tensorflow to deal with this matrix/tensor, but rather stick to the well established
tool of SciPy. A nice review on about what SciPy is can be found here: [VGO+20] (SciPy 1.0:
fundamental algorithms for scientific computing in Python). On advantage of using “just” SciPy
is, that it is easily available on most operation system and second the performance is good enough
for this use case.

First the data structure of the grain for further simulations is implemented. The N × N cubes will
be represented by a numpy array.

[12]: def initaliz_d_v(d_v, d_mask, v):
d_v[:,1] = -v
d_v[:,0] = -v
d_v[:,-2] = +v
d_v[:,-1] = +v
d_v = d_v*d_mask
return d_v

def pos_to_r(xi,yi,grain, cube_size, d):
'''
By passing the xi and yi indices, the grain and one array, the position (r)
inside the grain is return

69

https://www.nature.com/articles/s41592-019-0686-2.pdf
https://www.nature.com/articles/s41592-019-0686-2.pdf

'''

#find the center:
#length divided by two without rest; +1;
#-1 since we start counting at 0

cx = d.shape[0]//2+1-1
cy = d.shape[1]//2+1-1

ri = (((xi-cx))**2+((yi-cy))**2)**0.5

r = (ri*cube_size)
return r

def r_to_pos(r, grain, cube_size, d_v):
center = d_v.shape[0]//2
return int(round(r/cube_size))+center

def create_numerical_grain_matrix(grain, ser,cube_size):
#these functions are needed to calculate the value of n and
#v at arbitrary positions
n_int, v_int = get_interpolated_n_v(ser, grain)

#calc. number of cubes inside the grain
having a uneven number ensures having a defined center layer
nx = ny = 1+2*int(round((grain.R/cube_size)))

#initalize the data with zeros

#data for voltages =d_v
#data for the conductivity = d_cond
d_v = np.zeros((nx,ny))
d_cond = np.zeros((nx,ny))

#and additionally a mask
#for values outside the grain
d_mask = np.zeros((nx,ny))

now the data arrays will be filled with values
for xi in range(d_cond.shape[0]):

for yi in range(d_cond.shape[1]):

#calcualte the position iside the grain
#from the cubes position
r = float(pos_to_r(xi,yi,grain, cube_size, d_v))

70

try:
#if r is outside the grain, n_int(r) raise an error
#and the function jumps to the "except" part

#otherwise the conductivity will be saved in units of nb
#inside the d_cond array

condu = n_int(r)/grain.material.nb
d_cond[xi, yi] = condu

#since this point is inside the grain, the mask is 1
d_mask[xi,yi] = 1

except ValueError:
#outside the grain
d_cond[xi, yi] = 0
d_mask[xi,yi] = 0

d_v = initaliz_d_v(d_v, d_mask, 1000)
return d_v, d_cond, d_mask

4.2 Precalc the numerical grains for all conditions

The grain data structure can now a represented graphically. For a faster response of the interactive
elements, we will pre initialize all the grains for all available data. Due to the similarity of the
N× N data structure to common pixel based pictures, Matplotlib’s function imshow is very handy
to represent such data.

[13]: d_cond_plots = []
for i, ser in calc_dF_all.iterrows():

print(f'Initalized {i+1} of {len(calc_dF_all)}.', end='\r', flush=True)
grain = create_grain_from_data(ser)
d_v, d_cond,d_mask = create_numerical_grain_matrix(grain,␣

↪→ser,cube_size=grain.R/50)
d_cond_plot = d_cond.copy()
d_cond_plot[np.where(d_mask==0)]=None
d_cond_plots.append(d_cond_plot)

calc_dF_all.loc[:, 'd_cond'] = d_cond_plots

Initalized 820 of 803.

To visualize the grain, the conductivity is represented for different initial surface potentials ex-
pressed in units of kBT

e

[14]: def plot_grain_states(calc_dF_grainsize, vmax=None, vmin=None):
fig, axes = subplots(3,3, figsize = (16,10))

grain = create_grain_from_data(calc_dF_grainsize)

71

for axe in fig.axes:axe.set_visible(False)

plot_E_init_kT = [-20,-10,-5,-1,0,1,5,10,20]
plot_dF = calc_dF_grainsize.loc[calc_dF_grainsize['Einit_kT'].

↪→isin(plot_E_init_kT)].sort_values(by='Einit_kT')
for ax_i, (vinit, ser) in enumerate(plot_dF.iterrows()):

axe = fig.axes[ax_i]
axe.set_visible(True)
axe.set_facecolor('grey')

Einit_kT = ser['Einit_kT']

axe.set_title(r'$E_{C_{Surface}}=$'+f'{Einit_kT}[k_BT]')
axe.set_ylabel('x [nm]')
axe.set_xlabel('y [nm]')

d_cond_plot =ser['d_cond']# calc_dF.loc[ser.name, 'd_cond']

#using axe.imshow to plot the data on the axe
axe.grid(b=True, zorder=-5)
im = axe.imshow(vmax-np.log(d_cond_plot)+vmin, interpolation='bicubic',

extent=(-grain.R*1e9, grain.R*1e9, -grain.R*1e9, grain.
↪→R*1e9),

vmax=vmax*2, vmin=vmin, cmap='hot', zorder=2)

fig.tight_layout()
fig.subplots_adjust(top=0.9)
ND = calc_dF_grainsize['ND'].unique()[0]
fig.suptitle(f'ND: {ND}', fontsize=22)

def plot_conductivity(GrainRadius, ND=1e21):
R = GrainRadius/1e9
calc_dF_grainsize = calc_dF_all.groupby(['ND','R']).get_group((ND,R))
max_n = np.log(calc_dF_grainsize['d_cond'].apply(lambda c:np.nanmax(c))).

↪→max()
min_n = np.log(calc_dF_grainsize['d_cond'].apply(lambda c:np.nanmin(c))).

↪→min()
plot_conduction_band(calc_dF_grainsize)

plot_grain_states(calc_dF_grainsize, vmax = max_n, vmin = min_n)

def plot_conduction_band(calc_dF_grainsize):
fig, axe = subplots(figsize = (16,10))

72

grain = create_grain_from_data(calc_dF_grainsize)

axe.axhline(-grain.material.J_to_kT(grain.material.Diff_EF_EC),
linestyle='--',color='r', label='Fermi Level')

axe.axvline(grain.R/grain.material.LD,
linewidth=3, color='k', label='Grain surface')

axe.grid()

axe.axhspan(-1,+1,color='r', alpha=0.2, label='$0\pm 1 [k_BT]$')

for vinit, ser_temp in calc_dF_grainsize.iterrows():

#discarde bad solutions from the plot
if ser_temp['res']>5:

continue

r = ser_temp['r']
v = ser_temp['v']
vdot = ser_temp['v_dot']

axe.set_title(f'Grain radius = {grain.R*1e9:.2f}nm', fontsize=22)

axe.plot(r,v, '-', label = "")
axe.set_ylabel('$E_C(r)$ [k_BT]', fontsize =22)
axe.set_xlabel(f'Position in grain [L_D = {grain.material.LD*1e9:.

↪→2f}nm]',
fontsize =22)

axe.legend()

use_interactive_controls = False

if use_interactive_controls:
from ipywidgets import interact, interactive, fixed, interact_manual
import ipywidgets as widgets
grainsizes = list(calc_dF_all['R'].unique())
interact(plot_conductivity,

GrainRadius=np.array(grainsizes)*1e9,
ND=list(calc_dF_all.groupby(['ND']).groups.keys()),
text='Select a grainsize:');

else:
GrainRadius = 50
ND = 1e24
plot_conductivity(GrainRadius, ND)

73

74

The top figure shows, how the position of the conduction band propagates inside the grain starting
for surface energies from 20 kBT to -20 kBT. The lower figure is the representation of n∗(r) = n(r)

nb
inside the grain. For a surface potential of 20 kBT/e a large depleted surface layer is visible.

4.3 Relaxation

4.3.1 Convolution algorithm

Equation (U0 from Ui) is the basis of the relaxation process. The potential at each cube will be
recalculated according to: U0 = ∑i Ui∗ni

∑i ni
. The indices i stand for the direct neighbors of U0. The

following simple example should explain how convolve2d can be used to solve our task efficiently.
The function needs two parameters as inputs. The first is the matrix itself, while the second is the
description of the convolution operation. In a very short description, this is what the algorithm
will do:

1. goto one datapoint ix,y
2. multiply the neighbors of ix,y with the corresponding value of the second argument
3. sum up the results and save it a the position of the datapoint ix,y
4. do this for all data points

It would be out of the scope to dig deeper into the details of convolutions, but the following
example should reveal the main concept it.

75

[15]: from scipy import signal

the potential of the cubes at a certain point
#with its direct neighbors
U = np.array([[1,2,3],

[1,2,3],
[1,2,3]])

print('U:')
print(U)
print()

#the conductivity of each cube
c = np.array([[1,1,1],

[10,10,10],
[100,100,100]])

print('c:')
print(c)
print()

#calculating the product of U and c
print('U*c')
print(U*c)
print()

#the convolution matrix
conv = np.array([[0,1,0],

[1,0,1],
[0,1,0]])

print('Conv')
print(conv)
print()

#calculating the convolution
signal.convolve2d(U*c, conv, boundary='fill', mode='same', fillvalue=0)

U:
[[1 2 3]
[1 2 3]
[1 2 3]]

c:
[[1 1 1]
[10 10 10]
[100 100 100]]

U*c
[[1 2 3]

76

[10 20 30]
[100 200 300]]

Conv
[[0 1 0]
[1 0 1]
[0 1 0]]

[15]: array([[12, 24, 32],
[121, 242, 323],
[210, 420, 230]])

4.3.2 Example with ‘convolve2d’

This example shows, how convolve2d is helpful for solving the relaxation problem. For instance
the sum of the direct neighbors of the center is: 10 + 2 + 30 + 200 = 242, This is exactly the
value returned by convolve2d. The process of calculating the convoluted matrix is done for the
nominator and the denominator of equation (U0 from Ui). After the division U0 is obtained. Some
additional steps as masking the potentials outside the grain and setting the bias again are added.
If the potential does not change anymore, the iterations can be stopped.

[16]: from scipy import signal

def solve_relaxation(d_v, d_cond, d_mask, n = 10000000):
res_new = 1000
#shortly disable the error when dividing by zero (denominator)
old_settings = np.seterr()
np.seterr(divide='ignore', invalid='ignore')
conv = [[0,1,0],[1,0,1],[0,1,0]]
denominator = signal.convolve2d(d_cond, conv, boundary='fill',

mode='same', fillvalue=0)
for i in range(n):

numerator = signal.convolve2d(d_v*d_cond, conv, boundary='fill',
mode='same', fillvalue=0)

d_v_new = (numerator/denominator)*d_mask
d_v_new = np.nan_to_num(d_v_new,0)

d_v_prev = d_v.copy()

d_v = d_v_new.copy()

77

d_v = initaliz_d_v(d_v, d_mask, 1000)

res_pre = res_new
res_new = np.abs(np.sum(d_v_prev-d_v))

if i%10000==1:
#print(res_pre,res_new)
if ((res_pre - res_new)==0) and (i>40000):

break
#setting back the defaults
np.seterr(**old_settings)
return d_v, d_cond, d_mask

4.3.3 See how a single solution evolves

[17]: import matplotlib.animation as animation

c_dF = calc_dF_all.copy()

ser =c_dF[(c_dF['R']==100e-9) & (c_dF['Einit_kT']==-8) & (c_dF['ND']==1e22)].
↪→iloc[0]

vinit = ser.name
cube_size = grain.R/50
ser['cube_size'] = cube_size
grain = create_grain_from_data(ser)

cube_size_value = cube_size

d_v, d_cond, d_mask = create_numerical_grain_matrix(grain,␣
↪→ser,cube_size=cube_size_value)

ns = 1
def update(frame):

axe.clear()
axe_v.clear()
n = 5
n = conv_runs[frame]
global d_v
global ns
ns+=n
axe.set_title(f'Number relaxation interations: {ns}')
axe_v.set_title('Potential inside from middle-left to middle-right')

d_v, _, _ = solve_relaxation(d_v = d_v , d_cond=d_cond, d_mask=d_mask, n=n)
d_v_plot = d_v.copy()

78

d_v_plot[np.where(d_mask==0)]=None

img = axe.imshow(d_v_plot,interpolation='bicubic',)

axe_v.plot(d_v[r_to_pos(0,grain, cube_size, d_v),1:-1])

#plot_grad(axe_g, axe_c, d_v=d_v, d_mask=d_mask)

return img

fig, axes = subplots(1,2, figsize = (16,9))
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation

axe = axes[0]

img = axe.imshow(d_v)
cb = colorbar(img, ax = axe)
cb.ax.set_ylabel('Volage [a.u.]')

axe_v = axes[1]

max_frames = 100
conv_runs = list(np.round(np.logspace(0,4,max_frames),0).astype(int)*5)
ani = FuncAnimation(fig, update, frames = list(range(max_frames)),␣

↪→interval=10,blit=False, repeat = False)

Set up formatting for the movie files
Writer = animation.writers['ffmpeg']
writer = Writer(fps=10, metadata=dict(artist='Me'), bitrate=1800)
ani.save('im_presentation.mp4', writer=writer)

plt.show()

79

The video can then be loaded again and played back in the notebook. For the PDF-Version this is
a link to a online hosted version of the video. Video on GitHub

[19]: from IPython.display import Video
display(Video('./im_presentation.mp4'))

<IPython.core.display.Video object>

4.3.4 Calculate total resistance

Once the potentials inside the grain is solved with the relaxation algorithm, it is time to calculate
the total resistance of the grain. Since the relaxation was solved by applying a “virtual” potential
difference (∆Φ) to the grain, the total resistance RTotal could be calculated by Ohm’s low: RTotal =

∆Φ
Current , where ∆Φ = VTotal is the potential difference.

Therefore only the current trough the grain needs to be calculated. This can be done by calculating
the total current passing the slice in the center of the grain. The index of the center slice is c.
And the potential at one cube at position ri of the center slice is Uci . Therefore the the potential
difference ∆Uci across the center cube is given by:

∆Uci = U(c−1)i
−U(c−1)i

(13)

The current traversing the center slice at position ri is therefore:

80

https://github.com/NilsNoreyson/thesis/raw/master/im.mp4

Ici =
∆Uci

Rci

=
U(c−1)i

−U(c−1)i

d
q∗µn∗nci∗A

=
U(c−1)i

−U(c−1)i

d
q∗µn∗nci∗d∗d

(14)

= (U(c−1)i
−U(c−1)i

) ∗ nci ∗ q ∗ µn ∗ d (15)

In this equation q ∗ µn ∗ d is constant for the full grain and will be named k in the following cal-
culations. Since the actual grain has a rotational symmetry and this model just represents the two
dimensional slice, the current Ici needs to be multiplied by 2 ∗Π ∗ ri to take the volume contribu-
tion of grain into account. The total current ITotal can therefore be calculated by:

ITotal = ∑ Ici ∗ 2 ∗Π ∗ ri = ∑(U(c−1)i
−U(c−1)i

) ∗ nci ∗ 2 ∗Π ∗ ri ∗ k (16)

The total resistance RTotal of the grain is then defined by:

RTotal =
VTotal

ITotal
=

VTotal

∑(U(c−1)i
−U(c−1)i

) ∗ nci ∗ 2 ∗Π ∗ ri ∗ k
(17)

In the field of gas sensor research the absolute value of the resistance is not necessarily the best
figure to analyze the performance. Often the ratio of the resistances offers more insights. In this
case also the total resistance RTotal is not as interesting as the resistance change from a reference
condition. As reference condition the resistance at the flatband situation RTotal0 is selected. This
reference situation is typically reached under the expose of pure nitrogen. In the presence of ni-
trogen, no reactive species is interacting with the surface and the number of trapped charges a the
surface can be considered equal to 0, hence no band bending is present. In contrast to the resis-
tance at the flatband situation, the resistance for a specific band bending VS will be named RTotalVS

.
When calculating the ratio of both, the previously introduced constant k has no importance any-
more. The only value which needs to be derived from the model is then:

I∗TotalVS
= ∑(U(c−1)i

−U(c−1)i
) ∗ nci ∗ 2 ∗Π ∗ ri (18)

Once I∗TotalVS
is calculated for all surface potentials VS, the ratio of those values with I∗Total0 will

reveal how a specific grain changes its resistance under different conditions. The relative change
in resistance can simply be calculated be dividing each I∗TotalVS

by its corresponding value I∗Total0 in
the flat band situation. As final result of this calculation the relative change in resistance ∆RVS =
RVS
R0

=
ITotal0

ITotalVS

=
I∗Total0

I∗TotalVS

of a grain in rapport to the flat band situation will be gained.

[20]: def calc_current_center(d_v, d_cond, d_mask, cube_size, grain):

center_pos = r_to_pos(0, grain, cube_size, d_v)
center_current = (d_v[:,center_pos+1]-d_v[:,center_pos-1])*d_cond[:

↪→,center_pos]

81

r = np.array([float(pos_to_r(xi,center_pos,grain, cube_size, d_v)) for xi in␣
↪→range(len(center_current))])

center_current_tot = np.sum(center_current*2*pi*r)
return center_current_tot, center_current, r

4.3.5 Precalcualtion of all conditions

With all functions available the calculation of all conditions in the DataFrame can take place.
Again, as demonstrated in the previous chapter, this task will be parallelized.

[21]: def calc_conv_by_ser(ser):

vinit = ser.name
grain = create_grain_from_data(ser)
cube_size_value = ser['cube_size']

d_v, d_cond, d_mask = create_numerical_grain_matrix(grain,␣
↪→ser,cube_size=cube_size_value)

d_v = initaliz_d_v(d_v, d_mask, 1000)
d_v, d_cond, d_mask = solve_relaxation(d_v, d_cond, d_mask, n = 10000000)

center_current_tot, center_current, r = calc_current_center(d_v, d_cond,␣
↪→d_mask, cube_size_value, grain)

ser_out = ser.copy()

ser_out.loc['current'] = center_current_tot
ser_out['d_v'] = d_v
ser_out['d_mask'] = d_mask
ser_out['cube_size_value']=cube_size_value
return ser_out

[23]: start_t = time.time()
from multiprocessing import Pool

cubesize defined by radius
calc_dF_all['cube_size'] = calc_dF_all['R']/50

ser_list = []
for i, ser in calc_dF_all.iterrows():

ser_list.append(ser)
with Pool(12) as p:

all_res_list = p.map(calc_conv_by_ser, ser_list)
calc_dF_sol = pd.DataFrame(all_res_list)

duration = time.time()-start_t

82

print(f'Duration of the calculation: {duration/60:.2f} min.')

Duration of the calculation: 76.07 min.

The previously described calculation of ∆RVS from I∗TotalVS
is implemented in the the next cell in

Python.

[29]: def get_flatband_current(dF):
flatband_current = dF[dF['Einit_kT']==0].iloc[0]['current']
return flatband_current

def calc_res_change(dF):
flatband_current = get_flatband_current(dF)
rel_res = flatband_current/dF['current']
dF['rel_res_change'] = rel_res
return dF

calc_dF_sol_with_rel_res_change = calc_dF_sol.groupby(['R', 'temp','ND']).
↪→apply(calc_res_change)

Again, those results are saved in a local file and re-imported as a sanity check.

[30]: calc_dF_sol_with_rel_res_change.to_hdf('numerical_sol.h5','raw')

/usr/lib/python3.8/site-packages/pandas/core/generic.py:2431:
PerformanceWarning:
your performance may suffer as PyTables will pickle object types that it cannot
map directly to c-types [inferred_type->mixed,key->block1_values]
[items->Index(['n', 'r', 'v', 'v_dot', 'd_cond', 'd_v', 'd_mask'],
dtype='object')]

pytables.to_hdf(

[31]: calc_dF_sol = pd.read_hdf('numerical_sol.h5','raw')

4.3.6 Representing final results

[37]: fig, axes = subplots(len(calc_dF_sol['ND'].unique())//2,2,figsize = (16,9),␣
↪→sharey=True, sharex=True)

for ax_i,(ND,calc_dF_n) in enumerate(calc_dF_sol.groupby('ND')):

axe = fig.axes[ax_i]
axe.set_title(f'N_D='+f'{ND}')

axe.set_xlim(1000,-1000)

#axe_up = axe.twiny()

83

for R,calc_dF_grainsize in calc_dF_n.groupby('R'):

grain = create_grain_from_data(calc_dF_grainsize.iloc[0])

#s = calc_dF_grainsize['d_v'].iloc[0].shape[0]

flat_band = calc_dF_grainsize[calc_dF_grainsize['Einit_kT']==0].
↪→iloc[0]['rel_res_change']

res = calc_dF_grainsize['rel_res_change']

v = calc_dF_grainsize['Einit_kT']
rel_size = grain.R/grain.material.LD

axe.plot(v*CONST.J_to_eV(grain.material.kT)*1000, res, 'o-', label =␣
↪→f'GrainRadius = {R*1e9:.2f}nm\equiv{rel_size:.2f}LD', linewidth=5)

#have a additional graph in units of meV on the x axis

#axe_up.plot(-v*CONST.J_to_eV(grain.material.kT)*1000, res,alpha=0)

axe.set_yscale('log')
axe.set_ylabel(r'$\frac{R}{R_{Flatband}}$', fontsize =22)
axe.set_xlabel('$E_{C_{Surface}}$ [meV]', fontsize =22)
axe.tick_params(axis='both', which='major', labelsize=15)
axe.grid(b=True)

#draw the Fermi-Level
axe.axvline(-grain.material.J_to_kT(grain.material.Diff_EF_EC)*CONST.

↪→J_to_eV(grain.material.kT)*1000, label='Fermi-Level')
axe.axvline(0, color = 'r', linewidth=5, alpha=0.3, label='Flat band')

#if ax_i in [0,1]:
axe_up.set_xlabel('$E_C(r)$ [meV]', fontsize =20)
axe_up.tick_params(axis='both', which='major', labelsize=15)
#else:
axe_up.tick_params(axis='both', which='major', labelsize=0)
pass

fig.tight_layout()
axe.legend()

84

4.4 Summary

Before using the new dataset to interpret experimental results, some interesting features can al-
ready be seen in the last figure.

4.4.1 Fully depleted small grains:

For those grains the position of the conduction band at the surface ECSur f ace is far away from the
position of the Fermi energy EFermi and the grain radius Rad is small compared to the Debye
length (Rad < 5 ∗ LD). In this case the resistance changes, due to the depletion layer controlled
conduction, similar for all grains. This can be explained by the fact, that these grains are fully
depleted. Without a separated depletion layer, possible volume effects of the different grain sizes
do not exist. For those small grains, the effect of the different grain size has an impact on the
sensing properties only when the conduction band at the surface approaches the Fermi level. As
seen in the last notebook, the dimensions of the accumulation layer are much smaller compared
to the depletion layer. Therefore the grains are never getting “fully accumulated” and the grain
size has again an influence on the transduction mechanism.

4.4.2 Large grains:

For large grains (Rad > 5 ∗ LD), which are not fully depleted, two effects may overlay each other.
First, the effect of a high resistive surface layer increases the resistance and second, the low resis-
tive bulk volume shrinks. Those two effects add up and increase in some cases the slope of the
resistance change more than for fully depleted grains. The small grains, which are fully depleted,
do not show this effect. Once the larger grains get full depleted, the volume effect of the surface
layer is not present anymore and the change in resistance is comparable to one of smaller grains.

85

4.4.3 Flat band situation:

Additionally it can be noticed, that the flat band situation may not be the situation, where the
conduction mechanism changes. Rather the proximity to the Fermi level is responsible for altering
the conduction mechanism.

4.5 Conclusion

Experimental data from simultaneous work function and resistance measurements can be fitted
to this dataset. Since the detection of the grain size is rather simple, the fitting of the data corre-
sponding to this grain size will reveal “hidden” properties as the Debye length or doping level
ND. As an additional input for a deeper understanding of the surface reactions, the number of
involved trapped charges at the surface can be extracted from the numerical model. Non-PDF
readers, could use this link to guide them to the next notebook.

5 Bibliography section

References

[VGO+20] VIRTANEN, Pauli ; GOMMERS, Ralf ; OLIPHANT, Travis E. ; HABERLAND, Matt ;
REDDY, Tyler ; COURNAPEAU, David ; BUROVSKI, Evgeni ; PETERSON, Pearu ;
WECKESSER, Warren ; BRIGHT, Jonathan ; WALT, Stéfan J. ; BRETT, Matthew ; WIL-
SON, Joshua ; MILLMAN, K J. ; MAYOROV, Nikolay ; NELSON, Andrew R J. ; JONES,
Eric ; KERN, Robert ; LARSON, Eric ; CAREY, C J. ; POLAT, İlhan ; FENG, Yu ; MOORE,
Eric W. ; VANDERPLAS, Jake ; LAXALDE, Denis ; PERKTOLD, Josef ; CIMRMAN, Robert
; HENRIKSEN, Ian ; QUINTERO, E A. ; HARRIS, Charles R. ; ARCHIBALD, Anne M. ;
RIBEIRO, Antônio H ; PEDREGOSA, Fabian ; MULBREGT, Paul van ; SCIPY 1.0 CON-
TRIBUTORS: SciPy 1.0: fundamental algorithms for scientific computing in Python.
In: Nature methods (2020). http://dx.doi.org/10.1038/s41592-019-0686-2. – DOI
10.1038/s41592–019–0686–2. – ISSN 1548–7105

86

./4-Exp-data.ipynb
./4-Exp-data.ipynb
http://dx.doi.org/10.1038/s41592-019-0686-2

Comparing numerical results with experimental data

Contents

1 Abstract 87

2 Fitting experimental data to numerical results 88
2.1 Importing experimental and numerical data . 88
2.2 Representing the raw data . 89
2.3 From RVS to ∆RVS . 90
2.4 Interpolating the numerical values . 91
2.5 Calculating the fit error . 92
2.6 Representation of the fit . 93
2.7 Summary . 95

3 Second iteration 95

4 Results for a commercial available SnO2 98

5 Conclusion 99

6 Bibliography section 99

1 Abstract

Experimental data from simultaneous work function and resistance measurements will be com-
pared with the results from the numerical calculations. Results from an SnO2 gas sensor measured
at 300°C will be used to demonstrate, how numerical data can be used to gain more insights about
the measured material. The dataset of the graphical representation below originates from the Phd.
thesis of Julia Rebholz: [Reb16].

The data was generated by exposing the sensor to various gas compositions of H2, CO, O2 and N2.
The surface potential changes ∆V resulting from the different gas atmosphere have been obtained
with the Kelvin probe technique. Simultaneously the corresponding resistance was measured.
The data point point at 0e∆V corresponds to the situation in nitrogen.

These experimental data points will be compared with the results obtained from the numerical
simulation.

87

This figure shows the dependency of the resistance on the band bending changes for the
undoped SnO2 nanopower based gas sensor. e∆ = 0 is denoted as the situation in N2

2 Fitting experimental data to numerical results

2.1 Importing experimental and numerical data

The experimental data is saved in an excel file, which will be loaded by using the tools provided
by pandas.

[1]: #Setting up the env.
from part2 import *
import pandas as pd
from IPython.display import display, Math, Latex
%pylab inline

#importing the data
calc_dF = pd.read_hdf('numerical_sol.h5','raw')
dF_1000 = pd.read_excel('Kelvin_Data.xlsx', sheet_name='ipc1000').

↪→sort_values(by='dV')

#instead of unsing the row number
#each row has the value of dV as index
dF_1000.index = dF_1000['dV']

88

Populating the interactive namespace from numpy and matplotlib

2.2 Representing the raw data

[2]: def format_axe(axe, ylabel = None, set_ylim=False):
labelsize = 30
if set_ylim:

axe.set_ylim((1e-4,1e3))
axe.set_yscale('log')
axe.set_xlim((0.2,-1.2))
if ylabel:

axe.set_ylabel(ylabel, fontsize = labelsize)
else:

axe.set_ylabel(r'$\frac{R_{V_S}}{R_{(V_S=0)}}$', fontsize = labelsize)
axe.set_xlabel('$e\Delta V$ $[eV]$', fontsize = labelsize)
axe.tick_params(axis='both', which='both', labelsize=labelsize)
axe.grid()

fig, axe = subplots(figsize=(16,10))

sens, dF = 'IPC 1000',dF_1000

v_exp = dF['dV']

res_exp = dF['res']
axe.set_title(sens, fontsize = 30)
axe.scatter(v_exp,res_exp, s=100)
format_axe(axe,ylabel='$Resistance$ [Ω]')
axe.set_ylim(res_exp.min()/2,res_exp.max()*2);
axe.set_ylim(10,10e9);

89

This figure represents the experimental data as show before, but plotted using the Python
environment. The dependency of the resistance on the band bending changes is shown for the

undoped SnO2 nanopower based gas sensor. q∆V = 0 is denoted as the situation in N2.

2.3 From RVS to ∆RVS

In the experimental dataset the value at 0qVs represent the data points measured under nitrogen.
Therefore ∆RVS =

RVS
R0

is calculated by :

• First: derive the resistance R0 under nitrogen
• Second: divide all resistance values RVS by R0

[3]: from scipy.optimize import curve_fit
from scipy.interpolate import interp1d

fig, axe = subplots(1, figsize=(16,10))

#get the value of the flatband (if needed)
#by interpolation
interp_res = interp1d(v_exp,res_exp)
res_flatband = interp_res(0)

#calcualte the rel. res change
rel_res_exp = dF['res']/res_flatband

90

#represent it
format_axe(axe)
axe.scatter(dF['dV'],rel_res_exp, s=100)
axe.set_ylim(rel_res_exp.min()/2,

rel_res_exp.max()*2);
axe.set_title(sens, fontsize = 30)

[3]: Text(0.5, 1.0, 'IPC 1000')

The resistances have been normalized to the resistance at q∆ = 0

2.4 Interpolating the numerical values

In the previous section, the numerical solution for multiple start parameters have been calculated.
Nevertheless most probably the calculated dataset will not hold exactly the same values of qVs as
gathered from the experiment. To obtain the numerical value for a specific experimental value of
qVs a interpolation between of the existing numerical values will be used again. For all different
numerical grains ∆RVS will be calculated for all values of qVs from the experimental data. Once
this is done, the different between the numerical model and the exp. data can be calculated and
evaluated.

[4]: #The dataframe to hold the different
#of the exp. values to the numerical ones
#Will be used to find the best fitting num. solution

91

num_data_at_exp_pos_dF = pd.DataFrame(index = v_exp)

#group the num. data by its paramters (T, R and ND)
data_by_grain = calc_dF.groupby(['temp','R','ND'])

for (T, R,ND), calc_dF_grain in data_by_grain:

#num_data_at_exp_pos_dF[:,(T, R,ND)] = None

grain = create_grain_from_data(calc_dF_grain)

flat_band_data = calc_dF_grain[calc_dF_grain['Einit_kT']==0].iloc[0]

rel_res_num = calc_dF_grain['rel_res_change']

#express the surace potential in eV
#to be comparable with the exp. data
v_num = calc_dF_grain['Einit_kT']*CONST.J_to_eV(grain.material.kT)

#use interpolation to get the values for the positions
#of the experiment data points
interp_rs_num = interp1d(v_num, rel_res_num,bounds_error=False)
interp_v_num = interp1d(rel_res_num,v_num, bounds_error=False)

#caculate the numerical value of rel. res at the position
of V from the experiment
res_num_at_exp_pos = interp_rs_num(v_exp)

#save those values in the new DataFrame
num_data_at_exp_pos_dF[(T, R,ND)] = res_num_at_exp_pos

2.5 Calculating the fit error

num_data_at_exp_pos_dF contains now the values of ∆RVS at the positions qVS. From these values
the relative error needs to be calculated. The following formula is used to derive the error:

εVS =

(
Rnumerical(qVs)− Rexperiment(qVs)

Rexperiment(qVs)

)2

(1)

The sum of all εVS is the total error of the fit. The numerical model with the lowest value of
∑ εVS is the model which fits best to the experimental data. The average grain diameter of the
material “IPC1000” is known to be in average radius of 55nm (diameter of 110nm) [DRRM+99].
The dataset we created in the previous section includes models for grains with radii of 50nm and
100nm. Therefore we can narrow the fit algorithm down, to take only models with a radius of
50nm and 100nm into account

92

[5]: abs_error = num_data_at_exp_pos_dF.subtract(rel_res_exp, axis='index')
rel_error = abs_error.divide(rel_res_exp, axis='index')
rel_error_square = rel_error**2
sum_of_squares = rel_error_square.sum()

valid_index = [i for i in sum_of_squares.index if i[1] in [50e-9,100e-9]]

sum_of_squares_grainsize = sum_of_squares.loc[valid_index].sort_values()

grain_min_error_tuple = sum_of_squares_grainsize.idxmin()
best_fits_error_dF = pd.DataFrame({'error':sum_of_squares_grainsize})

T_temp = [i[0] for i in best_fits_error_dF.index]
R_temp = [i[1] for i in best_fits_error_dF.index]
ND_temp = [i[2] for i in best_fits_error_dF.index]
best_fits_error_dF['T'] = T_temp
best_fits_error_dF['Radius'] = R_temp
best_fits_error_dF['N_D'] = ND_temp
best_fits_error_dF.index = range(len(best_fits_error_dF))

display(best_fits_error_dF)

caption = Latex(r'''\begin{center}
Table with the best fit parameters
\end{center}''')
display(caption)

error T Radius ND

0 6.822288 300.0 5.000000e-08 1.000000e+22
1 7.665906 300.0 1.000000e-07 1.000000e+22
2 14.358742 300.0 1.000000e-07 1.000000e+21
3 18.771491 300.0 5.000000e-08 1.000000e+21
4 175.204658 300.0 5.000000e-08 1.000000e+23
5 1256.744498 300.0 1.000000e-07 1.000000e+23
6 9905.878196 300.0 5.000000e-08 1.000000e+24
7 39709.781227 300.0 1.000000e-07 1.000000e+24

Table with the best fit parameters

2.6 Representation of the fit

Finally the best fit results can be represented graphically.

[6]: fig, axe = subplots(figsize = (16,10))
#for grain_tuple in num_data_at_exp_pos_dF.keys():
for grain_tuple in sum_of_squares.index:

if grain_tuple == grain_min_error_tuple:

93

linestyle = '*-'
linewidth = 5
alpha = 0.5
label = 'Best Fit'

elif grain_tuple in sum_of_squares_grainsize.index[0:2]:
linestyle = '-o'
linewidth = 5
alpha = 0.3
label = 'Second best fit'

else:
linestyle = '-.'
linewidth = 1
alpha = 0.3
label = 'Other solution'

axe.plot(num_data_at_exp_pos_dF.index,
num_data_at_exp_pos_dF[grain_tuple],

linestyle, linewidth=linewidth, alpha = alpha,
label =label)

last_x = num_data_at_exp_pos_dF.index[0]
last_y = num_data_at_exp_pos_dF[grain_tuple].iloc[0]

if grain_tuple in sum_of_squares_grainsize.index[0:1]:
axe.text(last_x-0.05,last_y,

f'Radius:{grain_tuple[1]*1e9:.0f}nm\nN_D:{grain_tuple[2]:.2} 1/m³',
fontsize=22)

format_axe(axe)

axe.scatter(rel_res_exp.index,
rel_res_exp,
s=100,
label = 'Exp. data'

)

axe.set_ylim(rel_res_exp.min()/10,
rel_res_exp.max()*2);

l = {h[1]:h[0] for h in zip(*axe.get_legend_handles_labels())}.keys()
h = {h[1]:h[0] for h in zip(*axe.get_legend_handles_labels())}.values()
axe.legend(h,l,loc=1, fontsize = 22)
axe.set_title(sens, fontsize = 30)

94

[6]: Text(0.5, 1.0, 'IPC 1000')

Comparison of the numerical results with the experimental data points

2.7 Summary

The two best fits do not fit perfectly to the experimental data. One obvious reason is the coarse
screening of the grain size and and ND. A additional simulation of grains with a radius of 55 nm
and a finer screening of ND will turn out to be helpful for a better result of the fit. On the other side
the fitting shows, that the experimental data fits will to a grain with approximately 50nm radius
and a defect concentration of around ND = 1 ∗ 10221/m at 300°C.

3 Second iteration

With the approximate values of the correct model, the previous steps of creating a look-up table
for multiple model is repeated. This steps is not shown in this work. Basically the screening of
the parameters is limited to grains with a radius of 55 nm and a value of ND between 1× 1021 and
1× 1023. For the second iteration 20 values between these boundaries have been selected. The
points are evently spaced on a logarithmic scale. The numpy function logspace was used for this
purpose.

[7]: NDs = np.logspace(21,23,20)
fig, axe = subplots(figsize=((1+5**0.5)/2*9,9))
axe.plot(NDs,'o')
axe.set_yscale('log')

95

axe.set_ylabel('ND', fontsize = 22)
axe.set_xlabel('Sample point', fontsize = 22)
axe.set_xlim(0,20)
axe.tick_params(axis='both', which='both', labelsize=22)
axe.grid()

The results from the new numerical calculation are saved in a file called “numeri-
cal_sol_4_part_4_ipc1000_55nm.h5” and will be loaded in the next cell. For refitting the results
the above procedure is repeated with the new numerical dataset. The required steps to fit the data
and represent the results are exported in a new function called fit_exp_with_num_data. This
function needs the exp. dataset, the numerical dataset, a title for the figure and optionally a text
for the caption. With these arguments the output of the fit is represented in the notebook.

[8]: from IPython.display import display, Math, Latex
from fit_exp_data import fit_exp_with_num_data

calc_dF = pd.read_hdf('numerical_sol_4_part_4_ipc1000_55nm.h5','raw')

#calc_dF = pd.read_hdf('numerical_sol.h5','raw')
dF_exp = pd.read_excel('Kelvin_Data.xlsx', sheet_name='ipc1000').

↪→sort_values(by='dV')

caption_figure = 'Optimized fit with a finer screening of the parameters'

96

sens = 'IPC 1000 - SnO_2'
bf = fit_exp_with_num_data(dF_exp, calc_dF, sens=sens, caption_figure='Best fit␣

↪→results with finer screening of parameters.')

Best fit results with finer screening of parameters.

error T [°C] Radius [nm] ND [1/m]

0 2.771405 300.0 55.0 1.438450e+22
1 3.194694 300.0 55.0 1.128838e+22
2 3.906403 300.0 55.0 1.832981e+22
3 4.445156 300.0 55.0 8.858668e+21
4 5.048317 300.0 55.0 2.335721e+22
5 6.810177 300.0 55.0 6.951928e+21
6 7.816644 300.0 55.0 5.455595e+21
7 9.498844 300.0 55.0 4.281332e+21
8 11.110137 300.0 55.0 3.359818e+21
9 12.541343 300.0 55.0 2.636651e+21

Table with the best fitting simulation parameters

IPC 1000 - SnO2

EC - EF 0.29 eV
ND 1.44e+22 1/m³
nb 2.87e+22 1/m³
LD 30.60 nm

Table with material properties of the best fitting simulation.

97

4 Results for a commercial available SnO2

In the thesis of Julia Rebholz [Reb16] the commercially available ”SnO2” from Sigmar Aldrich was
also tested. In the next part experimental results from simultaneous work function and resistance
measurements are being fitted with numerical results. The average grain radius of this material is
around 50nm

[9]: #from IPython.display import display, Math, Latex
#from fit_exp_data import *

calc_dF = pd.read_hdf('numerical_sol_4_part_4_SA_50nm.h5','full')

dF_exp = pd.read_excel('Kelvin_Data.xlsx', sheet_name='SA_Benni').
↪→sort_values(by='dV')

caption_figure = 'Optimized fit with a finer screening of the parameters'
sens = 'IPC 1001'
bf = fit_exp_with_num_data(dF_exp, calc_dF, sens='Sigmar Aldrich SnO_2',␣

↪→caption_figure='Best fit results with finer screening of parameters.')

Best fit results with finer screening of parameters.

error T [°C] Radius [nm] ND [1/m]

0 1.589671 300.0 50.0 6.951928e+21
1 1.748542 300.0 50.0 8.858668e+21
2 2.345220 300.0 50.0 5.455595e+21
3 3.520990 300.0 50.0 4.281332e+21
4 3.562697 300.0 50.0 1.128838e+22
5 4.815593 300.0 50.0 3.359818e+21
6 6.180073 300.0 50.0 2.636651e+21
7 7.423996 300.0 50.0 2.069138e+21
8 8.288858 300.0 50.0 1.438450e+22
9 8.543946 300.0 50.0 1.623777e+21

Table with the best fitting simulation parameters

Sigmar Aldrich SnO2

EC - EF 0.33 eV
ND 6.95e+21 1/m³
nb 1.39e+22 1/m³
LD 44.01 nm

Table with material properties of the best fitting simulation.

98

5 Conclusion

In this last section the calculations from the numerical model have been fine tuned for different
SnO2 materials. The model’s parameter of the grain radius and temperature have been fixed
corresponding to the values from the experimental results. Additionally the parameter of the
defect concentration ND was screen in fine grained steps around the estimated value. The resulting
numerical datapoints were fitted against the experimental results. With the best fitting numerical
model otherwise hidden intrinsic properties of the semiconducting material have been computed.

It could be shown, that the numerical method to describe the relation between surface potential
change ∆VS and resistance change ∆R with respect to the grain radius R, operation temperature T
and defect concentration ND is suitable to fit experimental results and gain additional information
about the sensor as:

1. Distance between the conduction band (EC) and the Fermi level (EF)
2. Concentration of defects in the bulk ND
3. Concentration of free charge carriers in the conduction band in the bulk nb
4. Debye length LD of the semiconductor

6 Bibliography section

References

[DRRM+99] DIÉGUEZ, A. ; ROMANO-RODRÍGUEZ, A. ; MORANTE, J. R. ; KAPPLER, J. ; BÂRSAN,
N. ; GÖPEL, W.: Nanoparticle engineering for gas sensor optimization: Improved

99

sol-gel fabricated nanocrystalline SnO2 thick film gas sensor for NO2 detection by
calcination, catalytic metal introduction and grinding treatments. In: Sensors and
Actuators, B: Chemical 60 (1999), nov, Nr. 2, S. 125–137. http://dx.doi.org/10.1016/
S0925-4005(99)00258-0. – DOI 10.1016/S0925–4005(99)00258–0. – ISSN 09254005

[Reb16] REBHOLZ, Julia M.: Influence of Conduction Mechanism Changes and Related Effects on
the Sensing Performance of Metal Oxide Based Gas Sensors. Shaker Verlag, 2016. – 127 S.
– ISBN 978–3–8440–4832–2

100

http://dx.doi.org/10.1016/S0925-4005(99)00258-0
http://dx.doi.org/10.1016/S0925-4005(99)00258-0

Summary & Outlook

1 Summary

In this work a numerical model to simulate the conduction mechanism in a SMOX based gas sen-
sor was developed. Based on freely available tools around the “Jupyter Notebook” programming
environment the following steps have been demonstrated:

• solving differential equations
• solving integrals
• numerical simulation by using relaxation algorithms based on convolution operations
• fitting numerical results to experimental data

The results from the numerical model match with experimental data. Additionally this work
combines the necessary elements for further research in one compact notebook. The chosen rep-
resentation form of the “Jupyter notebook” unifies the explanatory descriptions, development of
algorithms, data import and analysis and graphical representation. With this advantage further
research about the transduction mechanism of SMOX sensors can easily be based on this work.

2 Outlook

For a better understanding of the mechanism involved in the sensing process of SMOX gas sen-
sors, the chemical surface reactions will need to be included in this model. For now, this numerical
model is able to predict otherwise not measurable properties from simultaneous work function
and resistance measurements. This includes:

• the concentration of surface charges involved in the sensing process
• the influence of temperature changes on the semiconductor

Typically the changes in resistance of such a SMOX sensor is used as a signal. Often this one di-
mensional information of resistance changes is not enough for a detailed characterize of the chem-
ical interaction. Nevertheless the change in resistance is a direct consequence of the changed sur-
face potential. And again, the surface potential changes are triggered by chemical reactions at the
surface. Very simplified, the information in the measured resistance (output) is the “encrypted”
information of the surface reaction (input). For the “decryption” of this hidden information the
output and input needs to analyzed.

To increase the amount of input and output data points, the temperature of the sensor can be
modulated. A modulation of the operation temperature while measuring the resulting resistance
changes is one of the modern ways to operate gas sensors. Typically the correlation between re-
sistance (output) and chemical surface reaction (input) is analyzed with machine learning based

101

algorithms. With the presented model, the implications on the semiconductor can be predicted
and the resistance changes resulting only from the semiconductor can be estimated. Hence the
additional changes in the resistance should result from the altered surface chemistry. The numer-
ical model may be one possibility to better understand the correlation and fine tune the operation
modes.

102

Zusammenfassung

Das Ziel der vorliegenden Arbeit kann thematisch in zwei Bereiche aufgeteilt werden.

Zum einen wird beschrieben, wie Gassensoren, welche auf halbleitenden Metalloxiden basieren,
durch numerische Verfahren simuliert werden können. Am Beispiel von SnO2 werden die
notwendigen Zusammenhänge zur Beschreibung des Halbleiters hergeleitet. Aus den hergeleit-
eten Gleichungssystemen wird in einem zweiten Schritt der Sensor als solcher numerisch
simuliert. In einem dritten Schritt werden die Ergebnisse der Simulation mit realen Daten ver-
glichen. Durch das Abgleichen der Simulationen mit den experimentellen Daten lassen sich zusät-
zliche Rückschlüsse über die Sensoreigenschaften ableiten, die kaum direkt meßbar sind.

Parallel dazu legt der zweite Bereich einen Schwerpunkt drauf, wie die Programmiersprache
Python als effizientes Werkzeug für die wissenschaftliche Arbeit genutzt werden kann. Auf-
bauend auf Python wird das interaktive Entwicklungswerkzeug „Jupyter" vorgestellt. Anhand
von vielen Beispielen kann diese Arbeit als Einführung in Python und „Jupyter“ genutzt wer-
den. Aufgeteilt in drei übergeordneten Abschnitten wird demonstriert, wie selbst mit wenigen
Vorkenntnissen folgende grundlegende Methoden implementiert werden können:

1. Lösen von Integralen sowie differentiellen Gleichungssystemen
2. Erstellen von numerischen Modellen zur Simulation von physikalischen und chemischen

Prozessen
3. Daten gestütztes Analysieren von realen Prozesse („Data-Mining“)

In dieser Arbeit soll somit demonstriert werden, wie man:

• wissenschaftliche Herleitung von Zusammenhängen
• experimentelle Daten und deren (interaktive) Darstellung
• sowie die zugrundeliegenden Algorithmen

in einem einzigen Dokument vereinen kann. Eine solche gebündelte Darstellungsform kann dazu
beitragen, das kollaborative Arbeiten in der Wissenschaft stark zu vereinfachen.

1

	Introduction
	Motivation
	Jupyter Notebooks
	Installation guide
	Example Notebook - Sneak preview

	SMOX based gas sensors
	SMOX material
	SMOX based thick film sensors
	Surface potential
	Numerical model

	Summary
	About the PDF-Version of this work
	Equations
	Tables
	Before the patch
	The patch
	Prettier tables after the patch

	Bibliography section
	Abstract
	Motivation
	Numerical calculation of semiconductors gas sensors
	Introduction
	Semiconductor properties of the SMOX grains
	Choice of geometric model
	Poisson's equation
	Charge density
	Poisson equation as system of ODEs
	Constants
	Materials
	Solving integrals numerically
	Numerical description of the semiconductor
	Numerical description of the semiconductor grains
	Additional relevant parameters

	Putting the pieces together
	Defining the parameters to be screen
	Starting a parallelized calculation
	Export/Import data
	Refine algorithm
	Recalculating the incorrect minima (with boundaries)
	Checking the corrected solutions

	Shape of the potential drop inside the grain

	Summary
	Bibliography section
	Abstract
	Review
	Load the results
	From charge distribution to resistance
	The ``numerical'' grain
	Precalc the numerical grains for all conditions
	Relaxation
	Convolution algorithm
	Example with `convolve2d'
	See how a single solution evolves
	Calculate total resistance
	Precalcualtion of all conditions
	Representing final results

	Summary
	Fully depleted small grains:
	Large grains:
	Flat band situation:

	Conclusion

	Bibliography section
	Abstract
	Fitting experimental data to numerical results
	Importing experimental and numerical data
	Representing the raw data
	From R_{V_S} to \Delta R_{V_S}
	Interpolating the numerical values
	Calculating the fit error
	Representation of the fit
	Summary

	Second iteration
	Results for a commercial available SnO_2
	Conclusion
	Bibliography section
	Summary
	Outlook

