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Abbreviations 

aDNA   ancient DNA 

ANE   Ancient North Eurasian 

bp   base pairs 

BP   before present 

C   cytosine 

CWC   Corded Ware Complex 

DNA   deoxyribonucleic acid 

LGM   last glacial maximum 

MALT   MEGAN Alignment Tool 

mtDNA  mitochondrial DNA 

nDNA   nuclear DNA 

NGS   Next-Generation Sequencing 

PCR   Polymerase Chain Reaction 

PEC   Primer Extension Capture 

POPRES  Population Reference Sample 

qPCR   quantitative PCR 

RNA   ribonucleic acid 

SNP   Single Nucleotide Polymorphism 

T   thymine 

UDG   Uracil DNA glycosylase 

UV   ultraviolet  
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Summary 

Research on aDNA from human remains provides great opportunities to 

study past populations regarding their genetic history and processes that shaped 

modern-day populations, such as migration and admixture. In this dissertation, I 

further improved specific techniques for aDNA analysis, such as specific target 

enrichment and authentication of the retrieved sequences, and used these improved 

methods to investigate the population history of modern-day Switzerland. 

In the first study, I address issues in estimating contamination which 

represents a major problem in aDNA research. Although the level of contaminating 

DNA in the mtDNA can easily be assessed it might not be representative in case of 

extreme excess of mtDNA compared to nDNA. In this study, it is shown that the ratio 

between mitochondrial to nuclear DNA is the smallest in petrous bones, meaning 

that they contain more nuclear DNA in relation to the mitochondrial DNA and that 

this causes the mitochondrial and nuclear contamination rates to be most similar.  

In the second paper, I compare different methods for specific target 

enrichment to determine the most efficient one. I use statistics to compare their 

performance regarding the DNA yield, their specificity and their reproducibility. 

Results indicate that the commercial myBaits® kit utilising RNA baits is the most 

suitable for the work on aDNA and that in-solution approaches are advantageous. 

The third paper focuses on the genetic history of past human populations 

from present-day Switzerland and surrounding regions such as Southern Germany 

and the Alsace. The temporal focus is on the genetic transitions detected in the 5th 

millennium BP. The main aspects of the study are ancestry components, admixture 

dates and social structure. In this study, results show that a steppe-like ancestry 

component arrives in Switzerland in around 4700 BP and that the relative amount 

decreases after a sudden steep increase. Furthermore, it was possible to identify 

female individuals with relatively young radiocarbon dates but with zero steppe 

ancestry who were likely causing this decline.  
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Zusammenfassung 

Untersuchungen an aDNA menschlicher Überreste bieten vielfältige 

Möglichkeiten, vergangene Population hinsichtlich ihrer genetischen Geschichte und 

der Prozesse, die heutige Populationen formten, wie Migration und Admixture, zu 

erforschen. In dieser Dissertation habe ich spezifische Techniken zur aDNA-Analyse 

und Authentifizierung der aus Überresten gewonnen Sequenzen weiter verbessert 

und die daraus gewonnenen Erkenntnisse zur genetischen Untersuchung der 

Bevölkerungsgeschichte der heutigen Schweiz verwendet. 

Der erste Artikel beschäftigt sich mit Problemen bei der Bestimmung der 

Kontamination, die ein Hauptproblem in der aDNA-Forschung darstellt. Obwohl der 

Gehalt an kontaminierender DNA in der mtDNA leicht beurteilt werden kann, ist er 

im Falle eines extremen Überschusses an mtDNA im Vergleich zu nDNA 

möglicherweise nicht repräsentativ. In dieser Studie konnte gezeigt werden, dass das 

Verhältnis zwischen mitochondrialer zu Kern-DNA in Felsenbeinknochen am 

niedrigsten ist, was bedeutet, dass sie im Verhältnis zur mitochondrialen DNA mehr 

nukleare DNA enthalten und dass dies dazu führt, dass die Anteile der 

mitochondrialen und der nuklearen Kontamination am wenigsten voneinander 

abweichen. 

In der zweiten Arbeit verglich ich verschiedene Methoden zur spezifischen 

Anreicherung von Zielregionen. Ich verwendte Statistiken zum Vergleich ihrer 

Leistung hinsichtlich der DNA-Ausbeute, ihrer Spezifität und ihrer 

Reproduzierbarkeit. Die Ergebnisse zeigen, dass das kommerzielle myBaits® Kit für 

die Arbeit an aDNA am besten geeignet ist und in-solution Methoden generell von 

Vorteil sind. 

Der dritte Artikel enthält eine detaillierte Untersuchung des genetischen 

Umbruchs, der im 5. Jahrtausend vor heute festgestellt wurde. Die Studie 

konzentriert sich auf die Region der heutigen Schweiz und umliegende Regionen wie 

Süddeutschland und das Elsass. Hauptaspekte der Studie sind 

Abstammungskomponenten, Admixture Dates und die soziale Struktur der 
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Bevölkerung. In dieser Studie zeigen die Ergebnisse, dass die 

Abstammungskomponente aus der Pontischen Steppe in der Schweiz um 4700 Jahre 

vor heute ankommt und dass die relative Menge dieser Komponente nach einem 

plötzlichen steilen Anstieg abnimmt. Darüber hinaus konnten weibliche Personen 

mit relativ jungen Radiokarbondaten, ohne Steppenvorfahren identifiziert werden, 

die wahrscheinlich diesen Rückgang verursachten.  
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1. Introduction 

This dissertation concerns detailed genetic studies on Late and Final Neolithic 

human individuals from the region of present-day Switzerland. It includes 

investigations regarding methodological improvements as well as the subsequent 

examination of the human and pathogen DNA found in the archaeological remains. 

The following sections contain background information about working with aDNA 

and genetic transitions in Central Europe. 

1.1 The field of ancient DNA research 

The research field of ancient DNA delves into the genetic background of 

archaeological and palaeontological events such as human migration, animal 

domestication, past species dispersal and extinction (Hofreiter et al. 2001). It is a 

powerful tool to investigate evolutionary processes and can be applied to shed light 

on archaeological research questions and prehistoric events. 

Its beginnings go back to the 1980s, when the DNA of an extinct mammal 

belonging to the genus Equus, the quagga, was first analysed (Higuchi et al. 1984). 

Shortly after, the DNA of a human – an Egyptian mummy to be precise – was also 

reconstructed (Pääbo et al. 1985). Both studies presented rather short sequences 

retrieved via bacterial cloning. 

Similar attempts to obtain genetic information from archaeological and 

palaeontological material were then made easier by the invention of the polymerase 

chain reaction (PCR) – a method used to amplify DNA (Pääbo et al. 1989, Krause et 

al. 2010a, Hagelberg et al. 2015). This approach makes it possible to multiply even 

trace amounts of genetic material left in fossils, and numerous studies on aDNA were 

published in the decades after its invention. Hopes were high that DNA could be 

extracted from long-extinct organisms and there were even attempts to obtain DNA 

from dinosaur remains (Woodward et al. 1994). The retrieved sequences of the latter 

were, however, later shown to be human contamination (Hedges et al. 1995). 
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Intensive work on the survival of DNA after the death of an organism soon 

put an end to these illusions. Several studies showed that DNA undergoes strong 

fragmentation and chemical modification post-mortem and its survival is therefore 

limited to a maximum of one million years (Lindahl 1993, Sawyer et al. 2012, 

Allentoft et al. 2012, Dabney et al. 2013). At present the oldest authentic sequences 

originate from a Middle Pleistocene horse found in the Yukon in Canada dating to 

560 – 780 kyr BP, which was preserved under permafrost conditions (Orlando et al. 

2013). 

The next important invention that revolutionised the field of aDNA also 

allowing the abovementioned studies about DNA survival, was that of the Next-

Generation Sequencing (NGS) approach (Krause 2010a). The necessary process of 

generating sequencing libraries by the ligation of artificial adapter sequences to the 

DNA fragment ends proved to be ideal for the work with aDNA. Now, the highly 

fragmented nature of aDNA was no longer such a disadvantage and chemical 

modification could now be investigated more easily and then even be used as an 

authentication criterion. Furthermore, specific enrichment of genomic regions of 

interest was now possible. Both procedures of authentication and specific target 

enrichment are described in more detail in the following sections. 

1.2 aDNA authentication 

Soon after starting the analysis of aDNA via PCR, it was realised that this 

method was prone to false positive results and contamination (Pääbo et al. 1989). The 

characteristics of aDNA, such as high fragmentation, chemical modifications and its 

abundance in only trace amounts, constitute obstacles to this otherwise so practicable 

method, and in PCR-based approaches there is no possibility of authenticating any 

of the retrieved sequences (Krause 2010a). Therefore, a list of strict criteria was 

established in 2000 concerning how to proceed when working with aDNA, including 

the rule of replicating the experiments in independent laboratories (Cooper and 

Poinar 2000). 
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In contrast to PCR, using NGS-based approaches has certain advantages. 

First, by ligating artificial adapters to the fragment ends it is possible to obtain the 

entire fragment and not only the parts in between primer binding sites, as is the case 

in PCR-based approaches. These fragment ends are of particular importance. Because 

it has been shown that the most frequently occurring chemical modification, namely 

the deamination of cytosine, later read as uracil by polymerases causing substitutions 

of C by T, increases in frequency towards the ends of the fragments (Briggs et al. 

2007, Sawyer et al. 2012, Dabney et al. 2013). This leads to a characteristic pattern 

which can be used to determine the ancient origin of retrieved DNA sequences. The 

inspection of this pattern typical of aDNA is the first step of authentication of all 

aDNA sequences from various source organisms. A software that is widespread and 

very practicable for the visualisation of this damage pattern is mapDamage (Ginolhac 

et al. 2011). 

The second step of authentication is to determine that the sequences originate 

from one single individual only (Krause et al. 2010b). To do this, all the individual 

reads sequenced are aligned to a reference genome. Then, heterozygosity can be 

measured. The only possible regions for this procedure are the mtDNA and the X 

and Y chromosome in males, since they are the only haploid regions of the human 

genome. The first methods invented simply counted the occurrence of heterozygous 

positions on the mtDNA and the number of reads with the alternative alleles at these 

positions (Krause et al. 2010b). Soon after, more sophisticated approaches were 

developed to estimate the contamination rate using a Bayesian method (Fu et al. 

2013). Currently, the software schmutzi is widely used to determine mitochondrial 

contamination. This program not only estimates the contamination but also computes 

consensus calling. Furthermore, it uses an iterative approach considering 

deamination patterns, fragment length and a database of the worldwide distribution 

of mtDNA SNPs to separate the putative contaminating fragments from the 

endogenous ones before the consensus generation (Renaud et al. 2015), resulting in 

highly reliable reconstructions of mitochondrial genomes. 
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The amount of contamination in the nuclear DNA can also be estimated in 

male individuals, since their X and Y chromosomes are haploid as well. Estimates are 

usually performed on the X chromosome, since it is larger, and X chromosomal reads 

are contained in the contamination of both males and females. The proportion of 

contaminating reads is estimated using ANGSD (Rasmussen et al. 2011). This 

includes two steps: the first is to calculate the occurrence of the four possible alleles 

in a list of polymorphic sites which is provided with the software. In the second step, 

Fisher’s exact test is used to test whether the resulting value is significantly different 

from the ones determined from the value obtained from adjacent sites. In the same 

step, the relative amount of contamination is estimated. 

The described approach for estimating nuclear contamination rates is only 

possible for male individuals, of course. For female individuals, nuclear 

contamination cannot be estimated this way since they do not have haploid regions 

on their nuclear genome. For females, mtDNA contamination rates are often used to 

extrapolate nDNA contamination rates, or their datasets are reduced to reads 

carrying aDNA-specific damage at the fragment ends, leading to an extensive loss of 

data (Fu et al. 2016). 

1.3 Specific target enrichment for aDNA sequencing libraries 

Not only is aDNA highly fragmented and damaged, it is also only present in 

trace amounts. In modern tissue samples, approximately 1 µg per gram of tissue can 

be found. In archaeological and palaeontological samples, the amount is usually well 

over 10,000 times less than that (Higgins et al. 2015). 

Furthermore, the vast majority of the retrieved sequences are not from the 

target organism itself but originated from the environment, such as soil bacteria or 

fungi and/or flesh-decomposing microorganisms (Green et al. 2006). The proportion 

of endogenous DNA usually represents less than one per cent of this environmental 

background, which means that a large proportion of the sequenced reads is useless 

for analysis (Briggs et al. 2007, Sawyer et al. 2012, Allentoft et al. 2012). Furthermore, 
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the sample must be sequenced to a certain depth to obtain enough information from 

this one per cent. Shotgun sequencing of ancient samples to sufficient coverage is 

therefore very cost-intensive (Krause 2010a). 

Specific target enrichment strategies have been developed to circumvent this 

(Hodges et al. 2007, Burbano et al. 2010, Maricic et al. 2010, Fu et al. 2013). With 

these approaches, it is possible to increase the proportion of endogenous DNA before 

sequencing. Different procedures are possible to do this and there are some 

commercial kits available which are all based on hybridisation capture, meaning that 

artificial probes with sequences complementary to the target region are used to fish 

out the fragments of interest. These kits have not been exclusively developed for the 

research on aDNA but can also be applied in modern genetics – in the case of 

uncultivable bacteria such as Mycobacterium leprae or Treponema pallidum, for 

example. For these species, the increase of genetic material through bacterial growth 

is not possible or very difficult (Schuenemann et al. 2013, Arora et al. 2016). For the 

application on archaeological and palaeontological material, some of these 

approaches must be adapted to the specific nature of aDNA. 

First, “arrays” were used for these enrichments. On these arrays, several 

million artificial probes are printed on small glass slides. The hybridisation happens 

in the liquid between the printed glass slide and a second slide. Afterwards, the 

unbound fragments are washed away, and the specific fragments hybridised to the 

complementary probes are eluted (Hodges et al. 2007, Burbano et al. 2010). 

An in-solution hybridisation capture can be performed by cleaving the probes 

from the glass slide (Fu et al. 2013). One of the main advantages of this improvement, 

compared to the arrays, is that the probes can be transformed into a bait library, and 

are therefore immortalised and can be reused indefinitely, which highly reduces the 

costs. Furthermore, freely moving probes might also increase the enrichment 

efficiency. After the hybridisation happening in the liquid phase, the probes together 

with the sample’s bound target fragments are immobilised on magnetic beads via 

streptavidin-biotin bonds and can be washed and subsequently eluted. 
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The third widespread method, at least for aDNA from pathogens, is the in-

solution capture with RNA baits. The best known application for aDNA is the 

commercial myBaits® kit from Arbor Bioscience. In this hybridisation capture kit, 

the probes are made of RNA instead of DNA. Like the in-solution approach 

mentioned above, it involves magnetic beads to immobilise the hybridisation 

compound. This kit is available for whole genomes of a variety of organisms and for 

custom-made bait designs. 

In-solution approaches for specific targeted DNA enrichment are also used 

for applications on human samples allowing detailed investigations about the genetic 

history of past populations. 

1.4 Genetic transitions in Europe 

Investigating human history using genetic data from human remains is 

especially challenging, as modern human DNA is ubiquitous. Nevertheless, using 

the methods described above including contamination tests and enrichment 

strategies, researchers have succeeded in reconstructing various ancient human 

genomes and have investigated the genetic history of different parts of the world 

including Europe. 

Early modern humans contributing to the modern non-African populations 

appeared in Europe approximately 45,000 BP (Hublin et al. 2020). These hunter-

gatherer societies successfully inhabited Europe for several millennia and even 

persisted during the last glacial maximum (LGM). Genetic studies have shown them 

to be quite a homogeneous population over large distances (Fu et al. 2016, Mathieson 

et al. 2015). 

After this long period of hunter-gatherer tradition in Central Europe, a new 

subsistence strategy appears starting from around 8,000 BP. The humans start to 

become sedentary and cultivate crops (Whittle and Cummings 2007). For quite some 

time there was debate in the archaeological community as to whether these changes 

happened through cultural diffusion, by local people adapting new ideas or 
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technologies, for instance, or whether migration occurred and the new material 

culture was brought into Central Europe with this influx of people. Here, genetic 

investigations hold the key to answering this question. From the very start of aDNA 

research with analysis restricted to partial and complete mitochondrial genomes, it 

already became obvious that new people arrived in Central Europe carrying mtDNA 

haplogroups which had not been present in the area before (Haak et al. 2005, Haak 

et al. 2010, Brandt et al. 2013, Brotherton et al. 2013). Nuclear studies confirmed these 

findings soon after (Skoglund et al. 2012, Lazaridis et al. 2014), and it was 

furthermore possible to determine the origin of these newcomers. Starting from 

Western Anatolia, their population expanded into Central Europe and admixed with 

the hunter-gatherer groups, which had been indigenous until that point. 

Investigations of mtDNA haplogroups throughout the entire Neolithic have 

also shown that there are changes in the haplogroup composition of Central 

European populations in the 5th millennium BP (Brandt et al. 2013). This coincides 

with the emergence and spread of the Corded Ware Complex in Central Europe. With 

regard to this transition in material culture, there was also debate as to whether this 

cultural change was also associated with a transition in the population or whether 

the new cultural practices were adopted by local people. 

In 2014, genetic comparisons of modern Europeans with Neolithic Early 

Farmers – represented by one individual of the Linear Band Ware culture in Southern 

Germany – and Mesolithic Hunter-Gatherer individuals from Luxembourg and 

Sweden showed that modern-day Europeans carry not two ancestry components but 

three (Lazaridis et al. 2014). The third component, besides those derived from the 

Early Farmers from Anatolia and the Western Hunter-Gatherer, was also found in 

present-day Native Americans. Comparing this third component with ancient 

genomes published at that time, it was most closely related to one upper Palaeolithic 

Hunter-Gatherer individual from Siberia, the MA1 (Mal’ta boy, Raghavan et al. 

2014). This led to the hypothesis of an Ancient North Eurasian (ANE) metapopulation 

which contributed to both Native Americans and modern-day Europeans after the 

Neolithic (Lazaridis et al. 2014). 
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Subsequent publications showed that this third component can be found in 

Central Europe starting from the 5th millennium BP (Haak et al. 2015, Allentoft et al. 

2015). These studies showed individuals from the Yamnaya culture in the Pontic 

steppe to be of the best fitting origin. This late Copper Age and Early Bronze Age 

culture could be found in the region between the Southern Bug, Dniester and Ural 

rivers (Šišlina 2008). Their subsistence strategy was that of nomadic pastoralists. 

Genetically, these Steppe Herders were a mixture of Eastern Hunter-Gatherers with 

a close affinity to the ANE, and a population of Iranian Neolithic ancestry. This Near 

Eastern ancestry came into these Steppe Herders by Neolithic Farmers from what is 

now Iran spreading northwards into the Eurasian Steppe (Wang et al. 2019, Lazaridis 

et al. 2016). 

This genetic component formed in the Pontic steppe suddenly appears in 

Central Europe in the 5th millennium BP. Its sudden and massive appearance is 

indicated by the earliest admixed individuals associated with the Corded Ware 

Complex being genetically the closest to the Yamnaya individuals, while younger 

individuals have less affinity to the Steppe Herders (Haak et al. 2015). This extreme 

immigration appears to follow a previous population decline. This decline is 

reflected by a lack of skeletons and the demise of the mega settlements formed during 

the Neolithic. An epidemic event has been suggested to be partially responsible of 

this severe population decline, with Yersinia pestis being the causative agent. DNA of 

this bacterium was found in several Final Neolithic individuals (Rasmussen et al. 

2015, Andrades Valtuena et al. 2017). 

Besides the abovementioned population decline at the end of the Neolithic 

period, one other important aspect of these far-reaching migrations of members of 

the Yamnaya culture or their close relatives both westwards into Central Europe and 

eastwards could also be the domestication of the horse or, more precisely, the skill of 

horse-riding greatly increasing the mobility of the members of this culture (Anthony 

2007). 

With this large population turnover and therefore a large number of 

newcomers, it has been suggested that the Indo-European languages also came to 
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Central Europe around that time (Haak et al. 2015, Allentoft et al. 2015). This steppe 

hypothesis concerning the origin of the Indo-European languages was substantially 

supported by these genetic studies. Originating in Northern Iran this language form 

spread northwards into the Eurasian steppe and, at the end of the Neolithic, into 

Central Europe together with the steppe-related genetic component (Meller et al. 

2017). The Indo-European languages also left the Pontic steppe eastwards and 

reached what is now India, where genetic steppe-related ancestry can also be found 

in today’s population (Narasimhan et al. 2019). 

This language family is strongly associated with the Y chromosomal 

haplogroup R1, which is the most common haplogroup in Europe today. In Western 

Europe, the subclade R1b is most common, and in Eastern Europe, the subclade R1a 

(Myres et al. 2011, Underhill et al. 2015). 

Being located at the very centre of Central Europe, present-day Switzerland 

provides a great opportunity to study transitions in the populations caused by 

migrating people, as the region might have served as a corridor for migrating 

populations from and to Eastern, Western and Southern Europe. The region's 

topography also shows a wide range of landscapes, including some of Europe's 

highest mountains, which could also have been a barrier to human migration. This 

contrast makes this region particularly interesting for the study of human migrations 

in the past. 

1.5 The end of the Neolithic in what is now Switzerland 

At the beginning of this dissertation only four genomes were published from 

the region that forms Switzerland today. One Upper Palaeolithic Hunter-Gatherer 

from the Bichon cave (Jones et al. 2015) and three Bell Beaker individuals from the 

Dolmen of Petit-Chasseur (Olalde et al. 2018). That the numbers were that low might 

also be related to the bad bone preservation from the Neolithic to the Bronze Age as 

described in the following section. 
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Rich archaeological assemblages from the Neolithic period can be found in 

Switzerland. These findings are dominated by lakeshore and bog settlement sites, 

inner alpine sites of the Rhône valley and high mountain pass sites (Hafner et al. 

2014). Besides numerous remains of settlements, there are only a few burials to be 

found and even less that have a good skeletal preservation. These comprise 

Chamblandes-type stone cist graves and a few dolmen burials towards the end of the 

Neolithic, such as the megalithic burial sites of Oberbipp, Sion and Aesch (Hafner et 

al. 2003, Hafner et al. 2014, Siebke et al. 2018, Siebke et al. 2019). The pile dwellings 

and wetland settlements are particularly worth mentioning, with wooden parts often 

in an excellent state of preservation, providing one of the best dated 

dendrochronological records in prehistoric Europe (Hafner et al. 2003). 

Towards the end of the Neolithic, the Corded Ware Complex appears in 

Switzerland. Material associated with the Corded Ware Complex can be found 

exclusively from sites on the banks of large pre-alpine lakes. In the region of Lake 

Zurich in Eastern Switzerland and the Three Lakes Region in western Switzerland 

especially, they can be found in high numbers, with the sites on Lake Neuchâtel being 

some of the most southwestern ones in the entire Corded Ware Complex. While the 

new material culture was quickly adopted in Eastern Switzerland, the process in 

Western Switzerland took several centuries. Dendrochronological data obtained 

from wooden parts of the buildings from Corded Ware Complex settlements provide 

the opportunity for absolute dating (Suter et al. 2017). 

Unlike the numerous Neolithic and Early Bronze Age settlements, there are 

only a few graves associated with Corded Ware Complex settlements. This might be 

because the occurrence of Chamblandes-type stone cist tombs as they had been used 

in the 7th millennium BP declines around 5,800 BP, which is exactly the time when 

the number of wetland settlements on the lakeshores increase. 

A high concentration of Early Bronze Age burials is found in inner alpine 

regions (Rhône valley, Lake Thun area, foothills of the Alps) where no lakeside 

settlements from this period can be found. Probably for taphonomic reasons, there 

are no settlements in Switzerland in periods when graves were numerous, and, vice 
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versa, in periods with a high number of settlements, the corresponding burials are 

scarce due to bad preservation conditions.  
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2. Aims and Objectives 

The aim of this dissertation was to improve specific techniques widely used 

in aDNA for the retrieval of genetic material from archaeological remains and 

authentication of these retrieved sequences, and to apply these improved techniques 

to investigate the genetic history of present-day Switzerland. 

This aim was achieved with three studies, each of which completes one of the 

following subgoals: 1) improving the authentication method for data of human 

female individuals, 2) determining the most successful target-enrichment strategy for 

aDNA, and 3) using the results from 1) and 2) to investigate in detail the genetic 

transition in the 5th millennium BP in what is now Switzerland. 

In paper I, new data from diverse parts of the skeleton, such as bones, petrous 

bones and teeth, was generated and combined with data from previously published 

studies to obtain a large dataset to enable a statistics-based analysis of the 

relationship between the mitochondrial to nuclear DNA ratio and the accuracy of the 

extrapolation from mtDNA contamination to the nuclear level. 

In paper II, 30 modern and ancient samples of Mycobacterium leprae and 

Treponema pallidum were enriched using three different protocols that have been 

widely used in aDNA research. The capture experiments for each protocol were 

repeated independently to enable detailed statistical comparisons to detect the most 

efficient and specific target enrichment strategy that produces the most constant 

results. 

In paper III, skeletons of almost 100 individuals from what are now 

Switzerland, Southern Germany and the Alsace region in France dating between 

approximately 6500 BP and 2000 BP were screened for their aDNA content, and later 

enriched for human mtDNA and nDNA. The resulting sequence data was then used 

to investigate the genetic transition in the Final Neolithic with the focus on timing 

and duration, as well as the dominant social structure in the populations studied 

before and after the transition.  
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3. Methods 

Precautions for working with aDNA 

When working with ancient DNA, very specific techniques are applied. The 

degraded nature and the contamination with environmental DNA that often occurs 

make aDNA vulnerable and it must be strictly protected from further contamination 

during the laboratory workflow. Therefore, very strict measures are applied, and all 

pre-amplification work is carried out in cleanroom facilities (Knapp et al. 2012). 

Sample preparation, DNA extraction and the generation of DNA libraries were 

carried out in a pre-PCR cleanroom facility dedicated to ancient DNA work at the 

University of Tübingen. Precautions against contamination include full-body suits, 

face masks, hairnets, protective footwear and two to three pairs of gloves. All 

surfaces are routinely UV-irradiated and cleaned with a diluted solution of bleach to 

minimise DNA cross-contamination between samples. Chemicals that are not 

sensitive to UV light were UV-irradiated to remove contaminant DNA. The human 

remains were also irradiated with UV light prior to sampling in order to inactivate 

surface DNA. 

DNA extraction and generation of sequencing libraries  

Where possible, both petrous bones and teeth were sampled for all ancient 

individual studied during this dissertation. Petrous bones were chosen for the human 

DNA analysis since they have been shown to contain the highest proportions of 

endogenous DNA (Gamba et al 2014, Pinhasi et al. 2015). Teeth, on the other hand, 

were picked and analysed to detect any DNA of blood-borne pathogens. For both 

teeth and petrous bones, specific regions were chosen for sampling. For petrous 

bones, the cochlea was targeted. Teeth were cut at the cementoenamel junction, and 

dentine was sampled from the inside of the crown. 

Samples of both skeletal elements were processed with the same workflow 

for the initial screening. After sampling, DNA extraction was performed in line with 

Dabney et al. (2013), a protocol specifically designed for the extraction of very short 

DNA fragments. In this approach, the mineral matrix of the bone and teeth powder 
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is dissolved with an extraction buffer containing EDTA and the DNA is released into 

the solution. It is then bound to silica membranes in commercial DNA clean-up 

columns. In this way, the DNA can be washed with ethanol-based wash buffers and 

subsequently be eluted from the membrane. Portions of this purified DNA are then 

used to build double-stranded sequencing libraries in line with Meyer and Kircher 

(2010) by the ligation of artificial adapters to both ends of the DNA fragments. These 

libraries are then marked with a sample-specific barcode, which means that a unique 

index sequence of 8 bp is added at each end (Kircher et al. 2012). This allows the 

samples to be pooled for the sequencing. 

To preserve aDNA-specific damage patterns resulting from the deamination 

of cytosine in all amplification steps, polymerases were used which were able to read 

these deaminated cytosine bases as uracil and therefore incorporated thymine, such 

as Pfu Turbo Cx Hotstart Polymerase (Agilent Technologies). To review the success 

of library generation and the subsequent indexing PCR, qPCR was performed. 

Subsequently, the libraries were amplified to sufficient concentration for the 

sequencing, which was carried out at the Max Planck Institute for the Science of 

Human History in Jena. 

Shotgun sequencing and mtDNA enrichment 

For the initial screening, all libraries were prepared for shotgun sequencing. 

For the libraries of the petrous bones, a specific target enrichment for human 

mitochondrial DNA was also performed after a slight modification of the protocol of 

Maricic et al. (2010) as described in Furtwängler et al. (2018). The modifications 

mainly affect the generation of the baits from modern DNA. As described in the 

original version, the human mtDNA is divided into three parts and amplified via 

long-range PCR. The products are subsequently shared with ultrasound. The 

resulting fragments are then transformed into a bait library by adding artificial 

adapters similar in sequence to the adapter used in Fu et al. (2013) to the fragment 

ends. The hybridisation is performed prior to the binding of the baits to the magnetic 

beads. After binding the hybridisation compounds to the beads via streptavidin-

biotin bonds and washing them, the enriched fragments are used for amplification 
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without prior elution from the baits to minimise the loss of sequences. The 

performance of these modifications was compared empirically to the version of 

Maricic et al. (2010), and the results were comparable in terms of DNA yield and 

enrichment efficiency. Applied to organisms other than humans, such as uncultivable 

bacteria like Mycobacterium leprae, where the supply of modern DNA extracts for bait 

generation is limited, the generation of immortalised bait libraries enables indefinite 

use.  

Extracts that tested positive for relatively high amounts of endogenous 

human DNA, high frequencies of typical aDNA damage, completely reconstructed 

mitochondrial genomes and low levels of mtDNA contamination were made into two 

additional libraries including treatment with UDG (Rohland et al 2015) to remove 

the damage from inside the fragments while preserving the terminal C to T 

substitutions. 

Genome-wide enrichment for pathogen DNA 

For a detailed comparison of the methods for the enrichment for pathogen 

DNA, existing libraries of samples that tested positively for Mycobacterium leprae and 

Treponema pallidum were amplified and captured with array capture, in-solution 

capture with immortalised DNA bait libraries originally cleaved from arrays, and the 

myBaits® kit involving RNA baits. All capture experiments were performed with 

three independent replicates. The in-solution capture with probes derived from 

arrays was performed at the MPI in Jena. The first replicate of myBaits® capture was 

conducted at the post-amplification aDNA laboratory at Kiel University, while array 

capture and the two subsequent replicates of the myBaits® capture were done in the 

post-amplification laboratory in Tübingen. 

Genome-wide enrichment for human DNA 

The initial library with non-UDG treatment and the two additional libraries 

with partial UDG treatment of the Neolithic individuals in paper III were then used 

for genome-wide capture at the University of Tübingen. For this enrichment, 1.2 

million SNPs across the entire human genome are selected (Patterson et al. 2012). 
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The procedure of this in-solution capture is described in Fu et al. (2013). This capture 

method utilises probes originally cleaved from Agilent arrays which were 

subsequently transformed into a bait library. The enriched libraries were sent to the 

MPI in Jena for sequencing. 

Raw data processing 

The raw data from sequencing was processed with the GUI-based EAGER 

pipeline (Peltzer et al. 2016). The EAGER pipeline was used in all publications 

presented regarding the pre-processing of the reads (Peltzer et al. 2016), including 

mapping with BWA (Li & Durbin, 2009), duplicate removal with DeDup (Peltzer et 

al. 2016) and generation of damage plots with mapDamage (Ginolhac et al. 2011). 

The only exception is that a newer version of EAGER was used in paper II, based on 

nextflow programming (https://github.com/nf-core/eager, Fellows-Yates et al. 2020). 

Analyses specific to the individual studies are described in the respective 

supplementary information in the Appendix.  

https://github.com/nf-core/eager
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4. Results 

4.1 New strategy in authenticating genomic DNA from ancient female 

individuals 

1. Furtwängler, A., Reiter E., Neumann G.U., Siebke I., Steuri N., Hafner A., Lösch S., 

Anthes N., Schuenemann V.J., Krause J. "Ratio of mitochondrial to nuclear DNA 

affects contamination estimates in ancient DNA analysis." Scientific reports 8.1 (2018): 

14075. 

 

Synopsis 

Paper I presents a statistical analysis of the differences in the ratio of 

mitochondrial to nuclear DNA in diverse tissues typically used for ancient DNA 

retrieval. Furthermore, the impact of these differences on the contamination 

estimates is investigated. The aim of this statistical comparison was to find a strategy 

for evaluating the validity of the extrapolation from mitochondrial contamination 

estimates to the nuclear genome in female individuals where the estimation of X 

chromosomal contamination is not possible. 

To achieve this, the ratio between mtDNA and nDNA was analysed in 317 

samples. To obtain a dataset of this size, new data was generated and combined with 

data from previous publications. The results were that the ratio of mitochondrial to 

nuclear DNA was the smallest in petrous bones, meaning that these contain large 

amounts of nuclear DNA relative to their mtDNA content. The ratio was significantly 

larger in teeth and other bony skeletal parts than in the petrous bones. 

A comparison of the mitochondrial DNA contamination estimates and the 

contamination estimates derived from X chromosomes in the samples from male 

individuals showed that the values of the estimates were the most similar in cases 

where the ratio was small. Therefore, large amounts of nDNA relative to mtDNA 

make the extrapolation from mtDNA contamination estimates to nDNA more 

reliable. The main conclusion of the paper, therefore, was that in order to use the 
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mtDNA contamination estimates from female individuals as the sole authentication 

criterion besides damage patterns, the mtDNA to nDNA ratio should be taken into 

consideration. 

4.2 Identification of the best method for target enrichment in ancient 

DNA  

2. Furtwängler A., Neukamm J., Böhme L., Reiter E., Vollstedt M., Arora N., Singh P, 

Cole S.T., Knauf S., Calvignac-Spencer S., Krause-Kyora B., Krause J., Schuenemann 

V.J., Herbig A. “Comparison of target enrichment strategies for ancient pathogen DNA” 

Manuscript 

 

Synopsis 

Paper II presents a detailed statistical analysis of three different methods for 

the specific target enrichment of ancient pathogen DNA. A comparison was made of 

array capture, enrichment with DNA probes cleaved from arrays, and the myBaits® 

kit utilising RNA probes from Arbor Biosciences. For this purpose, existing libraries 

of published studies on ancient and modern DNA from Mycobacterium leprae and 

Treponema pallidum were captured with these three different enrichment protocols in 

three independent replicates. The resulting dataset enabled statistical analysis 

regarding DNA yield, specificity and reproducibility. 

The DNA yield – the efficiency of the enrichment – was assessed by 

comparing features such as mean coverage, enrichment factor and the percentage of 

the genome covered at least fivefold. The commercial myBaits® kit with two 

repetitions of the hybridisation shows good performance in these features for ancient 

and modern samples of both M. leprae and T. pallidum. In most cases, the myBaits® 

kit with two repetitions also shows the highest percentage of M. leprae and T. pallidum 

reads when compared to general mycobacterial and treponemal reads and therefore 

the highest specificity. Values of the percentage of specific reads were in average 1.5 

times higher than in the other methods. For the reproducibility of the capture 

performance, a high throughput approach with robot assistance and little manual 
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handling seems to be advantageous as performed for the in-solution capture with 

DNA probes derived from arrays resulting in the least differences between 

independent replicates. 

Overall, the myBaits® kit with two rounds of hybridisation can be 

recommended due to the high DNA yield and high specificity for the work with 

ancient pathogen DNA. Besides its good performance, its major disadvantages are 

higher costs especially in case of large numbers of samples that need to be enriched. 

In these cases, the in-solution capture with DNA baits can be recommended. 

4.3 Population genetics analysis of Late and Final Neolithic individuals 

from what is now Switzerland 

 

3. Furtwängler A., Rohrlach A.B., Lamnidis T.C., Papac L., Neumann G.U., Siebke I., 

Reiter E., Steuri N., Hald J., Denaire A., Schnitzler B., Wahl J., Ramstein M.,  

Schuenemann V.J., Stockhammer P.W., Hafner A., Lösch S., Haak W., Schiffels S., 

Krause J. “Ancient genomes reveal social and genetic structure of Late Neolithic 

Switzerland.” Nature Communications (2020) 

 

Synopsis 

Paper III is about a detailed population genetic analysis of Neolithic and Early 

Bronze Age individuals from what is now Switzerland. The focus of these analyses 

is the genetic turnover in the Central European population around 4,700 BP. To 

supplement the picture, samples from the Hegau region in Southern Germany and 

the Alsace region in France were also included. 

This genetic turnover can be observed throughout Europe at relatively similar 

times. It is marked by the arrival of an additional ancestry component from the Pontic 

steppe, which can be found in almost all present-day Europeans in addition to 

components of the Western Hunter-Gatherer and Early Farmers from Western 

Anatolia. Large population genetics studies have investigated this turnover in areas 
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like the Iberian Peninsula or the British Isles, while initial studies provided data for 

regions such as the Middle Elbe-Saale region in Eastern Germany. In this dissertation, 

we therefore present data for a region connecting these different points to complete 

the picture. 

Furthermore, through a very dense sampling over the entire time span of this 

turnover, further insights into the detailed processes of this population change were 

gathered, and it was revealed that this period of genetic change lasted over several 

generations. We were also able to identify female individuals with zero steppe 

ancestry dating to approximately one thousand years after the arrival of this 

component in Central Europe. Furthermore, hints of a non-local origin of these 

women suggest that female exogamy involving women with zero or little steppe 

ancestry results in the detected decrease in the relative amount of steppe ancestry 

seen in the centuries after its arrival.  
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5. Discussion 

In the following section, the results of the three studies presented are 

discussed in connection with each other and with similar studies, some of which I 

also co-authored (see list of publications). This section will first discuss how the 

methodological guidelines established during this dissertation can improve the 

efficiency of DNA recovery and authentication, and then address how the genome-

wide data of Neolithic and Early Bronze Age individuals from present-day 

Switzerland and the surrounding regions which results from the application of these 

improved methods contributes to our understanding of the genetic transition in the 

Final Neolithic in Central Europe. 

5.1 DNA preservation and target enrichment (papers I, II & III) 

The strong importance that specific target enrichment represents in aDNA 

research is caused by the small amount of DNA that is left after several centuries or 

even millennia. Furthermore, large quantities of background DNA originating from 

the environment, such as soil-inhabiting or flesh-decomposing microorganisms, 

cover the slight signal of the endogenous DNA of the target organism. The specific 

enrichment before sequencing is therefore often inevitable. 

Before enrichment, samples are screened for the preservation of DNA. Even 

though this is relatively low in most aDNA samples, differences in the amount of 

endogenous DNA are detectable. As expected from observations published 

previously (Gamba et al. 2014, Pinhasi et al. 2015), the petrous bones from the 

skeletons investigated in papers I and III show relatively good DNA preservation, 

especially compared to teeth and other bone fragments from the same individuals. 

The lowest values of percentages of endogenous DNA in teeth are far below 0.1%; 

highest values were achieved in petrous bones from the site of Niederried, with 84% 

of endogenous DNA. This individual dates to 6,458 – 6,362 BP and is therefore one 

of the oldest skeletons in this entire dissertation. These observations show the great 
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importance of the petrous bone for aDNA studies, as it allows sufficient DNA 

retrieval from very old specimens. 

These differences in the abundance of DNA throughout the skeleton (Gamba 

et al. 2014, Pinhasi et al. 2015, Hansen et al. 2017) were investigated further during 

this dissertation. In paper I, teeth and petrous bone were compared in terms of the 

amount and composition of their human DNA content. Here, it was important to 

compare different tissue types, such as different skeletal parts, from the same 

individuals otherwise site-specific differences would have biased this analysis. Such 

samples from different tissue types were given in the newly generated data of the 

Swiss samples, especially from the individuals from the Oberbipp site. Furthermore, 

by including data from other studies, such as Gamba et al. (2014), Günther et al. 

(2015), Allentoft et al. (2015), Broushaki et al. (2016), Gallego-Llorente et al. (2016) 

and Schuenemann et al. (2017), and conducting a detailed statistical analysis of the 

large dataset thus generated, amongst other results, the findings of higher 

endogenous DNA content in petrous bones than in other skeletal parts could be 

confirmed and therefore match those of the studies mentioned above. 

After an initial screening using shotgun sequencing and enrichment for 

mtDNA, samples with more than one percent endogenous DNA and the full 

reconstructed mitochondrial genome were selected for the nuclear enrichment, as in 

these cases, chances of retrieving high quality data after nuclear capture are good. 

Subsequently, only individuals that covered more than 56,000 of the 1.2 million SNPs, 

enriched for, were used for population genetic analysis, to ensure that the differences 

detected were statistically significant. The generation of such a high-quality dataset 

of ancient genomes was mainly facilitated by the use of petrous bones as a source 

together with specific target enrichment. 

Despite the differences detected in the amount of endogenous DNA in the 

different sample types available, specific enrichments of target regions of the 

genomes are expedient in all cases. There are different approaches available for target 

enrichment in aDNA, most of which are based on hybridisation reactions. The first 

methods invented, such as primer extension capture (PEC), were restricted to small 
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regions of the genome (Briggs et al. 2009). Protocols using probes generated via long-

range PCR are likewise limited to only parts of the genome, like bacterial plasmids 

or mitochondrial genomes (Maricic 2010). Therefore, more sophisticated approaches 

for genome-wide capture were developed (Hodges et al. 2007, Burbano et al. 2010, 

Fu et al. 2013). 

Since the efficiency of the target enrichment later influences the mean 

coverage and the portion of the genome that can be reconstructed, it therefore 

directly affects the quality of the retrieved data. To prevent cost-intensive repetitions 

of the capture experiments, it is therefore crucial to determine the best-suited 

approaches for the different sample types. Furthermore, in ancient DNA it is often a 

stroke of luck to find positive samples and the material is therefore limited, making 

endless repetitions of experiments difficult. These precious samples therefore require 

not only the most efficient method but also the most reliable one. Methods involving 

robot assistance and less manual work have been shown to provide the most 

consistent results as shown in paper II.  

In paper II, the results further indicate that the myBaits® approach is highly 

suitable because it is very efficient for the enrichment of ancient pathogen DNA. In 

this commercial kit, the probes are made of RNA. Compared to the array capture, the 

probes of the myBait® kit are longer and more movable. This could increase the 

chances of the baits finding complementary fragments of the library because 1) there 

is a greater chance of overlapping bases between bait and target fragment, and 2) if 

the probes are more mobile, they have a greater chance of encountering them. 

For most capture methods based on hybridisation, two successive rounds are 

recommended for use in aDNA. In the first systematic and statistic comparison in 

Paper II, it was shown that this does indeed increase the efficiency and thus the yield 

of sequences, such as the mean coverage, for example. However, this procedure 

causes a loss of library complexity. Therefore, with regard to aDNA and not only in 

the case of modern samples, it must be deliberated whether this second round of 

hybridisation and the associated increase in mean coverage compensate for this loss 

of complexity. For well-preserved samples in particular, a single round of capture 
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and slightly deeper sequencing may be sufficient, and also preserves the library 

complexity, enabling a greater variety of downstream analysis. 

Besides DNA yield and reproducibility of target enrichment methods, 

another important characteristic is the capture’s specificity. This is especially 

important for microbial DNA. One very good example is the genus of mycobacteria. 

Many studies on ancient DNA of the human pathogenic species M. leprae and M. 

tuberculosis struggled with the contamination of mycobacteria inhabiting the soil. If 

these environmental species are too closely related to the target organism, their DNA 

will be enriched as well, and, furthermore, cannot always be filtered out during 

bioinformatics processing by applying stringent mapping criteria (Vågene et al. 

2018). If this is the case, these contaminating fragments can influence downstream 

analysis. Of the three methods tested in paper II, the myBaits® capture exhibits the 

highest proportion of reads specific to the target organisms T. pallidum and M. leprae 

as determined using the MALT algorithm (Vågene et al. 2018). However, this does 

not exclude the fact that unspecific reads are still present and that further 

authentication criteria must be applied to the data during bioinformatics analysis, for 

instance, determining whether numbers of heterozygous positions are in reasonable 

magnitudes throughout the reconstructed genomes as an indicator for the presence 

of more than one strain. 

High enrichment efficiency and constant, reliable results in the case of robot-

assisted approaches are therefore the main advantages of in-solution capture 

methods. As shown in paper II, methods based on in-solution hybridisation are 

advantageous, especially for the enrichment of aDNA. In-solution capture with DNA 

baits is used throughout papers I and III presented in this dissertation to ensure the 

retrieval of sufficient DNA to generate genome-wide data. Furthermore, in-solution 

capture with DNA baits was chosen since it allows the usage of the largest number 

of unique probes in one experiment. In the case of the ~1.2 M SNPs enriched for in 

papers I and III 4.8 M unique probes are used. The standard probe panels of the 

myBaits® capture are limited to 200,000 unique probes. 
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Applied to Neolithic and Bronze Age samples from Eurasia, the method of 

enrichment with probes derived from arrays enabled the detection of Salmonella 

enterica subsp. enterica with an age up to 6,500 years (Key et al. 2020). One tooth in 

this study which tested positive originated from the megalithic burial site at 

Oberbipp in Switzerland, dating to the 6th millennium BP. More teeth, bone 

fragments and petrous bones from this burial site were also used in papers I and III 

for analysis of the human DNA. The subspecies identified in the study of Key et al. 

(2020) contains many strains pathogenic to humans and animals. The strains in the 

ancient samples are all from a branch that has not yet been characterised, while 

younger strains cluster with the modern S. enterica paratyphi C, providing a great 

opportunity to study the evolutionary history and trajectory of this pathogen. This 

has been made possible by specific target enrichment. Finding DNA of this bacteria 

in the Oberbipp individual indicates that this individual suffered from sickness and 

likely died due to the infection. 

In paper III, in-solution enrichment with probes derived from arrays is also 

used, but here it is applied to enrich for human DNA. In this capture method, 1.2 

million SNP positions spanning the whole human genome are targeted (Fu et al., 

2013, Mathieson et al. 2015). These SNPs were selected because they are informative 

for population genetics analysis and can therefore be used to reconstruct human 

population history and admixture events (Patterson et al. 2012). 

As such approaches are started with well-preserved samples with high 

amounts of endogenous DNA, the capture efficiency can be expected to be low. Since 

it cannot be enriched over one hundred per cent, the enrichment factor is 

consequently limited. The enrichment factor is hereby calculated by dividing the 

percentage of endogenous DNA after enrichment by the percentage of endogenous 

DNA from the shotgun sequencing. For particularly well-preserved samples with 

endogenous DNA portions above about fifty per cent, target enrichment makes little 

sense, especially for pathogen DNA (Schuenemann et al. 2013). Shotgun sequencing 

would be preferable in such cases, since target enrichment can introduce a bias 

towards the reference used for probe design. 
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Paper III also identified samples with high percentages of endogenous DNA, 

some revealing over eighty per cent endogenous human DNA in the initial screening. 

However, it is still advisable to carry out a target enrichment for human DNA, 

because the special protocol used does not enrich the entire genome but only certain 

positions – namely the 1.2 million SNPs mentioned above. The proportion of the 

fragments and thus the mean coverage at these target positions can be increased by 

the capture even in well-preserved samples. This would be particularly 

advantageous if diploid genotype calls were required for some analyses and the 

pseudo-haploid calls that are often used in aDNA were insufficient. The enrichment 

increases the coverage on the selected positions and is very advantageous if analyses 

are based on these positions. On the other hand, one does of course lose information 

between these regions that are enriched. If close related populations should be 

studied the 1.2 million SNPs would not reflect enough differences for significant 

results, only rare variants that occur with around one per cent in the populations 

could potentially be used (Schiffels et al. 2016). For these analyses only shotgun 

sequencing without enrichment can be used since such shared rare variants that vary 

from population to population are not included in the capture. However, for the 

research questions addressed in paper III the 1.2 million SNPs are sufficient and the 

differences that can be detected with them are informative. 

Despite the very good level of overall preservation, there were a few samples 

that failed during the aDNA analysis. These included the femora from the Oberbipp 

burial site which were identified by systematic radiocarbon dating to belong to a 

second later phase of use. Dating to exactly the time when the Steppe ancestry first 

appeared (Steuri et al. 2019), these individuals are likely to have been admixed 

already. Due to the low DNA preservation, an investigation of those individuals  was 

not possible but would probably have enabled a direct comparison of the same 

subpopulation over time, and before and after the transition. 
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5.2 Authentication and assessment of data quality (papers I & III) 

When generating genetic data from archaeological material, gaining enough 

DNA and therefore high coverage is not the only aspect concerning the quality of the 

data. If conclusions from this genetic data are drawn, it must furthermore be ensured 

that the sequences are authentic. Besides characteristics typical of aDNA, such as 

damage, which are used to determine whether the genetic material is old, relative 

portions of DNA from other individuals are estimated in human samples. 

Authentication usually starts with the initial screening, when aDNA-specific 

damage is checked. The older the samples, the higher the frequency of deamination 

on the fragment ends, which was shown to be time-dependent (Sawyer et al. 2012). 

The majority of the samples analysed during this dissertation date to the 5th to 3rd 

millennia BP and are therefore several thousand years old. Hence, the damage rate 

caused by deamination is expected to reach between at least fifteen and twenty per 

cent of all fragments. This threshold is reached by all samples with relatively high 

amounts of endogenous human DNA, that is, most of the petrous bones but only a 

few of the teeth, which tend to contain only little amounts of endogenous human 

DNA. On the one hand, these high frequencies of damage typical of aDNA are 

favourable, as it proves the age of the sequences, but on the other hand, these 

modifications of the fragment hinder downstream analysis. 

To reduce the impact of these base substitutions on the analysis, the damage 

is already corrected for during library generation before sequencing. During the 

UDG treatment, the deaminated cytosines are cleaved and the resulting abasic sites 

are removed (Briggs et al. 2010). To still allow authentication and filtering for ancient 

reads a version of this protocol is available that only removes the damage inside the 

fragments and leaves it at the ends (Rohland et al. 2015). For screening, all the 

samples in papers I and III were non-UDG treated, and libraries which were solely 

for the purpose of population genetics analysis received partial UDG treatment, in 

order to always be able to ensure that the damage pattern was detectable. 
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In addition to checking and correcting for damage typical of aDNA, 

mitochondrial and nuclear contamination rates on the X chromosomes were assessed. 

Based on the appearance of heterozygous positions on haploid regions, the amount 

of DNA from additional individuals was estimated. An acceptable threshold of five 

per cent is set for both nuclear and mitochondrial contamination. Below these limits, 

the wrong basecalls caused by the contaminating DNA are so rare that they can be 

neglected. 

Nuclear contamination estimates based on heterozygosity on haploid regions 

can only be assessed in male individuals. Datasets of female individuals are therefore 

often reduced to sequences carrying aDNA-specific damage, resulting in a great loss 

of data. Using only the mtDNA contamination rates for females to assess the quality 

of the nuclear data carries the risk of under- or overestimating the actual 

contamination in the nuclear sequences. One factor affecting the differences between 

the mitochondrial and nuclear contamination rates is clearly the ratio of the amount 

of mitochondrial to nuclear DNA, as shown in paper I. For this reason, the 

mitochondrial to nuclear ratio provides an opportunity to further assess the quality 

of the sequence data in the case of female individuals where only mtDNA 

contamination rates are available. 

Furthermore, this ratio differs in samples of different skeletal parts. The 

lowest and hence most suitable values for using the mtDNA contamination rates as 

the sole criterion for assessing contamination in female individuals can be found in 

petrous bones. This fact was demonstrated with statistical significance from the 

samples in paper I and was also confirmed in the dataset of the individuals from 

paper III. 

Paper I followed the population genetics study of Schuenemann et al. (2017) 

and also used data published within this article. In which, more than 151 mummified 

human remains from the archaeological site Abusir-el Meleq in Egypt were screened 

for human DNA content. In 90 of these cases it was possible to reconstruct entire 

mitochondrial genomes, suggesting relatively good DNA preservation. Furthermore, 

mitochondrial contamination rates were detected to be in an acceptable range – 



38 
 

below five per cent, for most samples. These results made this set of individuals 

promising for large-scale population genetics analysis based on nuclear DNA. 

However, all samples were retrieved from teeth and skull bones other than petrous 

bones, and the mitochondrial to nuclear DNA ratio was high in the data of all 

individuals. After enrichment for nuclear DNA, the contamination estimation based 

on the X chromosome was far above acceptable thresholds for the vast majority of 

those individuals. These observations make this study a perfect example of the 

application of the mitochondrial to nuclear ratio to assess the quality of the data after 

an initial screening utilising shotgun sequencing and mitochondrial capture. 

Starting with these considerations for DNA retrieval and authentication, 

which form the basis for successful studies on human remains, investigations of the 

demographic history of present-day Switzerland were begun. The undisturbed 

megalithic burial site of Oberbipp in the Swiss canton of Bern, which was recently 

excavated using the newest techniques, not only provided material for studying the 

suitability of different skeletal elements for aDNA analysis and methodological 

improvements, but also provided the basis for detailed investigations of population 

history (Ramstein et al. 2012, Ramstein et al. 2014, Siebke et al. 2018). One of the 

reasons why the human remains collected are special is that they were retrieved 

under almost ideal conditions with the excavators wearing face masks and gloves to 

prevent contamination with their own DNA. Furthermore, the high number of 

petrous bones retrieved makes this anthropological assemblage precious for 

palaeogenetics studies. 

5.3 Population history of present-day Switzerland (paper III) 

The region of present-day Switzerland, located right in the middle of Central 

Europe and spanning various landscapes, such as parts of the Alps, the Swiss plateau 

and the Jura mountains, is relevant when studying past population movements 

within and into Central Europe. 
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In addition to the dolmen of Oberbipp, excavated in 2012 and contributing 

almost 30 individuals to the analysis (Ramstein et al. 2012, Ramstein et al. 2014), it 

is mainly skeletons excavated at the beginning of the 20th century which were 

studied here. For these remains, however, the archaeological context is often lost. 

Nevertheless, by combining these early finds with the few more recently excavated 

finds and applying systematic radiocarbon dating (Steuri et al. 2019, Siebke et al. 

2019), it was possible to obtain a dataset that spans the period from approximately 

6,000 to 3,500 BP with a relatively high density of individuals. Such a dataset is 

exceptional because it allows fine-scale investigation of population history and 

therefore provides new insights into the genetic history of past populations. 

The time span investigated is of particular interest since initial studies from 

2015 revealed a sweeping transition in the population of Central Europe (Haak et al. 

2015, Allentoft et al. 2015). An entirely new genetic component arrives in Western 

Eurasia, originating from the Pontic-Caspian steppe – a component that is found in 

almost all European populations today. 

Haak et al. (2015) postulate a sudden migration wave based on the strong 

genetic affinity of Final Neolithic individuals associated with the Corded Ware 

Complex to individuals from the Pontic steppe associated with the Yamnaya culture, 

whereas later-dating individuals associated with the Bell Beaker phenomenon show 

still strong but fewer similarities to these steppe individuals. Therefore, the 

individuals between the Late to Final Neolithic did not slowly accumulate genetic 

similarities to the steppe herders, but this genetic connection is likely to have come 

rather suddenly. 

Similar patterns were observed in the individuals studied in paper III. While 

modelling all individuals in the study as a mixture of the three components which 

present-day Europeans possess, namely Western Hunter-Gatherers, Early Farmers 

from Anatolia and ancestry from steppe pastoralists, differences in the genetic 

makeup can be observed over time. There is a particularly sharp increase in the 

steppe ancestry component around 4,700 BP. This rapid increase is followed by a 

decline in the relative amount of steppe ancestry which continued for several 
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centuries, probably caused by the further admixture of individuals with steppe 

ancestry and individuals who did not yet carry this component. Mittnik et al. (2019) 

have already proposed that admixture between groups with differences in the 

relative amount of steppe-like ancestry are causing this decline. 

In Mittnik et al. 2019, the social system in the Lech valley in Southern 

Germany was investigated. The individuals included in this study date slightly 

younger than those in paper III – to the Early Bronze Age, for example. Based on the 

family structures, mating habits and stable isotope analysis, Mittnik et al. (2019) 

propose a patrilocal society with females being more mobile than males. The time 

span investigated lies exactly in the period of the decline in steppe ancestry. It can 

therefore be suggested that these mobile women carried less of the steppe 

component, and may have caused the decline of this ancestry in the population, a 

fact which is also confirmed by a sex-bias detected by Mittnik et al. (2019) in early 

individuals as well as in the Final Neolithic populations from Switzerland in paper 

III. This hypothesis of mobile women with less steppe-like ancestry was strongly 

supported in paper III, where women without any steppe ancestry dating 

approximately one thousand years after its arrival were identified. 

As with the population of the Lech valley which was studied, for the 

individuals from Switzerland and surrounding regions in paper III, a patrilocal 

society can be suggested based on the reconstructed family trees. These women 

without steppe ancestry were therefore most likely not local. Strontium isotope 

analysis does not contradict this, and in one case, individual 3 (MX193) from the 

Spreitenbach burial site associated with the Corded Ware Complex even confirms the 

foreign origin of this women. However, no concrete conclusions can be drawn as to 

where they originated from. The Strontium isotopic landscape of Switzerland is so 

varied that the location of their origin cannot be pinpointed. For this reason, neither 

can it be ruled out with any certainty that the women even migrated into Switzerland 

from farther away, such as regions in Italy or the Iberian Peninsula. Nevertheless, a 

patrilocal society and mobile women were identified as the cause of the decline in 

steppe ancestry. Moreover, the original population of these women must have been 
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largely without steppe ancestry. This alone can explain the complete absence of the 

steppe component in these females. Somewhere in the vicinity of the populations 

studied in paper III, a population with the genetic makeup of Early European 

Farmers must therefore have remained unadmixed for several centuries after the 

arrival of the steppe component in Central Europe. Besides regions in Italy or the 

Iberian Peninsula, a likely location would be alpine mountain valleys where isolated 

populations with strong genetic differentiation can be found even today (Pichler et 

al. 2009, Berger et al. 2013). 

The pattern of a sudden appearance and steep increase in steppe-like ancestry 

seems to be the same all over Central Europe, as a comparison of the individuals from 

Switzerland with those from Great Britain, Iberia and the Middle Elbe-Saale region 

in Eastern Germany has shown in paper III. Despite the similarities in the process, 

the timing of the appearance of the new component is different in these regions. It 

appears rather contemporaneous in Eastern Germany (Haak et al 2015) and 

Switzerland and then later in Great Britain (~ 4450 BP onwards, Olalde et al. 2018) 

and even later in Iberia (~4500–4000 BP, Olalde et al. 2019). Close genetic similarities 

between individuals associated with the Corded Ware Complex from the Swiss 

region and the Middle Elbe-Saale region in Eastern Germany suggest that people 

from this cultural context constitute a relatively homogeneous population genetically 

across large parts of Central Europe. 

To investigate the processes forming this population further, dating methods 

for the admixture between the steppe component and the indigenous Early Farmers 

were applied, and a pattern was revealed that was more complex than the single 

pulse-like migration wave previously suggested (Haak et al. 2015). If the arrival of 

the steppe component was one single pulse, individuals with younger radiocarbon 

dates would show older admixture dates. No such trend was visible in the data, 

however, therefore the input from the Pontic-Caspian steppe was still ongoing when 

the relative amount of the component in the Central European individuals was 

already starting to decline. Here, paper III clearly contributed to our understanding 

of the dynamics of this major population transition in Central Europe. 
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Initially, the steppe component was mainly brought to Central Europe by 

males. Very distinctive patterns of the dispersal of specific haplogroups can therefore 

be observed on the Y chromosome. Starting from the Middle and Late Neolithic,most 

male individuals carry Y chromosomal haplogroups belonging to the macro-

haplogroup G2. Haplogroups belonging to this clade were widespread in Central 

Europe during the Neolithic. In the Final Neolithic, in the only burial site associated 

with the Corded Ware Complex, that is, the collective burial site of Spreitenbach, all 

males carry haplogroups belonging to I2. Only in the later burial sites, like Singen in 

the Hegau region of Southern Germany, do haplogroups belonging to R1b appear, 

and one male with R1a (approximately 3000 – 2500 BP) was even identified. This 

supports the hypothesis that these haplogroups became the dominant Y chromosome 

lineages after the studied time span probably during the period of the Bell Beaker 

phenomenon (Olalde et al 2018). Furthermore, it indicates ongoing gene flow from 

the Pontic Steppe into Central Europe after the initial appearance of steppe-related 

ancestry in the region.  

Another great opportunity to study the population history of present-day 

Switzerland further is presented by the POPRES dataset, which also includes the 

subjects of the CoLause study (Nelson et al. 2008). This population-based study of 

modern Europeans includes almost 3000 individuals, of which around 1000 are of 

Swiss origin. Back in 2008, Novembre et al. already used this dataset to show that 

the plotting of genetic distances between modern European individuals can be used 

to reproduce the map of Europe, and, furthermore, that strong genetic differentiation 

can be found between the three language groups in Switzerland. The individuals in 

the POPRES dataset are genotyped using the Affymetrix 500K SNP panel (Nelson et 

al. 2008) and therefore at least partially overlap with the 1.2 million SNPs for which 

the libraries of the ancient individuals were enriched. In paper III, the ancient 

genomes from Switzerland are compared with the modern individuals from the 

POPRES. As expected, due to various historical events, such as the migration period 

and the globalisation within the last century, for example, simple population 

continuity between the populations of the Final Neolithic and today can be rejected, 
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showing clearly that the history of Europe is one of migration and admixture. To 

close the gap left between 3500 BP and today samples, from later periods than studied 

in paper III are needed and probably will help to understand the processes that led 

to the present genetic structure of this region. 

Overall, paper III contributed to the understanding of the dynamics of this 

transition in the Final Neolithic to the onset of the Early Bronze Age. 

  



44 
 

6. Outlook 

The area of aDNA research has changed a great deal over the past few years. 

Technological improvements have paved the way for genome-wide studies on 

ancient human remains with hundreds of individuals and for obtaining DNA from 

human remains from regions where conditions are not favourable for DNA 

preservation. As a result, it has been possible to find answers to many questions 

about the peopling of large parts of the world and the processes that shaped the 

genetic structure of modern populations. 

Today, the trend is moving towards fine-scale analysis of microregions such 

as the Early Bronze Age population of the Lech valley, as studied by Mittnik et al. 

(2019), or that of the Final Neolithic population of what is now Switzerland, as 

examined in paper III. As a result, detailed questions about the social structure of 

past populations can be addressed. Furthermore, by focusing on small genomic 

differences – shared rare variants –, more recent demographic changes involving 

populations that are genetically quite similar can be reconstructed. 

In the same way, the transition at the end of the Neolithic is studied using a 

large dataset with dense temporal sampling in paper III, also the period before the 

Late and Final Neolithic provides opportunities for further research. From this time 

period, present-day Switzerland provides a rich material culture and several 

Chamblandes-type burial sites. In addition to reconstructing social structure, 

questions about how and when Anatolian ancestry arrived in what is now 

Switzerland might also be addressed. 

Even though the improvement of specific techniques used in aDNA is 

ongoing, further methodological developments could help to obtain DNA from even 

older samples or those that are poorly preserved due to environmental conditions, 

and therefore provide meaningful insights into the ancestors of humans, animals and 

their pathogens. 
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Abstract 

In the last decade, ancient DNA research has grown rapidly and started to overcome 

several of its earlier limitations through Next-Generation-Sequencing (NGS). Among 

other advances, NGS allows direct estimation of sample contamination from modern 

DNA sources. First NGS-based approaches of estimating contamination measured 
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heterozygosity. These measurements, however, could only be performed on haploid 

genomic regions, i.e. the mitochondrial genome or male X chromosomes, but 

provided no measures of contamination in the nuclear genome of females with their 

two X chromosomes. Instead, female nuclear contamination is routinely extrapolated 

from mitochondrial contamination estimates, but it remains unclear if this 

extrapolation is reliable and to what degree variation in mitochondrial to nuclear 

DNA ratios affects this extrapolation. We therefore analyzed ancient DNA from 317 

samples of different skeletal elements from multiple sites, spanning a temporal range 

from 7,000 BP to 386 AD. We found that the mitochondrial to nuclear DNA (mt/nc) 

ratio negatively correlates with an increase in endogenous DNA content and strongly 

influenced mitochondrial and nuclear contamination estimates in males. The ratio of 

mt to nc contamination estimates remained stable for overall mt/nc ratios below 200, 

as found particularly often in petrous bones but less in other skeletal elements  and 

became more variable above that ratio. 

Introduction 

The emergence of Next-Generation-Sequencing (NGS) technologies has substantially 

advanced the field of ancient DNA (aDNA) research1. Besides its high throughput, NGS 

gave rise to analyses of ancient DNA-specific DNA damage to reveal patterns that 

authenticate ancient DNA. Post-mortem DNA continuously accumulates characteristic 

modifications, in particular deamination at the DNA fragment ends2,3,4. Deamination 

frequency thus increases over time and can therefore reveal the ancient origin of an 

aDNA sample3. As a second step required for authenticating ancient human DNA, NGS 

data allow estimating contamination levels of human DNA directly1. Earlier estimates 

of contamination levels in NGS data from early modern humans were based on so-called 

diagnostic positions on the mitochondrial DNA (mtDNA), i.e. nucleotide positions that 

differ between the sample and a comparative dataset of complete modern human 

mtDNA sequences from world-wide populations5. Reads exhibiting a different allele at 

these positions than the majority of reads likely constitute contamination. Today, 

Bayesian approaches allow even more precise estimates by identifying the proportion of 

sequencing reads that were considered to be authentic aDNA from the studied 

individual6. 

While quantifications of contamination levels in the haploid and maternally inherited 

mtDNA are achieved by measuring levels of heterozygosity1, contamination estimates 

for the diploid nuclear genome can only be obtained for the haploid sex chromosomes 

in male individuals, especially for the larger X chromosome7. For female individuals, 

most current studies therefore restrict analyses to nuclear DNA sequences with typical 

aDNA damage patterns and thus sequences of trusted ancient origin, often reducing 

datasets by an order of magnitude8. Alternatively, female mtDNA contamination 

estimates are extrapolated to the nuclear level and only female samples with low 

https://www.nature.com/articles/s41598-018-32083-0#ref-CR3
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mtDNA contamination estimates are used for population genetic analysis on the nuclear 

genome. Whether this extrapolation is reliable, however, remains untested, in particular 

given that mitochondrial to nuclear DNA ratios can substantially vary between and even 

within bone samples9, potentially affecting the extrapolation of mtDNA to nuclear 

contamination levels. 

The reliability of this extrapolation may also depend on the chosen skeletal element 

given differences in endogenous DNA content and relative amounts of mitochondrial 

and nuclear DNA. Recent work has identified the petrous part of the temporal bone as 

a particularly rich source of endogenous DNA and thus an ideal candidate for aDNA 

studies10,11. Endogenous DNA portions in this skeletal element exceed that in other parts 

of the skeleton by up to a factor of 40012. This reduces the cost of shotgun sequencing for 

ancient human genomes to sufficient coverage10 and allows obtaining sequences from 

geographic regions with typically poor DNA preservation, such as the Near East, 

Remote Oceania and Africa13,14,15,16,17. The exceptionally good DNA preservation in 

petrous bones has been linked to the high bone density of the bony labyrinth10, which 

reaches adult size during gestation18 and shows reduced bone remodeling compared to 

the surrounding tissue19. These conditions seem to be ideal for DNA preservation. Initial 

studies suggest low mt/nc ratios for petrous bones20. We hypothesize that these low 

ratios allow reliable estimates of contamination with human DNA using mtDNA, 

especially for female individuals. 

This is the first study to explore systematic differences in mt/nc ratios between skeletal 

elements and classically used negative controls, and the relationship between mt/nc 

ratios and contamination estimates. We compare mt/nc ratios and overall DNA 

preservation in petrous bones, teeth and other skeletal elements in newly produced and 

publically available aDNA datasets. Our data show that DNA contamination estimates 

in males strikingly vary with mt/nc ratios, and argue that the typically low mt/nc ratios 

in petrous bones make them ideal for making reliable contamination estimates using 

mtDNA. 

Results 

Differences in the mt/nc ratio between sites 

For each of the three tested skeletal elements we investigated samples from different 

sites (Table 1), labelled P1 through P7 for petrous bones, T1 through T4 for teeth, and B1 

through B4 for other bones. The subsample pairs T3/B1, T4/B2 and P1/T1 originate from 

the same studies, respectively. Given that any systematic differences between sample 

origins in, for example, general preservation, laboratory protocols, soil type, climatic 

conditions and taphonomic alterations can introduce between-sample variation, we first 

assessed the degree of origin-related variation in mt/nc ratios within each skeletal 

element (Fig. 1). Indeed, we detected significant variation between sample origins in all 
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skeletal elements (Petrous bones ANOVA F6,50 = 20.15, p < 0.001; Teeth ANOVA 

F3,181 = 25.25, p < 0.001; Bones ANOVA F3,71 = 9.26, p < 0.001), with at least one sample 

differing from all remaining ones in each skeletal element (Tukey-HSD tests, Fig. 1). In 

all the following statistical models comparing differences in mt/nc ratios between 

tissues, we therefore routinely – and conservatively – accounted for between-origin 

variation while maintaining the paired nature of samples from the same source by 

integrating study ID and site ID as random factors. 

Differences in the mt/nc ratio between skeletal elements 

To assess the mt/nc ratio of potential sources for contamination of archaeological 

samples, we also measured the mt/nc ratio of human contamination originating from 

plant extracts21 and laboratory negative controls. If mt/nc ratios of modern human 

contamination exceeded those of the ancient human DNA, the relative contamination 

impact would be stronger on the mtDNA than on the nDNA, and vice versa. We found 

no significant difference in the loge[mt/nc ratio] between both controls (ANOVA 

F1,21 = 2.33, p = 0.14), therefore combining them for all further analyses. 

The mt/nc ratios showed significant variation (Fig. 2) between the three skeletal elements 

(petrous bones, teeth and bones) and controls (Chi² = 9.54, df = 3, p = 0.023). Petrous 

bones had significantly lower mt/nc ratios than teeth and showed a trend towards lower 

mt/nc ratios than other bone samples, while teeth and other bones showed similarly high 

ratios (Tukey HSD post hoc tests as indicated in Fig. 2). The mt/nc ratios of the combined 

control group were intermediate between the ratios derived from teeth and bones and 

those derived from petrous bones. In addition to these differences in mean mt/nc ratios, 

skeletal elements also showed striking differences in mt/nc ratio variation (Levene’s test 

F3,336 = 15.01, p < 0.001). Variation was again similar between teeth and other bones 

(Tukey HSD post hoc P = 0.75) but significantly larger in these two than in petrous bones 

(both P < 0.0001). 

Factors influencing the mt/nc ratio 

To assess the degree to which mt/nc ratios vary with sample characteristics within 

sample origins, we tested relationships with endogenous DNA content, age, and 

mapping stringency. Despite much between-sample variation, mt/nc ratios almost 

consistently decreased with increasing endogenous DNA content across skeletal 

elements and sampling origins (Fig. 3, mixed model endogenous DNA-effect Chi² = 6.57, 

df = 1, P = 0.010, overall regression slope = −0.224 ± 0.082, mean ± SE). 

In contrast, we detected no significant relationship between radio carbon dates of the P2, 

P3, T3 and B2 samples and their loge[mt/nc ratio] (mixed model sample age-effect 

Chi² = 0.63, df = 1, P = 0.426). Changes in the mapping stringency in terms of mismatches 

allowed per read (BWA parameter –n, with tested values 0.001, 0.01, 0.1, 0.2 and 0.8 

corresponding to 5, 3.7, 2, 1.7 and 0 mismatches for the average fragment size of T1 and 
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T2 of 55 bp) showed some fluctuation in the mt/nc ratio in T1 and T2 teeth, but no 

directional effect on mean mt/nc ratios (linear regression F1,125 = 2.049, P = 0.155, 

R² = 0.016). 

Effect of changes in mt/nc ratio on contamination estimates 

To evaluate whether mitochondrial and nuclear contamination estimates vary with 

sample mt/nc ratios, we analysed male individuals where sufficient NGS coverage 

allowed reliable estimates of mtDNA and nuclear contamination levels. Mitochondrial 

and X-chromosomal contamination rates were by far most strongly biased towards mt-

contamination in samples with high mt/nc ratios (Fig. 4). In contrast, where mt/nc ratios 

were small, nuclear contamination estimates were close to mtDNA contamination rates 

with an average ratio of 1.47 ± 0.44 SE. In addition, contamination ratios remained stable 

across loge[mt/nc ratio] between 0 and loge(200) = 5.3 (mixed model loge[mt/nc ratio]-

effect Chi2 = 0.80, df = 1, p = 0.37), but strikingly increased with loge[mt/nc ratio] at values 

exceeding loge(200) = 5.3 (Chi² = 5.95, df = 1, p = 0.015). This stability is reflected in the fact 

that samples with a ratio below loge(200) = 5.3 are located on the bisecting line when 

plotting MT contamination against X contamination (Fig. 4). 

Discussion 

In this work, we show that variation in the mt/nc ratio of ancient DNA samples strongly 

influences the estimates of contamination by human DNA, which is one of the most 

critical steps when analysinig ancient human DNA. Besides the characteristic age related 

misincorporation2, estimates of contamination rates are used for authentication of 

ancient human DNA. Currently available methods for contamination estimates of the 

mtDNA and nDNA levels measure heterozygosity in haploid regions of the mtDNA, or 

the X chromosome in males6,22,23. However, at present it is not possible to estimate 

contamination levels in the nDNA of female individuals. Recent studies of ancient 

human nDNA either restrict their analysis to male individuals with known nDNA 

contamination levels or extrapolate contamination levels of mtDNA to nDNA in the case 

of females. 

Our results show that contamination levels extrapolated from the mtDNA to the nDNA 

might systematically underestimate the actual level of nDNA contamination. This 

appears particularly likely for teeth and other bones with a high mt/nc ratio, where such 

extrapolations (as often done for female specimens) may be highly misleading. For 

example, three “other bone” samples in the current study exhibited less than 3% 

contamination on the mtDNA, contrasting to nDNA-contamination between 16 and 30% 

measured on the X-chromosomes. All three samples were characterized by high mt/nc 

ratios spanning 870 to >56.000. For these samples, it is not possible to determine from the 

distribution of reads on the X and Y chromosome with certainty if they are males with a 

contaminated X chromosome or if they are females with male contamination. Either way, 
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the contamination on the nuclear level is too high for further population genetic analysis 

and even in absence of Y chromosomal reads as an indicator of contamination, the 

extrapolation from the mtDNA contamination level could still underestimate the actual 

nuclear contamination level in case of high mt/nc ratios. Therefore, we advise to take the 

mt/nc ratio into consideration if only the mtDNA contamination estimate is used in order 

to choose female samples to be included in population genetic analysis. An effect of 

mt/nc ratio on the contamination estimates of mtDNA and nDNA as described above 

was already suggested in the context of analysing Neandertal nuclear and mtDNA9,24 

and receives further support by our statistical analysis. 

In contrast to samples with a high mt/nc ratio, samples with a ratio below 200 

(loge[200] = 5.3) seem to provide a rather reliable estimate of contamination on the 

mitochondrial level (Fig. 4). We included two types of possible contamination in our 

study: modern human DNA contamination in archaeological samples measured from 

aDNA plant extracts from 6,000 year old barley21 and contamination introduced during 

lab work measured from the negative controls carried along in the entire laboratory 

workflow. The mt/nc ratios of these potential contamination sources were intermediate 

to those detected in the three tested skeletal elements (Fig. 2). Therefore, these types of 

contamination contribute more to the contamination level of mtDNA than nDNA in 

samples showing lower ratios than these controls. Our systematic comparison of a large 

number of teeth, diverse bones and petrous bones indicates that the petrous bones 

display relatively low mt/nc ratios and hence have a high chance to show even lower 

contamination rates on the nDNA than extrapolated from their mtDNA. In addition, we 

found that the mt/nc ratio in petrous bones not only tended to be smaller compared to 

teeth and other bones but also exhibited significantly less variation (Fig. 2). The lower 

mt/nc ratios in petrous bones increase the chance to obtain reliable extrapolations of 

nDNA contamination rates from estimated mtDNA contamination. Furthermore, the 

extraordinarily good preservation of endogenous DNA in petrous bones makes it 

possible to overcome the limited preservation of aDNA in most environments12. Hansen 

and colleagues20 show that teeth can have even higher contents of endogenous DNA 

than petrous bones. In our dataset, however, the majority of petrous bones displayed 

clearly higher endogenous DNA contents than teeth, leading us to maintain petrous 

bones as the prime source for highly concentrated and little contaminated endogenous 

DNA. 

From these influences of the mt/nc ratio on the contamination estimates, we conclude 

that the mt/nc ratio should be considered if mtDNA contamination estimates are used to 

select female samples for nDNA studies. Reasons for the observed variation in this ratio 

have already been subject of different studies and no clear reason for the elevation of the 

mt/nc ratio in some aDNA samples compared to modern DNA has been identified. One 

possibility could be a bias of the mt/nc ratio originating from bacteria, since mtDNA 

contains features of a bacterial chromosome and bacterial reads from the environmental 
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background might map better to the mtDNA elevating the mt/nc ratio. However, 

mapping with different stringencies (different numbers of allowed mismatches per read, 

BWA parameter -n) did not reveal a particular trend. Allowing more mismatches (-n 

0.001, -n 0.01 and -n 0.1) resulted in similar values in the ratio than more stringent 

mapping (-n 0.2 and -n 0.8). We could therefore not detect any effect of the bacterial 

background in aDNA extracts on the correlation between high mt/nc ratios and lower 

percentages of endogenous DNA. 

It has been suggested that the higher ratios in aDNA might originate from better 

protection of DNA in the mitochondrion due to its double membrane25. In addition, 

Schwarz and colleagues25 and Allentoft and colleagues26 conclude from their observation 

of longer mtDNA fragments compared to nDNA that mtDNA decays more slowly than 

nDNA. This would result in increasing ratios through time. No such trend is detectable 

in our data for petrous bones (P2, P3) and teeth (T3), and only a weak trend in other 

bones (B2). Therefore, we found no indication that different decay rates cause the 

observed variation in the mt/nc ratio. 

Another reason for differences in mt/nc ratios could be higher metabolic activity in 

particular skeletal elements, as suggested by Higgins and colleagues27 in their study of 

different parts of teeth. Their observation indicates that higher mt/nc ratios in dentine 

may originate from its higher metabolic activity as compared to enamel and cementum. 

This assumption, of different metabolic activity resulting in different mt/nc ratios could 

also be applied to other skeletal elements, the petrous bone in particular. In the cortical 

part of the petrous bone, bone remodelling is suppressed compared to surrounding 

tissue by a specific signalling-pathway, and the number of metabolic active osteoclasts 

and osteoblasts is reduced28. Furthermore, the more compact bone regions contain a 

higher number of osteocytes, which have lower numbers of mitochondria29. The number 

of mitochondria in osteocytes decreases from periosteal and endosteal surfaces towards 

the inner and denser bone parts30. Consequently, sampling the hardest part of the 

petrous bone results in low mt/nc ratios due low mt/nc ratio in this area ante-mortem. 

Within the densest parts of the cortical bone displaying low mt/nc ratios, the endogenous 

DNA is also better protected against the environmental background of bacteria, fungi 

and other microbes resulting in high percentages of endogenous DNA. 

In conclusion, we showed that the mt/nc ratio is an important value in aDNA 

authentication. It strongly influences the accuracy of extrapolating nDNA contamination 

levels from mtDNA contamination estimates. This approach should be used with 

particular caution if mt/nc ratios exceed 200. Lower mt/nc ratios are often associated with 

high percentages of endogenous DNA, as typically found in the densest parts of the 

petrous bones. In this case, low mt/nc ratios are most likely derived from a low mtDNA 

concentration in this bone region ante-mortem, which is caused by a low metabolic 

activity. 
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Temporal bones, including the petrous bones have already proven to be valuable in 

physical anthropology. The compact structure of the petrous bone is ideal for 

preservation in archaeological contexts, therefore, it can be used to estimate the minimal 

number of individuals31. While age can only be roughly estimated depending on 

developmental stages32. In addition, the discovery of the higher percentage of 

endogenous DNA in petrous bone compared to other skeletal elements10,11 constitutes a 

substantial improvement for the field of aDNA. Our study confirms those findings and 

shows that mitochondrial to nuclear ratios provide a further argument to extract ancient 

DNA from petrous bones providing reliable human contamination assessment from 

both sexes. 

Materials and Methods 

Dataset 

We combined shotgun data from 76 new ancient DNA samples from the late Neolithic 

dolmen burial site of Oberbipp in Switzerland33,34, the late Neolithic multiple burial of 

Muttenz35, the final Neolithic sites in Switzerland Spreitenbach36, Seengen35, Zurzach35 

and cave finds from Wartau37 (detailed description of archaeological sites and laboratory 

workflow SI section 1 and 2) with published datasets (Table 1). In total, DNA from 317 

ancient individuals and 23 controls was analysed for its mtDNA to nDNA (mt/nc) ratio. 

For each of the three investigated skeletal elements, samples originated from three 

sources. Different skeletal elements do not originate from the same individuals. Samples 

for petrous bones (n = 57) included 40 newly processed samples from the previous 

mentioned Swiss burials (P1, P4, P5, P6, P7), 13 from Gamba and colleagues10 (P2) and 

four from Broushaki and colleagues13 and Gallego-Llorente and colleagues14 (P3). Teeth 

samples (n = 185) included 36 from the Swiss burials (T1, T2), 88 from Allentoft and 

colleagues38 (T3) and 61 from Schuenemann and colleagues39 (T4). P1 and T1 from this 

study originate from the same multiple burial in Oberbipp, Switzerland but due to the 

comingled nature of the remains an assignment of the teeth to the petrous bones is not 

possible. Furthermore, the endogenous DNA in the teeth is too low to allow kinship 

analysis to identify identical individuals. Therefore, it is possible that teeth and petrous 

bones are from the same individuals. Finally, diverse bone samples from compact bone 

parts (n = 75) included 13 from Allentoft and colleagues38 (B1), 52 from Schuenemann 

and colleagues39 (B2) and eight from Günther and colleagues40 (B3) and two from 

Broushaki and colleagues13 (B3). Fastq files were downloaded from the European 

Nucleotide Archive. Radio carbon dates were used from Gamba and colleagues10, 

Broushaki and colleagues13, Gallego-Llorente and colleagues14 and Schuenemann and 

colleagues39. 
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Bioinformatic processing 

All data were processed with the EAGER pipeline41. If necessary, adapters were removed 

and paired-end data was merged using Clip&Merge41. Mapping was performed with 

BWA with the mismatch parameter set to 0.01 and a seed length of 1,000. If necessary, 

PCR duplicates were removed using DeDup41. Mitochondrial to nuclear ratios were 

calculated by dividing the mean coverage of the mitochondrial genome by the mean 

coverage of the nuclear genome to take into account the different length of nuclear and 

mitochondrial genome. Samples with no reads on the mitochondrial chromosome 

resulting in a ratio of zero as found in some negative controls, plant extracts, and 

extremely bad preserved teeth samples were excluded. 

Reads mapping to the mitochondrial genome were extracted from the BAM files and the 

mitochondrial genome was reconstructed using the software schmutzi22. Mitochondrial 

contamination was then estimated with a Bayesian approach as described in Fu and 

colleagues6. Sex determination was performed after Skoglund and colleagues42. X 

chromosomal contamination in males with more than 0.5-fold coverage on the X 

chromosome was estimated using ANGSD23. 

Statistical analysis 

Statistical analysis was performed in R version 3.4.3 (R Core Team 2017). We first used 

one-way ANOVA to assess differences in loge[mt/nc ratio] (i.e., the raw mt/nc-ratios loge-

transformed to approach normality) between the sub-samples within each of the three 

different skeletal elements and controls, followed by Tukey HSD post hoc tests. Second, 

to assess overall differences in loge[mt/nc ratio] between skeletal elements and controls, 

we performed linear mixed models as implemented in the lme4-package for R43. Given 

substantial variation in loge[mt/nc ratio] between different sample origins and studies 

detected above, this model contained the source study as a random slope factor, allowing 

between-study variation in the main effect while maintaining the paired nature of 

samples from the same source. Pairwise Tukey HSD post hoc tests were calculated from 

this model using the lsmeans package for R44. Differences in the variance of the 

loge[mt/nc ratio] between skeletal elements and control were tested using Levene’s test, 

followed by Tukey HSD post hoc tests. 

To assess how loge[mt/nc ratio] varies with DNA-content (log-transformed to approach 

normality) we constructed a linear mixed model as above with loge[mt/nc ratio] as the 

response variable, loge[endogenous DNA] as the predictor, and subsample as random 

slope factor allowing differential regression slopes between subsamples. In addition, we 

added skeletal element and its interaction with loge[endogenous DNA] as fixed factor to 

assess slope consistency between skeletal elements. Given that this interaction was 

clearly insignificant (Chi² = 0.18, df = 2, P = 0.91) we removed it from the final reported 

model. Information about endogenous DNA content was only available for all Swiss and 
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Egyptian samples. An identical model structure was used to assess the relationship 

between sample age and loge[mt/nc ratio], now with sample age as the main predictor. 

Differences in loge[mt/nc ratio] between different mapping stringencies were assessed 

using linear regression. Information about loge[mt/nc ratio] at different mapping 

stringencies was obtained for the teeth of the Swiss burials sites Oberbipp and 

Spreitenbach (T1) since they have low endogenous content and a high portion of 

bacterial background. 

Finally, to assess how the ratio of mitochondrial over X-chromosomal contamination 

varies with loge[mt/nc ratio] we constructed linear mixed models as above, but separate 

for samples with low (<5.3) and high (>5.3) loge[mt/nc ratio]. Contamination ratio served 

as the response variable, loge[mt/nc ratio] as the predictor, and skeletal element as a 

random slope factor allowing differential responses to loge[mt/nc ratio]. 

 

Figure 1: Variation in mt/nc ratios between sample sources. Mitochondrial to 

nuclear DNA ratios (log-transformed) are shown for petrous bones (red), teeth 

(blue), other bones (green), and controls (grey). Box plots show the raw data median 
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(thick line), interquartile range IQR (box), data within 1.5*IQR (flags), and extreme 

values (dots). Different lower case letters indicate pairwise differences revealed by 

Tukey-HSD post-hoc tests. 

 

Figure 2: Variation in the mt/nc ratios between skeletal elements.  (A) Box plots of 

the mitochondrial to nuclear DNA ratio (log-transformed) of human DNA in petrous 

bones (P), teeth (T), other bones (B) and controls. Panel (B) shows density plots of the 

same data across elements. Orange lines indicate the suggested threshold of the 

mitochondrial to nuclear ratio of 200 (loge(200) = 5.3). 
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Figure 3: Relationship between the mt/nc ratio and the percentage of endogenous 

DNA in petrous bones (red), teeth (blue) and other bones (green). Despite overall 

differences in average mt/nc ratios between skeletal elements and subsamples, these 

ratios declined consistently when samples contained more endogens DNA. 
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Figure 4: Relationship between male mitochondrial and X-chromosome 

contamination rates in un-transformed (A) and loge transformed (B) data. Different 

colours indicate samples with low (<loge(200) = 5.3 red) and high (>loge(200) = 5.3 

blue) mt/nc ratios. 
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Table 1 Samples from different studies used in this analysis. 
Site  Dating  Samples  Reference  

Petrous 
bones  

Teeth  Diverse 
bones  

Oberbipp, 
Switzerland  

approx. 5500 BP  P1  T1    This study  

Spreitenbach, 
Switzerland  

approx. 4500 BP    T2    This study  

Europe and 
Central Asia  

3400 BP–600 AD    T3  B1  38  

Abusir el-
Meleq, Egypt  

1300 BP–386 AD    T4  B2  39  

Hungary  5060–1830 BP  P2      10  
Atapuerca, 
Spain  

5500–3500 BP      B3  40  

Zagros, Iran  10000–7000 BP  P3    B4  13  
Zagros, Iran  10000–9700 BP      14  
Muttenz, 
Switzerland  

Neolithic  P4      This study  

Wartau, 
Switzerland  

Neolithic  P5      This study  

Seengen, 
Switzerland  

Neolithic  P6      This study  

Bad Zurzach, 
Switzerland  

Neolithic/Bronze 
Age  

P7      This study  
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Supplementary Section 1 Archeological sites  
Oberbipp, Canton Bern, Switzerland 

Ramstein et al. 2014, Siebke et al. 2017 

The Dolmen burial from Oberbipp was discovered and excavated in 2012. First 14C 

results date to 5500 BP. The dolmen contains a minimal number of 40 individuals as 

determined from femora including males and females of all age classes. The burial is 

assigned to the Horgen Culture. 

Spreitenbach, Canton Aargau, Switzerland 

Doppler 2012 

In 1997 the multiple burial of Spreitenbach, Canton Aargau in Switzerland was 

discovered and excavated. It contained five man, four women, two subadults and a new 

born. The burial is radio carbon dated to approximately 4500 BP and assigned to the 

Corded Ware complex. 

Muttenz, Canton Basel, Switzerland 

Bleuer et al. 2012 

The multiple burial of Muttenz was discovered in 1969. It contained five individuals and 

was assigned to the Bell Beaker Complex. 

Wartau, Canton St. Gallen, Switzerland 

Stehrenberger 2016 

The archaeological site is located in a natural cave. In the 1970s and 1980s, several 

inspections by archaeologist of the archaeological service of the Canton St. Gallen took 

place. The cave was accessible to the public at all time and in the 1970s some human 

remains were recovered illegally by private persons and transferred to the 

archaeological service in 2001. Radio carbon dates of bone fragments date to the Middle 

Neolithic period. 

Seengen, Canton Aargau, Switzerland 

Bleuer et al. 2012 

The grave mound of Seengen was excavated in 1993. The burial contained two 

individuals, one of them consisted only of burned remains. The grave mound is 

archaeological dated to the Bronze Age. 

Bad Zurzach, Canton Aargau, Switzerland 

Bleuer et al. 2012, Gutzwiller 1994 

The double burial of Bad Zurzach was excavated in 1984. It was assigned to the Bronze 

Age. Both individuals were buried in contracted position. 
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Supplementary Section 2 Laboratory workflow 
40 petrous bones (P1, P4 - P7) and 36 teeth (T1) from the Neolithic sites in Switzerland 

were shotgun sequenced. Between 30 mg and 50 mg of powder from coronal dentin for 

teeth and between 50 mg and 100 mg of bone powder for the petrous bones was used 

for extraction as described previously (Dabney et al. 2013). Sequencing libraries were 

prepared after Meyer and Kircher 2010. To enable multiplexed sequencing, sample 

specific barcodes were added to each library by amplification with tailed primers 

(Kircher et al. 2011). To achieve a high copy number of each library, an additional 

amplification was performed with Herculase II in a final volume of 100 μl consisting of 

1 x Herculase II reaction buffer, 0.25 mMdNTPs, 0.4 μM IS 5, 0.4 μM IS 6, 0.01 % 

Herculase II Fusion DNA Polymerase. The thermal profile started with 2 min at 95 °C 

followed by sample specific number of cycles of 10 sec 95 °C, 30 sec 65°C, 30 sec 72 °C. 

This was then followed by 4 min at 72 °C. All samples were pooled equimolar at 10 nM 

and sequenced on a HiSeq with paired or single ends and NextSeq with paired ends. 

The mtDNA enrichment for MA315 and MA318 was performed as follows. For the 

generation of baits a long range PCR was performed on modern human mtDNA as 

described in Maricic et al. 2010. The purified products were sonicated with COVARIS 

shearing (Covaris, Woburn USA) to generate fragments of ~ 350 bp. For the preparation 

of the baits this step was followed by a blunt end reaction with Quick Blunting™ Kit of 

New England Biolabs and followed by a MinElute purification. To these fragments a 

double-stranded adapter was ligated generated from modified sequences after Fu et al. 

2013 according to the approach for generation of double-stranded adapters described in 

Meyer and Kircher 2010. The two adapters were generated from APL 5 

(CGTGGATGAGGAGCCGCAGTG) and adapter1 rev (CACTGCGGCT) for the first 

adapter, the second adapter consists of APL6 (ATAGGGATCGCACCAGCGTGT) and 

adapter2 rev (ACACGCTGGT). Adapter ligation was performed using Quick Ligase 

(New England Biolabs) followed by a MinElute purification with an elution volume of 

20 μl . For the fill in of the 5ʹ-overhangs of the adapters the reaction had a total volume 

of 40 μl with 1 x Isothermal buffer, 125 nM dNTP, 0,4 U/μl Bst polymerase 2.0 from 

(BioLabs) and was incubated for 20 min at 37 °C and then 20 min at 80 °C. This was 

followed by an amplification within 8 reaction with Herculase II in a final volume of 100 

μl consisting of 1 x Herculase II reaction buffer, 0,25 mM dNTPs, 0,4 μM APL 5, 0,4 μM 

APL 6, 0,01 % Herculase II Fusion DNA Polymerase and 30 cycles. Single-stranded 

probes were generated as in Fu et al. 2013 using the APL2 primer. Before hybridisation 

2 µg of target DNA were combined with 250 µM blocking oligonucleotides and 

incubated at 5 min at 95°C and 5 min at 65°C followed by at least 10 min at 37°C. This 

reaction was combined with 250 ng single-stranded bait of each fragment. The final 

hybridisation contains furthermore 1x HI-RPM hybridization buffer (aCGH 

Hybridization Kit; Agilent) and 1x Agilent blocking agent (aCGH Hybridization Kit; 

Agilent). The reaction is incubated over two nights at 65°C. For each hybridised library 
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pool 20 µl of MyOne M-270 streptavidin beads (Invitrogen) were washed twice with 

1xBWT and then resuspended in 20 µl BWT. The hybridisation reaction is added to the 

beads and 160 µl BWT are added and the reaction is incubated at RT for 30 min. The 

beads were then washed with 200 µl BWT three times and then washed twice with 200 

µl preheated (60°C) HWT and an incubation for 2 min. This was followed by washing 

with 200 µl BWT and 100 µl TET. Then 15 µl TET were added and the copy number was 

determined by qPCR (End volume of 20 μl: 1X DyNAmo Mastermix and 0,5 μM IS7 and 

IS8 and temperature profile of 10 min at 95 °C, then 40 cycles of 30 sec at 95 °C, 30 sec at 

60 °C and 30 sec at 72 °C) followed by another amplification using Herculase II both 

directly on the beads. For MA315 and MA318 two more libraries with a half UDG-

treatment (Rohland et al. 2014) were prepared and enriched for 1,240k nuclear SNPs as 

described in Schuenemann et al. 2017 to achieve sufficient coverage on the X 

chromosome. The libraries MA307 till MA381 were paired-end sequenced on a 

HiSeq4000 (2x75 cycles). The libraries MA395 till MA482 and the libraries SA65 till SA74 

were single-end sequenced on a HiSeq4000 for 75 cycles. 
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SI Table 5: mitochondrial and X-chromosome contamination rates and mt/nc ratios. 

element mt/nuc_ratio ln of mt/nc ratio MT contamination lower95 MT contamination upper95 MT contamination X contamination SE X contamination lower95 X contamination upper95 X contamination 

PP 4 1,386294361 1,6 2,5 0,8 0,9 3,71E-04 0,9 0,9 

T 9 2,197224577 3,6 5,1 2,5 1,4 8,18E-04 1,4 1,4 

PP 17 2,833213344 1,7 5,4 0,3 1,1 3,30E-03 1,11 1,09 

PP 20 2,995732274 1,6 4 0,6 1 3,90E-03 1,01 0,99 

B 20 2,995732274 0,6 1,1 0,2 0,68 1,60E-03 0,68 0,68 

PP 20 2,995732274 0,31 3,5 0,01 0,8 3,50E-03 0,81 0,79 

PP 20 2,995732274 0,1 2,1 0,02 0,6 2,40E-03 0,6 0,6 

PP 21 3,044522438 2,6 4,9 1,1 0,5 2,40E-03 0,5 0,5 

B 29 3,36729583 0,4 1,3 0,1 0,82 1,70E-03 0,82 0,82 

B 33 3,496507562 1,7 2,6 0,8 0,8 1,90E-03 0,8 0,8 

B 38 3,63758616 0,6 0,9 0,6 0,7 5,30E-04 0,7 0,7 

B 45 3,80666249 2 3,1 1 0,9 1,50E-03 0,9 0,9 

B 48 3,871201011 1,7 3,3 0,9 0,1 1,00E-03 0,1 0,1 

B 54 3,988984047 4 5,2 2,9 0,7 7,90E-04 0,7 0,7 

B 72 4,276666119 0,7 1,7 0,2 0,2 1,10E-03 0,2 0,2 

PP 74 4,304065093 0,2 0,8 0,01 0,6 4,00E-03 0,61 0,59 

B 89 4,48863637 1 2 0,4 1,6 1,10E-03 1,6 1,6 

T 411 6,018593215 1,6 1,9 1,2 0,039 3,17E-02 0,1 -0,02 

B 708 6,562444094 0,1 0,5 0 0,98 1,20E-03 0,98 0,98 

T 795 6,678342115 17 27,8 10,7 53 5,50E-01 54,08 51,92 

B 870 6,768493212 2,8 3,3 2,3 35,27 3,14E-02 35,33 35,21 

T 3157 8,057377489 0,75 1,1 0,4 16,1 3,43E-02 16,17 16,03 

B 4169 8,335431478 0,7 1,1 0,4 0,009 3,35E-03 0,02 0 

B 22126 10,00450867 1 1,1 0,8 31,5 3,28E-02 31,56 31,44 

B 56387 10,93999391 0,4 1 0 16,1 2,80E-02 16,15 16,05 
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Abstract 

In ancient DNA research, the degraded nature of the samples generally results in poor yields 

of highly fragmented DNA, and targeted DNA enrichment is thus required to maximize 

research outcomes. The three commonly used methods – (1) array-based hybridization capture 

and in-solution capture using either (2) RNA or (3) DNA baits – have different characteristics 

that may influence the capture efficiency, specificity, and reproducibility. Here, we compared 

their performance in enriching pathogen DNA of Mycobacterium leprae and Treponema pallidum 
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of 11 ancient and 19 modern samples. We find that in-solution approaches are the most 

effective method in ancient and modern samples of both pathogens, and RNA baits usually 

perform better than DNA baits. 

Method summary  

We compared three targeted DNA enrichment strategies used in ancient DNA research for the 

specific enrichment of pathogen DNA regarding their efficiency, specificity, and 

reproducibility for ancient and modern Mycobacterium leprae and Treponema pallidum samples. 

Array-based capture and in-solution capture with RNA and DNA baits were all tested in three 

independent replicates. 

Main Text 

The field of ancient DNA (aDNA), which studies DNA retrieved from paleontological and 

archaeological material, was revolutionized by the invention of high-throughput sequencing 

(HTS). In combination with HTS, the development of targeted DNA enrichment protocols has 

made a crucial contribution in advancing aDNA research during the last decade. 

As DNA decays over time, aDNA is usually only present in trace amounts of highly 

fragmented sequences (1, 2, 3). Detecting endogenous pathogen aDNA from archaeological 

material is additionally compounded by the larger amount of background DNA from the 

environment including soil microorganisms. Furthermore, the background of host DNA in 

ancient remains is an additional obstacle in order to obtain ancient pathogen DNA. Shotgun 

sequencing of libraries from aDNA extracts to sufficient genomic coverage is, therefore, cost-

intensive (4). To circumvent this problem, specific regions of interest such as bacterial 

chromosomes, mammalian mitochondrial genomes, or regions with single-nucleotide-

polymorphisms (SNP) are often target-enriched before sequencing (4). Aside from its 

application in aDNA sequencing, targeted DNA enrichment is also useful to retrieve pathogen 

DNA from clinical samples, particularly for infectious agents that are found in low quantities 

in the host organism and which are difficult to culture, as is the case for Mycobacterium leprae 

and Treponema pallidum. Removal of background DNA prior to sequencing increases the yield 

of pathogen DNA, and thus allows valuable information for epidemiologists investigating 

outbreaks to be obtained.  

For the enrichment of entire bacterial and mammalian chromosomes, there are currently three 

methods available, which are based on hybridization capture (5): DNA microarrays (here 

represented by SureSelect from Agilent Technologies), in-solution capture with DNA baits 

(represented by SureSelect from Agilent Technologies according to Fu and colleagues (6)) and 

in-solution capture with RNA baits (here represented by myBaits® from Arbor Biosciences). 

In the case of the DNA array-based method, up to a million artificial DNA baits are printed on 

the surface of a glass slide (7). Additionally, there is the possibility to perform in-solution 

capture with baits cleaved from the glass slides and used right away or immortalized in DNA 

bait libraries (6). The second in-solution approach uses up to 100,000 artificial RNA baits. The 

three approaches rely on the hybridization of target fragments to the complementary sequence 
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of the baits (immobilized or in-solution), which can be levered to wash background DNA 

away. 

To date there has been to our knowledge, no statistical comparison of the performance of all 

three methods: microarrays, in-solution capture with DNA baits, and in-solution capture with 

RNA baits (6). So far only microarrays and the in-solution capture with DNA baits were 

compared for Salmonella enterica and no replicates for statistical assessment were produced (8). 

Here, we present results from the enrichment of modern and ancient samples containing 

pathogen DNA, using the three aforementioned approaches. All samples had previously 

tested positive but had also shown low amounts of target DNA for M. leprae or T. pallidum 

(Supplementary Table 1).  

The different enrichment concepts tested were chosen to represent methods as they are applied 

in ongoing research and therefore not only differ in the technology used (DNA vs. RNA baits, 

immobilized vs. in-solution) but also in the design such as bait length and number of unique 

baits, which might have an effect on the performance. 

We used eight ancient samples positive for M. leprae and six modern libraries from leprosy 

patients that were shown to contain M. leprae DNA (Supplementary Note 1). Genetic data from 

the ancient and modern M. leprae samples were previously published in 9 and 10. Samples 

with less than 0.6 % endogenous bacterial DNA were selected. 

Modern T. pallidum samples (n=13) were previously published in 12 and 13. Three ancient 

extracts of T. pallidum were used from 14. The portion of endogenous DNA for the selected 

T. pallidum samples was below 0,01 % for ancient and modern samples. 

Starting from existing sequencing libraries all three methods were applied with three 

independent replicates each (see Figure. 1 and Supplementary Note 1 for a detailed description 

of the methods, the newly generated data is available at the Sequence Read Archive under the 

BioProject PRJNA645054). Following the manufacturer’s suggestion for libraries with low 

yields of target DNA, we performed two successive rounds of hybridization for all methods. 

To investigate the effectiveness of this procedure, we compared results from the first and 

second rounds for the in-solution capture with RNA baits. We then evaluated differences in 

efficiency, reproducibility, and specificity across the three approaches by calculating mean 

coverage, standard deviation of the mean coverage, enrichment factor (calculated by dividing 

the % of target DNA after enrichment by the % of target DNA in the shotgun data), and the % 

of the genome covered 5-fold or more after normalizing the data of each bacterial species to 

the same number of raw reads (Supplementary Tables 2, 3 & 5 and Supplementary Figures 1 

& 2). 

For most ancient samples, the highest mean coverage (Figure 2A) is reached with the RNA 

bait in-solution capture (eight out of eleven, more details can be found in Supplementary Note 

2 & 3, and SSupplementary Tables 1 & 2). On average the RNA bait capture results in a 1.5 and 

20.0 times higher mean coverage than the DNA bait or the array capture, respectively. As 

illustrated in Figure. 2B, the highest enrichment factor is obtained in the RNA bait capture of 

ancient T. pallidum DNA (all three samples) and M. leprae (four samples showed best results 

for the RNA bait, three for the DNA bait, and one for the array), with values between 2-150x 



84 
 

higher, compared to the other two approaches. An in-solution approach seems, therefore, to 

be advantageous for enriching ancient pathogen DNA. 

A similar pattern can be observed in the data of the modern M. leprae and T. pallidum samples 

(Figures. 2A and 2B) further highlighting the performance of the in-solution approach in 

general and RNA baits in particular. 

In-solution capture with DNA baits was used with robot-assistance in this study whereas the 

in-solution capture with RNA baits was performed in two different labs. Unsurprisingly, the 

DNA bait capture showed the smallest differences (2- to 50-fold lower) between the replicates 

whereas the RNA bait capture showed the largest and the DNA array capture was 

intermediate. Consistent conditions are therefore crucial for reproducibility. 

Another important feature of targeted enrichment is specificity. We estimated the specificity 

of the three tested methods by comparing the number of reads specific to either M. leprae or T. 

pallidum in comparison to general mycobacterial or treponemal reads, respectively (Figure 2 

C). Here, differences between the two pathogens can be observed. In the ancient and modern 

T. pallidum samples, the RNA bait capture consistently shows the highest proportion (up to 1.5 

times higher) of specific reads. The same trend was observed for the libraries prepared from 

recent leprosy patient samples, i.e. modern samples of M. leprae. Only for ancient M. leprae 

samples, the DNA bait capture is more specific. The highest percentages of specific reads are 

not necessarily found in samples with high percentages of endogenous DNA in the shotgun 

data before enrichment. 

For ancient and modern samples, due to high efficiency, reproducibility and specificity in-

solution approaches are highly recommendable. 

Two rounds of hybridization are routinely performed in aDNA research, which is expected to 

improve enrichment but may also reduce data complexity in terms of portions of unique reads. 

To formally investigate the effect of the second round of capture, we also sequenced the 

libraries only enriched with one round of hybridization with the RNA baits and compared the 

results to the second round of hybridization. The second round of hybridization resulted in an 

increase in the enrichment factor for ancient and modern M. leprae samples (with an average 

of 2x increase) as well as for T. pallidum samples (with an average of 17x increase), 

demonstrating the utility of such a second round of hybridization capture (Supplementary 

Table 5). On the other hand, when comparing the library complexity (Figure. 2 D and 

Supplementary Note 2 & 3, Supplementary Figure 3), we found a substantial loss of 

complexity after the second round of hybridization in all modern and ancient samples. This 

loss was reflected in the higher percentage of unique reads in all the reads mapped after the 

first round. Therefore, if the portion of endogenous DNA in a sample is high in the beginning 

it may be worthwhile considering whether a single round of capture combined with deeper 

sequencing is sufficient or even advantageous. 

The three protocols also differ in terms of cost and effort. The most cost-intensive is the array-

capture approach (~673 € per sample), which requires additional equipment that is not usually 

necessary with the other approaches. The in-solution capture with DNA baits is, by contrast, 

cheaper once the baits are cleaved from the glass slide (~56,23€ per sample), but the version 
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that can be used for the immortalization of the baits by transforming them into a library is not 

freely available. The in-solution capture with RNA baits is more comparable to the DNA bait 

capture than to the array with ~109 € per sample and it also needs the lowest number of 

additional equipment and reagents (Supplementary Table 7). 

After a detailed comparison of the three tested methods it can be concluded that for ancient 

and modern pathogen samples, the RNA bait capture with two rounds of hybridization seems 

to be the most suitable. The generally high performance of the in-solution approach (mainly 

the one with RNA baits) for both bacterial species suggests that the findings are highly 

representative and comparable performance is also expected for a variety of other 

bacterial/microbial organisms. 
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Figure 1. Schematic representation of the workflow. For all samples, the three different 

enrichment protocols were tested in three independent replicates. Blue circles indicate the 

libraries that were sequenced at each particular step. 
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Figure 2. Differences between the three tested protocols in ancient and modern M. 

leprae and T. pallidum samples. A) Log-transformed values of the mean coverage. B) 

log-transformed values of the enrichment factor calculated by dividing the percentage 

of endogenous DNA by the percentage of endogenous DNA after shotgun sequencing. 

C) The proportion of specific reads corresponding to M. leprae and T. pallidum 

compared to other mycobacterial and treponemal reads, respectively. D) Percentage 

of unique reads calculated by the number of unique reads divided by the total number 

of sequences mapped to represent library complexity in M. leprae and T. pallidum 

samples. 
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Supplementary Note 1 – Laboratory workflow 

Sample Selection 

The modern and ancient DNA extracts used in this study were previously tested positive for 

DNA from Mycobacterium leprae (Schuenemann et al. 2013, Mendum et al. 2014, 

Schuenemann et al. 2018a) or Treponema pallidum (Arora et al. 2016, Knauf et al. 2018, 

Schuenemann et al. 2018b). Existing libraries of the previous studies were used. For a 

comparison of the three methods under investigation, an additional shotgun sequencing of all 

samples was performed to determine the percentage of target DNA in the libraries prior to 

enrichment. 

Ethics statement 

For all samples used in this study only existing sequencing libraries were used, and no new 

material was collected. Statements about ethical approval and research permission can be 

found in the original publications (Supplementary Table 1). In this study only sequencing data 

of the two bacteria and no human data was generated. 

Array capture 

The array capture was performed according to the methods described in Hodges et al. 2007. 

The array design was identical to Schuenemann et al. 2013 (M. leprae) and Arora et al. 2016 (T. 

pallidum). Probe length on both arrays was 60 bp. Modern and ancient samples positive for M. 

leprae were pooled equimolar and captured on two arrays. For the Treponema samples, three 

pools for the capture were prepared: one for modern and ancient syphilis samples respectively 

and a third of positive extracts originating from different species of nonhuman primates. After 

the hybridization, the products were quantified by qPCR as described in Schuenemann et al. 

2013. After determination of the sufficient number of cycles the pools were amplified and after 

quantification on an Agilent 2100 Bioanalyzer the pools were diluted for sequencing on a 

HiSeq4000 using a 75bp single-end kit for the first replicates and 75bp paired-end for the 

following two replicates. 

In-solution capture with RNA baits (MYBaits) 

The in-solution capture was performed using biotinylated RNA baits from the MYBaits from 

MYcroarray® according to manufactures instructions. The first replicate was performed in the 

post-amplification laboratory of the Ancient DNA Laboratory at the Kiel University after the 

manual of version 1.3.8. The following two replicates were performed in the post-amplification 

laboratory of the AG Palaeogenetics at the Institute for Archaeological Science in Tübingen 

after the manual of version 3.02. Samples were pool identical to the array capture and the 

capture was followed by a similar procedure to prepare for sequencing. 
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For the baits for M. leprae the reference Br4923 (NC_011896) was used as a base for the bait 

design with a 2x tiling as well and 76,490 baits in the final set. Bait length was 80 bp for M. 

leprae. With regard to T. pallidum the baits spanned the simian derived T. pallidum ssp. pertenue 

strain Fribourg-Blanc reference genome (NC_021179.1) with a 2x tiling as described in Knauf 

et al. 2018. Bait length for T. pallidum is 100bp and the bait set contains 19,925 unique probes. 

The two rounds from the first repetition were sequenced on a HiSeq4000 with a 75bp single-

end kit. The two rounds of the second and third repetition using a 75bp paired-end kit. 

In-solution capture with DNA baits (probes derived from arrays) 

The in-solution capture with array probes was performed at the Max Planck Institute for the 

Science of Human History in Jena.  

For M. leprae, probes were designed based on strains TN (NC_002677.1) and Br4923 

(NC_011896.1). For targeted enrichment of Treponema pallidum DNA probes were designed on 

the basis of T. pallidum ssp. pallidum strains Nichols (NC_000919.1), SS14 (NC_021508.1), Sea 

81-4 (NZ_CP003679.1), Mexico A (NC_018722.1), T. pallidum ssp. endemicum strain Bosnia A 

(NZ_CP007548.1), and T. pallidum ssp. pertenue strain Fribourg-Blanc (NC_021179.1). The tiling 

density is two and one bp for M. leprae and T. pallidum, respectively. For both target organisms 

the probe length is 52 bp with an additional 8bp linker sequence (CACTGCGG) as described 

in Fu et al. 2013. Duplicated probes and probes with low sequence complexity were removed. 

This resulted in 1,125,985 and 1,593,068 unique probe sequences for T. pallidum and M. leprae, 

respectively. For each target species the probe set was spread on two Agilent one-million 

feature SureSelect DNA Capture Arrays. The capacity of the two arrays was filled by randomly 

duplicating probes from the probe set. The arrays were turned into in-solution DNA capture 

libraries as described in Fu et al. 2013. All three replicates were sequenced on a HiSeq4000 

using a 75bp paired-end kit.  
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Supplementary Note 2 - Bioinformatics and Statistical Analysis 

The sequencing data of all samples was processed with the EAGER 2 pipeline (Peltzer et al. 

2016, Fellows Yates et al. 2020, https://github.com/nf-core/eager). Including mapping with 

BWA, removal of duplicates, and the generation of damage plots. The enrichment factor for 

all enriched libraries was calculated by dividing the percentage of endogenous DNA after 

enrichment by the percentage of endogenous DNA in the shotgun sequencing. 

All statistical analysis was performed in R version 426 3.4.3 (R Core Team 2017). The 

significance between the different features mean coverage, standard deviation of the mean 

coverage, percentage of the genome covered five-old, fragment length and ancient DNA 

(aDNA) specific damage in the data of the three tested protocols was assessed in each sample 

individually with a mixed model as implemented in the lme4-package for R (Bates et al. 2015). 

This model contained the replicate as a random slope factor allowing between-replicate 

variation in the main effect. Subsequently, p-values were corrected for multiple testing with 

the Bonferroni correction. Pairwise Tukey HSD post hoc tests were calculated from this model 

using the lsmeans package for R (Lenth 2016).  

Also, significant differences between the individual replicates (grouped by age and pathogen) 

were assessed using a linear model as implemented in the stats-package for R (R Core Team 

(2019)). 

The percentage of unique reads was calculated by dividing the number of unique reads by the 

number of total reads mapped. 

Variance within each method 

After calculating the absolute value of the pairwise differences between the replicates for each 

method we used one-way ANOVA to determine the significance of these differences followed 

by Tukey HSD post hoc tests. 

Specificity of the three tested methods 

We also used one-way ANOVA to determine the significance of differences in the ratio of 

specific reads for each sample individually followed by Tukey HSD post hoc tests. 

Subsequently, p-values were corrected for multiple testing with the Bonferroni correction. 

General mycobacterial or treponemal reads, as well as specific reads, were determined using 

the MALT algorithm (Vågene et al. 2018). For the ratio, the number of specific reads was 

divided by either the number of total mycobacterial or treponemal reads. 

Data upload 

For the samples derived from human patients the reads mapping to the human genome were 

removed from the fastq files prior data upload with the --strip_input_fastq flag of EAGER 2 

(Peltzer et al. 2016, Fellows Yates et al. 2020, https://github.com/nf-core/eager) while mapping 

to the hg19 reference genome.  
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Supplementary Note 3 – Results of the Bioinformatics and Statistical Analysis 

Capture efficiency 

Detailed results of the tests for significant differences in the mean coverage, standard deviation 

of the mean coverage, percentage of the genome covered five-fold, enrichment factor, as well 

as aDNA typical damage and fragment length for each individual sample can be found in 

Supplementary Table 2 and Supplementary Figures 1 & 2. 

Mean coverage and the percentage of the genome covered at least five-fold are highly 

dependent on the enrichment factor and therefore the results for the two features mirror that 

of the enrichment factor (see Main Manuscript and Supplementary Table 2). 

For the features enrichment factor and mean coverage in the ancient data of both bacteria, the 

RNA bait capture with two rounds of hybridization shows the best results. However, adjusted 

p-values do not reach significance. The fragment length is in the data of ancient samples of 

both bacteria the shortest in the in-solution capture with DNA probes. The differences in 

fragment length are significant in both cases and increase with the bait length used with the 

longest fragments in the RNA bait capture with either one or with two rounds of 

hybridization. 

The evenest coverage as represented by lowest values of the standard deviation of the mean 

coverage is seen in the DNA bait capture in the ancient T. pallidum samples and in the data of 

the RNA bait capture with two rounds of hybridization in the ancient M. leprae samples. In 

both cases, differences are not significant. 

The largest portions of the genome covered at least five-fold result from RNA bait capture 

with two rounds of hybridization in ancient M. leprae sample (three to twenty times higher) 

and from DNA bait capture in the ancient T. pallidum samples (in average a hundred times 

higher, results of statistical significance in Supplementary Table 2). However, also in these 

cases the adjusted p-values do not reach significance.  

An important characteristic of ancient sequencing libraries is the occurrence of the substitution 

of C by T at the fragment ends (Briggs et al. 2007). This is due to the post-mortem decay of the 

DNA and can be used to authenticate ancient DNA. In the data of both bacteria the array 

capture results in the highest portion (up to two times higher) of damaged fragment. However, 

differences are not significant. 

Also, in the modern samples enrichment factor and mean coverage are the highest (between 

three and six hundred times higher) in the data of the RNA bait capture with two rounds of 

hybridization for both bacteria. All adjusted p-values for the enrichment factor and most of 

the adjusted p-values for the mean coverage are significant. 

The evenest coverage in the modern data is found in the array capture data for T. pallidum and 

in the DNA bait capture data for the M. leprae. For T. pallidum these differences are significant. 

The percentage of the genome covered five-fold is highest for modern M. leprae in the RNA 

bait capture with two rounds of hybridization and for T. pallidum in the DNA bait capture. 

However, only for M. leprae differences are significant. 
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The longest fragment in the modern data are as well found in the methods with the longest 

baits. For M. leprae the RNA bait capture, as for the ancient sample with either one or two 

rounds of hybridization, results in the longest fragments. For T. pallidum the DNA bait capture 

results in the longest fragments, there the differences also reach significance. 

All comparisons between the different methods were also performed between the individual 

replicates. Detailed results for this comparison can be found in Supplementary Table 3. The 

general pattern found in sample wise comparison was confirmed with higher statistical 

significance in the tests performed per replicate. 

The number of unique reads in the data of the first and second round of hybridization with 

the RNA baits does not significantly increase with the second round (Supplementary Figure 

3). Showing that the increase in the percentage of endogenous DNA increases while library 

complexity decreases. 

Variance within each method 

The choice of method significantly affects the differences between the replicates for all tested 

features in modern and ancient M. leprae genomes (Supplementary Table 6). The in-solution 

capture using DNA probes shows the smallest differences between the replicates besides the 

enrichment factor. Here the array capture produces the most similar results between the 

replicates (Supplementary Table 6).  

For the data from the ancient and modern syphilis, the variance between the replicates is 

significantly affected as well. The array capture shows hereby the smallest differences between 

the single replicates. 

Specificity of the different methods 

The significance of differences in the ratio of specific reads for either M. leprae or T. pallidum 

compared to mycobacterial and treponemal reads, respectively, in each of the ancient and 

modern samples of both tested bacteria, was assessed (Supplementary Table 4). There is no 

statistical significance between the methods besides in the data of the ancient M. leprae 

samples. Here the RNA bait capture with two rounds shows significantly the highest ratios of 

specific reads of M. leprae to mycobacterial reads in total. For the ancient Treponema pallidum 

samples, the RNA bait capture with two rounds shows the highest proportions of specific 

reads. 

For the samples of modern M. leprae, there is no statistical significance but here the in-solution 

capture with DNA probes shows the highest proportions of M. leprae specific reads. In the 

modern samples, only one round of capture with RNA baits yields the highest specificity. 
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Supplementary Figure 1: Comparison of (A) mean coverage, (B) standard deviation of the mean coverage, (C) enrichment factor, (D) and the percentage of the genome 

covered 5 fold, (E) distribution of the fragment length and (F) frequency of the aDNA damage for the ancient and modern strains of M. leprae. Three independent 

replicates were performed for each method. Labels of the ancient samples are in black and for the modern samples in red. Boxplots of the array are blue, of the DNA bait 

capture red and the RNA baits capture is green and grey for the first and second round, respectively. 
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Supplementary Figure 2: Comparison of (A) mean coverage, (B) standard deviation of the mean coverage, (C) enrichment factor, (D) and the percentage of the genome 

covered 5 fold, (E) distribution of the fragment length and (F) frequency of the aDNA damage for the ancient and modern strains of T. pallidum. Three independent 

replicates were performed for each method. Labels of the ancient samples are in black and for the modern samples in red. Boxplots of the array are blue, of the DNA bait 

capture red and the RNA baits capture is green and grey for the first and second round, respectively.
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Supplementary Figure 3: Number of unique reads for the three replicate batches of the three tested 

methods. The number of unique reads in the second round of hybridization with the RNA baits does 

not strongly increase compared to the first round.  
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Supplementary Table 1: List of all samples used in this study group according to organism 

and age together with the original publications. 

Group Sample Age Organism Host species publication 

modern 
T. pallidum 
retrieved 

from 
nonhuman 
primates 

40M5160407 modern T. pallidum 
nonhuman 
primate Knauf et al. 2018 

4F5230307 modern T. pallidum 
nonhuman 
primate Knauf et al. 2018 

RKI1 modern T. pallidum 
nonhuman 
primate Knauf et al. 2018 

RKI11 modern T. pallidum 
nonhuman 
primate Knauf et al. 2018 

RKI2 modern T. pallidum 
nonhuman 
primate Knauf et al. 2018 

RKI9 modern T. pallidum 
nonhuman 
primate Knauf et al. 2018 

modern 
T. pallidum 

N12 modern T. pallidum human Arora et al. 2016 

N13 modern T. pallidum human Arora et al. 2016 

N14 modern T. pallidum human Arora et al. 2016 

N17 modern T. pallidum human Arora et al. 2016 

C33 modern T. pallidum human Arora et al. 2016 

S4 modern T. pallidum human Arora et al. 2016 

UW1 modern T. pallidum human Arora et al. 2016 

Ancient 
M. leprae 

3077 ancient M. leprae human Schuenemann et al 2013 

GC96 ancient M. leprae human Schuenemann et al 2018a 

Body_188 ancient M. leprae human Schuenemann et al 2018a 

SK11 ancient M. leprae human Schuenemann et al 2018a 

T18 ancient M. leprae human Schuenemann et al 2018a 

Refshale_16 ancient M. leprae human Schuenemann et al 2013 

SK14 ancient M. leprae human Mendum et al. 2014 

SK8 ancient M. leprae human Mendum et al. 2014 

modern 
M. leprae 

S10 modern M. leprae human Schuenemann et al 2013 

S11 modern M. leprae human Schuenemann et al 2013 

S13 modern M. leprae human Schuenemann et al 2013 

S14 modern M. leprae human Schuenemann et al 2013 

S2 modern M. leprae human Schuenemann et al 2013 

S9 modern M. leprae human Schuenemann et al 2013 

ancient 
T. pallidum 

94-A ancient T. pallidum human Schuenemann et al 2018b 

133 ancient T. pallidum human Schuenemann et al 2018b 

94-B ancient T. pallidum human Schuenemann et al 2018b 



100 
 

Supplementary Table 4: Comparison of the specific reads of the three tested protocols. 

Sample age Organism Chisq Pr(>Chisq) Array 
RNA 
baits1 

RNA 
baits2 DNA baits 

Array - 
RNA 
baits1 

Array - 
RNA 
baits2 

Array - 
DNA baits 

RNA 
baits1 - 
RNA 
baits2 

RNA 
baits1 - 
DNA baits 

RNA 
baits2 - 
DNA baits p.adjust 

40M5160407 modern T. pallidum 1.26 0.35 0.28 0.33 0.33 0.28 0.53 0.55 1.00 1.00 0.54 0.56 1.00 

4F5230307 modern T. pallidum 0.73 0.57 0.30 0.33 0.32 0.28 0.85 0.97 0.93 0.99 0.54 0.76 1.00 

C33 modern T. pallidum 1.02 0.43 0.33 0.35 0.36 0.30 0.92 0.91 0.82 1.00 0.49 0.47 1.00 

94-A ancient T. pallidum 1.48 0.29 0.33 0.35 0.38 0.31 0.92 0.50 0.95 0.84 0.66 0.26 1.00 

133 ancient T. pallidum 7.43 0.01 0.28 0.32 0.34 0.29 0.09 0.01 0.95 0.61 0.18 0.03 0.17 

94-B ancient T. pallidum 2.38 0.15 0.30 0.35 0.37 0.29 0.53 0.24 1.00 0.91 0.44 0.19 1.00 

N12 modern T. pallidum 0.96 0.46 0.32 0.35 0.35 0.30 0.86 0.86 0.91 1.00 0.51 0.52 1.00 

N13 modern T. pallidum 0.87 0.50 0.33 0.35 0.35 0.30 0.91 0.92 0.87 1.00 0.54 0.54 1.00 

N14 modern T. pallidum 0.92 0.47 0.33 0.35 0.35 0.30 0.88 0.88 0.90 1.00 0.52 0.53 1.00 

N17 modern T. pallidum 0.99 0.45 0.33 0.35 0.35 0.30 0.85 0.85 0.91 1.00 0.51 0.50 1.00 

RKI1 modern T. pallidum 0.97 0.45 0.29 0.33 0.33 0.29 0.69 0.73 1.00 1.00 0.56 0.60 1.00 

RKI11 modern T. pallidum 2.69 0.12 0.00 0.00 0.00 0.00 0.13 1.00 0.66 0.17 0.56 0.76 1.00 

RKI2 modern T. pallidum 1.00 0.44 0.32 0.33 0.33 0.29 0.94 0.95 0.78 1.00 0.47 0.49 1.00 

RKI9 modern T. pallidum 3.50 0.07 0.00 0.01 0.00 0.00 0.10 1.00 1.00 0.10 0.14 1.00 1.00 

S4 modern T. pallidum 0.70 0.58 0.32 0.35 0.35 0.31 0.85 0.87 0.98 1.00 0.65 0.66 1.00 

UW1 modern T. pallidum 1.31 0.34 0.32 0.36 0.36 0.30 0.63 0.65 0.99 1.00 0.45 0.47 1.00 

3077 ancient M. leprae 0.79 0.53 0.99 0.93 0.76 0.99 0.98 0.57 1.00 0.78 0.98 0.57 1.00 

GC96 ancient M. leprae 0.37 0.77 0.80 0.69 0.68 0.94 0.98 0.97 0.95 1.00 0.81 0.79 1.00 

Body 188 ancient M. leprae 0.54 0.67 0.95 0.71 0.68 0.96 0.84 0.80 1.00 1.00 0.82 0.77 1.00 

SK11 ancient M. leprae 0.61 0.63 0.98 0.85 0.74 0.97 0.92 0.67 1.00 0.95 0.92 0.68 1.00 

T18 ancient M. leprae 0.60 0.63 0.96 0.86 0.73 0.98 0.97 0.71 1.00 0.92 0.94 0.64 1.00 

Refshale_16 ancient M. leprae 0.86 0.50 1.00 0.99 0.92 0.99 1.00 0.55 1.00 0.63 1.00 0.57 1.00 

SK14 ancient M. leprae 0.75 0.55 0.99 0.97 0.91 0.99 0.99 0.59 1.00 0.78 0.99 0.59 1.00 

SK8 ancient M. leprae 0.64 0.61 0.98 0.85 0.74 0.99 0.93 0.68 1.00 0.94 0.91 0.64 1.00 

S10 modern M. leprae 6.40 0.02 0.99 1.00 1.00 0.99 0.81 0.17 0.29 0.51 0.08 0.01 0.23 

S11 modern M. leprae 22.37 0.00 1.00 1.00 1.00 0.99 0.21 0.08 0.01 0.89 0.00 0.00 0.00 

S13 modern M. leprae 12.10 0.00 1.00 1.00 1.00 0.99 0.75 1.00 0.00 0.71 0.01 0.00 0.03 

S14 modern M. leprae 11.12 0.00 1.00 1.00 1.00 0.99 0.83 0.30 0.02 0.10 0.07 0.00 0.04 

S2 modern M. leprae 13.49 0.00 1.00 1.00 1.00 0.99 0.04 0.08 0.21 0.94 0.00 0.00 0.02 

S9 modern M. leprae 5.62 0.02 0.99 1.00 1.00 0.99 0.15 0.03 0.93 0.64 0.32 0.06 0.32 
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Supplementary Table 6: Comparison of the variance within each method tested. 

Organism Feature 

Sampl
e 
Group Chisq 

Pr(>Chisq
) Array 

DNA 
baits 

RNA 
baits1 

RNA 
baits2 

Array - 
RNA 
baits1 

Array - 
RNA 
baits2 

Array - 
DNA 
baits 

RNA 
baits1 - 
RNA 
baits2 

RNA baits1 - 
DNA baits 

RNA 
baits2 - 
DNA baits 

M. leprae 

Mean 
Coverage 

ancient 19.44 2.21E-04 0.97 0.19 0.89 1.04 0.00 0.99 0.99 0.01 0.00 0.91 

modern 30.28 1.21E-03 0.76 0.34 1.42 2.10 0.59 0.18 0.00 0.01 0.00 0.17 
standard 
deviation 

Mean 
Coverage 

ancient 39.76 1.20E-05 4.22 0.10 4.01 24.20 0.72 1.00 0.00 0.75 0.00 0.00 

modern 
28.90 2.35E-03 1.15 0.19 0.95 2.52 

0.10 
0.96 

0.01 
0.25 

0.00 
0.00 

Enrichment 
Factor 

ancient 32.09 5.00E-04 36.60 48.60 152.00 277.00 0.99 0.09 0.00 0.16 0.00 0.06 

modern 30.65 1.01E-06 4.44 14.80 28.90 12.70 0.17 0.00 0.36 0.03 0.97 0.01 

5Xpercentag
e 

ancient 27.64 4.33E-06 0.57 0.01 0.03 0.09 0.01 0.40 0.17 0.43 0.00 0.00 

modern 35.26 1.07E-04 0.04 0.02 0.12 0.21 0.93 0.10 0.00 0.02 0.00 0.06 

damage ancient 29.31 1.92E-03 4.50 0.42 6.75 5.50 0.00 0.23 0.83 0.00 0.00 0.71 

Length 
ancient 24.89 1.63E-02 8.78 0.78 5.78 4.56 0.00 0.21 0.04 0.01 0.07 0.85 

modern 10.30 1.62E-02 0.03 0.01 0.03 0.04 0.35 0.95 0.65 0.13 0.03 0.92 

T. pallidum 

Mean 
Coverage 

ancient 44.24 1.34E-09 0.20 1.44 0.68 21.60 0.97 1.00 0.00 0.99 0.00 0.00 

modern 
101.6

2 
2.20E-16 0.49 5.02 13.80 22.80 0.18 0.00 0.00 0.00 0.00 0.00 

standard 
deviation 

Mean 
Coverage 

ancient 45.97 5.76E-10 1.79 7.80 10.60 108.00 0.97 0.92 0.00 1.00 0.00 0.00 

modern 

140.8
4 

2.20E-16 2.47 6.22 20.60 58.40 0.85 
0.00 

0.00 
0.01 

0.00 
0 

Enrichment 
Factor 

ancient 
27.10 5.62E-06 

158.0
0 

5.346.00 1.286.00 
74.836.0

0 
0.99 1.00 0.00 0.99 0.00 0.00 

modern 
14.08 2.80E-03 

182.0
0 

7.047.00 2.979.00 5.823.00 
0.03 

0.68 
0.11 

0.37 
0.96 

0.67 

5Xpercentag
e 

ancient 23.05 3.95E-05 0.01 0.09 0.02 0.17 0.09 0.98 0.00 0.18 0.12 0.00 

modern 39.93 1.11E-08 0.03 0.06 0.23 0.08 0.81 0.00 0.48 0.00 0.95 0.00 

damage ancient 36.99 4.62E-08 4.00 0.22 12.50 10.70 0.20 0.00 0.01 0.00 0.00 0.76 

Length ancient 
101.7

6 
2.20E-16 12.30 0.10 18.00 18.30 0.00 0.01 

0.00 
0.00 

0.00 
1.00 

modern 21.26 9.31E-05 0.02 0.00 0.05 0.06 0.63 0.07 0.02 0.00 0.00 0.94 
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Supplementary Table 7: Comparison of the costs per reaction. 

 

in-solution capture with array derived probes 

Product Supplier Art.-Nr. 
amou
nt 

Price 
(€) 

Price 
(€)/rxn   Machines 

2x Hi-RPM Hybridization 
Buffer Agilent 5190-0403 25 ml 480 0,65   Vortexer 

bait production     200ul 432 16,20   centrifuge 
Herculase II Fusion DNA 
Polymerases  Agilent 600679 

400 
rxn 456 2,28   centrifuge for plates 

MinElute PCR purification Kit Qiagen 28004 
50 
rxn 127 2,54   

Magnetic rack (96 
well plate) 

Acetic acid 100% Sigma 5438080100 
100 
ml 61 0,00   

Magnetic rack (2 ml 
tubes) 

Dynabeads MyOne T1 
ThermoFi
sher 65601 2 ml 546 10,92   Thermocycler 

SeraMag Speedbeads 
ThermoFi
sher 

6515210505
0250 15 ml 

283,7
3 0,19   Lightcycler 

Oligonucleotide (primers, 
blocking oligos) sigma   

30 
rxn 533,5 17,78   Pipettes 

GeneAmp 10x PCR buffer 
ThermoFi
sher N8080006 

1,5 
ml 195 3,90     

Cot-1 DNA 
ThermoFi
sher 15279011 

500 
ug 310 1,55     

Denhardt’s Solution 50x  Sigma D2532-5ML 5 ml 172 0,21     

Additional reagents       
sum/r
xn 56,23     

SDS 20 % Sigma 
05030-
500ML-F 

500 
ml 107       

SSC 20% 
ThermoFi
sher AM9763 1 L 101       

0.5 M EDTA Sigma 
324506-
100ML 

100 
ml 45       

HPLC H2O Sigma 270733-1L 1 L 24       

5 M NaCl Sigma S5150-1L 1 L 68,3       

1 M Tris-HCl, pH 8 
ThermoFi
sher  AM9855G 

100 
ml 57,25       

Tween-20 100% Sigma P1379-25ML 25 ml 13       

1 M NaOH Applichem A6579,1000 1 L 27,2       

3 M Sodium acetate pH 5.2 Sigma 
S7899-
100ML 

100 
ml 32,4       

PM buffer Qiagen 19083 
500 
ml 63,6       

Salmon SpermDNA 
ThermoFi
sher 15632011 5 ml 133       

EtOH Merck 1009832511 2,5 L 86       
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Array 

Product 
Supplie
r 

Art.-
Nr. amount 

Pric
e (€) 

Price 
(€)/rxn   Machines 

Oligo aCGH/ChIP-on-
chip Hybridization Kit  Agilent 

5188-
5220 

Blocking Agent + 2x Hi-RPM 
hybridization buffer 25 rxn 461 18,44   Vortexer 

blocking oligos sigma BO4, BO6, BO8, BO10 
304,

64 10,15   Thermoshaker 

BD Plastipak 

Fisher 
Scientifi
c 

102051
94 100 x  

61,3
8 0,61   Thermocycler 

Hybridization Gasket 
Slide Kit Agilent 

G2534-
60005 100 

203
6 20,36   

Hybridization 
Oven 

SureSelect DNA 
Capture Array 1 M Agilent 

G3358
A 1 613 613,00   

1 bigger glass 
bowl 

Microarray Wash Buffer 
Kit  Agilent 

5188-
5222 WB 1, WB 2 40 rxn 208 5,20   

2 smaller glass 
bowls 

Herculase II Fusion 
DNA Polymerases  Agilent 600679 400 rxn 456 2,28   Array chamber 
MinElute PCR 
purification Kit Qiagen 28004 50 rxn 127 2,54   centrifuge 

Addtional ragents       
sum
/rxn 672,59   Magnetic mixer 

HPLC H2O Sigma 
270733
-1L 1 L 24     Waterbath 

              tweezers 

              rack for slides 

              pipettes 

              Lightcycler 

        

MyBait 

Product 
Supplie
r 

Art.-
Nr. amount 

Pric
e (€) 

Price 
(€)/rxn   Machines 

MyBait  Kit     48 rxn 
500

0 104,17   Vortexer 
Herculase II Fusion 
DNA Polymerases  Agilent 600679 400 rxn 456 2,28   centrifuge 
MinElute PCR 
purification Kit Qiagen 28004 50 rxn 127 2,54   

centrifuge for 
plates 

Additional reagents       
sum
/rxn 108,99   

Magnetic rack 
(96 well plate) 

1 M Tris-HCl, pH 8 
Thermo
Fisher 

 
AM985
5G 100 ml 

57,2
5     

Magnetic rack 
(2 ml tubes) 

Tween-20 100% Sigma 
P1379-
25ML 25 ml 13     Thermocycler 

HPLC H2O Sigma 
270733
-1L 1 L 24     Lightcycler 

              Pipettes 
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Abstract 

Genetic studies of Neolithic and Bronze Age skeletons from Europe have provided evidence 

for strong population genetic changes at the beginning and the end of the Neolithic period. To 

further understand the implications of these in Southern Central Europe, we analyze 96 

ancient genomes from Switzerland, Southern Germany, and the Alsace region in France, 
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covering the Middle/Late Neolithic to Early Bronze Age. Similar to previously described 

genetic changes in other parts of Europe from the early 3rd millennium BCE, we detect an 

arrival of ancestry related to Late Neolithic pastoralists from the Pontic-Caspian steppe in 

Switzerland as early as 2860–2460 calBCE. Our analyses suggest that this genetic turnover was 

a complex process lasting almost 1000 years and involved highly genetically structured 

populations in this region. 

Introduction 

Genetic studies have revealed that Central Europeans, during the Neolithic, were genetically 

mixed between indigenous European hunter-gatherers and new incoming people with 

ancestry related to Western Anatolian early farmers1,2,3,4,5. Towards the end of the Neolithic 

period, just before the transition to the Bronze Age, a second arrival of a new ancestry 

component in Europe was detected genetically6,7, coinciding with the emergence of the Central 

and Eastern European Corded Ware Complex (CWC; encompassing Battle Axe and Single 

Grave cultural groups, ref. 8). The new genetic component was most closely related to ancestry 

from the Pontic–Caspian steppe, found in individuals associated with the Yamnaya complex. 

While the origin of this new, third European ancestry component has been attested in many 

European regions6,7,9, the exact timing of the arrival in other regions, as well as the 

demographic processes underlying this genetic admixture, are less clear. 

Archaeologically, the Neolithic period in Switzerland is dominated by lakeshore and bog 

settlement sites with organic preservation, inner alpine sites of the Rhône valley, and high 

mountain pass sites10. Apart from settlement remains, stone cist graves from the Chamblandes 

type and a few megalithic burials towards the end of the Neolithic have been found, such as 

the dolmen burials of Oberbipp, Sion, Aesch, and others10,11,12,13. The rich archaeological record 

in Switzerland makes the region relevant for studies of population history in Central Europe. 

This is due to the particularly well-preserved wetland settlements from which the wooden 

parts provided one of the best dated dendrochronological records in prehistoric Europe11. 

In Switzerland, CWC finds are exclusively from settlements on the banks of the large pre-

alpine lakes. They are particularly numerous in the region of Lake Zurich in Eastern 

Switzerland and the Three Lakes Region in Western Switzerland. The sites on Lake Neuchâtel 

lie on the South-Western edge of the area influenced by CWC. In Eastern Switzerland, the new, 

cord-ornamented ceramic style was rapidly adopted, while in Western Switzerland this 

process had lasted several centuries. High-precision dendrochronological data obtained from 

the building structures of CWC settlements provide clear approaches to absolute chronology14. 

Although there are numerous Neolithic and Early Bronze Age sites from the lakeshores and 

moors, there are no burials directly related to them. This is due, among other things, to the fact 

that the Chamblandes type stone cist tombs were already in use in the fifth millennium BCE. 

This burial custom, however, most probably ends around 3800 BCE, i.e., exactly at the time 

when the lakeshore settlements begin to become numerous. The burials of the Early Bronze 

Age are concentrated in inner alpine regions (Rhone valley, Lake Thun area, and foothills of 

the Alps) from which no lakeside settlements of this period are known. In periods with many 



108 
 

graves, there are no settlements and vice versa, in periods with many settlements the 

corresponding burials are missing. The reasons for this are probably of taphonomic nature. 

Thus, only four ancient genomes have been published so far for the territory of present-day 

Switzerland: one Late Pleistocene hunter-gatherer individual from Bichon cave15 and three 

individuals associated with the Bell Beaker phenomenon from the dolmen burial of Sion-Petit-

Chasseur9. 

The aim of this project is to investigate the transition from the Neolithic to the Bronze Age in 

Switzerland in detail, with a specific focus on the timing of the arrival, source and mixture 

process of steppe-related ancestry, and the social and demographic structure before and after 

this transition. Using relatively dense temporal sampling, we generate genome-wide data 

from 96 individuals dating to the Neolithic and Early Bronze Age period from Switzerland, 

Southern Germany, and the Alsace region in France. We also generate data from one 

individual from the Early Iron Age and the Roman period, respectively. We find the expected 

large genetic turnover at the beginning of the third millennium BC and a highly genetically 

structured population in the region of present day Switzerland at that time period. The 

predominant social structure, furthermore, was probably patrilocal. 

Results 

Ancient DNA authentication and uniparental markers 

The ancient individuals from this study originate from 13 Neolithic and Early Bronze Age sites 

in Switzerland (Fig. 1b), Southern Germany, and the Alsace region in France. All samples 

taken from the individuals were radiocarbon dated (Supplementary Note 2 and 

Supplementary Data 1). In a preliminary screening, 263 samples were enriched for mtDNA. 

We reconstructed complete mitochondrial genomes, used them to estimate DNA library 

contamination (Supplementary Data 1), and identified 96 samples that had less than 5% of 

contamination for further analyses. We determined mtDNA haplogroups using the software 

haplogrep (ref. 16, Supplementary Note 3, Supplementary Fig. 1, and Supplementary Data 1) 

and found the macrohaplogroups N1a, W, X, H, T2, J, U2, U3, U4, U5a, U5b, K, and U8 in our 

samples. 

For genome-wide analysis, we genotyped all selected individuals on ~1.2 million genomic 

SNPs2, also containing 49,704 SNPs on the X chromosome and 32,670 SNPs on the Y 

chromosome. SNPs on the X chromosome were used to estimate nuclear contamination in 

male individuals (Supplementary Data 1), and we again used a threshold of 5% to select clean 

libraries for further analysis (96 individuals). We also determined Y chromosomal 

haplogroups (Supplementary Note 4, Supplementary Fig. 2, Supplementary Data 1, and 

Supplementary Table 1). 

Population turnover at the transition to the Bronze Age 

We combined the genotype data of the new 96 individuals from this study that passed our 

contamination tests with 399 published ancient genomes from the same time period from 



109 
 

Central and Western Europe as well as Neolithic individuals from Anatolia and the Pontic 

steppe (individuals annotated as Yamnaya Samara in ref. 6) and genotype data of modern 

individuals from the POPRES17 and the Human origins (HO)1 datasets for various analyses. 

We projected our 96 new ancient genomes from Switzerland and surrounding regions and 52 

published ancient genomes selected to reflect the genetic landscape of Europe at different time 

points onto the first two principal components constructed from 1960 individuals of 38 

European populations from the POPRES dataset (Fig. 1c and “Methods”). Two distinct 

clusters can be identified and were also confirmed by ADMIXTURE analysis (Supplementary 

Note 5), one consisting of individuals dating to 4770–2500 calBCE, and one comprising 

individuals dating to 2900–1750 calBCE. The oldest individuals from the sites of Niederried 

(CH) and Lingolsheim (F) fall close to ancient individuals from Anatolia associated with early 

agricultural contexts. More recent individuals from the megalithic burials at Oberbipp (CH) 

and Aesch (CH) are shifted further towards Western Hunter-Gatherers (WHG) and close to 

modern-day Sardinian individuals, as well as towards Early and Middle Neolithic individuals 

from Iberia or the Middle Elbe-Saale (MES) region in Central Germany. This shift mirrors an 

increase of hunter-gatherer-related ancestry during the middle Neolithic that has been 

described previously for other parts of Europe. 

The second distinct cluster is shifted towards the individuals associated with the “Yamnaya” 

complex, similar to other European groups younger than 2700 BCE, relative to individuals 

older than 2700 BCE. In this cluster, the oldest individuals are closest to Late Neolithic groups 

on the steppe, whereas more recent individuals are once again shifted towards the 

Middle/Late Neolithic cluster. All Final Neolithic and Early Bronze Age individuals fall within 

the range of modern-day Europeans, but none of the newly sequenced individuals of this 

study overlap with the present-day Swiss populations in this analysis, suggesting additional 

population changes in the region after the Middle Bronze Age. 

Our individuals sequenced in this study fall in PC space between WHG individuals, Western 

Anatolian Neolithic Farmers (ANF) and steppe pastoralists from Samara (YAM), similar to 

other Late Neolithic individuals such as the Tyrolian Iceman18 and Bronze Age populations 

such as individuals of the Bell Beaker complex6 from Europe. Therefore, we modeled them as 

a three-way mixture between these three populations using qpAdm from the ADMIXTOOLS 

package (ref. 19, “Methods” and Supplementary Tables 2 and Supplementary Data 4). The 

overall pattern observed from this analysis matched previous analyses of that type9. 

Individuals from older sites (Early Neolithic and Middle Neolithic) are consistent with a two-

way mixture between WHG and ANF ancestry, whereas individuals from younger sites after 

~2700 BCE exhibit substantial amounts of ancestry related to YAM. Furthermore, the 

proportions of this component differ strongly between sites and tend to decrease over time 

(Fig. 2a). This trend is confirmed by further analysis of the ancestry components on an 

individual level. 

Compared with previous studies2,9 analyzing Neolithic and Bronze Age individuals from 

present-day Germany and Great Britain, which do not report individuals dating to the 

transition period directly, in this study we analyze a gapless time-transect covering the 

https://www.nature.com/articles/s41467-020-15560-x#ref-CR6
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Neolithic to Bronze Age transition. By viewing the YAM-related ancestry component 

estimated with qpAdm over time at an individual level, it becomes apparent that this ancestry 

was virtually absent before 2700 BCE, followed by a steep increase in parts of the population 

starting around 2700 BCE (Supplementary Note 7 and Supplementary Data 4). After this rapid 

increase in individual proportions of YAM-related ancestry from 0% to ~60%, a decrease down 

to 25–35% can be observed over the next thousand years. We also note four female individuals 

that can be modeled without any YAM-related ancestry even 1000 years after the appearance 

of that genetic component in the area. Comparing outgroup-f3 statistics between the 

autosomes and the X chromosome of Final Neolithic and Bronze Age individuals we find that 

autosomes are more closely related to YAM-related ancestry than the X chromosomes are 

(Supplementary Note 6), consistent with a model in which more males than females brought 

YAM-related ancestry into the region as already shown by previous studies20. 

We analyzed pairwise genetic differences across all analyzed genomic positions between 

individuals before and after the genetic turnover and found that the mismatch rates increase, 

on average, by around 0.009 after 2700 BCE for all populations (Fig. 2c, see also “Methods”). 

This is more than twice the increase that can be attributed to the between-population 

variability in rates and indicates a significant increase in genetic diversity after the arrival of 

the YAM-related ancestry component in Central Europe. Modern populations would be 

expected to have higher levels on average but are not compared in this analysis since the 

modern individuals from published datasets usually do not originate from groups with the 

same background (e.g., being related distantly) as could be expected in multiple burials. 

Comparing our newly analyzed individuals from Switzerland with ancient genomes from 

Great Britain, Iberia, and Germany2,9,21 we modeled the arrival time of the YAM-related 

ancestry in the different broadly defined European regions (Fig. 2b, see “Methods“). While our 

models indicate that the proportions of the YAM-related ancestry peaks earlier in the Swiss 

dataset (around 2750 BCE) compared with the comparative datasets from refs. 2,9,21 (around 

2600 BCE), these differences fall within the uncertainty of the analysis (Supplementary Fig. 6), 

so may be considered suggestive of an earlier arrival of steppe-related ancestry, but not 

conclusive. We also caution that differences are likely affected by uneven sampling through 

time in the three different datasets, and so expect the precision of this analysis to improve with 

denser temporal sampling in the future. 

Timing and duration of the genetic turnover 

We used the software DATES (ref. 22, https://github.com/priyamoorjani/DATES) to estimate 

the admixture time between YAM-related and Late Neolithic ancestries in all Final Neolithic 

and Early Bronze Age individuals from Switzerland with substantial admixture proportion. 

Our estimates range between 3 and 60 generations ago, with substantial uncertainty. If the 

mixture occurred as one single event in the history of all individuals, we would expect more 

recent individuals to have a higher admixture time estimate (i.e., more generations ago) than 

individuals of older dating. However, we observe only a slight trend towards more 

generations in individuals with younger C14 dates (Fig. 3a), which suggests that the process of 

https://github.com/priyamoorjani/DATES
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admixture with steppe-related ancestry occurred over several hundred years rather than as a 

single pulse. 

For comparison, we performed a similar analysis for published ancient Final Neolithic and 

Bell Beaker populations from the MES region in Germany, Great Britain, and Iberia using a 

mixture between the YAM-related steppe component and the corresponding Middle Neolithic 

population of the region (Fig. 3c). For the MES region from Germany, Late Neolithic and Early 

Bronze Age individuals were split in Bell Beaker and Corded Ware groups. Similar to this 

approach, we also split the Neolithic individuals from Switzerland into a group of individuals 

associated with the Corded Ware Complex from Spreitenbach and a group of younger 

individuals from the Bronze Age. All four regions (Iberia, Great Britain, MES and Switzerland) 

show similar ranges of admixture dates between the steppe-related component and the 

Neolithic component starting between 3000 and 2500 BCE. 

The inferred admixture time describes the time when people of steppe-related ancestry 

encountered people with Late Neolithic ancestry but does not reveal the location. Admixture 

could have happened in Switzerland or elsewhere, with already admixed individuals moving 

to Switzerland. 

Neolithic source population for the admixing event 

We tested which Neolithic population likely admixed with the incoming people that carried 

large amounts of YAM-related ancestry, by adding Late Neolithic individuals from 

Switzerland, Globular Amphora, Iberia Middle Neolithic, and France Neolithic groups 

separately as additional right populations to the three-way model (WHG, Western Anatolia 

Neolithic and Yamnaya Samara) used in the above qpAdm analyses (ref. 19, Supplementary 

Data 3 and 4). The model remains fitting for Iberia Middle Neolithic and France Neolithic 

populations (p ≥ 0.01 and p ≥ 0.3, respectively) but it fails when we add Late Neolithic 

individuals from Switzerland or Globular Amphora as additional right population (p ≤ 2e−7 

and p ≤ 2e−6, respectively). This suggests that both the local Swiss Late Neolithic population 

as well as people associated with the Late Neolithic Globular Amphora culture, located further 

east, are better proxies of the genetic sources for Final Neolithic and Bronze Age populations 

from Switzerland than Western ANF and steppe pastoralists. 

Kinship before and after the genetic transition 

In five burial sites, we identified first-degree relatives using the software lcmlkin23 and READ24, 

and by calculating pairwise mismatch rates across all analyzed genomic sites between 

individuals (see “Methods”). Four of these sites contained more than two closely related 

individuals, which allowed us to reconstruct family trees spanning three generations for 

Oberbipp, Aesch and Singen (Fig. 4). In these multiple burials, only a few female individuals 

(four individuals) were buried together with one of their parents or their sons, compared with 

a higher number (21 individuals) of males buried with their father, brothers or sons, indicating 

that males likely tended to stay where they were born, while females were likely mobile. This 

pattern is observed both before and after the arrival of the YAM-related ancestry and is 
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indicative of patrilocal societies during Late Neolithic times in the studied region, consistent 

with previous results from Neolithic times throughout Northern and Western Europe25,26. 

Population movement in Switzerland after the Bronze Age 

We compared present-day Swiss people to regional Final Neolithic populations (Spreitenbach, 

Bad Zurzach, Wartau) to test whether there are additional ancestry components in present-

day Swiss people. For that analysis, we made use of information available in the present-day 

dataset (POPRES) about the self-reported language group and split the individuals into three 

linguistic regions, as they were shown to be distinguishable genetically in previous studies27: 

German-speaking, French-speaking, and Italian-speaking Switzerland. To test for continuity 

between the ancient and present-day population we used the method qpWave from the 

ADMIXTOOLS package19 and found that a simple continuity can be rejected (p = 0.0003) for all 

three linguistic regions separately and the entire present-day Swiss population combined, 

consistent also with the PCA (Fig. 1c). 

To assess whether ancient Swiss individuals from the Final Neolithic are symmetrically related 

to different linguistic present-day groups, or share an excess of alleles with any of them, we 

calculated D-statistics of the form D(Mbuti, Test, Swiss–French, Swiss–Italian), D(Mbuti, Test, 

Swiss–German, Swiss–Italian), and D(Mbuti, Test, Swiss–French, Swiss–German) where 

“Test” are the different Neolithic groups. The first two D-statistics were, with few exceptions, 

all negative with a |Z| ≥ 1.099 (maximum values to be found in D(Mbuti, Test, Swiss–French, 

Swiss–Italian) for Singen with −3.431 and Bad Zurzach −3.068) indicating the least genetic 

affinity of the Final Neolithic and Early Bronze Age individuals of this study to the Italian-

speaking group in our present-day Swiss dataset. For D(Mbuti, Test, Swiss–French, Swiss–

German) some variation between the sites can be found (Fig. 5) with the older sites sharing 

more alleles with the French-speaking group, and the younger sites being more similar with 

the German-speaking group. 

Analysis of functional SNPs 

We analyzed the frequencies of several phenotypic SNPs (Table 1, “Methods”). Derived alleles 

for SLC24A5 associated with light skin pigmentation in Europeans were found in all 

individuals with this position covered. The frequency of SLC45A2 also causing lighter skin 

pigmentation tends to increase and the frequency of HERC2 associated with light eye-color 

tends to decrease towards the Final Neolithic. A mutation associated with lactose tolerance in 

adulthood (LCT; rs4988235), which is of high frequency in Europe today, is absent in Late and 

Middle Neolithic samples. The only exception is one Final Neolithic individual from 

Spreitenbach dating to 2105–2036 calBCE, which is one of the earliest European individuals 

with this mutation found so far. The near absence of lactose tolerance in these ancient groups 

is in concordance with previous studies hypothesizing that this mutation arose in the Final 

Neolithic period and started to increase in frequency after the beginning of the Bronze Age2. 

https://www.nature.com/articles/s41467-020-15560-x#ref-CR2


113 
 

Discussion 

Our study is the first to report a substantial number of ancient genomes from Switzerland, 

following a trend of population-scale archaeogenetic sequencing studies in Europe9,21,28, made 

possible by capture technology. In accordance with previous studies1,6,7, the Middle and Late 

Neolithic Swiss individuals are descendants of late European hunter-gatherers and early 

farmers, whilst the individuals after 2700 BCE also carry steppe-related ancestry6,7,9. Genetic 

similarities between Corded Ware associated individuals from the MES region in Germany 

and individuals from Spreitenbach, also associated with the Corded Ware Complex, suggest 

that this complex was associated with a relatively homogenous genetic population 

throughout/across large parts of Central Europe. 

The social and family structures, as reconstructed by biological kinship networks, remain the 

same before and after the arrival of steppe-related ancestry in the region. The predominant 

social structure in populations buried at the sites investigated in this study must have been a 

patrilocal society where males stayed where they were born, and females came from more 

distant living families, a societal dynamic which has been confirmed by stable isotopes29 and 

that has been previously documented for the Middle Neolithic25. Also, higher female mobility 

has been shown during the Early Bronze Age26,30. Our study also presents one of the earliest 

evidence for adult lactose tolerance in Europe, dating to 2105–2036 calBCE. 

Unsurprisingly, comparing our ancient individuals from Switzerland with the data of 

individuals from present-day Switzerland reveals additional changes in the region since the 

Bronze Age. In the periods following the studied time span, different factors could have 

influenced the population. In particular, in the so-called migration period from 375 to 538 AD, 

following the Roman Empire, in which there was widespread migration of peoples within or 

into Europe31. 

Remarkably, we identified several female individuals without any detectable steppe-related 

ancestry up to 1000 years after this ancestry arrives in the region, with the most recent woman 

without such ancestry dating to 2213–2031 calBCE. This suggests a high level of genetic 

structure in this region at the beginning of the Bronze Age with potential parallel societies 

living in close proximity to each other. Published stable isotope results for one of these females 

(MX193 or Individual 3 in the original publication) indicate that she was not of local origin32. 

It can, therefore, be speculated whether admixture between the newly established local 

population with steppe-related ancestry and mobile females with less or none of it, caused the 

decline in the relative amount of this ancestry component in the centuries after its arrival in 

present-day Switzerland. As the parents of those mobile females also could not have carried 

steppe-related ancestry, it remains to be shown where in Central Europe such populations 

without this component were present. One possibility could be Alpine valleys, which until 

today are inhabited by linguistic isolates that exhibit strong genetic differentiation as initial 

studies on uniparentally inherited markers have suggested33,34. But considering the results of 

Mittnik et al.35 with similar patterns in the Lech valley, the origin of this steppe-related ancestry 

component lacking population does not necessarily lie that far south. 
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Stable isotope analyses29,32 do not give clear indications if all four females originated and spend 

their entire life within the region of modern-day Switzerland. Therefore, it cannot be excluded, 

that these females also originate from regions further south since also some regions e.g., Italy 

are not genetically described so far for this particular time span. However, individuals without 

any steppe-related ancestry can be found up until 2479–1945 BCE for example in Iberia or until 

2900–1700 BCE in the Minoan population of Crete21,36 and even later on Sardinia where steppe-

related ancestry arrives around 300 CE37 and where studies of present-day Sardinians found 

indications of continuity in mountainous regions since Neolithic times38. 

Also noteworthy is the remarkably early arrival of the steppe-related ancestry component in 

Switzerland, at least as early as or even earlier than in regions of Germany and Great Britain. 

However, further investigations are needed, especially since datasets from the regions in Great 

Britain and the MES region in Germany show gaps in the sampling between the Late/Final 

Neolithic and the Early Bronze Age potentially biasing the results, to draw any conclusions 

about the exact route in which the steppe-related ancestry spread through Central Europe. 

Methods 

DNA extraction and library preparation 

A total of 263 samples were screened for DNA preservation for this study. A detailed 

description of the archaeological context of the samples and radiocarbon dates for all 

individuals included in genome-wide analysis can be found in Supplementary Notes 1 and 2. 

All pre-PCR steps were performed in the cleanroom facilities at the Institute for Archaeological 

Sciences in Tübingen. For the reduction of surface contamination, the samples were treated 

with UV light for 30 min each side. Between 30 and 50 mg of powder from coronal dentin for 

teeth and between 50 and 100 mg of bone powder for the petrous bones were used for 

extraction. After the dissolving of the powder in 1 ml extraction buffer (0.45 M EDTA, 

0.25 mg/ml proteinase K) at 37 °C overnight, than the supernatant was transferred into 10 ml 

binding buffer (5 M GuHCl, 40 % Isopropanol, 115 mM NaAc) and the DNA was bound to a 

silica membrane in the MinElute Columns from Qiagen. Then the membrane was washed two 

times with 720 μl of the commercial PE buffer form Qiagen, and then the DNA was eluted in 

100 μl TET buffer (1 mM EDTA, 10 mM Tris-HCl, 0.05 % Tween-20, ref. 38). Sequencing libraries 

were prepared after39. For the blunt ending 20 μl extract were combined with 30 μl reaction 

mix (1× NEB buffer 2, 100 μM dNTP mix, 0.8 mg/ml BSA, 1 mM ATP, 0.4 U/μl T4 

Polynucleotide Kinase (BioLabs, Frankfurt), 0.024 U/μl T4 Polymerase also from BioLabs), and 

then incubated in a thermo cycler for 15 min at 15 °C and then 15 min at 25 °C. The resulting 

18 μl was then used for the ligation of the adapters. With a final volume of 40 μl the reaction 

contained: 1× Quick Ligase buffer, 250 nM Solexa Adapter Mix and 0.125 U/l Quick Ligase 

(BioLabs, Frankfurt). The incubation was at room temperature for 20 min. This step was 

followed by a MinElute purification with an elution volume of 20 μl. The 20 μl from the step 

before were combined with 20 μl of the reaction mix (1× Isothermal buffer, 125 nM dNTP, 
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0.4 U/μl Bst polymerase 2.0 from BioLabs), and then incubated for 20 min at 37 °C and then 

20 min at 80 °C. 

To enable multiplexed sequencing, sample-specific barcodes were added to each library by 

amplification with tailed primers40. The PCR reactions had a final volume of 100 μl and the 

following concentrations: 1× buffer, 0.25 mM dNTP mix, 0.3 mg/ml BSA, 0.2 mM P7, 0.2 mM 

P5 and 0.025 U/μl Pfu Turbo Polymerase (Agilent Technologies, Santa Clara, USA). The 

thermal profile started with 2 min at 95 °C This was then followed by ten cycles with 30 s at 

95 °C, 30 s at 58 °C, and 1 min at 72 °C followed by 10 min at 72 °C. After MinElute purification 

the DNA was eluted in 50 μl TET. 

To achieve a high copy number of each library, an additional amplification was performed 

with Herculase II in a final volume of 100 μl consisting of 1× Herculase II reaction buffer, 0.25 

mMdNTPs, 0.4 μM IS 5, 0.4 μM IS 6, 0.01 % Herculase II Fusion DNA Polymerase. The thermal 

profile started with 2 min at 95 °C followed by a sample-specific number of cycles of 10 s at 

95 °C, 30 s at 65 °C, and 30 s at 72 °C. This was then followed by 4 min at 72 °C. All samples 

were pooled equimolar at 10 nM for shotgun sequencing. 

Mitochondrial and nuclear capture 

In addition to shotgun sequencing, all libraries were enriched for mitochondrial DNA using 

baits generated from modern DNA via long-range PCR41. For extracts with sufficient 

endogenous DNA after screening two more double-indexed UDG-half treated libraries were 

prepared similar to the approach described above with the differences that the first master 

mix consisted of 60 μl with 1× Buffer Tango (Thermo Fisher Scientific), 100 μM dNTPs, 1 mM 

ATP, and 0.06 U/μl USER enzyme (NEB). After a 30 min incubation at 37 °C, 0.12 U/μl UGI 

was added and the reaction was incubated for another 30 min at 37 °C. This was followed by 

the procedure described above42. The non-UDG treated library and the two UDG-half libraries 

were enriched for 1.2 Mio nuclear SNPs using an in-solution hybridization protocol2,43. 

Bioinformatic processing 

After sequencing all data were processed using the software package EAGER44. Adapters were 

removed and paired-end data were merged using Clip&Merge44. Mapping was performed 

with BWA with the mismatch parameter set to 0.01 and a seed length of 1000 against the 

human genome reference GRCh37/hg19. If necessary, PCR duplicates were removed using 

DeDup44. BAM files from different libraries of the same extract were merged after mapping 

and quality control. Reads mapping to the mitochondrial genome were extracted from the 

BAM files and the mitochondrial genome was reconstructed and the amount of mitochondrial 

contamination was estimated using the software schmutzi45. The web-based tool HaploGrep46 

was used to determine mitochondrial haplogroups. Genetic sex was determined by comparing 

X chromosomal reads to Y chromosomal reads47. 

For male samples, nuclear contamination was estimated using ANGSD48. Samples with 

mtDNA or nucDNA contamination >5% as well as samples with <10,000 SNPs of the HO 

dataset were excluded from further analysis. 
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Population genetic analysis 

Pseudo-haploid genotypes for the 1.2 M SNPs were retrieved using pileupcaller 

(https://github.com/stschiff/sequenceTools). A reference dataset of 399 published ancient 

genomes, the HO dataset or the POPRES dataset were compiled. The overlap between the 

1.2 M targeted SNPs and the HO data are 593,054 SNPs, between the POPRES and the target 

SNPs 133,682. 

For the principal component analysis on the newly sequenced individuals, published ancient 

individuals and the European population from the POPRES smartpca from the EIGENSOFT 

package (version: 16000) was used with the parameters lsqproject: YES and shrinkmode: YES. 

Relative proportions of ancestry components in the newly sequenced individuals, published 

ancient individuals from Germany, Great Britain, and Iberia were estimated using qpAdm 

(version: 632) from ADMIXTOOLS (ref. 19, https://github.com/DReichLab) using a threshold of 

100k SNPs for analysis on an individual level (Supplementary Note 3) and modern reference 

individuals (Mbuti, Papuan, Onge, Han, and Karitiana) from the HO dataset and published 

ancient individuals (Ust Ishim, Ethiopia 4500BP, Villabruna, MA1). 

Estimation of steppe arrival times 

The arrival time of steppe ancestry was modeled from the newly sequenced individuals and 

published ancient genomes from Germany, Great Britain, and Iberia assuming that 

proportions of steppe ancestry increase from zero to pe at some time te, and then decrease 

according to an exponential curve such that they are projected to reach a proportion of p0 at 

time zero. We used starting values of p0 = 0.1, pe = 0.8, and te equal to the mean date of the 

samples with nonzero steppe ancestry. We then chose optimal parameter values for the model 

by finding values for p0, pe, and te that minimized the residual sum of squares function between 

fitted and observed steppe ancestry proportions. Analyses were performed using R version 

3.4.3 (R Core Team 2017) with the function optimx49. To avoid downward-biased estimates of 

pe, we set individuals with steppe ancestry proportion zero, which are observed after te, to have 

zero residual value. 

To incorporate uncertainty in dating estimates, we did not use the mean date for each 

individual, and instead randomly sampled a date for each individual from a normal 

distribution truncated such that the upper and lower bounds of the date estimates form a 95% 

confidence interval around the sampling mean. We repeated this sampling process 100,000 

times and found an optimal value for te for each sample, for each dataset. Optimal values of te 

were only retained if they produced stable solutions with a positive-definite Hessian matrix. 

For the uncertainty in the proportion of steppe ancestry it is assumed it is identically 

distributed, with mean zero and unbiased for all points, as it is standard in least-squares 

regression. We report kernel density estimates weighted by the ratio of the exponential of the 

sum of the squared residuals, compared with the optimal residual sum of squares observed, 

which is proportional to the ratio of Gaussian likelihood functions. This approach allows 

parameter values that performed best to be given more weight in the report kernel density 
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functions and approximates implementing a Monte Carlo Markov chain with a truncated 

Gaussian prior distribution for sampling times, a Gaussian distribution for the residuals, and 

a uniform proposal density function for parameter values. 

Pairwise mismatch rates 

The pairwise mismatch rates were calculated from the genotype file and only pairs with more 

than 10,000 overlapping SNPs of the 1240k SNP panel were included. Due to the heavy right-

skewed distribution of the pairwise mismatch rates, we used a robust linear mixed-effects 

model to assess the difference between pairwise mismatch rates before and after 2700 BCE. To 

account for correlations in the data due to the same samples being used to calculate multiple 

pairwise distances, we included the ID of the samples as random effects. We found that both 

the time period (before and after 2700 BCE) and the population of origin for samples were 

significant predictors for the pairwise mismatch rate. Analyses were performed using R 

version 3.4.3 (R Core Team 2017) via the robustlmm package50. 

Admixture date estimates 

Admixture dates were estimated using DATES, which was extensively tested in ref. 22, based 

on the 1240k SNP panel for single individuals and for groups of individuals (ref. 22, 

https://github.com/priyamoorjani/DATES). 

Kinship analysis 

Kinship between individuals was assessed using the software READ23, lcmlkin24, and 

calculating pairwise mismatch rate on autosomal markers and confirmed by mtDNA 

haplotype and Y chromosomal haplogroups based on the 1240k SNP panel (Table 1). 

qpWave analysis 

Population continuity since the Bronze Age was tested with qpWave (version: 410) from 

ADMIXTOOLS (https://github.com/DReichLab) between newly sequenced Swiss Bronze Age 

individuals and modern Swiss individuals from POPRES using Mbuti, Karitiana, Hakka 

Taiwan, Papuan, Onge, Han, Hungarian, MA1, EHG, and WHG as outgroups and differences 

in the genetic affinity between the Bronze Age individuals and the four linguistic regions of 

Switzerland were assed with D-statistics of the form f4(X,Y; Test, Outgroup). 

Functional SNP analysis 

Phenotypic SNPs were genotyped using GATK version 3.851. Low coverage positions (e.g., 1×) 

with reference or alternative alleles carrying A or T were inspected manually to exclude the 

influence of ancient DNA damage. 
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Fig. 1: Genetic, temporal, and spatial structure of individuals in this study. a Time ranges of 

calibrated radiocarbon dates of the archaeological sites. b Geographical distribution of the sites 

and samples sizes per sites in brackets. Map generated with R version 3.4.3 (R Core Team 2017) 

using the CIA World Data Bank II currently (mid 2003) available from 

http://www.evl.uic.edu/pape/data/WDB/. c PCA was reconstructed on 1960 modern European 

individuals of the POPRES dataset and ancient genomes were projected onto it. 

  

http://www.evl.uic.edu/pape/data/WDB/
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Fig. 2: Genetic turnover at the transition to the Central European Bronze Age. a Three-way 

qpAdm models of the ancient individuals from Switzerland (number of individuals in 

brackets) sorted by sites in chronological order (bottom to top) with the source populations 

WHG, steppe pastoralists (Yamnaya Samara) and Anatolia Neolithic. Error bars represent 

standard error of the proportion of each component. b Relative proportion of the steppe-

related ancestry component for each individual in four different regions, calculated with 

qpAdm and estimates of arrival times (error bars represent the range of C14 dating) and 

following decrease of the component (dashes lines). Red dots represent female individuals and 

blue dots male individuals. c An estimate of genetic diversity between individuals before 2700 

BCE and after 2700 BCE and sites with individuals from both periods as well as modern 

European populations (German and French from the HO dataset). 
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Fig. 3: Estimated admixture times between the Yamnaya-like steppe component and the 

Middle Neolithic population using DATES software. a Admixture dates of single 

individuals are plotted against their calC14 dates (horizontal error bars indicate uncertainty in 

C14 dating and vertical error bars show 95% confidence interval of generation times) and b 

displayed as time range (C14 dates in red and estimated admixture dates in turquoise). c 

Admixture dates of grouped individuals according to their regions of origin were calculated 

(colors as above). 
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Fig. 4: Reconstructed family trees from different sites over time. All relationships between 

the single individuals were reconstructed from autosomal variants and confirmed by 

uniparentally inherited markers such as mtDNA haplotype and Y chromosomal haplogroup. 

Individuals with black outline were available for analysis and individuals with gray outline 

were not found within the burials and are missing. Same colors indicate identical mtDNA 

haplotypes and matching Y chromosomal haplogroups. 
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Fig. 5: Genetic affinity between the ancient Individuals and the French-, German-, and 

Italian-speaking regions of Switzerland. Differences in genetic affinity of the ancient 

individuals from Switzerland to a Swiss–French and Swiss–German, b Swiss–Italian and 

Swiss–German, and c Swiss–French and Swiss–Italian. Maps generated with R version 3.4.3 (R 

Core Team 2017) using the CIA World Data Bank II are currently (mid 2003) available from 

http://www.evl.uic.edu/pape/data/WDB/. 

 

http://www.evl.uic.edu/pape/data/WDB/
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Table 1: Frequency of the derived allele of four phenotypic SNPs. SLC45A2 and SLC24A5 

contribute to lighter skin pigmentation, HERC2 is associated with blue eyes and LCT with 

lactose tolerance in adults. 

  
frequency of 

derived 
allele 

SLC45A2 
(rs16891982

) 

number of 
individuals 

position 
covered 
SLC45A2 

(rs16891982
) 

frequency 
of derived 

allele 
SLC24A5 

(rs1426654
) 

number of 
individuals 

position 
covered 
SLC24A5 

(rs1426654
) 

frequency of 
derived 

allele HERC2 
(rs12913832

) 

number of 
individuals 

position 
covered 
HERC2 

(rs12913832
) 

frequency of 
derived 

allele LCT 
(rs4988235

) 

number of 
individuals 

position 
covered LCT 
(rs4988235

) 

Late 
Neolithic 

 
       

Niederried 0% 0/2 100% 2/2 50% 2/2 0% 2/2 

Oberbipp 31% 13/19 100% 7/19 50% 10/19 0% 11/19 

Aesch 57% 23/25 100% 8/25 50% 18/25 0% 23/25 

Muttenz 0% 5/5 100% 1/5 75% 4/5 0% 5/5 

Seengen 0% 0/2 0% 0/2 0% 0/2 0% 0/2 

Final 
Neolithic 

 
       

Spreitenbach 55% 11/12 100% 5/12 36% 10/12 8% 12/12 

Bad Zurzach 0% 2/2 100% 1/2 100% 2/2 0% 2/2 

Singen 77% 13/15 100% 4/15 13% 8/15 0% 13/15 

Anselfingen 0% 1/1 0% 0/1 100% 1/1 0% 1/1 

Rapperswil 100% 2/2 0% 0/2 100% 1/2 0% 2/2 

Auvernier 0% 0/1 0% 0/1 0% 0/1 0% 0/1 

mixed 
        

Lingolsheim 33% 3/4 100% 1/4 0% 2/4 0% 4/4 

Wartau 83% 6/8 0% 0/8 66% 4/8 16%* 6/8 

* One individual dating to 789calBCE-2AD. 
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Supplementary Note 1: Archaeological information of the sites included in this 

study 

 

Middle Neolithic 

CH Niederried Ursisbalm 4458 – 4341 BCE (2sigma cal.) 

Tschumi 1920, Hug 1956, Schlaginhaufen 1924 

The stone cist burial near Niederried was discovered and excavated in 1913. After rock 

blasting on a construction site, the graves were found below. The burial had an NW-SE 

orientation and was constructed with five tiles of chalk. The individual in the grave, an 

adult, was found in crouched position. Outside the stone cist, the bones of two subadults 

were found and probably from an earlier burial which was later removed from the cist. Four 

additional stone cist burials were destroyed by further blasts. Samples from two individuals 

were used for genetic analyses: A1 and A2 and showed sufficient DNA preservation. The 

two individuals, one female, and one male are unrelated. Radiocarbon dating hints to an age 

of 4458 – 4341 calBCE. Samples were provided by the Archaeological Service of the canton of 

Bern. 

 

F Lingolsheim 4786 – 2208 BC (2sigma cal.) 

Lichardus-Itten 1980 

The burial ground of Lingolsheim was discovered in spring 1910 in a sandpit and comprises 

at least 20 graves. The individuals were found in stretched supine position in NW-SE 

orientation. From these individuals, one petrous bone from tomb 15 was used for genetic 

analysis. The male individual was dated to 4766-4601 calBCE. 

Between 1923 and 1926 a second field session took place in a nearby second sandpit and 17 

more graves were discovered. Four of these individuals were buried in crouched position in 

W-E orientation. Based on found potsherds the graves were assigned to the Rubané culture. 

From this group, the individual from tomb E was sampled for this study. The male 

individual dates to 2463-2208 calBCE contradicting the cultural assignment. 

The 13 remaining burials were also found in stretched supine position and as the former 

ones from 1910 assigned to the Grossgartach culture. Petrous bones from the graves 18, 32 

and 35 were used for DNA analysis. Only the individuals 18 and 35, a male and a female, 

contained enough DNA for downstream analysis. Only individual 35 could be dated to 4786-

4618 calBCE. Samples were provided by the Museum of Archaeology in Strasbourg. 

 

Late Neolithic 

CH Oberbipp 3350-2650 BCE (2sigma cal.) 

Ramstein et al. 2014, Siebke et al. 2018, Siebke et al. 2019, Steuri et al. 2019 

The Dolmen burial from Oberbipp was excavated in 2012. The site is situated on the Swiss 

Plateau and on the southern slope of the Jura mountains. The construction of the dolmen 

consists of large glacial erratics in the form of blocks and slabs. More than 2000 fragmented 

and commingled skeletal elements were retrieved at the excavation and a minimal number 

of 42 individuals as determined from femora including males and females of all age classes. 

An extended supine position could be reconstructed for the buried individuals in the grave 
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chamber. In total 22 petrous bones from different individuals and 46 teeth could be sampled 

for aDNA analyses and radiocarbon dating. Samples were provided by the Archaeological 

Service of the canton of Bern. 

 

CH Muttenz 3010 – 2706 BC (2sigma cal.) 

Muttenz, and Hagmann D, editors. 2009; Siebke et al. 2019 

The multiple burial of Muttenz was discovered in 1946. Details about the finding situation 

and the excavation are unknown. It contained at least 11 individuals of which five petrous 

bones from different individuals could be sampled for aDNA and radiocarbon dating. 

Samples were provided by the Archaeological Service of the canton of Basel Landschaft. 

 

CH Aesch 3094 – 2500 BC (2sigma cal.) 

Löhlein 2011; Stöckli 1995, Schegler 2016, Bay 1936 

The dolmen burial of Aesch was excavated in 1907 and 1909. The megalithic burial consisted 

of one rectangular grave chamber 4m long and 3m wide with a flagged floor. Skeletal 

remains of 33 adult individuals and 14 children were recovered. 25 of the skeletons 

comprised petrous bones, which were used for DNA analysis and radiocarbon dating. 

Samples were provided by the Archaeological Service of the canton of Basel Landschaft. 

 

Final Neolithic/ Early Bronze Age 

CH Spreitenbach 2900 – 2031 BC (2sigma cal.) 

Doppler 2012, Bleuer et al. 1999 

In 1997 the multiple burial of Spreitenbach, Canton Aargau in Switzerland was discovered 

and excavated. The former wooden construction contained five males, four females, two 

subadults and a newborn in crouched position. The burials are radiocarbon dated to 

approximately 2500 BCE. All 12 individuals (pars petrosae) could be sampled for additional 

aDNA analyses. Samples were provided by the Archaeological Service of the canton of 

Aargau. 

 

CH Bad Zurzach 2206 – 1946 BC (2sigma cal.) 

Bleuer et al. 2012, Doswald et al. 1989 

The double burial of Bad Zurzach was excavated in 1984. The grave-pit is in N-S orientation 

without further stone or wooden construction and contained two adult individuals in 

contracted position. A contemporaneous burial of the two male individuals is assumed. For 

both a mature age of death is estimated. The burial was assigned to the Early Bronze Age 

and both individuals were sampled for aDNA analyses. Samples were provided by the 

Archaeological Service of the canton of Aargau. 

 

CH Rapperswil 2695 – 2481 BC (2sigma cal.) 

Grüninger und Kaufmann 1982 

During construction works in 1980, a stone cist burial near Rapperswil was discovered. 

Within the W-E oriented cist, the skeletal remains of an approximately 35-year-old female 

buried in extended supine position were found. In the abdominal region, bones of an eight 

lunar months old and probably unborn foetus were found. From both individuals, mother 

and child DNA could be retrieved. Samples were provided by the Archaeological Service of 

the canton of St. Gallen. 
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CH Wartau 3036 BC – 2 AD (2sigma cal.) 

Stehrenberger 2016, Stehrenberger 2019 

The human remains are located in a natural cave. In the 1970s and 1980s, several inspections 

by the archaeological service of the Canton St. Gallen took place. The cave was accessible to 

the public at all times and in the 1970s some human remains were recovered illegally and 

were transferred to the archaeological service in 2001. Radiocarbon dates of bone fragments 

date to the Middle, Late, and Final Neolithic period as well as to the Iron Age/Roman time. 

Eleven petrous bones were assed for DNA analyses. Samples were provided by the 

Archaeological Service of the canton of St. Gallen. 

 

D Singen 2199 - 431 BC (2sigma cal.) 

Stockhammer et al. 2015, Oelze et al. 2011, Krause 1988 

The Early Bronze Age cemetery of Singen (Hohentwiel) was excavated in the 1950s and is 

one of the largest and most important cemeteries of this period in Southern Germany. In 

close vicinity, Final Neolithic and later Bronze to Late Iron Age burials were excavated – 

providing an outstanding continuity of burials at the site. The Early Bronze Age necropolis 

of Singen is of particular interest, as it was used to define the eponymous “Singen Group” of 

the Early Bronze Age in Southwestern Germany characterized by the strict positioning of the 

deceased, stone constructions and particular burial goods. In total, 96 graves were excavated, 

and it was assumed that they can be related to one kin group. Human remains of 

approximately 30 individuals were recovered and 15 petrous bones selected for aDNA 

extraction. Radiocarbon dates of these individuals’ range between 2199 - 431 BC. Samples 

were provided by the Archaeological Office of the District of Constance. 

 

D Anselfingen 2456-2203 BC (2sigma cal.) 

Merkl 2016 

The site of Anselfingen “Breite”, Germany was first discovered in 2008 and excavated during 

several excavation sessions in the years from 2009 till 2017. Multiple Corded Ware and Bell 

Beaker associated graves could be recovered. Available for DNA analysis was the petrous 

bone of an adult individual from a double burial associated with the Bell Beaker 

phenomenon which was excavated in 2010. This individual was buried in N-S orientation 

and in crouched position and buried with the remains of a small child. Samples were 

provided by the Archaeological Office of the District of Constance. 

 

CH Auvernier 2866-2601 BC (2sigma cal.) 

Schwegler 2016 

The dolmen of Auvernier was discovered in 1876 near the lake Neuchâtel. The complex 

consisted of 12 vertical stone slabs and two horizontal ceiling tiles. In the burial chamber 

inhumations of 15 to 20 individuals could be found. Marks on the stone slabs indicate the 

reuse from an older Neolithic construction which was possibly used around 3000 BCE. The 

rebuilt dolmen is dated at 2800 BCE at the earliest and was used until the Bronze Age. The 

only DNA could be retrieved from one individual that dates to 2866-2601 calBCE. Samples 

were provided by the Archaeological Service of the canton of Bern. 
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CH Burgäschisee 2862-2581 BC (2sigma cal.) 

Ulrich-Bochsler 2012; Schlaginhaufen 1924; Wiedmer-Stern 1904 

The burial of Burgäschisee was discovered in 1902 near the shore of the lake Burgäschisee. 

During 1902 and 1943 some human remains were found. In total inhumation of possibly 

three individuals could be recovered. After the original description, one individual belongs 

to the Neolithic period and was buried in crouched position. Not all bones of the skeletons 

were recovered and preserved. The sample of a femur fragment did not provide enough 

DNA for subsequent analyses and was excluded from population genetic analysis. Samples 

were provided by the Archaeological Service of the canton of Bern. 

 

CH Seengen 2463-2274 BC (2sigma cal.) 

Bleuer et al. 2012 

The remains of a stone cist by Seengen was excavated in 1993. The burial contained two 

individuals, one of them consisted only of cremated remains. The grave structure is 

archaeologically dated to the Bronze Age. A petrous bone of the unburned human was used 

for DNA analyses. . Samples were provided by the Archaeological Service of the canton of 

Aargau. 
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Supplementary Note 2: Radiocarbon dating of the newly sequenced individuals 

 

Every individual sequenced in this study was radiocarbon dated (SI table 1). For the 

individuals 1, 6/14, 7/11, 9, 10/16 and 13/18 the C14 dates from the original publication were 

adopted (Doppler 2012). Samples for the new radiocarbon dates were always taken from the 

same skeletal element (petrous bone, femur or tooth) from which the bone powder for DNA 

extraction was taken. 

The dating was conducted in the LARA (Laboratory for the Analysis of Radiocarbon with 

AMS) at the University of Bern. The individuals from Oberbipp were also dated at the Curt-

Engelhorn-Zentrum in Manheim. In case of large differences between the results of the two 

measurements, samples were dated a third time at the ORAU (Oxford Radiocarbon 

Accelerator Unit) in Oxford (Steuri et al. 2019). 

All burials are far from coastal areas, therefore the reservoir effect due to the consumption of 

marine fish can be neglected since reservoir effects in freshwater lakes are not detectable so 

far. Furthermore, the studied populations were retrieved from burials offsite lake shores. Even 

though many Neolithic settlements in Switzerland were found at the lake shores, the burials 

are usually not associated with or in close proximity to them. In addition, the data collected 

for these settlements indicates a high proportion of husbandry and only limited fish 

consumption. This is also supported by stable isotope analysis of the studied individuals 

(Siebke et al 2019). Therefore, any possible bias based on “hard water effect” can be neglected 

as well. 
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Supplementary Note 3: Mitochondrial genome reconstruction 

 
All libraries were enriched for mtDNA following the procedure described in Futwängler et al. 

2018 and sequenced on an Illumina HiSeq at the Max Planck Institute for the Science of Human 

History in Jena. After processing the raw reads with EAGER (Peltzer et al 2016) contamination 

estimates and consensus sequences were computed with schmutzi (Renaud et al. 2015). Shared 

haplotypes were identified using MEGA-X and haplogroups were determined using haplogrep 

(Weissensteiner et al. 2016, SI Tab. 1). Percentual portions of the makrohaplogroups N1a, W, 

X, H, T2, J, U2, U3, U4, U5a, U5b, K, and U8 were calculated for each site (SI Fig. 1). 

 

 

Supplementary Figure 1 | Composition of the mtDNA haplogroups N1a, W, X, H, T2, J, U2, U,3 U4, U5a, U5b 

and U8 for each site. The size of the circles indicates the sample size for each site. Map generated with R version 

3.4.3 (R Core Team 2017) using the CIA World Data Bank II is currently (mid-2003) available from 

http://www.evl.uic.edu/pape/data/WDB/ 
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Supplementary Note 4: Y-chromosomal haplogroup assignment  

 
Assignment for Y-chromosomal haplogroups was performed via visual inspection of the 

captured SNPs, following the nomenclature of the International Society of Genetic Genealogy 

(ISOGG) version 14.218 (retrieved 19 November 2019, http://www.isogg.org). 

In individuals older than 2600 BC originating from the sites of Oberbipp, Aesch and Muttenz 

only haplogroups belonging to the clades I2a and G2a were found. Besides the youngest Aesch 

individual Aesch25, which carries a R1b haplogroup. 

In the younger site of Spreitenbach associated with the Corded Ware complex only 

haplogroups of the clade I2a are present. In the contemporaneous sample from Lingolsheim 

R1b could be determined. 

All samples in the dataset younger than 2200 BC all individuals carry R1b, beside MX265 from 

Singen, which belongs to R1a. 

 

Supplementary Table 1 | Y chromosomal haplogroup assignment for all male individuals 

ID Site Cal 2 sigma BC 
Terminal derived 
mutation YHG 

Aesch1 Aesch (CH) 3090-2917 PF3239 G2a2a1a2a1 
Aesch12 Aesch (CH) 3010-2884 PF3239 G2a2a1a2a1 
Aesch13 Aesch (CH) 3016-2901 PF3239 G2a2a1a2a1 
Aesch14 Aesch (CH) 3014-2898 PF3239 G2a2a1a2a1 
Aesch17 Aesch (CH) 3011-2889 PF3239 G2a2a1a2a1 
Aesch19 Aesch (CH) no collagen PF3239 G2a2a1a2a1 
Aesch20 Aesch (CH) 2913-2878 FGC7739/Z6488 G2a2a1a2a 
Aesch21 Aesch (CH) no collagen PF3239 G2a2a1a2a1 
Aesch22 Aesch (CH) 2892-2694 PF3239 G2a2a1a2a1 
Aesch23 Aesch (CH) 2881-2676 PF3239 G2a2a1a2a1 
Aesch24 Aesch (CH) 2912-2877 FGC7739/Z6488 G2a2a1a2a 
Aesch25 Aesch (CH) 2864-2501 L51/M412/PF6536/S1 R1b1a1b1a1a 
Aesch4 Aesch (CH) 3094-2926 PF3239 G2a2a1a2a1 
Aesch6 Aesch (CH) 2905-2759 PF3147 G2a2a 
Aesch7 Aesch (CH) no collagen FGC7739/Z6488 G2a2a1a2a 
MX150 Oberbipp Horgen (CH) 3244-3102 L91/PF3246/S285 G2a2a1a2 
MX182 Oberbipp Horgen (CH) 3338-3031 PF3239 G2a2a1a2a1 
MX183 Oberbipp Horgen (CH) 3344-3037 FGC7739/Z6488 G2a2a1a2a 
MX187 Oberbipp Horgen (CH) 3337-2908 PF3239 G2a2a1a2a1 
MX188 Spreitenbach CWC (CH) 2495-2399 M423 I2a1a2 
MX190 Spreitenbach CWC (CH) 2860 - 2460 M423 I2a1a2 
MX191 Spreitenbach CWC (CH) 2570 - 2190 M423 I2a1a2 
MX192 Spreitenbach CWC (CH) 2571-2513 M423 I2a1a2 
MX195 Spreitenbach CWC (CH) 2470 - 2050 M423 I2a1a2 
MX204 Oberbipp Horgen (CH) no collagen FGC7739/Z6488 G2a2a1a2a 
MX209 Oberbipp Horgen (CH) no collagen PF3239 G2a2a1a2a1 
 
 
 
   

 

 

http://www.isogg.org/
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ID Site Cal 2 sigma BC 
 

YHG 
MX210 Oberbipp Horgen (CH) no collagen PF3239 G2a2a1a2a1 
MX211 Oberbipp Horgen (CH) 3100-2928 PF3239 G2a2a1a2a1 
MX212 Oberbipp Horgen (CH) 3323-2581 PF3239 G2a2a1a2a1 
MX213 Oberbipp Horgen (CH) 3363-2930 PF3239 G2a2a1a2a1 
MX219 Oberbipp Horgen (CH) 3330-3216 PF3147 G2a2a 
MX252 Singen (D) 1941-1774 L2/S139 R1b1a1b1a1a2b1 
MX254 Singen (D) no collagen L2/S139 R1b1a1b1a1a2b1 
MX257 Singen (D) 1879-1696 L2/S139 R1b1a1b1a1a2b1 
MX258 Singen (D) 2028-1903 P312/PF6547/S116 R1b1a1b1a1a2 
MX259 Anselfingen (D) 2456-2203 P312/PF6547/S116 R1b1a1b1a1a2 
MX265 Singen (D) 763-431 L146/M420/PF6229 R1a 
MX270 Singen (D) no collagen L2/S139 R1b1a1b1a1a2b1 
MX275 Singen (D) 2135-1961 L2/S139 R1b1a1b1a1a2b1 
MX279 Singen (D) 1882-1745 L2/S139 R1b1a1b1a1a2b1 
MX283 Singen (D) 2116-1926 L2/S139 R1b1a1b1a1a2b1 
MX286 Singen (D) 2029-1892 L2/S139 R1b1a1b1a1a2b1 
MX288 Singen (D) 2199-2028 L2/S139 R1b1a1b1a1a2b1 

MX298 Wartau (CH) 2620-2448 

P303/Page108/PF334
0 
/S135/Z765 G2a2b2a 

MX299 Oberbipp Horgen (CH) 2910-2679 PF3147 G2a2a 

MX304 Auvernier (CH) 

2866-2601 date 
from individual of 
the same burial  

CTS5330 

R1b1a2a1a 
RA58 Muttenz (CH) 2937-2886 FGC7739/Z6488 G2a2a1a2a 
RA61 Muttenz (CH) 2905-2865 PF3239 G2a2a1a2a1 
RA62 Muttenz (CH) 2921-2886 PF3239 G2a2a1a2a1 
RA63 Zuzach (CH) 2046-1946 L2/S139 R1b1a1b1a1a2b1 
RA64 Zuzach (CH) 2206-2126 L2/S139 R1b1a1b1a1a2b1 

SX10 Rapperswill Zürichstrasse (CH) 
new-born or unborn 
baby of SX8 

L166 
G2a2a1a2a1a 

SX11 Niederried Ursisbalm (CH) 4458 - 4362 PF3239 G2a2b2a1a1 
SX20 Wartau (CH) 1693-1609 P312/PF6547/S116 R1b1a1b1a1a2 
SX29 Lingolsheim (F) no collagen M423 I2a1a2 
SX32 Lingolsheim (F) 2463-2208 P310/PF6546/S129 R1b1a1b1a1 
SX33 Lingolsheim (F) 4766-4601 L161.1/S185.1 I2a1a2a 
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Supplementary Figure 2 | Composition of the Y chromosomal haplogroups for each site at different time spans. Map generated with R version 3.4.3 (R Core Team 2017) using the CIA World 

Data Bank II is currently (mid-2003) available from http://www.evl.uic.edu/pape/data/WDB/. 
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Supplementary Note 5: ADMIXTURE Analysis 

A dataset of all newly sequenced ancient individuals from Switzerland and 275 already 

published ancient genomes as well as modern populations from the HO dataset were used for 

ADMIXTURE (version 1.3) analysis. Before starting the analysis, the dataset was pruned for 

LD using PLINK version v1.07 and the parameters --indep-pairwise 200 25 0.5. 

The ADMIXTURE software was run in unsupervised mode and the optimal number of k was 

determined using ADMIXTURE’s cross-validation procedure (SI Fig 3).  

 

 
Supplementary Figure 3 | CV error for k between 3 and 17. The lowest CV value can be found for k=16. 

 

As k=16 produced the lowest CV values, the results of this clustering were plotted (SI Fig 4). 

These results represent the individuals from sites older than 2700 BCE as a mixture of clusters 

being similar to the Earls Farmers from Anatolia and WHG. Individuals from sites younger 

than 2700 BCE also show one additional ancestry cluster which can also be found in Yamnaya 

individuals from the Pontic Steppe. 
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Supplementary Figure 4 | Unsupervised ADMIXTURE plot (k=16) of the newly sequenced ancient Swiss individuals and selected published ancient genomes. The clustering 

supports the results of the PCA plot, displaying the ancient Swiss individuals as a mixture of Anatolian Farmers and WHG for sites older than 2700 BCE and showing additional ancestry 

in the sites younger than 2700 BCE being similar to Yamnaya-like individuals from the Pontic Steppe. 
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Supplementary Note 6: Sex-biased Admixture 

 

To assess, if the admixture process between Late Neolithic individuals and immigrants with 

‘steppe’-related ancestry shows any sex-bias, f3 statistics of the form (Mbuti; Source; Test) 

using qp3Pop from ADMIXTOOLS (https://github.com/DReichLab) were performed on the 

autosomal SNPs of the HO panel and on 34,207 X chromosomal SNPs that represent the 

intersect of position on the X chromosome that are covered sufficiently in the individuals from 

the Final Neolithic sites: Singen, Spreitenbach, and Wartau_FN. As source 

Corded_Ware_Germany, Yamnaya_Samara, Globular_Amphora, and the Late Neolithic 

Swiss Sites were tested, similar to the approach described in (Saag et al. 2017). 

The Late Neolithic individuals from our study (Spreitenbach, Singen, and Wartau_FN) are 

relatively symmetrically related to the sources Swiss_LN and Globluar_Amphora when 

comparing X chromosomes to autosomes. Relative to this the Late Neolithic Swiss individuals 

or our study have a higher affinity on the autosomes than on the X chromosome using the 

sources CWC and Yamnaya_Samara. The observed effect is stronger using Yamnaya_Samara 

as a source than when CWC is used. These results suggest that the influence of the steppe was 

stronger on the male side (SI Fig. 5). These results match the results of previously published 

data (Saag et al. 2017). 

 

 

Supplementary Figure 5 | Sex-biased admixture patterns in Final Neolithic Swiss individuals. F 3 values of 

statistics of the form (Mbuti; Source; Test) for autosomes and the X chromosome. Error bars represent standard 

deviaition of the f3 statistics. 

  

https://github.com/DReichLab
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Supplementary Note 7: Proportions of steppe ancestry on individual level 

 
Relative proportions of ancestry components were estimated using qpAdm from 

ADMIXTOOLS (https://github.com/DReichLab). 

Each individual’s ancestry was modelled using a three-way model with the reference 

populations WHG, Anatolia Neolithic (ANF) and Yamnaya Samara (YAM). Subsequently, the 

best supported minimal model was selected and if necessary, thus for individuals for which a 

two-way model was better supported with either omitting ANF or WHG, the corresponding 

two-way model was rerun. In cases were also the two-way model was rejected Yamnaya 

proportions were set either to 0 or 1. Individuals with less than 100k SNPs were filtered out. 

As seen in SI Figure 6 before 2800 BC the steppe component is absent in Central Europe. The 

earliest individuals with proportions of steppe ancestry greater than zero can be found in the 

Swiss dataset. However, the ancient Dataset from Great Britain and the MES region in 

Germany show larger gaps for this specific time span might also biasing the results. 

In all regions, an increase of the steppe component around 2500 BC can be seen. 

 

https://github.com/DReichLab


142 
 

 

 
 
Supplementary Figure 6 | Relative proportions of steppe ancestry in each individual over time. We used qpAdm to estimate the proportion of steppe ancestry in each individual. Red 

dots female individuals and blue dots male individuals. Horizontal error bars represent ranges of C14 dates and vertical error bars represent standard errors of the steppe-related ancestry. 
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Supplementary Note 8: Estimated arrival time of the steppe component in the 

different regions 

 

 
 
Supplementary Figure 7 | Density plots of the percentage of Yamnaya ancestry in each individual of the regions 

Great Britain, Iberia, Switzerland, and Germany. The earliest increase can be detected in Switzerland.  
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Supplementary Table 2 | qpAdm admixture models for the individuals of each site. P-values greater than 0.05 (model is not 
rejected) marked in green. 
 
Test: WHG Anatolia_Neolithic Yamnaya_Samara     
Using the right outgroups: Mbuti Ust_Ishim_HG_published.DG Ethiopia_4500BP.SG MA1_HG.SG Villabruna Papuan Onge Han Karitiana 

 

Population WHG Anatolia N Yamnaya SD (WHG) 
SD 
(Anatolia 
N) 

SD (Yamnaya) 
tail prob 
(000) 

tail prob (001)  tail prob (010)  tail prob (100)  

Bell_Beaker_Germany 0,16 0,40 0,44 0,01 0,02 0,02 0,022 0,000 0,000 0,000 

Corded_Ware_Germany 0,11 0,22 0,66 0,17 0,04 0,04 0,348 0,000 0,000 0,000 

LBK_EN 0,06 0,94 0,00 0,01 0,02 0,00 0,105 0,158 0,000 0,000 

Auvernier 0,00 0,79 0,21 0,00 0,14 0,14 0,249 0,212 0,000 0,316 

Burgäschisee 0,00 0,70 0,30 0,00 0,15 0,16 0,656 0,355 0,002 0,764 

Spreitenbach 0,14 0,38 0,48 0,02 0,03 0,03 0,014 0,000 0,000 0,000 

Anselfingen 0,15 0,32 0,54 0,04 0,09 0,09 0,022 0,000 0,000 0,000 

Singen 0,19 0,42 0,39 0,02 0,03 0,03 0,126 0,000 0,000 0,000 

Oberbipp_F 0,22 0,76 0,02 0,05 0,09 0,09 0,986 0,987 0,000 0,000 

Lingolsheim_FN 0,14 0,39 0,47 0,04 0,08 0,08 0,274 0,000 0,000 0,000 

Wartau_FN_1 0,17 0,44 0,39 0,02 0,06 0,06 0,621 0,000 0,000 0,000 

Wartau_R 0,14 0,59 0,27 0,03 0,07 0,07 0,450 0,005 0,000 0,000 

Zurzach 0,18 0,38 0,44 0,03 0,06 0,06 0,719 0,000 0,000 0,000 

Lingolsheim_MN 0,20 0,80 0,00 0,02 0,05 0,00 0,209 0,275 0,00 0,000 

Muttenz 0,27 0,72 0,00 0,02 0,04 0,00 infeasible 0,227 0,000 infeasible 

Niederried 0,22 0,78 0,00 0,02 0,05 0,00 infeasible 0,249 0,000 infeasible 

Oberbipp 0,28 0,73 0,00 0,02 0,03 0,00 infeasible 0,123 0,000 infeasible 

Seengen 0,26 0,74 0,00 0,05 0,11 0,00 0,304 0,395 0,000 0,000 

Rapperswil 0,21 0,79 0,00 0,03 0,06 0,00 infeasible 0,062 0,000 infeasible 

Wartau_LN 0,20 0,80 0,00 0,03 0,07 0,00 infeasible 0,579 0,000 0,000 

Wartau_FN_2 0,15 0,85 0,00 0,02 0,05 0,00 infeasible 0,200 0,000 infeasible 

Aesch 0,26 0,74 0,00 0,01 0,03 0,03 0,135 0,162 0,000 0,000 
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Supplementary Table 3 | DATES results on individual level with Yamnaya_Samara and Swiss_LN as sources 

Sample Site sex maxageBP minageBP ageBP mean generations generations gen +/- maxgen mingen 

MX188 Spreitenbach m 2495 2399 2447 22,91 19,13 11,29 30,42 7,84 

MX190 Spreitenbach m 2860 2460 2660 495,46 407,65 360,26 767,91 47,39 

MX192 Spreitenbach m 2571 2513 2542 186,36 130,21 75,12 205,32 55,09 

MX195 Spreitenbach m 2470 2050 2260 6,90 6,01 3,33 9,34 2,69 

MX197 Spreitenbach f 2490 2294 2392 14,56 14,89 2,14 17,03 12,75 

MX198 Spreitenbach f 2900 2300 2600 7,81 8,63 3,40 12,03 5,22 

MX199 Spreitenbach f 2409 2197 2303 9,38 6,79 7,41 14,19 -0,62 

MX252 Singen m 1941 1774 1858 111,38 82,75 62,19 144,94 20,56 

MX254 Singen m 2199 1774 1987 50,43 48,08 17,76 65,85 30,32 

MX257 Singen m 1879 1696 1788 54,99 50,92 14,58 65,50 36,34 

MX259 Anselfingen m 2456 2203 2330 10,10 8,54 7,62 16,16 0,92 

MX270 Singen m 2199 1774 1987 30,51 23,85 13,54 37,39 10,32 

MX275 Singen m 2135 1961 2048 39,76 36,18 18,40 54,58 17,78 

MX279 Singen m 1882 1745 1814 35,74 113,66 74,86 188,53 38,80 

MX280 Singen f 2035 1910 1973 35,84 31,70 9,83 41,53 21,87 

MX283 Singen m 2116 1926 2021 18,75 1,77 14,71 16,48 0,00 

MX288 Singen m 2199 2028 2114 68,01 43,70 39,60 83,30 4,10 

RA63 Zurzach m 2046 1946 1996 13,58 12,69 4,15 16,84 8,55 

RA64 Zurzach m 2206 2126 2166 16,54 16,90 4,41 21,31 12,49 

SX20 Wartau m 1693 1609 1651 17,96 15,25 6,00 21,25 9,25 

SX23 Wartau f 1883 1749 1816 16,48 13,18 7,22 20,41 5,96 

SX26 Wartau  2461 2295  30,77 28,76 13,385 42,15 15,38 

MX189 Spreitenbach f 2105 2036 2071 243,16 wired number   
MX191 Spreitenbach m 2570 2190 2380 437,29 wired number   
MX194 Spreitenbach f 2489 2344 2417 304,99 wired number   
MX196 Spreitenbach f 2580 2290 2435 5,71 wired number   
MX277 Singen f 1926 1770 1848 34,16 wired number   
MX256 Singen f 2132 1922 2027 0,00 wired number   
MX258 Singen m 2028 1903 1966 28,90 wired number   
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MX265 Singen m 763 431 597 wired number wired number   
MX298 Wartau m 2620 2448 2534 wired number wired number   
MX304 Auvernier m 2866 2601 2734 208,80 wired number   
MX310 Burgaeschisee m 2862 2581 2722 135,01 wired number   
MX286 Singen m 2029 1892 1961 64,10 -271,57 237,27 -34,30 -508,85 

MX251 Singen f 2197 1981 2089 5,12 -134,78 109,41 -25,38 -244,19 
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Supplementary Table 4 | DATES results for different regions 

Region Group Source1 Source2 C14 range max C14 range min generations gen +/- 

Swiss Spreitenbach_CWC Yamnaya_Samara Swiss_LN 2900 2036 10,934 1,78 

Swiss Swiss_EBA Yamnaya_Samara Swiss_LN 2456 1609 27,89 3,757 

MES Bell_Beaker_Germany Yamnaya_Samara MES_Neolithic 2625 2050 34,817 11,611 

Iberia Bell_Beaker_Iberia Yamnaya_Samara Iberia_MN 2800 1776 7,258 7,183 

GB Bell_Beaker_England Yamnaya_Samara England_Neolithic 2800 1800 22,114 2,482 

MES Corded_Ware_Germany Yamnaya_Samara MES_Neolithic 2578 2033 26,722 9,641 
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Supplementary Table 5 | Relatedness estimates using PMR, READ and lcMLkin for first and second degree related 
individuals 
    lcMLkin READ PMR     

Ind1 Ind2 k0_hat k1_hat k2_hat pi_HAT nbSNP r Relationship Z_upper Z_lower nSNPs nmismatch pmismatch 
same MT 
DNA 

same 
Y HG 

MX270 MX275 0,315 0,461 0,223 0,454 167647 0,4535 First Degree 7,21 -14,07 196616 38132 0.19394 yes yes 

MX209 MX219 0,231 0,639 0,13 0,45 24866 0,4495 First Degree 8,42 -3,97 29551 5458 0.18470 no 
same 
clade 

SX10 SX8 0,13 0,847 0,023 0,446 124180 0,4465 First Degree 9,44 -13,34 145624 28231 0.19386 yes na 

MX195 MX197 0,119 0,873 0,008 0,445 294763 0,4445 First Degree 3,92 -20,07 356136 69688 0.19568 yes na 

MX187 MX212 0,13 0,852 0,018 0,444 175276 0,444 First Degree 8,39 -12,11 208924 39351 0.18835 no yes 

MX192 MX197 0,12 0,873 0,007 0,443 285900 0,4435 First Degree 4,75 -20,44 344641 67734 0.19653 yes na 

MX192 MX195 0,334 0,476 0,19 0,428 268894 0,428 First Degree 1,96 -17,57 323615 63541 0.19635 yes yes 

MX188 MX190 0,382 0,39 0,227 0,422 326168 0,422 First Degree 2,89 -18,45 394714 78180 0.19807 yes yes 

MX254 MX286 0,166 0,828 0,006 0,42 329141 0,42 First Degree 4,23 -23,34 396702 78410 0.19765 no yes 

MX283 MX286 0,185 0,807 0,007 0,411 340960 0,4105 First Degree 5,46 -24,03 411459 81328 0.19766 no yes 

MX275 MX286 0,204 0,784 0,013 0,405 244748 0,405 First Degree 3,41 -23,07 291501 57925 0.19871 no yes 

MX150 MX187 0,248 0,71 0,042 0,397 91284 0,397 First Degree 8,22 -12,18 109655 20743 0.18917 no 
same 
clade 

MX254 MX283 0,439 0,422 0,138 0,35 393973 0,349 First Degree 6,13 -16,49 477609 97660 0.20448 yes yes 

MX183 MX211 0,422 0,47 0,108 0,343 258399 0,343 First Degree 0,69 -19,35 310268 62928 0.20282 yes 
same 
clade 

MX150 MX209 0,577 0,346 0,077 0,25 72301 0,25 
Second 
Degree 8,62 -0,25 86029 18175 0.21127 no 

same 
clade 

MX275 MX283 0,577 0,407 0,016 0,22 286647 0,2195 
Second 
Degree 5,68 -10,40 343024 75468 0.22001 no yes 

MX270 MX286 0,614 0,357 0,028 0,207 189791 0,2065 
Second 
Degree 3,75 -11,33 223865 50077 0.22369 no yes 

MX254 MX275 0,679 0,3 0,021 0,171 277631 0,171 
Second 
Degree 2,92 -13,44 331845 75516 0.22756 no yes 

MX187 MX219 0,754 0,193 0,054 0,15 30547 0,1505 
Second 
Degree 2,92 -3,09 36392 8053 0.22128 no 

same 
clade 



149 
 

MX187 MX209 0,705 0,291 0,003 0,149 181634 0,1485 
Second 
Degree 2,51 -9,68 216996 48874 0.22523 yes yes 

MX150 MX219 0,764 0,223 0,013 0,125 12304 0,1245 
Second 
Degree 1,62 -2,35 14706 3285 0.22338 no yes 

MX150 MX212 0,82 0,121 0,059 0,12 70041 0,1195 
Second 
Degree 1,76 -6,66 83579 18906 0.22621 no 

same 
clade 

Aes3 Aes12 0,123 0,863 0,014 0,445 279742 0,4455 First Degree 12,41 -16,25 331487 63428 0.19134 yes na 

Aes3 Aes24 0,583 0,41 0,008 0,213 325204 0,213 
Second 
Degree 7,56 -9,51 386396 84889 0.21969 no na 

Aes12 Aes24 0,143 0,847 0,009 0,433 273774 0,4325 First Degree 7,14 -19,38 324166 62519 0.19286 no 
same 
clade 

Aes3 Aes19 0,104 0,891 0,005 0,45 323734 0,4505 First Degree 12,20 -16,34 384537 73727 0.19173 yes na 

Aes19 Aes24 0,577 0,409 0,013 0,218 316956 0,2175 
Second 
Degree 7,21 -9,06 376691 82322 0.21854 no 

same 
clade 

Aes11 Aes17 0,106 0,878 0,015 0,454 308832 0,454 First Degree 11,54 -16,95 366976 70202 0.1913 no na 

Aes14 Aes15 0,106 0,878 0,015 0,454 193594 0,454 First Degree 12,84 -14,64 227595 43354 0.19049 yes na 

Aes12 Aes19 0,354 0,437 0,208 0,427 272655 0,4265 First Degree 10,74 -12,73 322847 61942 0.19186 yes yes 

RA63 RA64 0.995 0.005 0 0.002 107385 0.0025 

First or 
Second 
Degree 5,43 -17.82 68304 15015 0,21983 no yes 
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Supplementary Table 6 | D-statistics. 

Site lat lon steppe_ancestry PopA PopB F4 Z ka ka1 ka2 

Spreitenbach 47,255 8,2158 yes Swiss-French Swiss-German 0,000114 2,056 6487 6476 98548 

Singen 47,767097 8,872239 yes Swiss-French Swiss-German 0,000053 0,865 5911 5906 89516 

Wartau_FN_1 47,45 9,292 yes Swiss-French Swiss-German -0,000015 -0,196 4775 4776 72386 

Wartau_FN_2 47,45 9,292 yes Swiss-French Swiss-German -0,000025 -0,336 4618 4619 70418 

Wartau_LN 47,45 9,292 no Swiss-French Swiss-German -0,000009 -0,09 3387 3387 51365 

Lingolsheim_FN 48,554457 7,681749 yes Swiss-French Swiss-German 0,000082 0,711 2262 2259 34356 

Anselfingen 47,854144 8,7737404 yes Swiss-French Swiss-German 0,00018 1,371 1754 1750 26337 

Zurzach 47,587789 8,293325 yes Swiss-French Swiss-German 0,000099 1,207 4199 4193 63804 

Burgaeschisee 47,101 7,406 yes Swiss-French Swiss-German -0,000355 -1,425 307 309 4760 

Auvernier 46,5835 6,5245 yes Swiss-French Swiss-German 0,000193 0,763 330 329 5038 

Oberbipp 47,262067 7,659835 no Swiss-French Swiss-German -0,000057 -0,967 6387 6393 96637 

Muttenz 47,3122 7,3843 no Swiss-French Swiss-German 0,000051 0,767 5401 5397 81812 

Seengen 47,1936 8,122 no Swiss-French Swiss-German -0,000435 -2,626 821 826 12666 

Niederried 47,0117074 7,2505417 no Swiss-French Swiss-German -0,000198 -2,57 5107 5122 77394 

Rapperswil 47,2266239 8,8184374 no Swiss-French Swiss-German 0,000079 0,814 2948 2944 44774 

Aesch 47,465413 7,601691 no Swiss-French Swiss-German -0,000063 -1,138 6721 6767 102298 

Lingolsheim 48,554457 7,681749 no Swiss-French Swiss-German 0,000018 0,257 4622 4620 70266 

Spreitenbach 47,255 8,2158 yes Swiss-Italian Swiss-German -0,000519 3,573 6516 6465 98548 

Singen 47,767097 8,872239 yes Swiss-Italian Swiss-German -0,000534 3,665 5940 5893 89516 

Wartau_FN_1 47,45 9,292 yes Swiss-Italian Swiss-German -0,000516 2,736 4798 4760 72386 

Wartau_FN_2 47,45 9,292 yes Swiss-Italian Swiss-German -0,000042 0,239 4629 4627 70418 

Wartau_LN 47,45 9,292 no Swiss-Italian Swiss-German -0,000233 1,023 3397 3385 51365 

Lingolsheim_FN 48,554457 7,681749 yes Swiss-Italian Swiss-German -0,001037 3,866 2280 2244 34356 

Anselfingen 47,854144 8,7737404 yes Swiss-Italian Swiss-German -0,000695 2,09 1764 1746 26337 

Zurzach 47,587789 8,293325 yes Swiss-Italian Swiss-German -0,000688 3,407 4223 4179 63804 

Burgaeschisee 47,101 7,406 yes Swiss-Italian Swiss-German -0,000594 0,93 311 308 4760 

Auvernier 46,5835 6,5245 yes Swiss-Italian Swiss-German -0,000898 1,316 334 329 5038 

Oberbipp 47,262067 7,659835 no Swiss-Italian Swiss-German 0,000046 -0,321 6401 6405 96637 
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Muttenz 47,3122 7,3843 no Swiss-Italian Swiss-German -0,000092 0,561 5413 5405 81812 

Seengen 47,1936 8,122 no Swiss-Italian Swiss-German -0,000069 0,169 826 825 12666 

Niederried 47,0117074 7,2505417 no Swiss-Italian Swiss-German 0,000068 -0,371 5121 5126 77394 

Rapperswil 47,2266239 8,8184374 no Swiss-Italian Swiss-German -0,000389 1,64 2959 2942 44774 

Aesch 47,465413 7,601691 no Swiss-Italian Swiss-German -0,00003 0,026 6738 6738 101710 

Lingolsheim 48,554457 7,681749 no Swiss-Italian Swiss-German 0,000099 -0,534 4627 4633 70266 

Spreitenbach 47,255 8,2158 yes Swiss-French Swiss-Italian -0,000405 -2,978 6473 6513 98548 

Singen 47,767097 8,872239 yes Swiss-French Swiss-Italian -0,000481 -3,431 5897 5940 89516 

Wartau_FN_1 47,45 9,292 yes Swiss-French Swiss-Italian -0,000531 -3,006 4762 4801 72386 

Wartau_FN_2 47,45 9,292 yes Swiss-French Swiss-Italian -0,000067 -0,399 4629 4633 70418 

Wartau_LN 47,45 9,292 no Swiss-French Swiss-Italian -0,000241 -1,126 3386 3399 51365 

Lingolsheim_FN 48,554457 7,681749 yes Swiss-French Swiss-Italian -0,000956 -3,897 2246 2279 34356 

Anselfingen 47,854144 8,7737404 yes Swiss-French Swiss-Italian -0,000515 -1,649 1749 1762 26337 

Zurzach 47,587789 8,293325 yes Swiss-French Swiss-Italian -0,000589 -3,068 4183 4221 63804 

Burgaeschisee 47,101 7,406 yes Swiss-French Swiss-Italian -0,000949 -1,648 307 311 4760 

Auvernier 46,5835 6,5245 yes Swiss-French Swiss-Italian -0,000705 -1,099 329 333 5038 

Oberbipp 47,262067 7,659835 no Swiss-French Swiss-Italian -0,000011 -0,079 6406 6407 96637 

Muttenz 47,3122 7,3843 no Swiss-French Swiss-Italian -0,000041 -0,255 5409 5412 81812 

Seengen 47,1936 8,122 no Swiss-French Swiss-Italian -0,000504 -1,273 823 829 12666 

Niederried 47,0117074 7,2505417 no Swiss-French Swiss-Italian -0,000131 -0,75 5123 5133 77394 

Rapperswil 47,2266239 8,8184374 no Swiss-French Swiss-Italian -0,00031 -1,389 2946 2959 44774 

Aesch 47,465413 7,601691 no Swiss-French Swiss-Italian -0,000066 -0,52 6738 6745 101710 

Lingolsheim 48,554457 7,681749 no Swiss-French Swiss-Italian 0,000117 0,64 4636 4628 70266 
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