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1. Summary 
During early embryonic development, the naïve undifferentiated cells of the early blastula 

must be specified correctly in accordance with the organism’s body plan. This process is 

mediated in part by secreted signaling molecules called ‘morphogens’, which diffuse from a 

localized source and form a concentration gradient across the tissue. This concentration 

gradient generates a signaling gradient, and cells then respond differently to different levels 

of the graded signal. Via morphogens, the one-dimensional information encoded in the DNA 

strands is transformed into a three-dimensional coordinate system that direct the formation of 

appropriate cell fates at the correct location in the embryo. However, the mechanisms by 

which a morphogen forms a gradient and the means by which they signal is still highly 

contentious and under active research.  

Nodal and BMP are two such morphogens studied in this dissertation. As they control the 

critical processes of zebrafish early embryonic development, they have received both 

intensive research as well as conflicting conclusions. Nodal and BMP are secreted TGF-β 

proteins that bind to transmembrane serine/threonine kinase receptors, which then 

phosphorylate their respective Smad proteins (Smad2/3 for Nodal, and Smad1/5/8 for BMP). 

Nodal plays a key role in germ layer patterning, while BMP controls dorsal-ventral patterning. 

Together, their mutual interaction triggers the signaling pathways needed to build an 

embryonic axes. This was strikingly shown when ectopically expressed sources of Nodal and 

BMP lead to the generation of a secondary embryonic axis. However, how the Nodal and 

BMP gradients form and how their signaling processes are regulated has become 

controversial as of late. Although the Nodal signaling gradient was previously found to 

spread via diffusion, later results contradicts this view and suggest that Nodal signaling is 

instead formed by an auto-induction relay mechanism. Similarly, recent results suggest that 

the BMP signaling gradient is the result of a BMP mRNA expression gradient, questioning 

the role of diffusion in its gradient formation. This contradicts previous results in other model 

organisms that show that BMP diffusion is important in the formation of its signaling 

gradient. Hence, this dissertation aims to generate new tools to assist our study of 

morphogens, as well as apply them to understand the behavior of Nodal and BMP to resolve 

the current controversy. 

In order to achieve this, I developed a simple and effective transplantation device which can 

be used to transplant cells from one embryo to another to generate a localized morphogen 
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source which I used to study how the morphogen gradient forms and how it induces signaling. 

To study the resultant signaling, I additionally developed a protocol to stain both pSmad2/3 

and pSmad1/5/8 simultaneously, as well as an optimized workflow to generate two-

dimensional cartographical projections of zebrafish embryos for analysis of pSmad staining. I 

further developed an in vitro system to benchmark new software for the analysis of 

fluorescence recovery after photobleaching assays (which are used to measure diffusion 

coefficients).  

Utilizing the tools I developed, I measured the biophysical properties of fluorescently tagged 

BMP2b in zebrafish embryos, and found that it diffuses and rapidly forms an extracellular 

protein gradient from a localized source. We also found that the BMP signaling gradient is 

formed via a graded source-sink mechanism with BMP and its inhibitor, Chordin, suggesting 

that diffusion is important in the formation of the BMP signaling gradient. By transplanting 

sources of fluorescently tagged Nodal and BMP into zebrafish embryos, I found that they 

both form similar protein gradients and signal cell non-autonomously, providing evidence 

that they act as morphogens and that their gradient is formed by diffusion. Intriguingly, I 

found that the signaling range of Nodal (pSmad2/3) is shorter than that of BMP (pSmad1/5/8). 

Using mathematical modelling and experimental testing, I show that this is due to Nodal 

having slow signaling kinetics and BMP having fast signaling kinetics. I also further 

discovered that different ratios of constitutively active Smad2 and Smad5 can induce 

different embryonic structures, showing that the embryonic axis inducing properties of Nodal 

and BMP are directly mediated through their Smads. Strikingly, I found that Smad2 and 

Smad5 antagonize each other only for specific cell fates and not others, providing an elegant 

mechanism for how cells integrate different ratios of Nodal and BMP signals during 

development. 
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2. Zusammenfassung 
Während der embryonalen Frühentwicklung müssen die undifferenzierten Zellen des frühen 

Blastulastadiums so spezifiziert werden, dass der Organismus seinem Bauplan entsprechend 

richtig geformt wird. Dieser Prozess wird teilweise durch sezernierte Signalmoleküle, die 

„Morphogene“ genannt werden, gesteuert. Diese diffundieren ausgehend von produzierenden 

Zellen und formen einen Konzentrationsgradienten im Gewebe. Dieser 

Konzentrationsgradient resultiert in einem Signalgradienten und die Zellen reagieren der 

Morphogenkonzentration entsprechend. Durch Morphogene kann die eindimensionale 

Information, die in den DNA-Strängen kodiert ist, in ein dreidimensionales 

Koordinatensystem übersetzt werden, in dem sich alle Zelltypen an den korrekten Positionen 

im Embryo befinden. Allerdings ist der Mechanismus, durch welchen ein Morphogen einen 

Gradienten bildet, und die Art der Signalübertragung noch umstritten.  

Nodal und BMP sind Beispiele für derartige Morphogene und werden in dieser Dissertation 

untersucht. Sie regulieren kritische Prozesse während der Frühentwicklung des 

Zebrafischembryos und sind mit widersprüchlichen Ergebnissen intensiv erforscht worden. 

Nodal und BMP sind sezernierte TGF-β Proteine, die an Serin/Threonin-Kinaserezeptoren 

binden, welche dann ihre jeweiligen Smad-Proteine (Smad2/3 im Falle von Nodal, 

Smad1/5/8 bei BMP) phosphorylieren. Nodal spielt eine Schlüsselrolle in der 

Keimblattmusterbildung, während BMP die dorsoventrale Musterbildung kontrolliert. Die 

gegenseitige Wechselwirkung zwischen den beiden aktiviert die Signalwege, die notwendig 

sind, um die embryonale Körperachse zu bilden. Dieser Effekt tritt beeindruckend zu Tage, 

wenn ektopische Nodal- und BMP-Quellen zur Entstehung einer zweiten Körperachse führen. 

Wie die Nodal- und BMP-Gradienten gebildet werden und wie ihre Signalprozesse reguliert 

werden ist seit einigen Jahren umstritten. Obwohl schon früh gezeigt worden ist, dass Nodal 

ein Morphogen ist, dessen Signal sich durch Diffusion ausbreitet, widersprechen rezente 

Ergebnisse dieser Ansicht und legen nahe, dass das Nodalsignal mithilfe von Autoaktivierung 

von Zelle zu Zelle gestaffelt übertragen wird. In ähnlicher Weise deuten neuere Ergebnisse 

darauf hin, dass der BMP-Signalgradient durch einen BMP-mRNA-Gradienten entsteht, was 

die Rolle von Diffusion bei der Gradientenbildung in Frage stellt. Dies widerspricht früheren 

Ergebnissen in anderen Modellsystemen, nach denen Diffusion für die Bildung des 

Signalgradienten notwendig ist. Daher ist es das Ziel dieser Dissertation, neue Werkzeuge  zu 

schaffen, die dabei helfen können, das Verhalten von Nodal und BMP zu verstehen, und 

mithilfe dieser die aktuelle Kontroverse aufzulösen.  
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Um dies zu erreichen, habe ich ein einfaches und effektives Transplantationsgerät entwickelt, 

mithilfe dessen Zellen von einem Embryo in einen anderen transplantiert werden können, um 

eine lokale Morphogenquelle zu schaffen. Diese lokale Morphogenquelle kann dann 

verwendet werden, um zu untersuchen wie der jeweilige Gradient gebildet wird und wie das 

Signal entsteht. Ferner habe ich ein Protokoll entwickelt, um gleichzeitig pSmad2/3 und 

pSmad1/5/8 anzufärben, und einen Arbeitsablauf, um zweidimensionale kartographische 

Projektionen von Zebrafischembryonen für die Analyse der pSmad-Färbungen herzustellen. 

Ich habe außerdem ein in-vitro-System  etabliert, welches das Benchmarking einer neuen 

Software für die Analyse von FRAP-Experimenten, die verwendet werden um die 

Diffusionskoeffizienten von Morphogenen zu bestimmen, ermöglicht.  

Unter Anwendung der von mir entwickelten Werkzeuge habe ich die biophysikalischen 

Eigenschaften von fluoreszenzmarkiertem BMP2b in Zebrafischembryonen gemessen und 

herausgefunden, dass diese diffundieren und schnell extrazelluläre Proteingradienten bilden. 

Wir konnten auch zeigen, dass der BMP-Gradient mithilfe eines source-sink-Mechanismus 

durch BMP und seinem Inhibitor Chordin gebildet wird, was gegen frühere Ergebnisse 

spricht, die behaupten, dass Diffusion in diesem Kontext keine Rolle spielt. Durch die 

Transplantation von Zellen, welche fluoreszenzmarkierte Nodals und BMPs exprimieren, 

fand ich heraus, dass beide ähnliche Gradienten bilden und ihre Signale nicht-autonom auf 

andere Zellen wirken. Dies impliziert, dass sie als Morphogene agieren und dass ihr Gradient 

durch Diffusion geformt wird. Interessanterweise ist die Signalreichweite von Nodal 

(pSmad2/3) kürzer als diejenige von BMP (pSmad1/5/8). Mithilfe eines Mathematischen 

Model konnte Ich  zeigen, dass dies durch eine langsamere Signaltransduktionskinetik von 

Nodal entsteht. Ich entdeckte ebenso, dass unterschiedliche Verhältnisse von konstitutiv 

aktivem Smad2 und Smad5 zur Bildung von unterschiedlichen embryonalen Strukturen 

führen, was zeigt, dass die Fähigkeit von Nodal und BMP eine Körperachse zu induzieren, 

direkt durch Smads vermittelt wird. Bemerkenswerterweise wirken Smad2 und Smad5 für 

manche Zellarten entgegengesetzt und für andere nicht, was einen eleganten Mechanismus 

darstellt, wie Zellen unterschiedliche Anteile von Nodal und BMP Signalen während der 

Entwicklung integrieren.  
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4. Introduction 

4.1 Morphogens and patterning 

During development, an embryo consisting of naïve, undifferentiated cells is transformed into 

an organism made of differentiated cells. In order to achieve this, cells need to know their 

location within the embryo so that they can differentiate into the right cell types at the right 

place. To do this, the embryo has to utilize the genetic information contained in its cells to 

generate the spatial information for constructing the body. An explanation for how this could 

be achieved is through the use of ‘morphogens’. The term was first coined and introduced by 

Alan Turing when he provided a mathematical model which posited the existence of 

diffusible substances that can interact with each other to specify different patterns (Turing, 

1952). This idea was further extended by Lewis Wolpert in a framework that is now referred 

to as the ‘French flag model’ (Wolpert, 1969). In this model, morphogens are molecules that 

diffuse from a localized source and form a concentration gradient across the tissue (Figure 1). 

The concentration gradient of the morphogen is converted into a gradient of signaling activity, 

and the cells then differentiate into various fates in accordance to the level of morphogen 

signaling activity they are exposed to. This allows morphogens to generate a coordinate 

system which specifies the appropriate cell fates at the correct location in the embryo, 

converting the one-dimensional information encoded within DNA into a three-dimensional 

blueprint. 

The existence of secreted signaling factors that direct development was first posited based on 

the discovery that a section of an embryo, called the organizer, can induce the surrounding 

naïve cells to form a secondary axis when transplanted into another embryo (Spemann and 

Mangold, 1924). However, the first signaling factor that can be definitively called a 

morphogen was only successfully identified much later (Driever and Nüsslein-Volhard, 

1988). That morphogen is a transcription factor named Bicoid, which forms an anterior to 

posterior gradient in the Drosophila embryo. It was discovered that changing the Bicoid 

gradient by increasing or decreasing bicoid mRNA expression caused a concomitant shift in 

the specified cell fates. Thus, it fulfills the conditions of being a morphogen: it forms a 

gradient, and it induces different cell fates at different levels. Since then, other signaling 

factors have been shown to function as morphogens, such as Decapentaplegic (Dpp) during 

Drosophila dorsal-ventral layer patterning (Ferguson and Anderson, 1992) and wing 

formation (Lecuit et al., 1996; Nellen et al., 1996), Sonic Hedgehog (Shh) during vertebrate 
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neural tube patterning (Briscoe et al., 2001), Activin during Xenopus germ-layer patterning 

(Green et al., 1992; Green and Smith, 1990; Gurdon et al., 1994) and Squint during zebrafish 

germ-layer patterning (Chen and Schier, 2001). 

 

Figure 1: Diagram of the French flag model. In this model, the cells have the potential to assume 
one of several differentiated fates, denoted as blue, white, or red, based on the concentration of 
morphogen they are exposed to. High concentrations of morphogens cause them to become blue, 
while concentration in between the 1st and 2nd threshold makes them white, and concentration below 
the 2nd threshold makes them red. A source secretes the morphogen which then diffuses across the 
cells, forming a concentration gradient. Each cell then reads out the morphogen concentration and 
differentiates into a specific cell fate. This allows morphogens to convey positional information as the 
cells differentiates into different fates based on their distance from the morphogen source.  
 

The current default model for gradient formation is the ‘synthesis-diffusion-clearance model’ 

(Rogers and Schier, 2011). The model was first conceived as the ‘source-sink model’, in 

which a localized ‘source’ produces morphogens which then diffuse across the tissue before 

they are degraded by ‘sink’ cells that are located at the opposite end of the source (Crick, 

1970). This degradation allows the formation of the gradient by preventing the source from 

saturating the tissue with morphogens. Later research suggests that instead of a specified 

‘sink’ at the end, morphogens are removed at a constant rate throughout the entire tissue 

through various mechanisms, such as degradation by endocytosis (Marois et al., 2006; 

Scholpp and Brand, 2004). However, there has been skepticism that diffusion alone is 

sufficient in morphogen gradient formation (Kerszberg and Wolpert, 2007). Hence, other 



13 
 

means of gradient formation have been proposed, such as transcytosis (Bollenbach et al., 

2007) or filopodia-like projections known as cytonemes (Ramirez-Weber and Kornberg, 

1999) that may transport Dpp in Drosophila wing disc. However, these posited mechanisms 

are currently contentious (Müller et al., 2013; Rogers and Müller, 2019). Therefore, in order 

to understand how morphogen gradients are formed, it is critical to carry out biophysical 

measurements of both its diffusivity and degradation rate. 

Fluorescence recovery after photobleaching (FRAP) and fluorescence correlation 

spectroscopy (FCS) are two main assays to measure the diffusion coefficient of morphogens 

directly in living embryos (Müller et al., 2013). FRAP involves photobleaching an area and 

measuring the fluorescence recovery in this area over time. The recovery curve can then be 

used to calculate the diffusion coefficient by fitting with an appropriate mathematical model. 

FCS works by measuring fluorescence fluctuations in a femtoliter volume over a short period 

of time. An autocorrelation is then performed on the data and it is fitted to the appropriate 

model to calculate the diffusion coefficient. FCS can also be further extended as two-focus 

FCS, which can be used to detect active transport in the movement of the morphogens 

(Dertinger et al., 2007). Due to the difference in scale, FCS measures the ‘free diffusivity’ 

while FRAP measures the ‘effective diffusivity’ which takes into account large scale effects 

such as tortuosity and transient binding (Müller et al., 2013). Using both of these methods, 

Fgf8 was shown to be freely diffusing (Yu et al., 2009), supporting the idea that the Fgf8 

gradient is generated via the synthesis-diffusion-clearance model (Müller et al., 2013). 

Currently, the primary method to measure morphogen clearance rates directly in living 

embryos is via fluorescence decay after photoconversion (FDAP) (Müller et al., 2012; Rogers 

et al., 2015). FDAP is a form of pulse-chase analysis where the morphogen is tagged with a 

photoconvertible fluorescent protein. The fluorescence absorption and emission spectra of the 

photoconvertible protein is then irreversibly changed by strong irradiation with blue light, 

allowing the user to convert a fixed fraction of protein into a different fluorescence spectrum. 

Subsequently, the decay of the fluorescence intensity of the photoconverted protein of 

interest can be measured, and a decay function is fitted to the data to calculate the half-life of 

the protein. 

The ability for different levels of morphogen activity to specify different cell fates is 

mediated through a diverse array of mechanisms. Bicoid, being a transcription factor, does so 

by binding cooperatively to DNA (Burz and Hanes, 2001). This cooperative binding sharpens 

the transition between the bound and unbound state, creating a threshold-like transcriptional 
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response to different concentrations of Bicoid. In the case of Nodal, the cell integrates over 

both the duration and the intensity of Nodal signaling it was exposed to (Dubrulle et al., 

2015). This is achieved through differences in transcriptional kinetics of different Nodal 

target genes; genes that are slowly transcribed have a shorter range than genes that are rapidly 

transcribed. Activin, a TGF-β protein related to Nodal, instead exhibits a molecular ‘memory’ 

where cells express genes corresponding to the highest concentration of morphogen they have 

been exposed to (Gurdon et al., 1995). This is done through a long-lived signaling complex 

that is formed when Activin is bound to its receptor (Dyson and Gurdon, 1998; Jullien and 

Gurdon, 2005). Shh relies on a complex gene regulatory logic between its target genes to 

interpret its gradient (Cohen et al., 2013). Shh, which is secreted from the ventral side, 

converts Gli from its transcriptional repressor form, GliR, into its transcriptional activator 

form, GliA. Ventrally restricted genes are induced by GliA, while more dorsal genes are 

restricted by GliR binding. These genes then mutually cross repress each other’s expression, 

creating sharp boundaries between each expression domain. Hence, the interpretation of 

morphogen gradients is a complex and diverse process. Although it is likely that every 

morphogen system has its own unique way of signaling interpretation and has to be studied in 

a case by case basis, it is possible that general fundamental principles underlying 

developmental processes can be gleaned from such studies. 

4.2 Nodal and BMP in zebrafish patterning 

Nodal and BMP are two morphogens that are critical in controlling the earliest cell fate 

decisions during zebrafish embryogenesis (Rogers and Müller, 2019). Nodal and BMP 

(Figure 2A) are both secreted proteins from the TGF-β superfamily (Wozney et al., 1988; 

Zhou et al., 1993). Nodal was first identified through forward genetic screens in mice due to 

its role in the formation of the embryonic node (Zhou et al., 1993), while BMPs were initially 

identified and isolated for their role in regulating bone formation (Urist, 1965; Wozney et al., 

1988) and their role in embryogenesis was only discovered later in Drosophila (Gelbart, 1989; 

Padgett et al., 1987). Both Nodal and BMP signals through a hetero-tetrameric receptor 

complex consisting of two TGF-β type I and two TGF-β type II serine/threonine kinase 

receptors (Wrana et al., 1992). Nodal, unique among TGF-β superfamily proteins, 

additionally requires the EGF-CFC family co-receptor One-eyed pinhead (Oep) (Shen and 

Schier, 2000). Nodal and BMP signaling then leads to the phosphorylation of their respective 

effector Smads, which form a heterotrimer with Smad4 and accumulate in the nucleus where 
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they regulate the expression of target genes (Heldin et al., 1997). Smad1, 5, and 9 are 

responsive to BMP signaling, but Smad5 is the primary BMP-responsive Smad during 

zebrafish early development (Hild et al., 1999), while Smad2 and 3 are activated by Nodal 

signaling, but Smad2 is the primary Nodal-responsive Smad during early embryogenesis 

(Dubrulle et al., 2015).  

 

In zebrafish, Squint (Erter et al., 1998; Feldman et al., 1998) and Cyclops (Rebagliati et al., 

1998; Sampath et al., 1998) are the two Nodal homologs that are involved in germ layer 

patterning during early embryogenesis (Chen and Schier, 2001). They form a heterodimer 

with Gdf3 (also known as Vg1) which is ubiquitously produced throughout the embryo from 

maternally deposited mRNA (Bisgrove et al., 2017; Montague and Schier, 2017; Pelliccia et 

al., 2017). There are currently more than ten BMPs discovered so far in vertebrates (Ducy 

and Karsenty, 2000), but in zebrafish the main BMPs involved in early embryogenesis are 

Bmp2b and Bmp7 (Schmid et al., 2000). These BMPs form functional Bmp2b/7 heterodimers; 

homodimers of Bmp2b and Bmp7 alone do not elicit signaling (Little and Mullins, 2009).  

 
 
Figure 2: Diagram of the signaling pathway and spatial expression of Nodal and BMP. (A) 
Binding of Nodal and BMP to their cognate receptors leads to phosphorylation of the type I receptor 
by the type II receptor. These activated receptors then phosphorylate Smad2 or Smad5 respectively, 
which forms a heterotrimer with Smad4 and accumulate in the nucleus where they alter the expression 
of their target genes. Nodal and BMP are regulated by extracellular antagonists such as Lefty and 
Chordin respectively. Chordin itself is further regulated via proteolytic cleavage by Tolloid, which is 
in turn inhibited by Sizzled. (B) Nodal is expressed along the margin and forms a gradient towards the 
animal pole. Lefty, being induced by Nodal signaling, is also expressed from the margin towards the 
animal pole. Its higher diffusivity allows Lefty to form a broader gradient than Nodal. BMP is 
expressed in a ventral to dorsal gradient, while Chordin is expressed on the dorsal side, close to the 
margin. 
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Nodal signaling (Figure 2B) starts from the margin and extends outwards into the overlying 

cells over time, specifying the naïve cells (which would otherwise become ectoderm) to 

become mesoderm and endoderm (Feldman et al., 1998). Fgf8 is induced downstream of 

Nodal signaling, and its longer signaling range helps to extend mesoderm specification 

farther towards the animal pole (Mathieu et al., 2004; Rodaway et al., 1999; van Boxtel et al., 

2015; van Boxtel et al., 2018). BMP signaling (Figure 2B) controls dorsal-ventral patterning 

and initially starts off weakly throughout the entire embryo, but gradually becomes stronger 

but restricted to the ventral half (Ramel and Hill, 2013). Wnt8a, which is then induced by 

combined BMP and Nodal signaling, acts in conjunction with BMP to maintain ventral 

mesoderm and suppress dorsal mesoderm (Ramel et al., 2005; Ramel and Lekven, 2004).  

 

Nodal and BMPs are both directly inhibited by the extracellular factors Lefty and Chordin 

respectively. The Lefty proteins, Lefty1 and Lefty2, are both TGF-β proteins like Nodal and 

are induced by Nodal signaling and function as feedback inhibitors of Nodal (Meno et al., 

1999). Chordin, on the other hand, is unrelated to TGF-β proteins and is expressed on the 

opposite side (the dorsal side) of where BMP is expressed as its transcription is inhibited by 

BMP signaling (Miller-Bertoglio et al., 1997). Chordin is also further regulated by the 

extracellular proteins Tolloid and Sizzled. Tolloid is a metalloprotease that inhibits Chordin 

by cleaving it, leading to enhanced BMP signaling (Blader et al., 1997), while Sizzled binds 

and inhibits Tolloid, resulting in the suppression of BMP signaling (Muraoka et al., 2006). 

 

Nodal and BMP signaling together were also found to be sufficient to trigger all processes 

needed to form an embryonic axis. This was strikingly demonstrated when ectopic juxtaposed 

sources of Nodal and BMP was capable of inducing a secondary embryonic axis (Xu et al., 

2014). The ratio of Nodal to BMP signaling was found to be the determining factor in 

specifying the necessary cell fates for the embryonic axis (Fauny et al., 2009): Nodal by itself 

creates axial structures, high Nodal to BMP ratios induce posterior head structures, 

intermediate ratios generate the middle trunk, and low Nodal to BMP ratios organize the tail. 

 

Currently, the signaling and biophysical characteristics of Nodals are better understood 

compared to BMP. Squint was found to behave as a morphogen as it can act directly at a 

distance and induce distinct cellular responses in a concentration-dependent manner (Figure 

3A), while Cyclops had too short of a signaling range to be considered a morphogen (Chen 

and Schier, 2001). The morphogenic property of Nodal to induce different cell fates at 
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different ranges was later shown to be mediated through differences in the kinetics of target 

gene induction, where genes with higher transcription rates and earlier onset of induction will 

have a longer expression range (Dubrulle et al., 2015). The diffusion coefficients of 

fluorescently-tagged Squint and Cyclops, as well as their inhibitors Lefty1 and Lefty2, were 

also measured and found to be 0.7 μm2/s for Cyclops-GFP, 3.2 μm2/s for Squint-GFP, 11.1 

μm2/s for Lefty1-GFP, and 18.9 μm2/s for Lefty2-GFP (Müller et al., 2012). This led to the 

idea that the fast diffusing Lefty forms a reaction-diffusion system with the slower diffusing 

Nodal (Müller et al., 2012).  

 
Figure 3: Signaling spread by an auto-inductive relay mechanism compared with long range 
direct signaling. (A) In the case of long range direct signaling, the signaling molecule diffuses 
outwards from the source and directly induces signaling in distant cells. (B) In an auto-inductive relay 
mechanism, the poorly diffusive signaling molecule secreted by the source activates signaling only in 
adjacent cells, which subsequently auto-induces its own production. These cells produce more of 
these signaling molecules which then auto-induces its own production in neighboring cells, and so on. 
This allows a poorly diffusive signaling molecule to form a long range signaling gradient.  
 

However, this picture has been complicated by other findings. Recent results show that the 

mesoderm-inducing ability of Nodal is in part due to FGF signaling (Rodaway et al., 1999; 

van Boxtel et al., 2015; van Boxtel et al., 2018). Nodal signaling was found to induce the 

expression of FGF (which has a longer signaling range than Nodal), which then induces 

mesodermal gene expression at a longer range than Nodal signaling alone. This calls into 

question earlier results where mesodermal gene induction was used as a readout of Nodal 

signaling (Chen and Schier, 2001). There are also results suggesting that Nodal forms a relay 

system with itself (Figure 3B) as Nodal signaling auto-induces the production of more Nodal, 
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and this interpretation is supported by the discovery that Nodal signaling activity appears to 

be restricted to regions of Nodal gene expression (van Boxtel et al., 2015). This means that 

juxtacrine signaling is sufficient for Nodal signaling to spread outwards from the margin, 

challenging the idea that Nodal needs to diffuse for the spread of Nodal signaling (Figure 3A). 

The possibility that Nodal does not signal at a distance also throws into doubt the idea that 

Nodal and Lefty could act as a reaction-diffusion system. Instead, the latter research posits 

that a transcriptional delay of Lefty induction caused by the microRNA, miR-430, is the 

means by which Lefty restricts the signaling range of Nodal (van Boxtel et al., 2015). Hence, 

the debate is still ongoing despite all the information acquired about the signaling properties 

of Nodal.  

 

Before I started on my PhD work, less was known about the signaling and biophysical 

properties of zebrafish BMP/Chordin system compared to Nodal/Lefty system. Their 

diffusion coefficient (if they even diffuse) has not been measured, and it is unclear whether 

they can signal directly at a distance. Work done with BMP homologs in other animals, such 

as Dpp in Drosophila, showed that it behaves as a morphogen during dorsal-ventral 

patterning (Ferguson and Anderson, 1992). Current work in zebrafish instead suggests that 

the BMP activity gradient is due to a gradient in the expression profile of BMP, implying that 

diffusion of BMP is not needed (Ramel and Hill, 2013). At the time, no work had been done 

to test whether BMP can signal directly at a distance, or whether it can induce different cell 

fates at different ranges. Thus, it remained uncertain whether BMP can diffuse or signal 

directly. 

 

The mode of interaction between BMP and its inhibitor Chordin is still hotly debated as well, 

with the most prominent model being the ‘Shuttling model’. The Shuttling model was 

originally developed from studies in Drosophila, with the BMP homolog Dpp, and the 

Chordin homolog Sog (Holley et al., 1996; Mizutani et al., 2005; Wang and Ferguson, 2005). 

Just like in zebrafish, Dpp and Sog are expressed on opposite sides of the embryo, but Dpp is 

instead expressed on the dorsal side while Sog is expressed on the ventral side. This model 

proposes that the binding of Sog to immobilized Dpp frees Dpp from its binding to cell 

surface collagen. This allows the Dpp-Sog complex to diffuse and move to the dorsal side 

where the Tolloid protease is expressed. Tolloid cleaves Sog and releases Dpp from the Dpp-

Sog complex where it then reassociates with collagen and becomes immobile again. This 

process essentially causes Dpp to accumulate on the dorsal side. The Shuttling model was 
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later proposed to occur in Xenopus as well (Ben-Zvi et al., 2008). Despite the elegance of the 

Shuttling model, the key biophysical measurements of the diffusion coefficient of Chordin 

and BMP which are needed to test the shuttling model in zebrafish had not yet been done. 

Hence, more work was needed to unravel the interaction between BMP and Chordin in 

zebrafish. 

 

How Nodal and BMP signaling interact during zebrafish germ layer patterning was even less 

clear. It was known that BMP antagonizes endoderm formation by Nodal (Poulain et al., 

2006) and Nodal induces the production of Chordin, thereby inhibiting BMP (Bennett et al., 

2007). However, the mechanism that allows different ratio of Nodal and BMP signaling to 

induce various ectopic structures was unknown (Fauny et al., 2009), as was the means by 

which ectopic sources of Nodal and BMP induce formation of secondary embryonic axes (Xu 

et al., 2014).  

4.3 Research aims and summary 

In this dissertation, I aimed to fill in the gaps in our understanding of how the Nodal and 

BMP gradients form and signal, as well as how their signaling pathways interact.  

As the first step of this research project, I placed my focus in developing the necessary assays 

and tools to study these processes. In order to measure morphogen gradient formation, a 

localized source of morphogen production has to be generated. Previous methods utilized 

blastomere injection (Chen and Schier, 2001; Fauny et al., 2009; Xu et al., 2014) which lacks 

precise control over the timing, placement and spacing of morphogen producing sources. 

Hence, I developed a device to transplant cells from zebrafish embryos overexpressing the 

morphogen into normal embryos (Section 5.1).  

We would also need to be able to measure the direct signaling response to Nodal and BMP in 

order to verify if they could induce signaling directly. Earlier results with Nodal measured the 

activation of Nodal target genes induced by the Nodal source to conclude that Squint induces 

signaling at a distance, a defining trait of a morphogen (Chen and Schier, 2001). This result 

has been complicated by more recent results suggesting that many Nodal target genes are 

instead secondarily induced by Nodal-induced FGF (van Boxtel et al., 2015). Hence, direct 

measurement of pSmad induction is required. Since my goal is to understand how Nodal and 

BMP signaling interact, we need to be able to measure both pSmad2 and pSmad5 signaling 
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simultaneously as well. Currently, there are protocols to detect pSmad2 or pSmad5 

individually via immunostaining (Ramel and Hill, 2013; van Boxtel et al., 2015), but 

simultaneous staining is complicated as they use antibodies of the same species. Therefore, I 

developed a protocol that can simultaneously detect both pSmad2 and pSmad5 using 

tyramide signal amplification (Toth and Mezey, 2007) (Section 5.2).  

In order to quantify the pSmad staining across the embryo, I extended a protocol used 

previously that ‘unwraps’ the surface of the embryo and projects them on a 2D surface 

(Schmid et al., 2013). This method generates cartographical projections, but in a random 

orientation. I therefore developed a method that uses an open-source software, Hugin, to 

rotate the projection so that it is oriented consistently for the proper quantification of pSmad 

distribution (Section 5.2). 

Since quantification of the diffusion coefficient is needed to understand morphogen gradient 

formation, I also worked on methods to further develop FRAP. Calculating the diffusion 

coefficient from FRAP data depends heavily on the mathematical model used hence new 

software is continuously released to improve the accuracy of the computation. I developed an 

in vitro FRAP model system using well characterized fluorescent-dextrans of various 

molecular weights as a means of benchmarking, which helped in the development of the new 

software, PyFRAP (Bläßle et al., 2018) (Section 5.3). 

Having established the experimental methods to measure key biophysical parameters of 

morphogens, we then used these techniques to further our understanding of Nodal and BMP. 

Unlike Nodal and Lefty, the diffusion coefficient of BMP and its inhibitor, Chordin, is still 

undetermined. Hence, we used FRAP to measure the diffusion coefficients of BMP and 

Chordin and found that they had similar diffusion coefficients when measured separately and 

when co-expressed, contradicting the Shuttling model which predicts that BMP-Chordin 

complexes have a higher diffusion coefficient (Section 5.4). Through transplantation 

experiments, whole embryo pSmad imaging and mathematical modeling, we found evidence 

which indicates that BMP interacts with Chordin via a source-sink model (Section 5.5) 

(Pomreinke et al., 2017). 

In order to study how Nodal and BMP gradients form and how their signaling interacts, we 

used the secondary axis formation as a model system as it allows us to use ectopic gradients 

to cause axis induction, a process that is physiologically relevant (Xu et al., 2014). I used the 

transplantation device to generate ectopic sources of fluorescently-tagged Nodal and BMP, 
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imaged them and simultaneously stained for pSmad2/3 and pSmad1/5/8 to study the 

formation of the protein gradient and its signaling gradient. I discovered that Nodal has a 

shorter pSmad signaling range than BMP even with similar protein gradient, due to a 

difference in signaling kinetics (Section 5.6). This shows that signaling kinetics is important 

in regulating the activity range of signaling molecules in addition to their diffusivity. I also 

found that both Nodal and BMP form long-range gradients that induce downstream pSmad 

signaling directly without need of a relay mechanism (Section 5.7). Next, In order to 

understand how the Smads activated by Nodal and BMP signaling induces axis formation, I 

developed constitutively active versions of Smad2 and Smad5. I found that different ratios of 

constitutively active Smad2 and Smad5 can generate different ectopic structures, showing 

that the organizing ability of varying ratios of Nodal and BMP is mediated by varying ratios 

of Smad2 and Smad5 (Section 5.8). I discovered that Smad2 and Smad5 mutually antagonize 

each other in a selective manner for certain cell fates, while acting synergistically for others, 

which allows cells to respond differently to different ratios of Nodal and BMP. This selective, 

mutual antagonism may represent a general mechanism for how cells integrate and 

discriminate between two overlapping signals during development.  

 

  



22 
 

5. Results and Discussion 
As the Nobel laureate Sydney Brenner famously observed, the progress of science “depends 

on the interplay of techniques, discoveries, and ideas, probably in that order of decreasing 

importance (Brenner, 2002).” That is very much the case for biology, and this dissertation is 

no exception. Hence, I will first present the techniques that were developed, followed by the 

discoveries that were made. 

5.1 Simple and effective transplantation device for studying morphogen 

signaling 

From the classic experiments of Mangold and Spemann who showed the existence of an 

organizer which is capable of instructing the formations of an embryonic axis (Spemann and 

Mangold, 1924), transplantation of cells between embryos has become a time-honored 

technique for studying morphogenic signals in development. Transplantation has been used in 

zebrafish embryos as a means of generating maternal-zygotic mutants via germ line 

transplantation (Ciruna et al., 2002), and now I would like to use this method to create 

localized sources to study morphogen gradient formation 

A commonly used setup for transplantation, as described in The Zebrafish Book (Westerfield, 

1993), consists of a micrometer drive-controlled Hamilton syringe connected to a 

micropipette holder through a flexible tubing and a reservoir filled with mineral oil (Figure 

4A). Turning the screw moves the plunger inside the syringe, and the pressure generated can 

be used to suck out cells from one embryo and deposit them into another. However, such a 

device consists of many parts and is laborious to assemble from scratch. Such devices can be 

also be purchased as a complete working set, usually sold as a ‘Manual Microinjector’. There 

are several versions sold by companies such as Sutter Instrument, but are expensive and 

usually cost more than USD$1500. In both the homemade and commercial version, the 

micropipette is fixed separately from the syringe; hence the manipulation of the needle and 

the movement of the plunger have to be done separately with different hands, reducing the 

throughput. Furthermore, they are also troublesome to prepare as it needs to be carefully 

filled with oil so that bubbles do not form. Therefore, we developed a device that is cheap, 

easy to assemble and simple to use to overcome this issue. 

This device is constructed out of a Luer Tip 25 μL Hamilton syringe, 1700 series, and a 

microelectrode holder with Luer fitting for a 1.0 mm glass capillary (Figure 4B), which in 
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total cost less than USD$80. Since it consists of only two parts, it is cheap to purchase and 

easily assembled by inserting the microelectrode holder into the syringe via the Luer lock 

fitting (Figure 4C). The device is then directly mounted on a micromanipulator, allowing the 

user to control the position of the device and the suction without moving their hands away 

from the micromanipulator. This also conveniently leaves the other hand free to steady the 

transplantation dish. The device works by direct suction with air and does not need to be 

filled with mineral oil. Due to the attractive forces between the water and the walls of the 

glass needle, a large movement in the plunger of the syringe translates to a smaller movement 

in the water level in the needle. This allows the device to suck out a precise amount of cells 

and transplant them exactly where it is required (Figure 4D). This device was used as an 

extirpation device in the publication titled “Scale-invariant patterning by size-dependent 

inhibition of Nodal signalling” (Appx. 4), to reduce the size of zebrafish embryos, and in the 

publication titled “Integration of Nodal and BMP signaling by mutual signaling effector 

antagonism” (Appx. 5), where it was used to transplant clones expressing fluorescently 

tagged Nodal and BMP into zebrafish embryos. 

 

Figure 4: Schematics of transplantation devices. (A) The original transplantation device described 
in the zebrafish book is a complicated device consisting of a micrometer drive-controlled Hamilton 
syringe connected to a micropipette holder through a flexible tubing and a reservoir filled with 
mineral oil. (B) The new transplantation device is a simple set up consisting of a Hamilton syringe 
directly connected to a microelectrode holder, (C) which can be fitted together by inserting them 
directly through the Luer lock fitting. (D) By maintaining the water level in the needle at a low level 
close to the tip, precise control of the suction can be achieved when the plunger is moved. 
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5.2 Optimization of pSmad immunostaining and visualization 

Understanding how Nodal and BMP pattern the zebrafish embryo requires a way to detect 

their immediate effectors: Smad2 and Smad5. They are activated by phosphorylation on the 

serine residues in their C-terminal SSXS motif, and are translocated to the nucleus. Hence, 

we can visualize them by probing with antibodies that specifically bind to the phosphorylated 

form of the Smads. Antibodies that bind to pSmad2 (van Boxtel et al., 2015) and pSmad5 

(Ramel and Hill, 2013) have been used successfully in zebrafish. However, these antibodies 

are both raised from rabbits and conventionally staining them with fluorescently-labelled 

anti-rabbit secondary antibodies will cause the detected pSmad2 and pSmad5 signal to 

overlap. Therefore, a method is needed to ensure that they can be detected simultaneously.  

There are several methods for immunostaining using antibodies from the same species, such 

as directly conjugating the primary antibody with a fluorescent dye before usage, pre-labeling 

the primary antibody with fluorescent Fab antibody fragments (Brown et al., 2004), or by 

tyramide signal amplification (Toth and Mezey, 2007). I experimented with these methods 

and focused on tyramide signal amplification since it worked the best for me, and I have 

since developed a protocol for it (Figure 5). Tyramide signal amplification works by using 

horseradish peroxidase to catalyze the oxidation of tyramide into a highly reactive 

intermediate that rapidly reacts with tyrosine residues from proteins in close proximity to the 

enzyme, forming a covalent bond with it (Bobrow et al., 1989). By using fluorescently-

labeled tyramide molecules and attaching the horseradish peroxidase to the secondary 

antibody, a fluorescent signal will be deposited at the site of the detected epitope.   

Due to the enzymatic signal amplification, a much smaller amount of primary antibody is 

needed compared to conventional staining. This allows another staining to be done with a 

standard amount of antibody of the same species after the first staining, since the first staining 

uses too little primary antibody to be detected by conventional fluorescent secondary 

antibody staining. Hence, there will not be signal bleed through from the first staining step 

into the second staining step. Therefore, in our optimized protocol, we first used a 1:5000 

dilution of the anti-pSmad2 antibody together with tyramide amplification, and next used a 

1:100 dilution of the anti-pSmad5 antibody. Through this protocol, I was able to achieve a 

double stain of both pSmad2 and pSmad5, which was used in the publication titled 

“Integration of Nodal and BMP signaling by mutual signaling effector antagonism” (Appx. 5). 

Using a much smaller amount of primary antibody also has an added benefit of reducing 
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unspecific background, and was found to be superior to the previously published protocol 

(van Boxtel et al., 2015) and was therefore used in the publication titled “Scale-invariant 

patterning by size-dependent inhibition of Nodal signalling” (Appx. 4).  

 

Figure 5: Double pSmad2 and pSmad5 immunostaining protocol. (A) The protocol starts by first 
staining the embryo with a very low concentration (1:5000) of anti-pSmad2 antibody, (B) followed by 
incubation with a secondary antibody fused to horseradish peroxidase (1:500). (C) The horseradish 
peroxidase then catalyzes the deposition of fluorescently-labelled tyramide to tyrosine residues in 
neighboring proteins. (D) A standard concentration (1:100) of anti-pSmad5 antibody is then used. (E) 
Since the anti-pSmad2 antibody concentration is too low to be detected by conventional fluorescent 
immunostaining, the subsequent fluorescently-labelled secondary antibody will bind preferentially to 
the anti-pSmad5 antibody.  
 

Now that a staining protocol has been optimized, a method of visualizing the detected signals 

is needed. In the case where only a small region at the center of the animal pole needs to be 

measured, a simple Z-stack followed by a maximum intensity projection is sufficient. 

However, when the pSmad signal in the entire embryo as a whole needs to be quantified, a 

maximum intensity projection leads to distortion in lengths at the margin due to the curvature 

of the embryo. Since the embryo is spherical and the signaling occurs at the surface, 

cartographical methods of map projections (Figure 6) can be used instead to flatten out the 

embryo in a projection that maintains length proportions in the direction of quantification 

(Schmid et al., 2013). The 3D images required for generating the map projection can be made 

from a Z-stack of multiple 2D images taken throughout the diameter of the embryo. Such 
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optical sections have been previously made using confocal microscopy, but confocal 

microscopy suffers from limited penetration in thick samples and a much worse Z- resolution 

compared to XY-resolution. Selective plane illumination microscopy (SPIM) can overcome 

these problems (Huisken et al., 2004). SPIM achieves optical sectioning by selectively 

illuminating the sample with a plane of light from the side, orthogonal to the detection axis. 

Since only the focal plane is illuminated, no out-of-focus fluorescence is generated and 

optical sectioning is achieved. However, due to the thickness of the sample, the images get 

blurred as the focal plane moves away from the microscope objective. This problem is solved 

by rotating the embryo so that image stacks can be taken from various sides, and then using a 

software to reconstruct them into a single 3D image (Figure 6A) using bead-based 

registration (Preibisch et al., 2010) 

 

Figure 6: Generation of 2D map projections from 3D embryo reconstructions. (A) 3D 
reconstruction of embryos stained for pSmad1/5/8 after SPIM imaging. (B) Un-oriented 2D map 
projection in equirectangular projection generated by the Fiji plug-in (Schmid et al., 2013). (C) 
Properly oriented 2D map projection converted to Hammer projection after realigning with the Hugin 
panorama photo stitcher software.  
 

However, the orientation of a 3D reconstruction can differ from sample to sample due to the 

calculations the software performs and the orientation of the samples, and this affects the 

orientation of the 2D map projection that is generated (Figure 6B). This creates a problem as 

the 2D map projection has to be oriented along the desired embryonic axis to allow 

quantification. Earlier attempts were made in the lab to realign the orientation of the 3D 

projection by digitally reslicing it with Imaris, but the process is computationally intensive 

and takes a long time to complete. I came to realize that a 2D map projection already contains 

all the needed information of the spherical embryo and that the reorientation can be done with 
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it directly, making it far less computationally intensive than the reorientation and reslicing of 

the 3D reconstruction. Therefore, we searched for appropriate software online and found that 

the Hugin panorama photo stitcher software (http://hugin.sourceforge.net) can be used to 

reorient the 2D projections (Figure 6C). This method was then applied for the publications 

titled “Scale-invariant patterning by size-dependent inhibition of Nodal signalling” (Appx. 4) 

and another titled “Dynamics of BMP signaling and distribution during zebrafish dorsal-

ventral patterning” (Appx. 1).  

5.3 in vitro platform for FRAP experiments 

Fluorescence Recovery After Photobleaching (FRAP) assays were developed more than 40 

years ago (Liebman and Entine, 1974; Poo and Cone, 1973) and have been used extensively 

since to measure the diffusion of biomolecules in living tissues. In FRAP assays, fluorescent 

molecules are bleached in a selected region by exposing it to an intense laser pulse, and the 

amount of unbleached molecules entering the bleached area afterwards over time is measured 

by quantitative microscopy (Figure 7A). Mathematical models describing the recovery 

process are then fitted to the generated recovery curve to determine the diffusion coefficient 

(Figure 7B). Diffusion measurements can also be done with a complementary approach, 

called inverse FRAP (iFRAP) (Bläßle et al., 2018). In an iFRAP experiment, fluorescent 

molecules in a defined area are photoactivated or photoconverted into another emission 

wavelength (instead of being bleached as in the case of FRAP), and the dissipation of the 

photoactivated or photoconverted molecule out of the converted area is recorded. The use of 

photoconversion instead of bleaching has the benefit of using a milder laser pulse, as 

exposure to intense laser light is damaging to living cells. This measurement instead 

generates a decay curve which can also be used to determine the diffusivity of the fluorescent 

molecules with mathematical modelling. 

Hence, mathematical models are crucial requirements to extract the diffusion coefficient from 

raw FRAP data. Early models make several simplifications (Axelrod et al., 1976), such as 

reducing the experimental system to a one-dimensional or two-dimensional model, assuming 

that the pool of fluorescent molecules is infinitely large, or ignoring the complex geometries 

of biological samples which affect the movement of macromolecules. Thus, many new 

models implemented in various software have been designed to take these factors into 

consideration and produce more accurate results (Bläßle et al., 2018; Blumenthal et al., 2015; 

Rapsomaniki et al., 2012; Schaff et al., 2009). Therefore, in order to test and benchmark new 

http://hugin.sourceforge.net/
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as well as existing models, I have created an in vitro system (Figure 7C). An in vitro system 

has an advantage in performing such benchmarking since it excludes confounding factors 

such as cell movement, or the production or degradation of fluorescent proteins.  

 

Figure 7: in vitro FRAP experiment system. (A) During FRAP, a region of the sample is bleached 
by an intense laser pulse. The fluorescent molecules in the unbleached area then diffuse into the 
bleached area, and the rate of fluorescent recovery is measured. (B) Measured intensity of the 
bleached area before and after bleaching. The measured recovery curve can then be fitted with a 
mathematical model to derive the diffusion coefficient of the fluorescent molecule. (C) The in vitro 
FRAP experiment is carried out in a plastic block with a small well. The fluorophore solution is first 
pipetted into the well, and mineral oil is then pipetted around the well, so that it completely surrounds 
the well. A rectangular coverslip is then placed over the well. The sample is then inverted for imaging 
in an inverted confocal microscope.  
 

The in vitro system consists of a ~10 mm thick transparent and colorless plastic block with a 

hole ~700 μm in diameter and ~100 μm in depth made with a dental drill, with the size 

chosen so that it has similar dimensions as a zebrafish sphere-stage embryo. A solution 

containing fluorescent molecules is then pipetted into the well, and a ring of mineral oil is 

pipetted around the well. The mineral oil is needed to allow the plastic block to adhere via 

capillary action to the glass coverslip which will be placed over the well. The plastic block is 

then carefully flipped over so that the sample can be imaged on a confocal inverted 

microscope. This creates a cylinder of fluorescent solution with a known volume in which 

FRAP experiments can be done. Since the diffusion coefficients of macromolecules in 

solution can be calculated via the Einstein-Stokes equation if the molecular weight is known, 

we can carry out benchmarking FRAP experiments with fluorescently-labelled dextrans of 
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known molecular weight in the in vitro system. We can thus compare the diffusion 

coefficient calculated from the recovery curve using the different recovery models with the 

diffusion coefficient calculated from the Einstein-Stokes equation. This allows us to detect if 

there are any irregularities in the model or the microscope setup if we see a significant 

deviation between the predicted and the measured diffusion coefficient.  

In biological samples, the movements of macromolecules are often hindered by presence of 

physical obstacles such as cells or extracellular matrix. The macromolecules have to go 

around these obstacles, effectively slowing them down and reducing their effective diffusion 

coefficient. This effect is known as tortuosity. The in vitro system can also be modified to 

account for tortuosity by mixing polyacrylamide microbeads into the solution before adding 

into it the well, which mimics the tortuosity caused by cells (Appx. 2, Figure 4I).  

In the paper titled “Quantitative diffusion measurements using the open source software 

PyFRAP” (Appx. 2), we used the in vitro system as a means of testing the functionality and 

analytic capabilities of the FRAP analysis software ‘PyFRAP’. We carried out FRAP 

experiments in vitro of fluorescein-dextrans with sizes varying over two orders of magnitude 

as well as purified GFP, and performed iFRAP experiments with purified Dendra2. We found 

that PyFRAP outputs diffusion coefficients which match both theoretical predictions and 

previous literature values. We also carried out in vitro experiments in the presence of 

polyacrylamide beads and found a reduction in the effective diffusion rate by 18% for 

purified GFP, and a 39% reduction for 70 kDa fluorescein-dextran. The systematic protocol 

for the use of the in vitro system, as well as a protocol for conducting FRAP experiments in 

zebrafish embryos and how to analyze them with PyFRAP was then detailed in the book 

chapter “FRAP Analysis of Extracellular Diffusion in Zebrafish Embryos” (Appx. 3). 

5.4 Biophysical characterization of the BMP/Chordin system 

With the methods I developed, we first directed our attention towards understanding the 

interactions between BMP and Chordin. There are currently a number of competing models 

describing their interactions (Appx. 1, Figure 1). The current popular model is the ‘Shuttling 

model’ mentioned above (Ben-Zvi et al., 2008), which posits that the more diffusive Chordin 

enhances the diffusivity of BMP upon binding, allowing it to shuttle BMP from the dorsal to 

the ventral side (Chordin is produced on the dorsal side). However, several other possible 

models have been posited as well. The first model is the ‘graded source-sink with mobile 
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BMP’ where BMP is produced in a gradient, which is highest on the ventral side (the 

‘source’). BMP then diffuses across the embryo, forming a gradient. BMP signaling is 

excluded from the dorsal side by binding to a gradient of Chordin produced from the ‘sink’, a 

localized region on the dorsal side. The interaction between these two gradients, a BMP 

‘source’ and a Chordin ‘sink’ leads a ventral to dorsal gradient of BMP activity (detected as 

the presence of pSmad5). The ‘graded source-sink with immobile BMP’ is similar; however, 

it is based on evidence that suggests that BMP does not diffuse (Ramel and Hill, 2013). 

Another model, the ‘long-range accumulation and feedback’ model, assumes diffusive BMP 

and Chordin, but their interaction is controlled by differences the stability of BMP and 

Chordin (Inomata et al., 2013). In this model, BMP signaling induces Sizzled which blocks 

the proteolysis of Chordin by Tolloid, causing Chordin to expand ventrally, suppressing BMP 

signaling. This triggers a feedback response since the reduction of BMP signaling also leads 

to the reduction of Sizzled production, which would lead to enhanced degradation of Chordin 

and consequently an increase in BMP signaling activity. The ‘self-regulating reaction-

diffusion system’ model instead assumes that both BMP and Chordin have a low diffusion 

coefficient and similar protein stability, while Sizzled and ADMP (a secreted protein 

produced in the dorsal side with BMP signaling activity (Lele et al., 2001) that can inhibit 

Chordin production) having a high diffusion coefficient. BMP then forms a reaction-diffusion 

system with Sizzled, and Chordin with ADMP, whereby the highly diffusive Sizzled and 

ADMP regulate the ranges of BMP and Chordin. This creates a robust self-regulating system 

during embryogenesis (François et al., 2009). Therefore, we can see that these models make 

different predictions about the biophysical properties of BMP and Chordin, as well as 

accessory proteins such as Sizzled and ADMP, and the pSmad5 distribution with and without 

Chordin. Hence, characterizing the biophysical properties of BMP, Chordin, Sizzled and 

ADMP, together with the pSmad5 distribution in wild type embryos and chordin mutants is 

crucial to identify the correct model that explains their interaction.  

To this end, we generated functional fluorescent and photoconvertible fusion constructs of 

Bmp2b, Chordin, Sizzled and ADMP for FRAP and FDAP experiments. We transplanted 

cells expressing these fluorescent versions into host embryos and found that Bmp2b and 

Chordin both generated a gradient when produced from a localized source (Appx. 1, Figure 

3). I also expressed them in embryos and used FRAP to measure the diffusion coefficient of 

Bmp2b and Chordin, which was found to be 2–3 µm2/s and 6–7 µm2/s respectively (Appx. 1, 

Figure 4E). Strikingly, there was no significant difference in the diffusion coefficient of 
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Bmp2b when coexpressed with Chordin. Sizzled was found to have a diffusion coefficient 

9.7 ± 3.2 µm2/s, but we were unable to measure the diffusion coefficient of ADMP as we 

were unsuccessful in creating fluorescent ADMP fusions that has similar activity as its 

untagged version. We also found that Bmp2b has a half-life of 130 min, while Chordin has a 

half-life of 120 min (Appx. 1, Figure 4A+B). We then measured the pSmad5 distribution in 

wild type and chordin mutants after 2D map projection (Appx. 1, Figure 1+2). In wildtype 

embryos, BMP signaling starts from a low-level near-uniform distribution to a gradient with 

peak intensity levels on the ventral side. In chordin mutants, the ventral side had slightly 

higher pSmad5 signaling, but the spatial extent is greatly expanded to the dorsal side.  

We can draw four main conclusions from our biophysical data. First, BMP2b and Chordin are 

found to be able to diffuse in the extracellular space. Second, fluorescently tagged BMP2b, 

Chordin and Sizzled have diffusivities in the same order of magnitude. Third, Chordin does 

not significantly change BMP2b diffusion when expressed together. With these results, we 

can start to identify the model most appropriate in explaining the interactions between BMP 

and Chordin. 

5.5 BMP interacts with Chordin via a source-sink mechanism 

With the biophysical and signaling data at hand, we can look for the model which best fits the 

data. The prominent ‘shuttling model’ proposes that Chordin reversibly binds to BMP, which 

enhances its diffusivity. This increase in diffusivity causes BMP to be shuttled from the 

dorsal to the ventral side (Ben-Zvi et al., 2008). However, we do not detect any increase in 

the diffusion coefficient of Bmp2b when it is co-expressed with Chordin (Appx. 1, Figure 

4E), undermining one of the key predictions of the ‘Shuttling model’. Moreover, when we 

transplanted a fluorescent BMP source juxtaposed with a Chordin source, we found that the 

BMP gradient was not altered by the presence of Chordin (Appx. 1, Figure 5). Hence, we 

conclude that the shuttling model is not applicable for zebrafish. The ‘self-regulating 

reaction-diffusion system’ model relies on Sizzled having a much higher diffusion coefficient 

than BMP or Chordin (François et al., 2009), but our FRAP results show that the diffusion 

coefficient of Sizzled is too slow to fit this model (Appx. 1, Figure 4E). As for the ‘long-

range accumulation and feedback’ model, our FDAP measurements do not detect significant 

differences between BMP and Chordin protein stability (Appx. 1, Figure 4A+B), 

contradicting the core assumptions of that model (Inomata et al., 2013). In our transplantation 

experiments using a BMP source, we found that BMP is secreted and capable of generating a 
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gradient around its source cell (Appx. 1, Figure 3). This refutes the ‘graded source-sink with 

immobile BMP’ model, which posits an immobile BMP. Thus, the ‘graded source-sink with 

mobile BMP’, which describes a system in which diffusive BMP (which is secreted from a 

ventrally biased ‘source’) is inhibited by an similarly diffusive Chordin (secreted from a 

dorsal ‘sink’) to generate the BMP signaling gradient, is the sole remaining model that fits the 

biophysical data from our experiments (Figure 8).  

Another additional observation that chordin mutants can be rescued by homogeneous 

expression of Chordin throughout the whole embryo by mRNA injection (Schulte-Merker et 

al., 1997), and a similar rescue of BMP mutant embryos by homogeneous expression of BMP 

(Appx. 1, Figure 3C) also supports the ‘graded source-sink with mobile BMP’ model. Since 

Chordin acts as an inhibitor of BMP signaling instead of a shuttle, a homogenous production 

of Chordin at a specific concentration can ensure that the resulting pSmad5 gradient is 

correctly formed by globally suppressing BMP signaling as long as BMP is present in a 

graded source. The inverse is also true for the rescue of BMP mutants, although in this case, 

it is the graded Chordin source which sculpts the resulting pSmad5 gradient by selectively 

inhibiting it on the dorsal side. However, we observed that rescue requires specific 

concentrations of BMP or Chordin. Hence, the ‘source-sink’ system can be seen as a way to 

make the system more robust to developmental noise by imposing a self-regulatory system 

that balances between BMP and Chordin.  

 

Figure 8: Graded source-sink model of BMP and Chordin interaction. In this model, BMP and 
Chordin are secreted and diffuse from graded sources at the ventral and dorsal side respectively. 
Chordin acts as a ‘sink’ which suppresses BMP activity at the dorsal side, causing pSmad5 activity to 
be restricted to the ventral side. 
 

However, this model is still incomplete. For instance, it has been reported that there is BMP 

expression at the dorsal side which regulates the expression of Chordin (Xue et al., 2014). 

The authors report pSmad5 activity in the dorsal side, which we do not observe. This model 

also does not include other molecules known to regulate BMP activity, such as Sizzled and 
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Tolloid (Blader et al., 1997; Muraoka et al., 2006). Moreover, it does not account for the 

presence of ADMP, which is known to be critical in dorso-ventral patterning in Xenopus 

frogs (François et al., 2009) but its role in zebrafish is poorly understood with only a few 

publications on it so far (Dickmeis et al., 2001; Lele et al., 2001; Willot et al., 2002; Yan et 

al., 2019). Another aspect that is still lacking in the model is that it is cannot explain the 

phenomenon of scaling, whereby the embryo can develop normally even if its size is 

experimentally reduced. The other models, such as ‘shuttling model’, the ‘self-regulating 

reaction-diffusion model’ and the ‘long range accumulation and feedback model’ became 

attractive because they account for scaling (Ben-Zvi et al., 2008; François et al., 2009; 

Inomata et al., 2013). Although theoretical possibilities for scaling in such a system exists 

(Howard and ten Wolde, 2005; McHale et al., 2006), more work needs to be done to see if 

they fit experimental observations. 

5.6 Nodal and BMP signal at different ranges due to differences in their 

signaling activity 

With the biophysical properties of BMP and Nodal measured (Müller et al., 2012; Pomreinke 

et al., 2017), and models for how they interact with their inhibitor established (Müller et al., 

2012; Pomreinke et al., 2017; van Boxtel et al., 2015), I decided to direct my focus to how 

they signal and interact with each other. Earlier results have shown that ectopic expression of 

different ratios of Nodal and BMP can generate various ectopic structures (Fauny et al., 2009), 

and juxtaposed sources of Nodal and BMP can induce the formation of a secondary axis (Xu 

et al., 2014). Thus, it is apparent that Nodal and BMP are sufficient to trigger the formation 

of an embryonic axis. We see this phenomenon of secondary axis formation by ectopic 

sources as an experimentally tractable model system to study Nodal and BMP signaling 

because it allows us to use ectopic gradients that mimic something that is physiologically 

relevant, namely axis induction. This frees us from relying solely on endogenous gradients 

which are challenging to study due to the difficulty in making fluorescent knock-ins, or 

controlling the timing and intensity of their gradients. 

 

With my functional fluorescent Nodal and BMP constructs, I can create gradients that I can 

measure. With my protocol that allows us to detect both pSmad2 and pSmad5, I can directly 

measure the primary signaling output of Nodal and BMP, respectively. Hence, this model 

system allows us to directly study the signaling input-output relationships of Nodal and BMP 



34 
 

signaling and understand how they are integrated to form an embryo. Using my 

transplantation device, I transplanted fluorescent sources of Nodal and BMP and successfully 

used them to generate secondary axes in the host embryos. I was able to measure both the 

fluorescent gradient as well as the resulting pSmad signals, and I found that the Nodal source 

generates a localized, short range pSmad2 gradient, which is overlaid by an extensive 

pSmad5 gradient generated by the BMP source (Appx. 5, Figure 1B+C). This starkly 

contrasts with the protein gradients of Nodal and BMP emanating from respective sources, 

which we observe to be of similar range (Appx. 5, Figure 1B+C).  

 

In order to relate the ligand gradients to the signaling ranges, I developed a method to 

quantify the absolute concentrations of the ectopic Nodal and BMP gradients based on their 

fluorescence intensities (Appx. 5, Supp. Figure 4). I purified recombinant sfGFP and mVenus 

proteins and generated calibration curves on the microscope, which allowed me convert the 

detected fluorescence intensities to their molar concentrations. I then used these calibration 

curves to determine the molar concentrations of the gradients of fluorescently-tagged Nodal 

and BMP expressed from local sources in zebrafish embryos. This allowed me to compare 

the ligand concentrations of the Nodal and BMP gradients. In doing so, I discovered that the 

difference in their pSmad ranges, with Nodal having a short pSmad2 range and BMP having 

a long pSmad5 range, occurs even though their gradients are of similar range, shape and 

amplitude.  

 

I therefore hypothesized that the different signaling ranges from similar input gradients might 

be due to differences in their signaling activation kinetics. According to the law of mass 

action and Hill kinetics, signals with higher sensitivity can induce activation faster – leading 

to a longer signaling range, whereas signals with low sensitivity would require extended 

exposure until activation is induced in a threshold-type manner – leading to a shorter 

signaling range (Michaelis et al., 2011). We developed a mathematical model based on Hill 

kinetics and showed that the value of the pSmad activation term (which combines the 

activation kinetics of the morphogen for their receptors as well as the pSmad activation rate 

of said receptors) can control the signaling range of the morphogen (Appx. 5, Figure 3B).  

 

To test this idea, I took advantage of the recent discovery that a single source of mouse 

BMP4 can generate a secondary zebrafish axis (de Olivera-Melo et al., 2018), which 

suggested the possibility that mouse BMP4 might carry both BMP and Nodal signaling 
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activities. I transplanted clones expressing mouse BMP4 into zebrafish embryos and found 

that they do indeed induce both pSmad2 and pSmad5 (Appx. 5, Figure 3C). Strikingly, mouse 

BMP4 clones induce pSmad2 at a short range, while inducing pSmad5 at a long range, 

supporting my model that the exact same gradient can induce effector activation at different 

ranges solely due to differences in signaling activity.  

 

If this is indeed the case for Nodal and BMP, then BMP with its high signaling activity 

should be limited by its diffusion coefficient, whereas Nodal, with lower signaling activity, 

should be limited by its signaling activity rather than its diffusivity. To test this, I perturbed 

the protein distributions of Nodal and BMP using morphotraps, transmembrane proteins with 

anti-GFP nanobodies on the extracellular side that can drastically reduce the diffusivity of 

extracellular proteins tagged with GFP derivatives (Almuedo-Castillo et al., 2018; Harmansa 

et al., 2017; Mörsdorf and Müller, 2019), and found that BMP signaling range is drastically 

reduced, while the signaling range of Nodal is mildly reduced (Appx. 5, Figure 3G). 

Therefore, differences in signaling kinetics can be considered as an additional knob to tune 

the signaling ranges of morphogens (Figure 9), in addition to differences in diffusivity and 

clearance (Rogers and Müller, 2019), and may play a role in restricting Nodal signaling to the 

margin. Hence, future studies on morphogens have to take their signaling activity into 

account as well. 

 
Figure 9: Differential signaling activation kinetics allows Nodal and BMP to have different 
signaling ranges. The slow activation kinetics of Nodal cause it to generate a shorter pSmad2 
gradient, while the fast activation kinetics of BMP cause it to make a broad pSmad5 gradient, even 
when they have protein gradients of similar ranges. 
 

Interestingly, a similar difference in signaling dynamics was also found between exogenously 

added ACTIVIN and BMP4 in micropatterned colonies of mouse embryonic stem cells. 

ACTIVIN initially activates SMAD2 rapidly but also decreases quickly and is maintained at 
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a low level, while BMP4 activates SMAD1 slowly but increases over time and is maintained 

at a high level (Yoney et al., 2018). Like in the case for Nodal and BMP in zebrafish, this 

leads to ACTIVIN having a longer range compared to BMP4 when added to mouse embryoid 

bodies. Hence, it may be a general principle for ligands which rapidly activate their effector 

to have a longer range while ligands which slowly activate their effector to have a shorter 

range. 

 

Another interesting observation we made is that the progression and shape of the Nodal and 

BMP gradients (Appx. 5, Figure 2G+H) differ from the pSmad2 and pSmad5 gradients 

(Appx. 5, Figure 2C+F), respectively. For Nodal signaling, I notice that pSmad2 peaks just as 

the Nodal protein gradient declines. As for BMP, pSmad5 signal starts off high but starts 

declining after 1 hour even though the BMP gradient stays constant. The decrease in pSmad5 

intensity was also observed in chordin morphants, arguing against Chordin being responsible 

for this decline (Blader et al., 1997; Fisher and Halpern, 1999; Schulte-Merker et al., 1997). 

Hence, other Chordin-independent BMP feedback inhibitors such as Bambia or Smad7 might 

be responsible for this downregulation of BMP signaling over time (Pogoda and Meyer, 2002; 

Tsang et al., 2000). However, it is also possible that this could be due to internalization and 

degradation of BMP receptors or the action of an unknown phosphatase induced by BMP 

signaling (Alborzinia et al., 2013; Bruce and Sapkota, 2012). Such deviation of the protein 

gradient from the activity gradient was also observed for the BMP homolog Dpp in the 

Drosophila wing disc (Teleman and Cohen, 2000). Hence, these results caution that a 

signaling gradient at a particular moment need not directly correspond to the current protein 

gradient. Future experiments involving fluorescent morphogen knock-ins will have to take 

into account the possible discrepancy between ligand distribution and signaling response.  

5.7 Nodal and BMP are capable of signaling directly 

With this model system established, I directed my attention to resolving the current 

controversy on whether Nodal and BMP signal directly or through a relay mechanism (Chen 

and Schier, 2001; Müller et al., 2012; Pomreinke et al., 2017; Ramel and Hill, 2013; Rogers 

and Müller, 2019; van Boxtel et al., 2015; Zinski et al., 2017). Earlier results utilized 

mesodermal gene induction as a readout of Nodal signaling in order to show that Nodal 

diffuses and can signal directly at a distance (Chen and Schier, 2001). This result has recently 

been called into question by findings that show that the mesoderm-inducing activity of Nodal 
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is in part due to a relay mechanism involving FGF (Mathieu et al., 2004) and the observation 

that Nodal signaling is restricted to areas of Nodal mRNA expression in embryos, which is 

indicative of it being spread through a relay mechanism (van Boxtel et al., 2015). Similarly, 

BMP signaling is observed to be restricted to where BMP mRNA is expressed (van Boxtel et 

al., 2015), and studies analyzing BMP signaling from an ectopic source have not been done. 

Since I have the ability to image the immediate signaling output of Nodal and BMP, I can 

settle this issue by looking at the pSmad gradients directly.  

 

I used my transplantation device to generate localized sources of fluorescently-tagged Nodal 

and BMP in MZsqt;cyc (lacks functional Nodal) and MZswr (lacks functional BMP) mutants 

respectively, which allowed me to test the possibility of a signaling relay. I discovered that 

both Nodal and BMP can directly activate their respective Smads at a distance, supporting the 

idea that they can function as morphogens (Appx. 5, Figure 2B+E). This contradicts the other 

finding that they signal through a relay and that their Smad signaling activity is located only 

in the Nodal or BMP expression domain respectively (Ramel and Hill, 2013; van Boxtel et al., 

2015). However, I believe that this contradiction can be resolved as follows. Nodal signaling 

triggers its own expression (Mathieu et al., 2004) in wildtype embryos, but this genetic circuit 

are balanced by the short signaling range of Nodal in a way that cause Nodal signaling to 

appear restricted to areas of Nodal expression as if Nodal does not diffuse; if Nodal signaling 

had higher signaling affinity instead, we would see Nodal signaling appearing outside areas 

of Nodal expression in wildtype embryos. For BMP, my rescue of MZswr mutants with a 

BMP transplant (Appx. 5, Figure 2A) shows that an isotropic BMP protein gradient can form 

a normal embryo. This means that the dorsally secreted BMP inhibitors are sufficient to 

shape the pSmad5 gradient without need for a graded expression of BMP. Thus, the graded 

expression of BMP is perhaps a means of ensuring developmental robustness and is not 

strictly essential. A similar effect is seen where a graded expression of Lefty can be 

compensated by using a specific concentration of a Nodal inhibiting drug (Rogers et al., 

2017), and where chordin mutants can be rescued with a specific amount of uniformly 

expressed chordin mRNA (Schulte-Merker et al., 1997). This also supports our earlier results 

on the ‘source-sink model’ of BMP signaling, which shows that the shape of BMP expression 

profile contributes to the shape of the pSmad5 gradient, but its shape ultimately depends on 

its interaction with the Chordin ‘sink’. Therefore, despite Nodal and BMP appearing to be 

non-diffusive as their signaling is found where they are produced, when they are tested in an 
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isolated manner via an ectopic source in mutants, we see that are intrinsically able to diffuse 

and signal directly at a distance. 

5.8 Nodal and BMP selectively antagonize each other via Smads 

The use of this model system also revealed that the double transplants generate a region of 

highly localized pSmad2 activity overlaid on a broad distribution of pSmad5 activity. To test 

whether the observed region of mixed pSmad2 and pSmad5 activity is responsible for 

secondary axis induction, I generated embryos in which I activated specific ratios of Smads 

in a localized region independently of Nodal and BMP using constitutively active Smads. The 

constitutively active Smad2 (Smad2-CA) and Smad5 (Smad5-CA) were made by exchanging 

their three C-terminal serines with aspartates, and they were expressed in a localized region 

in the embryo to observe their effects (Appx. 5, Figure 4A). In doing so, I found that these 

constitutively active Smads do indeed generate different ectopic structures when expressed in 

different ratios (Appx. 5, Figure 4B–F). Injecting smad2-CA mRNA alone generated an 

ectopic trunk structure containing axial tissues, while injecting smad2-CA mRNA mixed with 

increasing amounts of smad5-CA mRNA induces more ventral structures. Using smad2-CA 

mRNA and smad5-CA mRNA in a 1:1 ratio led to structures with ectopic hindbrains and in 

some cases led to a secondary axis, while a four-fold excess of smad5-CA mRNA over 

smad2-CA mRNA generates ectopic tails. These ectopic structures can be generated even 

when the Nodal and BMP receptors are inhibited, indicating that they do not need any further 

auto-inductive signal relay through Nodal or BMP. 

 

The fact that varying amounts of ectopically-expressed, constitutively active Smads can 

generate ectopic structures is an intriguing discovery that builds on previous work where 

ectopic expression of different amounts of Nodal and BMP generates different ectopic 

structures (Fauny et al., 2009). This shows that varying ratios of Smads are the main 

molecular factors that relay the inductive capabilities of Nodal and BMP. The inductive 

properties of various ratios of constitutively active Smads also highlight an intriguing 

possibility; just like the Yamanaka factors can be used to convert differentiated cells into 

pluripotent cells (Takahashi and Yamanaka, 2006), it could also be possible to use specific 

ratios of these two Smads to induce morphogenesis of pluripotent cells and specify them into 

the desired embryonic structures. This directed differentiation of stem cells could play a key 

role in regenerative medicine. 
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In the zebrafish embryo, Nodal and BMP (and consequently pSmad2 and pSmad5) are 

generated in an overlapping and orthogonal manner (Appx. 5, Figure 5A). Hence, there are 

regions where pSmad2 is present, regions where pSmad5 is present, regions where both 

pSmad2 and pSmad5 is present, regions where neither is present, and regions where either 

pSmad2 or pSmad5 is present but without the other. Therefore, there has to be a mechanism 

for cells to respond differently to different ratios of pSmad2 and pSmad5 as we observed that 

different embryonic structures can be generated by the differing ratios. We know that certain 

Nodal target genes are only found in regions without BMP signaling, and likewise for BMP 

target genes. For instance, gsc is induced by Nodal signaling (Bennett et al., 2007; Gritsman 

et al., 1999) but only expressed at the dorsal margin (despite pSmad2 activity being found in 

the entire margin), suggesting that it is induced by high pSmad2 and low pSmad5 levels; 

foxi1 is a BMP target gene and an epidermal marker that is expressed on the ventral side but 

is excluded from the ventral margin (Hans et al., 2007) (despite pSmad5 signaling also being 

present in the ventral margin), suggesting that is induced by high pSmad5 and low pSmad2 

levels. We also know that eve1 is expressed in the ventral margin (where both pSmad2 and 

pSmad5 are active) and is a marker for ventral mesoderm (Joly et al., 1993), suggesting that it 

is induced by both high pSmad2 and high pSmad5 levels. Knowing how these genes are 

selectively induced by different ratios of Nodal and BMP signaling will bring us closer to 

understanding how different embryonic structures are induced by the differing ratios of Nodal 

and BMP signaling. Therefore, in order to find out how ratio specific target gene activation 

occurs, I injected embryos with different ratios of smad2-CA and smad5-CA mRNA and 

assessed their expression with fluorescent in-situ hybridization.  

 
Figure 10: Selective mutual antagonism of pSmad2 and pSmad5  provides a mechanism that 
allows cells to express different set of genes in response to different ratios of Nodal and BMP 
signaling. The selective antagonism of Smad2 to the expression of foxi1 and Smad5 to gsc expression 
allows cells with both high Smad2 and Smad5 to express eve1 without expressing foxi1 or gsc. The 
arrows showing activation or inhibition are an abstraction, and the underlying mechanisms may be 
direct or indirect.  
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Interestingly, I found that Smad2-CA and Smad5-CA selectively antagonize each other for 

the induction of gsc and foxi1, whereas eve1 showed a biphasic sensitivity to these signaling 

effectors (Figure 10). Smad2-dependent gsc expression was suppressed when high levels of 

Smad5-CA co-expressed with high levels of Smad2-CA (Appx. 5, Figure 5B), and Smad5-

dependent foxi1 expression was inhibited by high Smad2-CA levels when co-expressed with 

high Smad5-CA (Appx. 5, Figure 5C). Strikingly, eve1 was induced synergistically when 

both Smad2-CA and Smad5-CA are present, and is highest at a moderate amount of Smad2-

CA expression (Appx. 5, Figure 5D). In contrast, high amounts of Smad2-CA led to reduced 

eve1 expression, consistent with the absence of dorsal eve1 expression (Joly et al., 1993) 

where Nodal signaling is the strongest and active over a longer period of time (Dubrulle et al., 

2015; van Boxtel et al., 2018). These results suggest that Smad2 and Smad5 can selectively 

antagonize each other for certain genes, which acting synergistically for others, providing a 

molecular mechanism that allow cells to respond specifically to different ratios of Nodal and 

BMP signaling. 

 

Similar cases of mutual antagonism also exist in other morphogen pairs, such as the Bicoid 

and Caudal system (Briscoe and Small, 2015). However, their mutual antagonism is not 

selective, since Bicoid represses Caudal translation via direct binding to caudal mRNA 

(Niessing et al., 2002). I believe that this selective antagonism is needed because Nodal and 

BMP form overlapping orthogonal gradients (Rogers and Müller, 2019) instead of 

antiparallel gradients like that of Bicoid and Caudal. The overlapping nature of the Nodal and 

BMP gradients will therefore lead to an area having both high pSmad2 and pSmad5 activity, 

as well as areas with either high pSmad2 or high pSmad5 alone. However, cells in areas with 

high pSmad2 alone, or high pSmad5 alone do not have the same cell fates as in areas with 

both high pSmad2 and high pSmad5. Therefore, this mechanism of selective antagonism not 

only allows the cells to sense the ratio of Nodal and BMP, but can also work when these 

gradients overlap. This mechanism, due to its straightforward implementation, may also be a 

general mechanism in play in the case of other overlapping gradients.  
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6. Conclusion and Outlook 
In this dissertation, I sought to further our understanding of morphogens and their role in 

embryonic development by studying the behavior of Nodal and BMP in zebrafish. Currently, 

the means by which morphogens spread (by diffusion or other means) and signal (directly or 

by relay) is still controversial. To solve this, I developed several tools and protocols: a 

transplantation device, an in vitro FRAP assay, a double pSmad immunostaining protocol, 

and a streamlined pipeline for cartographic projections of Smad immunostains in zebrafish 

embryos. I then applied them to the study of Nodal and BMP, and provided evidence that 

both Nodal and BMP can diffuse to form a gradient, and that they both can signal directly at a 

distance. I also measured the diffusion coefficients of BMP and its inhibitor, Chordin, and 

with the help of mathematical modelling by the other contributing author Patrick Müller, 

showed that a source-sink mechanism best explains how Chordin interacts with BMP to 

generate the pSmad5 gradient. I additionally showed that Nodal has slower activation kinetics 

than BMP. The slow activation kinetics may help explain why Nodal activity is restricted in a 

short range around the margin, while BMP activity spreads out halfway across the embryo. I 

further show that the direct Nodal and BMP effectors, pSmad2 and pSmad5, can induce 

various ectopic structures when ectopically expressed, and that pSmad2 and pSmad5 

selectively antagonize each other for certain genes but not for others. This provides an 

elegant explanation for how overlapping Nodal and BMP gradients can generate different cell 

fates and brings us closer to understanding how combined Nodal and BMP signaling interact 

with each other to generate an embryonic axis. 

These results provide strong evidence that Nodal and BMP can function as morphogens, with 

diffusion playing the main role in the formation of their signaling gradients, and the 

activation kinetics of their effectors playing an added role in regulating signaling range. 

However, I am certain that this will not be the last word as more information may be 

uncovered in the future. For the next few steps ahead, I believe that the generation of 

transgenic knock-in lines is one of the key experiments to be carried out. With endogenously 

expressed fluorescent Nodal and BMP, we will be able to use fluorescence microscopy to 

directly quantify the protein gradients as they form, as well as use the morphotrap to perturb 

these endogenous gradients. This would allow us to test whether that what we measure for the 

ectopic gradients is also true for the endogenous case. Currently, there has been an expansion 

of new transgenic knock-ins due to the discovery of the Clustered, Regularly Interspaced, 
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Short Palindromic Repeat (CRISPR)/CRISPR-associated 9 (Cas9) system which simplifies 

the process compared to earlier approaches with transcription activator-like effector nucleases 

(TALEN) and zinc finger nucleases (Doyon et al., 2008; Hruscha et al., 2013; Zu et al., 2013). 

However, the method is still somewhat inefficient for zebrafish, but an effective protocol may 

eventually be developed in the future.  

Another important task for future research is to unravel the mechanism that allows pSmad2 

and pSmad5 to selectively inhibit each other for certain cell fates and to utilize the ability of 

different ratios of Smad2-CA and Smad5-CA to generate different embryonic structures in 

vitro. Currently, it is still unclear if the interaction between pSmad2 and pSmad5 is direct. 

Hence, experiments such as chromatin-immunoprecipitation-sequencing are required to 

identify the transcription factors behind this selective inhibition. As for the inductive 

properties of Smad2-CA and Smad5-CA, it would be interesting to test them out on embryos 

or embryonic stem cells of different species to test if they work in other contexts as well. 

Success in this endeavor would surely enhance our ability to generate the desired tissue types 

on demand and may have positive implications for regenerative medicine. With all of these 

possibilities, I am certain that there will be plenty more excitement to come in the field of 

developmental biology. 
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