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Abstract

Developments towards autonomous driving promise to lead to safer traffic, where fatal
accidents can be avoided after making human drivers obsolete and hence removing
the factor of human error. However, to ensure the acceptance of automated driving
and make it a reality one day, still a huge amount of challenges need to be solved.
With having no human supervisors, automated vehicles have to rely on capable and
robust sensor systems to ensure adequate reactions in critical situations, even during
adverse conditions. Therefore, the development of sensor systems is required that
can be applied for functionalities beyond current advanced driver assistance systems.
New requirements need to be met in order to realize safe and reliable automated
vehicles that do not harm passersby.

Radar systems belong to the key components among the variety of sensor systems.
Other than visual sensors, radar is less vulnerable towards adverse weather and
environment conditions. In addition, radar provides complementary environment
information such as target distance, angular position or relative velocity, too. The
thesis ad hand covers basically two main aspects of research and development in the
field of automotive radar systems. One aspect is to increase efficiency and robustness
in signal acquisition and processing for radar perception. The other aspect is to
accelerate validation and verification of automated cyber-physical systems that
feature more complexity along with the level of automation.

After analyzing a variety of possible Compressive Sensing methods for automotive
radar systems, a noise modulated pulsed radar system is suggested in the thesis at
hand, which outperforms commercial automotive radar systems in its robustness
towards noise. Compared to other pulsed radar systems, their drawbacks regarding
signal acquisition effort and computation run time are resolved by using noise modu-
lation for implementing a Compressive Sensing signal acquisition and reconstruction
method. Using Compressive Sensing, the effort in signal acquisition was reduced by
70 %, while obtaining a radar perception robustness even for signal-to-noise-ratio
levels close to or below zero. With a validated radar sensor model the noise radar
was emulated and compared to a commercial automotive radar system. Data-driven
weather models were developed and applied during simulation to evaluate radar per-
formance in adverse conditions. While water sprinkles increase radome attenuation
by 10 dB and splash water even by 20 dB, the actual limitation comes from noise
figure and sensitivity of the receiver. The additional signal attenuation that can be
handled by the proposed compressive sensing noise radar system proved to be even
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up to 60 dB, which ensures a high robustness of the receiver during adverse weather
and environment conditions.

Besides robustness, interference is also considered. On the one hand the increased
robustness towards interference of the noise radar system is demonstrated. On
the other hand, the impact on existing automotive radar systems is evaluated and
strategies to mitigate the impact are presented.
The structure of the thesis is the following. After introducing basic principles

and methods for automotive radar systems, the theory and metrics of Compressive
Sensing is presented. Furthermore some particular aspects are highlighted such as
environmental conditions, different radar architectures and interference. The state of
the art provides an overview on Compressive Sensing approaches and implementations
with focus on radar. In addition, it covers automotive radar and noise radar related
aspects. The main part starts with presenting different approaches on making use
of Compressive Sensing for automotive radar systems, that are capable of either
improving or extending radar signal acquisition and perception. Afterwards the focus
is put on a noise radar system that uses Compressive Sensing for an efficient signal
acquisition and reconstruction. It was analyzed using different Compressive Sensing
metrics and evaluated in a proof-of-concept simulation. With an emulation of the
noise radar system the feasibility of the Compressive Sensing signal acquisition and
processing was demonstrated in a more realistic scenario. The development and
validation of the underlying sensor model is documented as well as the development
of the data-driven weather models. After considering interference and co-existence
with commercial radar systems, a final chapter with conclusions and an outlook
completes the work.



Kurzfassung

Die Entwicklung in Richtung zu autonomem Fahren verspricht, künftig einen sicheren
Verkehr ohne tödliche Unfälle zu ermöglichen, indem menschliche Fahrer vollständig
ersetzt werden. Dadurch entfällt der Faktor des menschlichen Fehlers, der aus
Müdigkeit, Unachtsamkeit oder Alkoholeinfluss resultiert. Um jedoch eine breite
Akzeptanz für autonome Fahrzeuge zu erreichen und es somit eines Tages vollständig
umzusetzen, sind noch eine Vielzahl von Herausforderungen zu lösen. Da in einem
autonomen Fahrzeug kein menschlicher Fahrer mehr in Notfällen eingreifen kann,
müssen sich autonome Fahrzeuge auf leistungsfähige und robuste Sensorsysteme
verlassen können, um in kritischen Situationen auch unter widrigen Bedingungen
angemessen reagieren zu können. Daher ist die Entwicklung von Sensorsystemen
erforderlich, die für Funktionalitäten jenseits der aktuellen advanced driver assistance
systems eingesetzt werden können. Dies resultiert in neuen Anforderungen, die erfüllt
werden müssen, um sichere und zuverlässige autonome Fahrzeuge zu realisieren, die
weder Fahrzeuginsassen noch Passanten gefährden. Radarsysteme gehören zu den
Schlüsselkomponenten unter der Vielzahl der verfügbaren Sensorsysteme, da sie im
Gegensatz zu visuellen Sensoren von widrigen Wetter- und Umgebungsbedingungen
kaum beeinträchtigt werden. Darüber hinaus liefern Radarsysteme zusätzliche
Umgebungsinformationen wie Abstand, Winkel und relative Geschwindigkeit zwischen
Sensor und reflektierenden Zielen. Die vorliegende Dissertation deckt im Wesentlichen
zwei Hauptaspekte der Forschung und Entwicklung auf dem Gebiet der Radarsysteme
im Automobilbereich ab. Ein Aspekt ist die Steigerung der Effizienz und Robustheit
der Signalerfassung und -verarbeitung für die Radarperzeption. Der andere Aspekt ist
die Beschleunigung der Validierung und Verifizierung von automated cyber-physical
systems, die parallel zum Automatisierungsgrad auch eine höhere Komplexität
aufweisen.
Nach der Analyse zahlreicher möglicher Compressive Sensing Methoden, die im

Bereich Fahrzeugradarsysteme angewendet werden können, wird ein rauschmodulier-
tes gepulstes Radarsystem vorgestellt, das kommerzielle Fahrzeugradarsysteme in
seiner Robustheit gegenüber Rauschen übertrifft. Die Nachteile anderer gepulster
Radarsysteme hinsichtlich des Signalerfassungsaufwands und der Laufzeit werden
durch die Verwendung eines Compressive Sensing-Signalerfassungs- und Rekonstruk-
tionsverfahrens in Kombination mit einer Rauschmodulation deutlich verringert.
Mit Compressive Sensing konnte der Aufwand für die Signalerfassung um 70 % re-
duziert werden, während gleichzeitig die Robustheit der Radarwahrnehmung auch
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für signal-to-noise-ratio-Pegel nahe oder unter Null erreicht wird. Mit einem vali-
dierten Radarsensormodell wurde das Rauschradarsystem emuliert und mit einem
kommerziellen Fahrzeugradarsystem verglichen. Datengetriebene Wettermodelle
wurden entwickelt und während der Simulation angewendet, um die Radarleistung
unter widrigen Bedingungen zu bewerten. Während eine Besprühung mit Wasser die
Radomdämpfung um 10 dB erhöht und Spritzwasser sogar um 20 dB, ergibt sich die
eigentliche Begrenzung aus der Rauschzahl und Empfindlichkeit des Empfängers. Es
konnte bewiesen werden, dass das vorgeschlagene Compressive Sensing Rauschra-
darsystem mit einer zusätzlichen Signaldämpfung von bis zu 60 dB umgehen kann
und damit eine hohe Robustheit in ungünstigen Umwelt- und Wetterbedingungen
aufweist.
Neben der Robustheit wird auch die Interferenz berücksichtigt. Zum einen wird

die erhöhte Störfestigkeit des Störradarsystems nachgewiesen. Auf der anderen
Seite werden die Auswirkungen auf bestehende Fahrzeugradarsysteme bewertet und
Strategien zur Minderung der Auswirkungen vorgestellt.
Die Struktur der Arbeit ist folgende. Nach der Einführung der Grundlagen

und Methoden für Fahrzeugradarsysteme werden die Theorie und Metriken hinter
Compressive Sensing gezeigt. Darüber hinaus werden weitere Aspekte wie Umge-
bungsbedingungen, unterschiedliche Radararchitekturen und Interferenz erläutert.
Der Stand der Technik gibt einen Überblick über Compressive Sensing-Ansätze und
Implementierungen mit einem Fokus auf Radar. Darüber hinaus werden Aspekte
von Fahrzeug- und Rauschradarsystemen behandelt. Der Hauptteil beginnt mit
der Vorstellung verschiedener Ansätze zur Nutzung von Compressive Sensing für
Fahrzeugradarsysteme, die in der Lage sind, die Erfassung und Wahrnehmung von
Radarsignalen zu verbessern oder zu erweitern. Anschließend wird der Fokus auf
ein Rauschradarsystem gelegt, das mit Compressive Sensing eine effiziente Signaler-
fassung und -rekonstruktion ermöglicht. Es wurde mit verschiedenen Compressive
Sensing-Metriken analysiert und in einer Proof-of-Concept-Simulation bewertet. Mit
einer Emulation des Rauschradarsystems wurde das Potential der Compressive Sen-
sing Signalerfassung und -verarbeitung in einem realistischeren Szenario demonstriert.
Die Entwicklung und Validierung des zugrunde liegenden Sensormodells wird ebenso
dokumentiert wie die Entwicklung der datengetriebenen Wettermodelle. Nach der
Betrachtung von Interferenz und der Koexistenz des Rauschradars mit kommerziel-
len Radarsystemen schließt ein letztes Kapitel mit Schlussfolgerungen und einem
Ausblick die Arbeit ab.



In memory of Prof. Dr. Wolfgang Rosenstiel.
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1 Introduction

Autonomous driving has been a vision for a long time, but only recently research
and industry are close to making this vision a reality. Apart from the promised
increased comfort of autonomous driving, it is believed that removing the human
driver and therefore human error from the steering wheel will significantly decrease
severe and fatal traffic accidents. Contrary to human drivers, autonomous vehicles
are not prone to various distractions, fatigue and intoxication or emotional reactions
that can result in speeding or hazardous maneuvers, for example. In combination
with vehicle-to-x communication, autonomous driving will even help to optimize
traffic flows and therefore disburden cities from traffic jams, noise and emissions.

Besides several ethical questions, a critical item is the perception of the environ-
ment and recognition of other traffic participants, an aspect that is also critical
for recent advanced driver assistance systems. Perception strategies need to be
adjusted to the new levels of criticality including different sensor types, sensor data
interpretation but also acquisition methods. Dealing with signal distortions and
interferences with an increased amount of sensor systems and sensor types along
with an increased criticality of sensor data interpretation opens a new wide area of
research and development perspectives and objectives.

1.1 Motivation

The developments towards automated driving poses numerous challenges to the deve-
lopment of sensor systems that are crucial to navigate the vehicles to their destination
and ensure safety for both, passengers and passersby. Apart from visual sensors
that are intuitive to human perception, other sensors such as ultrasonic or radar are
necessary that are on the one hand providing additional information or act on the
other hand as complementary sensor systems in conditions with reduced visibility.
There are two driving motivations for research and development in automotive radar
that will be addressed.

One aspect in the overall motivation is to find more efficient but also robust
methods for radar sensor signal acquisition and processing. Currently, radar systems
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and other actively transmitting sensors are still rather restricted to the upscale
automotive market and therefore the amount of radar equipped vehicles on the street
is still manageable. But as different advanced driver assistance systems and therefore
also radar sensors are becoming more common for the overall automotive market,
challenges such as interference within the sensors are becoming urgent issues that
need to be solved by interference-proof and robust sensor systems.

That includes not only the receiver side but also the transmitter side as modifying
the waveforms is required for some more robust radar sensor system architectures
that rely on completely different concepts than recent common automotive radar
systems. On the one hand, implementing experimental radar architectures on silicon
blows up the costs for developing according advanced driver assistance systems.

On the other hand, there are challenges regarding the validation and verifica-
tion of ready-to-drive passenger vehicles that come along with the huge amount
of sensor systems. The required testing effort to not only prove the reliable and
robust functionality of new radar and sensor concepts in stand-alone operation but
also as an integrated part of vehicle and infrastructure perception systems, calls
for different testing and qualification approaches. Shifting as much developing and
testing effort as possible into the virtual domain is an important part of solving the
testing challenges ahead.

Therefore, a virtual representation of sensor systems and their components, depen-
ding on the particular testing objectives, supports the objective of experimental, fast,
and innovative, but efficient and cost sensitive development and testing. In addition,
a virtual test bench for automotive sensors requires realistic environment scenarios
that take all critical circumstances into account at the same time. To validate the
robustness of radar in adverse weather and environment conditions, representative
stimuli generators need to be included within the environment simulation platform
that is used for testing.

Radar architectures with an increased robustness towards noise as well as inter-
ference can be found in pulse-based concepts, especially while using noise-inspired
transmit waveforms. Noise modulation reduces not only the required transmit power
level compared to unmodulated pulses but also adds a unique fingerprint to each
pulse. If generated in a pseudo-random and reproducible way, methods comprised
under the term Compressive Sensing allow an efficient signal acquisition and therefore
omit the downsides of correlator-based receiver concepts applied for systems using
pulsed transmit waveforms. Compressive Sensing methods are favorable, because
they allow a significant reduction of filter banks. Otherwise, the required amount
of filter banks in the correlation stage limits both, range and resolution of a sensor
system when it comes to practical implementation and realization.
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1.2 Objectives

Passenger mobility is in progress of basically being developed from scratch. Vehi-
cles are evolving from relying on mechanical parts and systems towards automated
cyber-physical systems that are capable of dealing with complex perception and
perception based reaction sequences, which requires more and more computational
power. Beyond the capability of processing more sensor systems in parallel, the
increase of computational power paves the way for signal processing methods that
were not practical before due to hardware and runtime limitations. Exploring and
diving into the vast amount of new possibilities in automated driving and its sensing
methods in particular was driving the research in the thesis at hand.

Without computational power, the effort of signal processing remains mainly on the
hardware side in addition to signal acquisition. In that approach sensor signals are
pre-processed or even interpreted by circuitry. After pre-processing, analog signals
need to be made available for digital signal processing or high-level interpretation,
respectively by sampling. Sampling poses requirements on the hardware, that
scale with the maximum frequency, which is included in an analog signal that
should be acquired. These requirements are for example rise and fall time of
an analog-to-digital-converter, dynamic and sensitivity, resolution and available
sampling frequency. Especially the latter has the tendency to result in expensive and
challenging hardware designs, as soon as frequency is increased. Hence, the aim is to
avoid high frequencies at the sampling interface to mitigate the necessity for expensive
hardware designs for digitized signal acquisition. As a result of the availability of high
computational power in future highly automated or even autonomous cars, it becomes
feasible to shift hardware complexity of signal acquisition to digital signal processing.
Hence, signal acquisition methods that are highly efficient and have low effort from
hardware perspective, but result in computationally expensive signal processing and
reconstruction such as Compressive Sensing methods, become attractive. Therefore,
Compressive Sensing methods established an emerging research field during the past
ten years for an increasing amount of applications.
The vast amount of possible and successful applications for Compressive Sensing

methods can found in image processing, where the matrix structure of digitized
pictures is favorable for Compressive Sensing implementations. The reason is, that
Compressive Sensing relies on numerical optimization. But there are also successful
examples for Compressive Sensing applications that use continues signals such as
implementations for airborne and surveillance radar systems or for medical imaging
processing such as magnetic resonance imaging. Only in the field of automotive
radar research on Compressive Sensing is rare so far. That is not only because the



4 1 Introduction

automotive sector is very sensitive towards increasing prices, but also because of the
long development and support cycles. Although there are currently many innovations
going on, it needs to be considered, that previously developed integrated circuit for
sensor circuitry might remain easily for twenty years or even more on the roads. On
the one hand, that has the beneficial effect, that chip prices drop significantly, once
a technology is established, but on the other hand, that results in a low willingness
to adapt new technologies that come along with their own circuitry in the first
place. In addition, new technologies may not disturb the old ones. Nevertheless, this
thesis shows how Compressive Sensing can lead to a revolution in automotive sensor
concepts, which will make it ready to tackle future challenges of autonomous driving.
Besides exploring the state-of-the-art under several aspects connected to radar and
Compressive Sensing, an overview is mapped out to show the numerous possible
approaches on the one side and the resulting decision for the focused Compressive
Sensing based solution for automotive radar in the thesis at hand.

Within the thesis at hand, the author analyzed the potentials of Compressive
Sensing for automotive radar systems. Driven by practical considerations and
requirements such as hardware availability and potential near-future acceptance
by original equipment manufacturers, the author focused on a noise modulated
pulsed radar using compressive sensing at the receiver stage for efficient signal
acquisition. Although there are other promising and meaningful potential applications
for compressive sensing in automotive radar as will be shown later on, the proposed
noise radar in combination with compressive sensing at the receiver stage comes with
the best prerequisites to meet the demands on robustness towards interference and a
minimum effort on necessary hardware adaptations at the same time.
Automotive radar systems that are currently on the market, rely on frequency

modulated continuous wave principles. Specifically, several linear chirps are applied
as transmit waveform, i.e. signals with linearly increasing frequency during a specified
chirp duration. The chirps are repeated several times in order to improve velocity
resolution. High sampling frequencies at the receiver side are avoided by comparing
the receive frequency with the current transmit frequency on hardware, so that only
the frequency difference needs to be sampled. Although the frequency modulated
continuous wave approach comes with a simple and low-cost hardware, it also comes
with the clear downside of being very vulnerable towards interference. As frequency
modulated continuous wave radar systems cannot overcome the limitation regarding
interference considering the sensor density inherent to autonomous driving, the
proposed alternative radar implementation uses a pulsed radar architecture instead.
The proposed noise radar approach is based on a correlation receiver such as

used in typical pulsed radar systems. Correlation receivers consist of a filter bank
including a filter for each range gate, i.e. possible target range. Without sacrificing
range resolution, a significant number of filters would be required for automotive
long ranges of 200 m with a low efficiency regarding signal acquisition. While the
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correlation receiver for a pulsed radar system addresses the problem of developing
an interference-proof radar system, enhanced additionally by a noise modulated
pulse, Compressive Sensing allows for a significantly more efficient signal acquisition
and hence allowing for practical implementation in automotive radar systems. A
correlation receiver differs from a frequency modulated continuous wave receiver
at the mixer inputs. While the receive signal is mixed with the transmit signal in
case of a frequency modulated continuous wave receiver, the correlation receiver
applies its correlation filter outputs to the receive signal, which results in a necessary
hardware adaptation. For a fair performance comparison between a conventional
frequency modulated continuous wave and the proposed compressive sensing noise
radar system, both systems need to be operated in the same environment and under
same conditions, which means that both systems need to exist in the same domain,
either real or virtual.
The background of the latter is that for efficient and meaningful prototyping

of experimental new approaches it is beneficial to use virtual testing instead of
going directly for chip development. Virtual implementations, if designed with an
abstraction level that fits to relevant and critical evaluation goals, offer a smart way
to not only test experimental designs but also to accelerate the realization of relevant
test cases to the point of making cumbersome hardware implementations obsolete
for a simple proof-of-concept. Therefore, a radar sensor model was developed by
the author that mimics physical characteristics of the radar development board,
according to the most critical point regarding compressive sensing, which is the exact
characteristic of the receive signal. The radar sensor model was validated against
point-wise real measurements with the radar development board operated in Linear
FMCW mode. Virtually, the radar sensor model was applied first as Linear FMCW
radar and then as Compressive Sensing noise radar, with and without interference
and therefore considering critical and relevant test scenarios.

Another critical aspect are adverse weather conditions that need to be considered
in order to obtain valid simulation results and conclusions. Within automotive
radar applications, weather conditions introduce new and different challenges than in
applications such as airborne systems. The novelty is the aspect that in automotive
radar systems spatial effects in the ultimate vicinity of the radar sensor are critical
in contrast to applications covering several tenth or hundreds of kilometers. Various
weather conditions, especially rain, increase the signal attenuation and therefore
lower the signal-to-noise-ratio, which impairs the robustness of a successful radar
perception. Therefore, a set of relevant weather conditions and measurement setups
was defined and implemented for testing and validation. Real-world measurements
were obtained from the automotive Linear FMCW radar, which was used as a
blueprint for the radar sensor simulation. The measurements were used as input for
data-driven models of a set of weather condition induced effects that were afterwards
included during radar simulation.

For future testing purposes, the virtual radar sensor was connected to an environ-
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Figure 1.1 – Overview objectives and interdependencies

ment simulation, whereas the weather and environment conditions remain part of
the sensor simulation. The environment simulation only defines the environment
conditions and does not generate radar stimulation nor manipulates the radar receive
signal. The purpose of tethering the radar sensor with the environment simulation is
to define and implement the interfaces for future operation.

As an overview, the main objectives of the thesis and their interdependencies are
depicted in Figure 1.1, whereas the overall goal is highlighted in red. It becomes
evident that several stand-alone objectives come together in this work that illuminate
different aspects of research in radar. Namely the aspects are Compressive Sensing
and signal acquisition including signal processing, but also virtual and semi-virtual
validation and testing in the context of autonomous driving. Besides the original
objectives, this work therefore also shows, how complex the implications of autono-
mous driving are. Of course, several subordinate objectives are realized aiming at
the demonstration of the Compressive Sensing based noise radar. This is reflected in
the outline of this work.

1.3 Outline

The different objectives stated in the introduction within this first chapter, shape
the structure of the thesis. In the second chapter, basic principles are explained
and background information is given on the two main topics regarding theory, i.e.
automotive radar and Compressive Sensing. The background for automotive radar
comprises principles of pulsed and continuous wave radar signal acquisition and
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processing as well as particular background information on automotive scenarios
that are essential to understand challenges and chances in automotive applications
including design parametrization. In addition, interference principles are tackled,
thus emphasizing the problem statement and point out the motivation for consi-
dering this issue. The principles of Compressive Sensing are explained along with
metrics that are applicable to evaluate the measurement process as well as the signal
reconstruction.

The third chapter contains the state-of-the-art giving an insight to the various
covered aspects, either belonging to radar or to Compressive Sensing. It maps
out the state-of-the-art on radar technologies on both, commercial and research
approaches and not limited to automotive radar, where useful. Radar state-of-the-art
additionally involves particular radar problem statements and different solution
statements. Besides showing the theoretical state-of-the-art of Compressive Sensing,
examples for either hardware implementation concepts and successfully implemented
hardware demonstrators are listed. The focus is not limited to but remains on radar
technologies in general that make use of Compressive Sensing and especially noise
radar systems.

The fourth chapter includes the main part of this work. At the beginning of
the chapter, different approaches in employing Compressive Sensing to automotive
radar applications are explored followed by the reasoning focus on one application,
namely noise radar. The study gives a summary on how to make use of Compressive
Sensing for radar systems, especially in the context of automotive radar. Hereby,
some highlights are presented with according simulations. The core is a concept
of noise radar sensor for automotive applications that uses Compressive Sensing
methods for an efficient signal acquisition that is derived from a correlation receiver
concept. The methods and principles of the suggested noise radar concept and its
implementation design for transmit and receive direction as well as the subsequent
signal processing, are explained here. It is shown, how successful reconstructions can
be obtained and the previously defined metrics are applied to the selected approach.

This chapter is followed by the a description of the implemented demonstrator.
It tackles hardware and software configuration and implementation for a real world
demonstrator but also a corresponding emulation for performance analysis. It is
presented, how the measurements were performed to generate data-driven weather
and environment models. Hence, the chapter does not only include the radar
emulation but also adds weather and environment models to the overall radar
simulation environment that are obtained according to the presented measurements.
The simulation models are evaluated and validated against real world measurements
making the derived concepts plausible. Finally, the conclusion and outlook chapter
summarizes the findings and results and presents an outlook on follow-up research.





2 Basics and Background

Basics and background information on three major relevant topics are introduced in
this chapter, following the objectives from section 1.2. Some background information
is required on radar and in particular on radar in automotive applications. Besides
regulation in the sensitive field of frequency allocation, basic signal acquisition and
processing are explained.
The basic concept and elementary principles of Compressive Sensing (CS) are

introduced along with its metrics for evaluation, that are stated and explained here.
These metrics will be used later on to explain the CS noise radar methodology
but also to show its feasibility. The metrics are important tools in CS architecture
development to encourage implementation and testing new designs while having
build up already a certain confidence that a method is applicable and therefore worth
trying even on expensive wafers, if required.

The last topic on background, i.e. weather and environment conditions, is viewed
under the aspect of radar, especially automotive radar. Particular challenges that
occur typically in automotive scenarios and impact frequencies at high automotive
frequency bands, are stated as well.

2.1 Radar and Automotive Radar

The history of radar, which is an acronym for radar detection and ranging, starts
with Heinrich Hertz, when he discovered electromagnetic waves. During World War
II, several countries developed independently from each other radar systems to locate
ships and aircrafts. Among them was the UK, who spread the word that their soldiers
had a superior sight because of an increased consumption of carrots, in order to veil
the real reason for their high detection rate of enemy aircrafts.
Basically, the principle of radar is comparable to sonar used by animals such as

bats to find their prey. They send out pulses of ultrasonic wave which can be thought
of as a modulated pulse trains. After transmission, they listen to the backscatter
and analyze the delays, frequency shifts and amplitude levels. Ultrasonic waves
used by bats around 41 kHz belong to the sound spectrum. Sound waves are not
electromagnetic waves and do not show the wave-particle-duality of electromagnetic
radiation (EMR). But radar uses electromagnetic waves at different frequencies
within the radio frequency (RF) spectrum according to the target application and the
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Table 2.1 – ITU Recommendation ITU-R V.431-8

Name ITU Frequency Metric subdivision
extremely low frequency (ELF) 1 3 - 30 Hz Decamegametric waves

super low frequency (SLF) 2 30 - 300 Hz Megametric waves
ultra low frequency (ULF) 3 0.3 - 3 kHz Hectokilometric waves
very low frequency (VLF) 4 3 - 30 kHz Myriametric waves

low frequency (LF) 5 30 - 300 kHz Kilometric waves
medium frequency (MF) 6 0.3 - 3 MHz Hectometric waves

high frequency (HF) 7 3 - 30 MHz Decametric waves
very high frequency (VHF) 8 30 - 300 MHz Metric waves
ultra high frequency (UHF) 9 0.3 - 3 GHz Decimetric waves
super high frequency (SHF) 10 3 - 30 GHz Centimetric waves

extremely high frequency (EHF) 11 30 - 300 GHz Millimetric waves
12 0.3 - 3 THz Decimillimetric waves
13 3 - 30 THz Centimillimetric waves
14 30 - 300 THz Micrometric waves

principle remains the same. Active illumination of the scene with radar signals results
in a reflected backscatter that contains information about surrounding radar targets
including location and velocity. RF refers to the spectral range from 3 Hz up to
3 THz according to International Telecommunication Union (ITU) Radio Regulations.
As an orientation, the spectrum of visible light covers 400 to 789 THz.

The ITU assignment of frequency bands within the RF spectrum as listed in
Table 2.1 [67] corresponds to the power of ten of the respective frequency dimension,
e.g. 9 for the lower Gigahertz dimension according to 109. An ITU defined band
with the number N covers [0.3 · 10N ; 3 · 10N ]. From radar perspective the subset of
microwaves within the RF spectrum, which starts from 300 MHz, is most interesting.
In the literature, often a notation using letters is found, which unfortunately is not
standardized and therefore not recommended by the ITU.
Nevertheless, the ITU derived from publications a rule of thumb for matching

letters to radar frequency bands and the Institute of Electrical and Electronics
Engineers (IEEE) Standards Association published the definitions in [35]. The only
difference between the ITU recommendation and the IEEE standard lies in the
assignment of letters to frequency bands above 40 GHz, which is left void by the
ITU, so far. In Table 2.2 the different letter designations are shown, whereas bands
above Ka are not defined by ITU. The notation mm for mmWaves can either refer
to 110 to 300 GHz or 30 to 300 GHz. Another orientation for using letters is the
North Atlantic Treaty Organization (NATO) designation referred to in [25].
Classification of frequency bands and radar frequency bands in particular is a

relevant aspect that clarifies in an unambiguous way characteristics and specifications
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Table 2.2 – Radar letter designations

IEEE/ITU NATO (new) NATO (old)
L 1 - 2 GHz D 1 – 2 GHz S 1.55 – 3.9 GHz
S 2 - 4 GHz E 2 – 3 GHz

F 3 – 4 GHz
C 4 - 8 GHz G 4 – 6 GHz C 3.9 – 6.2 GHz

H 6 – 8 GHz X 6.2 – 10.9 GHz
X 8 - 12 GHz I 8 – 10 GHz
Ku 12 - 18 GHz J 10 – 20 GHz Ku 10.9 – 20 GHz
K 18 - 27 GHz K 20 – 40 GHz Ka 20 – 36 GHz
Ka 27 - 40 GHz
V 40 - 75 GHz L 40 – 60 GHz Q 36 – 46 GHz

V 46 – 56 GHz
W 75 - 110 GHz M 60 – 100 GHz W 56 – 100 GHz
G 110 - 300 GHz

of implemented technologies. Due to frequency specific characteristics and sometimes
even more important regulations on frequency allocation, different applications are
reasonable for different frequencies. Therefore, it is sensitive in practical situations
to refer rather to a radar application than the frequency band. Although some
organizations invest a lot of effort into standardizing frequency allocation all over the
world, national authorities still have the last word and therefore frequency allocations
can differ not only in ultimate frequencies but also duty cycles or transmit power
level.
Automotive applications can be implemented in Germany at different center

frequencies, whereas the applications are roughly specified. The applications comprise
communication for Intelligent Transport Systems (ITS) and detection with short
range radar (SRR) in ultra-wide band (UWB) as well as narrow band mode, mid
range radar (MRR) and long range radar (LRR). Regulations for ITS and radar
applications are listed in Table 2.3 according to [1], [2], [3] and [4]. It should be
noted that these frequency allocations are not dedicated to automotive applications
only, i.e. the general frequency allocation does not come along with an exclusive
right of usage. Therefore, interference from other participating applications should
be expected and it is up to the user to implement safety measures for interference.

2.1.1 Automotive radar scenario

In contrast to other common applications [43], e.g. airborne radar systems, automo-
tive radar is allocated at a significantly higher frequency band, whereas the most
important frequency allocation lies within 76 GHz to 81 GHz. While the comparable
high frequency is beneficiary for realizing a small antenna form factor that is easy to
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Table 2.3 – Frequency allocation for automotive applications in Germany. ASPD: average
spectral power density; Pp: Peak power

Application Frequency in [GHz] max. ASPD max. Pp
in [dBm/MHz] in [dBm]

(EIRP) (EIRP)
ITS 5.855 - 5.905 GHz 23 33
SRR 24.05 - 24.25 GHz 20 20
SRR, UWB 21.65 - 22.00 GHz -61.3 0 per 50 MHz

22.00 - 26.65 GHz -41.3 0 per 50 MHz
ITS 63.00 - 64.00 GHz n/a 40
ITS, radar 76.00 - 77.00 GHz 50 55
ITS, pulsed radar 76.00 - 77.00 GHz 23.5 55
object detection 76.00 - 77.00 GHz 3 30
MRR, LRR 77.00 - 81.00 GHz -3 55

integrate in vehicles, the region of interest can still be illuminated by the automotive
radar. On top, the higher free space attenuation that comes with the higher fre-
quency, naturally limits the range of the radar and therefore tones down the overall
interference level. Ranges above approximately 70 m up to 200 m are regarded as
long ranges, while range distances between 20 m and 70 m are assumed as mid ranges
and the ultimate vicinity of a vehicle below 20 m or even 10 m is defined as short
range. Although the manufacturers do not have harmonized range definitions, the
numbers classify roughly the terms short, medium and long. In automotive scenarios
with several vehicles, the ego-vehicle is the platform of the system under test (SuT).
Other traffic participants are classified according to their functionality within a
specific scenario, e.g. parking vehicle, crossing pedestrian or other. Consequently,
automotive scenarios are very dynamic as the usually moving ego-vehicle passes
all the static or dynamic objects. The scenario dynamic is partially limited by
speed limits or different sceneries, such as urban or rural areas along with typical
occurrences of traffic participants and their behavior. Table 2.4 gives an overview of
typical parameters in automotive scenarios, that influence the selection of feasible
radar parameters. More insights on genereting automitive scenarios specifically for
validation and verification were contributed by the author in [39].

In automotive radar perception configurations, the separate transmit and receive
antennas are usually mounted on the same platform making it a co-located radar
system. The transmit signal propagates two times through the channel. The channel
refers to the signal propagation medium and it is modeled here as a free-space
propagation channel with additional white Gaussian noise (AWGN). The received
signal power Pr is determined using Frii’s transmission equation. In the original
classical formulation [84], it is defined with the effective apertures of the transmit
and receive antennas, At, Ar, the distance in range r and the wavelength λ = c

f
with
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Table 2.4 – Parameter variations in different automotive scenarios

Parameter Urban Intersection Rural Highway
range 1 . . . 100 m 0.5 . . . 50 m 10 . . . 200 m 10 . . . 300 m

azimuth 2 . . . 20 m 0.5 . . . 5 m 1 . . . 5 m 1 . . . 10 m
typ. peak velo. 70 km h−1 40 km h−1 110 km h−1 1 20 . . . 300 km h−1

typ. min velo. 610 km h−1 610 km h−1 10 . . . 30 km h−1 60 . . . 80 km h−1

density static obj. high medium medium low
density dyn. obj. high high medium low
typ. other traffic:

heavy traffic rare frequent frequent usual
bicycles usual usual frequent never

pedestrians usual usual rare never

c being the propagation speed in a medium. In vacuum the propagation speed c
equals the speed of light c0.

Pr
Pt

= ArAt
r2λ2 (2.1)

The effective antenna aperture is the area of an antenna, which is sensitive to
electromagnetic waves. It corresponds to

Ae = λ2

4πG (2.2)

including the antenna gain G [56]. Inserting in (2.1) leads to a more convenient
formulation in (2.3).

Pr
Pt

= GtGrλ
2

(4πr)2 (2.3)

In (2.3) only one-way propagation is assumed. For two-way propagation and a
reflecting target, the radar cross section (RCS) σ of a target needs to be included
with its target gain Gσ (2.4).

Gσ = 4πσ
λ2 (2.4)

During signal propagation through a medium, a signal gets attenuated, whereas the
level of attenuation depends on the signal frequency or wavelength, respectively. In
(2.5) the free space attenuation is stated for line-of-sight (LOS) propagation [56].

aFS = 4πr
λ2 (2.5)
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Figure 2.1 – Friis formula for two-way radar signal propagation

Increasing the frequency and therefore reducing the wavelength results in a higher
free-space attenuation as can be derived from (2.5). As the term long range in
automotive applications still refers to rather short distances from general radar
perspective, see Table 2.4, the free space attenuation at 77 GHz is not an issue here,
but on the contrary even beneficial regarding interference. Following the signal path
in Figure 2.1 with the transmit power Pt and inserting (2.5) and (2.4), the receive
signal power results in (2.6).

Pr = Pt ·
GtGrλ

2σ

(4π)3r4 (2.6)

The received signal power Pr usually changes in non-static measurement settings, as
the gain as well as the target RCS usually do not have an isotropic directivity, but
are dependent from the elevation angle ϑ and azimuth angle ϕ. Nevertheless, in the
following the channel and the target attenuation resulting from (2.6) are assumed
to be stationary during an ongoing signal acquisition. To determine the minimum
required transmit power, the noise power PN has to be included in (2.6). The noise
power PN in (2.7) depends on the Boltzmann constant k, the ambient temperature
Ta and the noise bandwidth BN , which often corresponds to the system bandwidth.
The noise figure Nf factors in the noise of the transmit and receive stages. Together
with the ambient temperature, the system temperature is Tsys = Ta ·Nf .

PN = k · Ta · Fn ·BN (2.7)

The minimum required signal-to-noise-ratio SNRThr = Pt
PN

depends on the signal
acquisition method and transmit waveform, e.g. pulsed or continuous transmit signal.
With a specified threshold signal-to-noise-ratio (SNR) the minimum receive signal
power can be specified according to (2.8).

PR,min > PN · SNRThr (2.8)

The assumption of a non-fluctuating environment is also made for the targets [84].
Still, the targets are moving but it is assumed that they do not accelerate during
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one radar snapshot, meaning the velocity of the moving target remains constant.
In radar applications, targets are any reflecting points in the illumination field of
the radar. Although that implies that objects usually consist of several targets, for
the sake of simplicity of analysis any object in the field-of-view (FoV) is represented
with only one point-scattering target. For the overall objective of this work, it is
a sufficient level of detail to analyze the overall problem statement. Each of the L
targets in the scenario is associated with a attenuation al on the transmit signal
according to the previous considerations regarding propagation medium, target range
rl and target radar cross section (RCS) σl. The round-trip propagation time of the
transmit signal to each target is

τr,l = 2rl
c0

. (2.9)

The range rl refers to the distance between a reflecting point and the sensor position.
The targets move with the velocity vt,l and the ego-vehicle with the velocity ve. The
resulting relative velocity vl = ve − vt,l introduces the Doppler shift τD,l = −2vlt

c0
. A

common example for the Doppler shift is an approaching and veering away ambulance
with its changing horn tone. Neglecting the radial velocity, the overall time shift τs,l
for each target results in (2.10).

τs,l = τr,l + τD,l = 2 (rl − vlt)
c0

(2.10)

In the following section 2.1.2 (2.10) will be needed for the signal models at the
receiver side. Any other models tackling signal propagation rely on (2.10) as well.

2.1.2 Basic radar architectures

There are two basic approaches for radar illumination and according signal waveforms,
i.e. pulsed and continuous-wave (CW) [36]. In the following, signal acquisition and
processing methods are explained for both radar principles, i.e. pulsed and CW
approaches.

Pulsed radar systems transmit in the most simple implementation single pulses
at the beginning of the time interval T , which is called pulse repetition interval (PRI).
The pulse repetition frequency (PRF) is the inverse of the PRI and defines in
implementations with uniformly spaced pulses the frequency of the pulse transmission
with PRF = T−1 [62]. In practical implementations usually a pulse train instead of
a single pulse is transmitted to increase the systems SNR. According to the time-
of-flight (ToF) principle, after transmitting a pulse the time until the pulse returns
is taken. This time is usually referred to as round-trip time and corresponds to τr,l
in (2.9). In Figure 2.2 the transmit and receive signals of a simple pulsed radar are



16 2 Basics and Background

T

tp1

t

tr,l

st(t)

sr(t)

tp2

Figure 2.2 – Principle of pulsed radar

depicted in the time domain. In blue the transmit signal st(t) has the pulse width tp1
and is repeated after the period T . The receive signal sr(t) is attenuated according to
the medium, free-space propagation path and target reflectivity and its resulting RCS.
Apart from the signal attenuation, the signal propagation through the medium also
results in a widening of the transmitted pulse, therefore the pulse width of the receive
signal turns into tp2. According to the Nyquist-Shannon sampling theorem, direct
sampling requires a sampling frequency higher than the double maximum frequency
that occurs in a signal. A pulse with steep slopes such as depicted for example in
Figure 2.2 therefore includes very high frequencies [40] and accordingly necessitates
sampling frequencies that hardly can be realized with a reasonable effort. Another
alternative approach can be found in the use of the cross-correlation function (CCF)
such as in correlation receivers. The principle behind the correlation approach is
to compare the receive signal against different conjugate-complex and time-shifted
versions of the transmit signal that are part of a filter bank and search for the filter
that generates the CCF with the highest peak.

rxy(τ) =
∫ T

0
sr(t) · h(t− τ) d t (2.11)

In (2.11) the correlation principle is stated, whereas the filter function h(t− τ) is the
conjugate-complex of the transmit signal st(t) shifted by τ . A correlation receiver
consists of a filter bank with N filter functions h(t− τn) to determine N different
time-shifts τn. In Figure 2.3 the CCF is plotted for st(t) and sr(t) in Figure 2.2. The
flat top results from the widening of the pulse, i.e. tp1 6= tp2 and the center of the
flat peak corresponds to the round-trip time tr,l.
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τ=tr,l
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Figure 2.3 – CCF output of pulsed radar

The minimum detectable signal power for a pulse radar can be derived from (2.3)
by factoring in the signal power. With the transmitted energy Et and the pulse
width tp, the transmitted signal power is [84]

Pt = Et
tp

. (2.12)

Inserting the noise power N = N0 ·B leads to the minimum signal power in (2.13).

Pr,min = kTsys ·
Et

tp ·N0
(2.13)

An increased pulse width enables the detection of a lower signal receive power, which
allows to detect the backscatter from targets in long distances. Vice versa, increasing
the pulse width reduces the range resolution, since it depends directly on the pulse
width for unmodulated pulses.

∆r = ctp
2 (2.14)

FMCW radar systems A widely used alternative principle is the frequency
modulated continuous wave (FMCW) radar, which applies continuous transmit
waveforms. In automotive radar systems using chirps, the FMCW principle is applied
as well [55]. As the term implies, the pulse of the transmit signal is replaced by
a continuous wave that is modulated in frequency. Therefore, the direct sampling
effort decreases to twice of the frequency range that is covered by the modulation. In
Figure 2.4 the transmitted frequency ft(t) and the received frequency fr(t) with the
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same color scheme as before, i.e. blue for transmit and green for receive direction, are
depicted. Here, a linear modulation is shown (Linear FMCW (LFMCW)), although
other modulation schemes such as triangular are also common. In case of a LFMCW
radar, a frequency ramp is transmitted. The gradient of the ramp is the quotient of
the covered bandwidth B and the ramp duration, i.e. chirp length, Tc (2.15). This
gradient is also called the chirp rate α.

α = B

Tc
(2.15)

Including the start frequency f1, the frequency modulation within an intervall
corresponds to (2.16).

fi(t′) = f1 + α · t′ (2.16)

Integrating (2.16) finally leads to the phase of the transmit signal (2.17).

ϕ(t) =
∫ t

0
fi(t′) d t′

= f1t+ 1
2αt

2 + ϕ0

(2.17)

A single transmit chirp with f1 = 0 and the phase offset ϕ0 = 0 corresponds to
(2.18).

st(t) = ej2πϕ(t)

= ejπαt
2 (2.18)

The interested reader might want to see the underlying sources for the mentioned
FMCW radar fundamentals in [43; 84]. During signal propagation the transmit
frequency fT (t) changes according to the chirp rate, which is reflected in the frequency
difference between the transmit and receive signal at the sampling time. For LFMCW
radar systems, the range frequency fr,l(t) is computed with

fr,l(t) = α · τr,l

= α · 2rl
c0

.
(2.19)

In addition, the receive frequency contains the Doppler shift fD, if the illuminated
scene contains moving reflecting targets.

fD(t) = α · τD,l

= α · −2vr,lt
λ

(2.20)
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Figure 2.4 – Principle of FMCW radar

Both, the frequency difference caused by signal propagation fr,l(t) and the frequency
change due to the Doppler shift fD(t), sum up to the beat frequency fb(t) in (2.21).

fb(t) = fT (t)− fR(t)− fD(t)

= α · t− α · 2rl
c0
− α · −2vr,lt

λ

= α

(
t− 2rl

c0
+ 2vr,lt

λ

) (2.21)

Assuming the stationarity of the relative distance and velocity between the radar
system mounted on the ego vehicle and a reflecting target l during one sweep, the
beat frequency remains constant such as depicted in Figure 2.5. A radar sweep is
here defined as a set of up-chirps that are used for resolving two dimensions, either
range-velocity or range-azimuth. Usually, the beat signal is computed still on the
RF hardware side before the analog-to-digital-converter (ADC) interface. Therefore,
only the low-frequent beat signal needs to be sampled, which decreases the sampling
effort significantly and leaves the effort of RF processing to the analog RF design
stage. The range resolution depends on the modulation bandwidth B (2.22).

∆r = c

2B (2.22)

More insights on FMCW including measurements were given by the author in [33].

Chirp radar The two concepts, pulsed and continuous radar, are brought together
with pulse compression, which is widely used in various radar technologies, e.g. chirp



20 2 Basics and Background

fb

T

t

Figure 2.5 – Beat frequency at FMCW receiver

radar systems. Pulse compression means, that a pulse is modulated in frequency
according to the desired bandwidth and the pulse is prolonged in the time domain
[81]. The pulse compression rate (PCR) corresponds to the bandwidth-time-product
(2.23).

PCR = B · Tc (2.23)

Instead of the pulse width such as for an unmodulated pulse, the range resolution is
determined by the bandwidth of the modulated pulse. For short sweep times, range
cell migration can be neglected. Range cell migration occurs, if a target changes its
position during one sweep. To sum it up, using chirps avoids on the one hand steep
slopes and the necessity of fast ADCs, while on the other hand the range resolution is
preserved. In general, pulsed approaches are mainly used for short distances, where
correlation receivers lead to a still reasonable effort or ultrasonic sensors, whereas
the propagation speed is far less than in electro-magnetic waves. But nevertheless,
pulsed radar approaches are frequently discussed in the research domain, since its
clear advantage lies in the robustness against noise.

2.2 Compressive Sensing

The significant increase of computational capacities paved the way to solve problems
in a new way with algorithms that existed already for a long time but used to
be computationally too intensive for real applications. Problems that were solved
in hardware are now shifted to software, e.g. software-defined radio (SDR) that
benefits from reducing costly RF engineering efforts and allowing low-cost and highly
flexible software solutions. Since CS is an umbrella term for methods that profit from
the sparsity and compressibility of any arbitrary signal, it covers applications from
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sub-Nyquist sampling [11] to signal reconstruction of incomplete measurements [31].

Figuratively, CS substitutes the complete sampling of a signal by projecting the
signal of interest in another domain resulting in a reduced amount of observations.
The original information contained in the signal, which is assumed to be sparse, is
then traced back from the observations with the well-known projection functions.
The projection is also called measurement or transformation, depending on the met-
hodology that is required for a particular problem statement. Since the projection
process is known as well as the set of basis functions, which are the constituting
atoms of a signal in the particular representation domain, it is possible to identify
the sparse components of a signal that are needed to reconstruct the original signal.

Together with a properly selected projection according to the basis functions, the
original signal can than not only be approximated, but even exactly reconstructed.
An intuitive example can be found in the Fourier series. While a sinusoid in the time
domain requires sampling with the Nyquist frequency, only one sample needs to be
taken in the frequency domain to obtain an undistorted sinusoid, i.e. the location of
the single spectral component in the frequency domain. Therefore, Nyquist sampling
is replaced by the Fourier transformation, i.e. the time signal is projected into the
frequency domain. A good example for this is shown in [12] and a profound analysis
is given in [11]. Accordingly, the signal acquisition results in a single sample that
needs to be captured. The single sample allows not only an approximation but a
complete reconstruction of the original signal, which summarizes the general idea
behind CS approaches. Therefore, CS allows a significantly more efficient way of
capturing the information contained in a signal and prevents taking a huge amount
of redundant samples.

Whereas the time-frequency uncertainty states an almost intuitive example, comple-
mentary signal representation domains are sometimes less obvious or a transormation
to another domain is required in order to find suitable and practical implementations.
Accordingly, signals that are not sparse in the original observation domain, are
transformed in some other domain, where a sparse representation is possible. The
signal model consists in that case of a matrix Ψ containing the basis functions, i.e.
atoms of a signal to be acquired, and a sparse vector x that combines the basis
functions to the final signal of interest f . Sparsity is defined as a low entropy in at
least one signal domain and usually refers to the domain that offers a sparse signal
representation. This is fulfilled thanks to the uncertainty principle that prevents
a signal to be sparse in all domains at the same time such as the time-frequency
uncertainty. In information theory, the uncertainty principle states [40; 70] that

B · T ≥
√
π

2 (2.24)
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holds. As a result, increasing the duration T of a signal, e.g. the pulse duration,
decreases the bandwidth B and vice versa. Other examples are the trade-offs in
simultaneous velocity and position measurements or optical wave-particle charac-
teristics. Nevertheless, practical considerations for implementing a CS based signal
acquisition system limits the choice of a projection domain, e.g. if the transformation
would be too cumbersome or connected to an actual increase of hardware effort.

2.2.1 Signal acquistion using compressive sensing

Since CS comprises numerical estimation and optimization methods, signals and
measurements are described with discrete signal models. This is reflected in the
signal and measurement models as well as the metrics that apply to evaluate feasible
matrix and reconstruction metrics. A basis matrix Ψ contains n basis vectors
ψn ∈ Cn×1, implying a quadratic matrix Ψ ∈ Cn×n. The target signal vector f can
be decomposed into a linear combination of a subset of the basis vectors ψn, while
the linear combination is specified by the signal vector x, see (2.25). That is true for
the case that no transformation is necessary in order to obtain signal sparsity.

f = Ψx (2.25)

Relevant norms to determine the sparsity of x result from the problem statement
and signal characteristic. As x defines the linear combination of the basis functions
in Ψ , intuitively the `0-pseudo norm [24] applies.

`0 : ||x||0 := {i : xi 6= 0} (2.26)

It is not a closed definition, but the `0-norm reveals the amount of non-zero elements
xi that are contained in x. For small-scale problems representing an intuitive and
comprehensive way of defining the signal sparsity, the `0-norm is a simple and straight
forward norm. But for medium- or large-scale problems, that are actually the normal,
the application of this norm would result in an expensive brute-force approach during
reconstruction. An alternative metric that not only gives a closed definition but also
allows to apply more efficient algorithms, expresses the sparsity s with the `1-norm
[24] in (2.27).

`1 : ||x||1 =
∑
i

xi (2.27)

It was shown in [26] that for sufficiently sparse vectors xi, the `1-norm converges to the
`0 norm and can therefore be used to implement efficient reconstruction algorithms.
As a result, minimizing the `1-norm instead of the `0-norm is equivalent to the signal
sparsity for sufficient sparse signals and states the optimization objective during the
reconstruction process. Designing a signal acquisition concept that uses the principles
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of CS, requires a profound understanding of the signal that should be captured and,
even more important, the desired information that should be reconstructed. These
considerations lead to an adequate design of the transformation or projection matrix,
respectively. A projection matrix Φ reduces the number of samples that are required
in Nyquist sampling for vector x ∈ CN×1 by the sub-sampling rate M

N
with the

reduced number of samples M .
WithM projection or transformation functions ϕm andM � N , it becomes a rectan-
gular matrix with Φ ∈ CM×N . Together with the basis functions, the measurement
matrix A ∈ CM×N is established.

A = Ψ · Φ (2.28)

The measurement matrix A needs to be orthonormal in general [13]. Given the
basis matrix Ψ , the measurement matrix Φ is required to be orthogonal to the basis
matrix [10; 16] to allow a robust signal reconstruction afterwards. It is aimed for, to
find the most incoherent matrices Ψ and Φ in order to reduce the number of required
measurements [18]. Remembering the uncertainty principle, a signal that has a
sparse representation in one domain, cannot be sparse in another orthogonal domain
at the same time. The orthogonality or incoherence, respectively, is measured with
the mutual coherence µ(Φ, Ψ) [75], that describes the maximal similarity between
any individual basis function ϕi and measurement function ψj.

µ(Φ, Ψ) = max
16i,j6M,N

= |〈ϕi, ψi〉| (2.29)

Often, the mutual coherence is normalized to the Euklidean norm, i.e. the `2-norm,
of the basis and measurement functions.

µ(Φ, Ψ) = max
16i,j6M,N

= |〈ϕi, ψi〉|
||ϕi||2||ψj||2

(2.30)

The theoretical minimum number of measurements that are required for a robust
signal reconstruction, is computed with (2.31)[12].

M > µ2(Φ, Ψ) · s · log(N) (2.31)

In acquisition methods according to CS principles, the mutual coherence on the one
side and the signal sparsity on the other side are crucial in order to guarantee the
uniqueness of a solution of the reconstruction problem statement.

Finally, the CS signal acquisition comprises the spatial products between the signal
representation x ∈ CN×1 and the measurement matrix A ∈ CM×N that result in the
measurement observations or projections b ∈ CM×1, whereas M � N . Therefore,
although CS methods are applicable to a wide range of application fields including
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Figure 2.6 – Simplified CS principle of signal acquisition and reconstruction. Left hand side:
Measurement of x and projection into observation b. Right hand side: Reconstruction x̂ is deter-
mined by finding the only measurement vector in A that explains the observation b

.

inherent conventions regarding denotation, the CS application and optimization
problem can always be broken down to the following equation (2.32).

b = ΨΦ · x
= A · x

(2.32)

In Figure 2.6 the simplified principle of CS is depicted in a nutshell. The known
measurement matrix A results in the known observation b. During reconstruction,
the unique linear combination between A and x̂ is determined, which explains best
the observation b at the receiver.

2.2.2 Signal reconstruction

The observation b resulting from the CS signal acquisition, is simply the linear
combination of A and x, whereas only x is unknown. In most cases, where M ≥ N
and the system of equations can be solved uniquely, the aim is to reduce the number
of measurements, which is widely called sub-Nyquist sampling in the literature. An
under-determined linear system of equation such as (2.32) comes with an ambiguous
solution space. Finding a unique unambiguous solution therefore requires additional
information about the reconstruction objective and the expected signal.

At this point, sparsity comes into play. With the boundary condition, that the
unambiguous solution of the system of equations is with a high probability the
sparsest one in the solution set, the unique solution is identified. The probability
to fulfill that additional assumption for solving (2.32), is increased, the lower the
mutual coherence µ(Φ, Ψ) is. However, the sparsity stipulation also implies that the
reconstruction cannot be conducted via least squares estimators, which minimize
according to the minimum square error.

Instead, the under-determined linear system of equation in (2.32) is stated as
a convex optimization problem in (2.33). It only converges to a convex solution
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Table 2.5 – CS Denotations

Denotation Dimension Explanation
N 1 Number of measurements (Shannon-Nyquist)
M 1 Number of reduced measurements
f N × 1 target signal vector
Ψ N ×N basis matrix
ψj N × 1 basis functions
Φ M ×N measurement matrix
ϕi M × 1 measurement functions
x N × 1 signal representation of f
b M × 1 projected signal representation, observation
A M ×N reconstruction matrix
x̂ N × 1 reconstructed x
ε 1 residual error

space, if the previous assumptions regarding sparsity and mutual incoherence are
right. Basically, (2.33) states the core problem statement of CS, thus solving the
convex optimization problem resulting from the signal acquisition design, as basis
pursuit (BP) [21; 75].

min ||x||1 s.t. Ax = b (2.33)

The previously called projection or measurement matrix A turns into the recon-
struction matrix, but it is required, that the reconstruction matrix eqals the projection
or measurement matrix. Technically, the reconstruction matrix can be re-generated
for the reconstruction process with well-known deterministic generation functions,
thus avoiding the necessity to preserve huge amounts of storage capabilities. In
contrast to (2.33), where only a perfect signal reconstruction is allowed, the re-
construction objective is relaxed in (2.34) by allowing a reconstruction tolerance
of ε. Besides factoring in noisy propagation channels or noise from quantization,
the relaxed formulation allows also to stop with a feasible approximation of the
reconstruction.

min ‖x̂‖1s.t.‖b− Ax̂‖2 ≤ ε (2.34)

The minimization problem stated in (2.34) is a norm approximation method with
quadratic constraints. As it takes noise into account, the problem statement is
referred to as basis pursuit denoising (BPDN) and for practical reasons one of the
most common problem statements within CS [23; 28]. An overview of the used CS
denotations is given in Table 2.5. For perfect reconstruction without narrow run-time
restrictions, for example interior point algorithms can be used. Computationally
much more efficient and for practical applications sufficient are approximation algo-
rithms. Greedy algorithms are therefore widely applied, among them the orthogonal
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matching pursuit (OMP) that is analyzed in [98] and can be seen as the most basic
and common reconstruction algorithm within CS.

In principle, the OMP method computes for each iteration a residual vector r and
determines the maximum spatial product obtained with the measurement matrix A.
Instead of including all columns of A at once for reconstruction, at each iteration
a column is added to the auxiliary matrix At that contains the selected subsets
of A. The row, that provides the maximum spatial product between A and the
current residual, is indexed by λt. In each iteration step, the subset matrix At is
then updated with the λt-th row of A.

λt = J{max
〈
AH , r

〉
} (2.35)

Using the updated subset matrix At, a new subset estimate for x is computed by
using a least squares (LS) estimator.

xt : min ‖b− At · xt‖2 (2.36)

For the following iteration step, the new residual r+ is computed.

r+ = b− At · xt . (2.37)

Especially the computation of the subset estimate in (2.36) is subject to various
optimization approaches resulting in a variety of OMP derived algorithms that are
often tailored to particular applications. Nevertheless, the OMP is able to solve
a wide range of problem statements. Therefore, if no fine-tuning is necessary,
OMP can almost always be applied. In Appendix 2 BPDN as well as several OMP
implementations can be found.

2.3 Weather Conditions in Automotive Context

Although weather usually plays a minor role for radar perception, which is one of the
reasons that makes it interesting as an additional sensor for automotive environment
perception in the first line, adverse environment conditions cannot be neglected
completely. That is especially true for ultimate near-range effects, such as splash
water. As an additional source of signal distortion or attenuation, research is required
to find out particular impacts of adverse weather conditions that disturb the radar
backscatter in a performance limiting way. Furthermore, the impact of adverse weat-
her conditions needs to be contextualized with the capabilities of other sensor systems.

Rain has various effects on the overall radar measurement scenarios, i.e. effects on
the propagation channel, the target reflectivity and hence radar cross section, clutter,
and the radome of the transmitting and receiving radar itself.
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Table 2.6 – International Visibility Code and 77 GHz Attenuation

Weather condition Precipitation Intensity Visibility Attenuation @ 77 GHz
[mm/h] [m] [dB/km]

Light fog Storm 100 770 27.34
Very light fog Strong rain 25 1900 10.95
Light mist Average rain 12.5 2800 6.70
Very light mist Light rain 2.5 5900 2.12
Clear air Drizzle 0.25 18100 0.41

2.3.1 Definitions and Recommendations on Weather Conditions

In order to make radar systems comparable to other sensor systems and design
an appropriate test system, a joint definition of weather conditions is required.
The recommendation [71] provided by the ITU states a widely used definition for
terminologies that identify the intensities of rain and visibility. Visibility is the
distance, where the contrast drops by 2 % at a wavelength of 550 nm [71]. The
visibility is computed according to the Koschmider relation with the attenuation
coefficient γ550nm in 1 m−1.

V (m) = 3912
γ550nm

(2.38)

In Table 2.6, the visibility is listed according to the recommendation and put into con-
text of descriptive terminology for fog and precipitation intensities. The attenuation
at a center frequency of 77 GHz is computed according to (2.39), (2.40) and (2.41).
Visibility refers to atmospheric attenuation on optical signals for communication,
such as infrared or laser that are transmitting signals actively. For optical perception
sensors, in particular sensors that do not use an active illumination of the scene such
as the widely used cameras, near-field influences and focal length are subject to a
drastic limitation in visibility, e.g. because of blurring rain drops on the camera lens
[34]. Of course, the passive perception design of cameras is disadvantageous for the
robustness regarding object detection in the first place, when compared to active
illumination systems.

The damping effects on the signal propagation are correlated to the statistical
rain drop RCS and the statistical distribution of the rain drops in a volume. With
statistical distribution probabilities, it is possible to link the rain drop size and
rain drop distribution to rain intensities that are used to compute specific rain
attenuations.

Although the correlation between rain drop size and rain intensity substantiated
by [53] is applicable to camera based sensor systems, it is not valid for radiation
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waves below 10 cm, i.e. radar at 77 GHz. The Marshall-Palmer distribution works
for the assumption of Rayleigh distributed rain drops, which is true for systems
such as cameras or common weather radars, but it cannot be assumed for rain drop
distributions from the perspective of automotive radar. Instead, the Mie-distribution
needs to be taken into account [71; 93].

According to the recommendation ITU-R P.838-3 [93], the specific attenuation
γR[dB/km] is computed depending on different rain rates R[mm/h] as stated in
(2.39).

γR = kRα (2.39)

The coefficients k and α are computed based on the coefficients {kV , kH} , {αV , αH}
together with the path elevation angle ϑ and the polarization tilt angle τ according
to (2.40), (2.41).

k =
[
kH + kV + (kH − kV ) cos2 2τ

]
/2 (2.40)

α =
[
kHαH + kV αV + (kHαH − kV αV ) cos2 ϑ cos 2τ

]
/2k (2.41)

In [93] the frequency specific values for k and α are given, so that the according
rain attenuation at 77 GHz can be computed. The rain attenuation is displayed in
Figure 2.7 depending on the two-way propagation path length in the region of up to
400 m. In common advanced driver assistance systems (ADAS) ranges above 200 m
are not considered anymore, therefore this distance was assumed as the maximum
region of interest in automotive applications. Furthermore, Figure 2.8 shows the
course of the rain attenuation along rain intensities ranging from light rain with
0.1 mm h−1 up to very heavy rain with 50 mm h−1 for comparison. The graphs in
Figure 2.7 and Figure 2.8 show that although the specific rain attenuation cannot be
completely ignored, it does not play a major role for radar signals at 77 GHz. Among
others, this fact justifies radar as an important brick within a whole sensory system
for safety critical implementations such as the aforementioned autonomous vehicles.

2.3.2 Adverse environment conditions in automotive scenarios

In section 2.3.1, the specific rain attenuation was introduced. The model of the
specific rain attenuation relies together with the free-space propagation on the far-
field assumption. Recalling Frii’s equation in (2.42), the received power depends on
the gain of the transmit antenna GT and the receive antenna GR. It neglects the
antenna aperture, which in practice is not isotropic but has different sensitivities
depending on the direction of arrival (DoA). In addition, the antenna gains are
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Figure 2.7 – Rain attenuation at 77 GHz depending on the path length at different rain rates
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Figure 2.8 – Rain attenuation at 77 GHz depending on rain rates at different distances.



30 2 Basics and Background

assumed to be constant over frequency. Both simplifying assumptions can be made
because of the far-field assumption.

PR = PTGTGRc
2

(4πrf)2 (2.42)

The far field begins at the minimum distance rff,min according to (2.43), given the
maximum antenna dimension d and the wavelength λ [94]. In case of planar antennas,
(2.43) can be used to obtain the maximum coverage in elevation direction depending
on the antenna height [57]. Then d refers to the maximum dimension of an object
with an reflecting surface of higher complexity.

rff,min >
2d2

λ
(2.43)

Applications in the closer vicinity below 100 m require maximum dimensions below
20 cm. Therefore, the far field assumption needs to be dropped for most realistic
automotive cases. Considering the near-field instead, the spatial directivity of the
antenna depending on the radiation intensity U(ϑ, ϕ) for both, elevation angles ϑ
and azimuth angles ϕ and the total power input to the antenna Pin need to be taken
into account.

G(ϑ, ϕ) = 4πU(ϑ, ϕ)
Pin

(2.44)

In case of using a transmit signal that comprises a wide bandwidth, it needs to
be considered that the effective aperture Ae that translates into physical antenna
dimensions, actually depends on the transmit frequency.

Ae = Gc2

4πf 2 (2.45)

Since the once implemented physical aperture of the antenna Ae0 remains the same,
the varying antenna gain cannot be neglected anymore in contrast to narrow-band
applications.

G(f) = 4πf 2Ae0
c

(2.46)

As a consequence it is crucial to gain a deeper understanding of near-field effects and
impacts. While far-field rain effects can be easily neglected, near-field effects that
occur specifically in the automotive context and have a direct impact for example on
the radome, need to be determined.
Accordingly, ground clutter and changes on the ground clutter due to different

street conditions need to be taken into account. Ground clutter is directly connected
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to surface characteristics, such as roughness, relative dielectric constant εr of the
material and incident angle. The roughness of the surface is classified according to
the wavelength and differential height ∆h on the surface. For ∆h < λ

4 , the surface is
specular to the radar signal and nothing will be reflected back to the radar. As a
consequence, co-located radar systems will not receive any backscatter there. Rough
surfaces are assumed for ∆h > λ

4 and a co-located radar system will receive a strong
echo. Ground clutter is described with the cross section per unit area σ◦m2

m2 and
depends on the roughness related scattering effectiveness γ and grazing angle on the
surface Φ [8].

σ◦ = γ sinΦ (2.47)

σ = σ◦A (2.48)

Another typical near-field effect are particles such as dust or mud. Wether particles
disturb the radar signal perception, depends on the particle size and density. The
particle size contributes to the RCS of a particle, same as any other target. Another
parameter, that influences the RCS is the reflectivity rε in the transition between
two materials or propagation media (2.49). The dielectric constant εr of air is
approximately ε0 = 1.

rε =
(

2
√
εr1 − εr2

2
√
εr1 + εr2

)2

=
(

2
√
εr − 1

2
√
εr + 1

)2

(2.49)

Water has a quite high dielectric constant with εw = 80, resulting in a very high
reflectivity. Organic materials usually have a reflectivity of 2 6 ε 6 5. Accordingly,
the reflectivity of organic components lies between 0.33 6 rε 6 0.67. The minimum
thickness of particles to be visible for radar depends on the wavelength λc of the
center frequency.

Tm = λc
2√εr

(2.50)

Therefore, particles are completely transparent to the radar, if their thickness is
below 0.87 mm or 14 mm. In general, it is fair to assume that in automotive scenarios
with its metallic vehicles and pedestrians are much stronger scatterers than particles,
so that their influence can be neglected there.
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The context for analyzing new radar architectures and advanced signal acquisition
methods is given by two major fields, namely signal processing and hardware deve-
lopment. Increasing computational power allows to consider the application of CS
methodologies in the automotive context. CS methodologies allow efficient sampling.
But CS also comes with high computational effort. Having the possibilities of CS
methods in mind, a fresh view on the targeted application field with its traditional
processing schemes is possible.

Accordingly, the aim is to proceed in solving arising challenges in radar applications
that are specific to automotive radar. Many methods that are widely used in other
radar applications, could not be transferred to the cost-sensitive automotive market,
which additionally used to have limited interest in radar technologies in the first line.
However, along with the developments towards autonomous driving, radar becomes
an important part of safety-critical ADAS. Given the fact that radar takes over
safety relevant functionalities, a wide field of radar methods can be considered now
for environment perception, whereas CS increases their efficiency by reducing signal
acquisition effort.

All of this is reflected in the structure of the state-of-the-art chapter. First, an
overview on CS is given, that partially comprises radar topics. In the second part, the
field of radar methodologies and techniques is illuminated with spotlights on radar
systems and processing methods that are relevant for the automotive application
fields.

3.1 Applications of Compressive Sensing

Although CS became an emerging field in the research community during the last
decade, many of the mathematical and signal processing techniques are mostly
well-known for a long time. Partially, single components of CS methods even belong
to the state-of-the-art in radar signal processing as pointed out in [29]. However, only
the development of increasingly powerful digital signal processors (DSPs) paved the
way to implement CS techniques for a wider range of applications. It was rather the
work of Candès, Romberg and Tao in [13], who showed and proved that the `1-norm
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is a feasible approximation of the `0-pseudo-norm and explained how a stable signal
recovery can be obtained from incomplete measurements.

Since then, research emerged in order to analyze where the application of CS is
beneficial and helps to solve either problems that could not be solved before or to
solve them more efficiently. For CS, a discretized signal structure is essential as
its algorithms tackle numerical optimization. Consequently, image processing is a
particular popular field of application for CS with its discretized signal structure
resulting from the pixels. Hence, even one of the first rare hardware realizations was
a single pixel camera [20]. The functionality of the single pixel camera, especially
regarding the role of CS, was explained in [12; 76]. Later on, the single pixel camera
approach was enhanced by a parallel processing structure [7]. Another work within
imaging that addresses a different domain of sparsity than most imaging approaches
is [73]. This paper gives another perspective on CS, specifically how to address
multi-sensor systems. Instead of the intuitive sparsity domain, Bayes probability is
used as sparsity domain. The idea is to reduce data transmission in multi-sensor
systems in a way, that only changes in individual sensor outputs are transmitted,
which is the actual aimed information. Although that works mainly for industrial
plants with huge amounts of distributed observation sensor systems, the use of
Bayesianity is also a promising approach for sensor data fusion in sensor-equipped
systems that include a high diversity. Therefore, the presented approach is interesting
for communication technology in vehicle to vehicle (V2V) and radar systems.

The aforementioned few hardware implementations outside of optical imaging
applications are also caused by the lack of discrete signal representation in different
applications, whereas the sampling itself and therefore discretization of the signal
is subject of the problem to be solved in analog signals. In order to apply CS to
sampling or analog signal acquisition in general, the measurement process needs
to be well-known for a robust reconstruction basis. The challenge lies therefore in
reducing the sampling effort with random measurement signals, that are at the same
time deterministic for the reconstruction part. That is, to avoid the necessity for
huge storage capacities in order to save all measurement signals. So the duality of
deterministic signal generation with random structure, i.e. pseudo-random signals,
needs to be resolved, if CS should be used for analog-to-digital (AD) conversion.

Exactly that problem was addressed in [51], where the reconstruction process was
committed to silicon. Among other approaches that were discussed, reconstruction
algorithms were implemented on field programmable gate arrays (FPGAs) in [51;
74]. One of the pioneer work regarding hardware implementations for CS signal
acquisition outside of imaging technologies was contributed by Eldar and her group
with their Xampling hardware [59; 60]. Their modulated wave converter (MWC) is
a radar receiver based on CS that performs the signal acquisition on RF hardware.
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The concept behind the MWC is to reconstruct the original wide-band signal from
measurements of several sub-bands instead of capturing the complete broadband
spectrum. Several narrowband converters perform the transformation into the fre-
quency domain only for some randomly selected frequencies using CS to reconstruct
the rest of it afterwards. Therefore, the Xampling approach can be also viewed in
a way, that it extracts several random Fourier coefficients of the backscatter and
reconstructs from the set of incomplete coefficients the remaining ones. The role
of the RF receiver hardware is to modulate the received pulse in several parallel
analog mixing lines with the corresponding coefficient transformation. This works
for frequency modulated continuous chirp signals according to the usual practice in
radio and especially radar technology.

Most of the other approaches address the signal processing part, so that any
changes in the RF hardware part can be avoided. On the one hand, this is because
of the additional effort regarding hardware design, which is also quite expensive
and therefore it is hard to find convincing arguments for experimental hardware
development with a newly arised methodology. On the other hand, at least in
traditional radar applications, radar equipment is already designed in a very smart
way comprising RF design experience from several decades, so that there needs to
be a very good reason to just overthrow it. In addition, CS can enhance radar
performance significantly on the signal processing side as well, so it is even more
beneficial to check, how CS could be applied. A set-screw is the sampling method
itself, while the hardware does not need to be changed. In [5] a non-uniform sampling
approach was tested on the laboratory radar system (LabRadOr) of the Fraunhofer
Institute. Using LabRadOr, measurements with a stepped frequency radar system
were configured and performed. Similar to [59], the receive signal was transformed
in the Fourier domain using random frequency allocations within the spectrum. But
in contrast to [59] this was implemented in the time domain, i.e. instead of several
random carriers the distance in between two sampling points was varied randomly,
which results in randomly changing sampling frequencies. In the signal processing
chain a constant false alarm rate (CFAR) detector was applied in combination with
the CS `1-norm.

The non-uniform sampling approach is taken one step further in [46]. The CS
based UWB radar sensor is supplied with randomly spaced transmit pulse trains.
The time-spacing between two pulses corresponds to different round trip times of
individual transmit pulses. Therefore, this approach is already close to correlation
receivers, as the spacing in between the pulses covers different range gates. That is
also, were the sparsity lies. Similar to the multi-sensor approach from the proposed
imaging method in [73], a group wise sparsity was assumed. For the CS conforming
representation of the UWB signal, the number of groups equals the estimated number
of targets, whereas the total amount of targets is assumed to be sparse. In order
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to make sure to meet the hardware constraints, low-density parity check (LPDC)
measurement matrices were used to check for non-negative integers, constant row
sums other than zero and an unambiguous structure. The work in [46] extends the
functionality of the chip that was developed in [14], whereas equidistant radar pulse
trains were generated. In [14] the goal was to develop a chip without addressing CS
or any other signal processing approach. Later on, this chip was enhanced in [19]
with an electro-static discharge (ESD) protection and a serial interface.

A fully integrated CS signal acquisition system was designed and implemented in
[102]. Using a bandwidth of 2 GHz and ±1-Bernoulli sequences for measurement,
successful reconstructions were performed for a sub-sampling ratio of 12.5 %. The
channel was assumed to be an AWGN channel, but neither the SNR nor the maximum
range were mentioned in this work.

CS hardware for signal acquisition was brought to another level by [54], who
developed a mechanical CS reflector antenna. The measurement matrix is here
implemented mechanically by the antenna itself. Instead of focusing the signal
in the center, it is scattered at the receiving antenna according to the designed
surface of the antenna. Therefore, the surface pattern spreads the signal spatially,
i.e. implementing a spatial diverse observation.

3.2 Radar

Radar has already a long history of implementation and diverse applications, at
least outside of the automotive field. Therefore, there is a rich pool of methods
in general radar application fields that can be used for developing new automotive
radar-based functionalities. Because nowadays typical automotive radar systems
do not use pure FMCW signals in the sense that they transmit continuous signals,
but instead frequency modulated (FM) pulses, so-called chirps, the focus of the
state-of-the-art description remains on pulsed radar. Section 3.2.1 covers already
systems using chirps. In addition, the field of noise radar and CS in noise radar
is elaborated. It should be noted that there is no completely unambiguous way
of disentangling CS, pulsed, noise, and automotive radar, since the terms are not
separate categories that exclude each other. Instead, CS comprises methodologies
for signal acquisition and reconstruction, pulsed and noise radar architectures that
are applicable as automotive radar architectures and finally pulsed radar systems
comprising noise modulated pulses. Nevertheless, the breakdown of the state-of-the-
art into these specific sections points out the main and most important ideas or
solutions in its respective subdivision and pitches the concepts that are fruitful to
the other sub-divisions as well.
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3.2.1 Pulsed Radar

Pulsed radar, especially when unmodulated pulses are used, are problematic when it
comes to direct sampling. In addition, a high transmit power is necessary to make
sure to obtain a feasible receive power after pulse propagation within the respective
propagation medium, e.g. free space. In practical implementations, short pulses
with steep slopes are applied for short distances in controlled environments such as
industrial plants and production lines.

A typical application for production lines is the level measurement, e.g. in tanks.
A radar system for such a level measurement was developed in [100] using a very
short pulse duration of less than 1.5 ns for a maximum range distance of up to
7 m with an accuracy of ±5 mm. The carrier frequency is allocated in the 5.8 GHz
industrial-scientific-medical (ISM) band. Using time-stretching, the propagation
speed of the backscattered signal is converted from speed of light to speed of sound
before entering the detection path. Hence, the direct sampling problem is solved
by time-stretching, enabling a direct sampling of the backscatter, while keeping the
sampling effort low.

Another approach to avoid cumbersome direct sampling with high frequencies that
is often used besides time-stretching is the digital-to-time converter (DTC). In [41]
the vernier DTC is applied, that was implemented by using frequency comparison.
Two slightly detuned oscillators, deviated from the same oscillating source, are used
on the transmitter side. Applying edge detection, the lag between the transmitted
oscillations is determined by evaluating the number of periods that both of the
oscillators take until their edges overlap. Based on the detected time lag, which is
the difference in the number of periods for both oscillations, the signal’s round-trip
time is computed.

Furthermore, UWB radar systems can be viewed as pulsed radar systems, since
due to the time-bandwidth product a wide bandwidth results in a narrow pulse in the
time domain. Therefore, acquisition challenges are partially the same as in a more
conservative interpretation of the terminology pulsed radar. Accordingly, a method
to handle signal acquisition for pulsed and UWB radar waveforms by avoiding direct
sampling was presented and analyzed in [27] for an UWB radar system. During
signal propagation of a transmit signal and until the arrival of an echo at the receiver,
several capacitors are loaded by parallel current sources. As soon as an echo arrives,
the actual charging status of individual capacitors is preserved while the other parallel
capacitors continue to be charged. Hence, each echo is represented by a different state
of charging thus allowing the detection of multiple targets. The number of targets is
limited by the actual number of capacitors, limiting its application to a clear target
environment. An additional drawback of this solution lies in the sensitivity towards
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noise that comes with relying on threshold levels.

The CS approach for pulse acquisition, namely the random modulated pre-
integration (RMPI) pre-processor as proposed in [10; 11; 75], was designed and
implemented in [102] as a fully integrated system. This CS based ADC projects
the receive signal to several observations that can be sampled at comparably low
frequencies. The reconstruction in the signal processing path leads to the com-
putation of the inherent information. Hence, this type of ADC is actually also
known as analog-to-information converter (AIC), since the process results in analog-
to-information transformation instead of classical signal sampling. The RMPI is
implemented with eight parallel convolution channels, that apply the pseudo-random
measurement signals to the receive signal. Afterwards in the signal processing path,
where a dictionary based reconstruction is implemented, Gabor and discrete cosine
transformation (DCT) signals are chosen as basis functions.

3.2.2 Noise Radar

Initially, only few researchers were interested in noise radars, because in the early
1950ies and 1960ies the required electrical circuitry for analog signal processing was
too expensive [45]. Only with the development of fast ADC chips and the increase
of computational capacity, the research interest in noise radar systems could rise
again. It should be noted, that this is the same reasoning for the increased research
interest in CS. One of the major benefits of noise modulation is the low effort in
generating it, if there are only low-key constraints given. For example, the most
simple approach is to amplify thermal noise. Even if more complex implementations
such as (pseudo-) random noise generators are used, it is still advantageous to use
noise sequences for creating unique fingerprints in pulses while lowering the required
power transmit power. Of course, situations, in which a transmit signal should be
hidden in the overall noise floor such as for military use but also regarding privacy
in civil applications, do benefit from noise shaped signals as well. In the following,
an overview of noise radar research is given.

Two approaches regarding signal acquisition were presented and compared in [49],
i.e. a stepped delay method on the one hand and a stepped frequency method on
the other hand. The aim was to develop a design that avoids as much as possible the
trade-off between a high resolution and a high dynamic range. Therefore, the radar
architecture was designed to cover a wide bandwidth while still being able to use
slow ADCs. The approach that uses stepped delays, computes the resulting energy
of cross-correlations between the received backscatter and reference signals, whereas
the cross-correlations are performed at the receiver stage. There, also the reference
signals are generated as time-shifted versions of the continuous transmit signal,
whereas the time-shifts are adjusted according to predefined time bins corresponding
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to different range gates. Instead of relying on real signal propagation on air, the fixed
range in air with 120 cm was transfered to a propagation through a short-circuit
cable with the length of 80 cm. The issue with the range side lobes is, that they
cause interference when they are reflected by objects outside of the region of interest.

The drawback of the stepped delay method of the high range sidelobes is addres-
sed with the second approach, the stepped frequency noise radar. With several
narrow-band noise pulses that have different center frequencies, a continuous noise
wave is synthesized. Afterwards, the signal processing is the same as in the stepped
delay method, so that only the transmit signal is generated differently. Hence, the
presented stepped frequency method is an improvement of the stepped delay method.

The fully polarimetric and phase-coherent random noise radar system that was
developed in [65], features an actual RF frontend and antenna. On the transmitter
side an UWB noise signal according to Gaussian distribution is generated. The signal
bandwidth covers frequencies between 250 MHz and 500 MHz with an average power
of 1 mW. The log-periodic antenna that is tailored to the wide signal bandwidth
has a gain of 8 dBi and a 3dB-bandwidth of 100° in vertical direction and 40° in
horizontal direction. During signal transmission the transmit antennas are switching
between horizontal and vertical polarization. As opposed to the transmit anten-
nas, the receive antennas receive the vertical and horizontal polarized backsatter
simultaneously. Similarly to the previously described approach, the receive path
comprises delayed versions of the transmit signal, that represent various round-trip
times, i.e. target ranges. Here, the delayed versions were generated with delay
lines to which the transmit signal is applied after passing a power divider. As
a result, several reference signals are available, that are up-converted to 70 MHz
and correlated with the received backscatter. Afterwards, the correlation output
enter the I/Q detector, where the further signal processing takes place. With
the resulting polarimetric range profile, terrain is classified on the one hand, such
as ocean or forests, but on the other hand also objects are identified such as airplanes.

In the variety of radar applications, through-wall-detection (TWD) can also be
found, which is adressed in [95]. A TWD radar system is basically a short range radar
system and was developed here for the detection of human beings. Again, the receiver
stage features correlators that are implemented as analog microwave correlators in
this work. Analog correlation is advantegeous compared to digital correlation, in
cases where otherwise a high effort in sampling due to high frequencies or bandwidth
would be necessary. Consequently, also this approach avoids direct sampling by
analog correlation. With the evaluation of the correlation output, characteristic
patterns were identified, that included various situations such as a breathing, sitting
or standing person. Due to the coherent receiver architecture it was possible to
determine distance variations and velocities precisely and unambiguously. According
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to the authors, their radar system is also feasible for anti-collision applications.

As mentioned in the introduction, noise waveforms are well-suited for covert signal
transmission, which was the driving motivation in [15], where such an implementation
was analyzed and demonstrated. Although it is not a radar, the work demonstrates
how noise can be applied in a RF context and actually allowing spectrum sharing,
which is interesting for radar, too. The vertical and horizontal polarization of the
transmit and receive antennas was exploited to transmit an information signal and a
reference signal simultaneously. A power divider splits the initially generated noise
signal before the transmit antennas to derive both signals from it. While one part of
the signal is delayed by a tunable time delay, the other part is modulated by a bit
sequence, resulting in the reference and information signal, respectively. Due to the
underlying noise signal it is not possible to determine during free space propagation
that a polarized information signal is transmitted. At the receiver side, the informa-
tion signal can be only determined by reconstructing the reference signal based on
the original signal delay from one of the polarized antennas. The critical point of this
implementation is to design identical delay lines in both, the transmit and receive
path. As long as the delay is only known to the transmitter and receiver, the receive
signal cannot be interpreted by a third party user, who also needs to recognize the
polarized information signal in the first line. Transferring this method to radar, the
implementation can be also beneficial for radar without necessarily transmitting
information bits. Multiple users can communicate while accessing the same frequency
channel at the same time. It is possible to transfer the method for multiple radar users
to illuminate the perception area at the same time. In addition, the proposed spread
spectrum technique ensures with its noise waveform that enough signal power reaches
the receiver stage, which is beneficial for both, radar and communication. This
enables even an operation with SNR and signal-to-information (SIR) levels below zero.

In many applications it is desirable to perform the cross-correlations not in the
analog but in the digital domain. That is for example the case for SDR developments,
the necessity of flexible tuning of the CCFs, or when expensive hardware develop-
ments should be kept to the minimum. But digital correlation unveils one of the
main drawbacks of noise radar systems, especially for random noise sequences. In
the digital domain, the required signal processing time that is necessary to perform
the correlations on the one hand and the memory capacity that is required to store
the respective reference signals on the other hand put significant limitations to the
implementation.

This was addressed in [97]. The authors used and developed further the initial
work in [47], where it was shown that random noise radar (RNR) can be implemented
with simultaneous range and velocity detection using digital correlators. The RNR
was implemented with a bandwidth of 400 MHz. Their system consists of a direct
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conversion receiver (DCR) without a quadrature channel as known from regular
heterodyne receivers, thus resulting in phase incoherency. The drawbacks regar-
ding signal processing time and memory capacity are mitigated by parallelizing the
computation of the correlations on two NVIDIA graphic processing units (GPUs).
The parallelization is performed by splitting fast fourier transformations (FFTs) into
overlapping segments with zero-padding.

The FFTs are applied on both, the reference and the receive signals before they
are multiplied in the Fourier domain. As a result of splitting the FFTs in several
segments, the reference signal is composed partially of the previous and the current
signal. After multiplication, the result is transformed back by computing the inverse
FFTs (IFFTs) for the segmented FFTs and the segments are accumulated again.
Although the resulting computation time is still not close to real-time computation,
that scalable approach proved its potential of reducing the run time significantly.

3.2.3 Compressive Sensing in Noise Radar Systems

After depicting the general research field for noise radar, it became clear that most
research is primarily concerned with analog or digital correlation. Especially the
problem statement regarding digital correlation at the receiver stage, which leads
to significant runtime and memory capacity problems, is a promising field for the
application of CS. Radar scenarios are often sparse in the spatial domain and the
numerous performed cross-correlations is highly likely to be compressible.

Measurements using cross-correlation such as in conventional pulse or noise radar
concepts are also the starting point for the various reconstruction approaches that
were analyzed in [82]. The time-domain model of the transmit waveform is constitu-
ted as a random white noise process that is convoluted with low-pass filters (LPFs)
that represent the band limiting non-idealistic real world system. The transmit
bandwidth of the signal model was assumed to be 500 MHz. The measurements were
performed by a regular designed radar system, only the signal reconstruction was
adapted to the respective reconstruction method, whereas two of the four discussed
methods relied on CS. That makes the evaluation of the four applied reconstruction
methods especially meaningful, when compared against each other. One method
applies cross-correlations between a filter bank that contains the reference signals and
the receive signal. The other non-CS method provides a LS estimate by computing
the Moore-Penrose-Inverse with the CCF matrix. The CS methods for reconstruction
included `1-minimization using BPDN with quadratic constraints according to [12].
In one of the two CS approaches the complete set of references was used during
reconstruction whereas in the second approach only a subset of 25 % of the total
references was applied. Although in the case that considers the complete set of
references the LS approach is more appropriate regarding reconstruction effort, the CS



42 3 State of the Art

performance on the full set was still important in order to benchmark the capability
of CS reconstruction on a reduced set of reference. The results were not compared
against each other for various noise levels, assuming that noise can be negelected
due to the narrow antenna beam of 1° and a low impact of noise in the considered
scenario with a single highly reflecting target in the range of 33 m.

The similarity between image processing and synthetic aperture radar (SAR) pro-
cessing is given by the matrix structure and FFT processing. Therefore, it seems
almost natural to apply CS for imaging SAR after being applied successfully in image
processing. Along with SAR imaging comes a huge amount of data that needs to be
processed, usually with 2D-FFT. Managing and especially reducing the increased
number of samples resulting from SAR imaging is the driving motivation in [42] to
use CS. The reduction of the SAR image processing effort is obtained quite straight-
forwardly in the sense of CS, i.e. only a random subset of the echo is is sampled and
transformed into the Fourier domain for range-Doppler retrieval. In addition, the
transformation operator, which is part of the CS processing, is chosen according to
the SAR pulse structure. Since the SAR image is generated in two steps to resolve the
two dimensions, also different transformation operators need to be applied in order to
meet the CS requirements on the reconstruction in both processing steps. During the
first step, the DCT is used as a transformation operator, while during the second step
a noiselet transformation operator is chosen. The noiselet transformation operator
equals a pseudo-binary random (PBR) function. While PBR consists of randomly
binary sequences, noiselets are noise-modulated binary sequences. The reconstruction
of the raw SAR image data was performed following the BPDN reconstruction method,
whereas an interior-point (IP) algorithm was implemented that was constrained by a
barrier function during the iteration steps. As a metric for the reconstruction the peak
signal-to-noise ratio (PSNR) of conventional SAR processing and CSSAR processing
was compared. In direct comparison, the CS method revealed some losses. But con-
sidering the fact, that CS aims to reconstruct the signal information, still a sufficient
raw data image reconstruction was obtained from a highly reduced number of samples.

Following the same motivation as [42], in [38] the main problem statement within
SAR processing, namely the high data rates, was addressed. In this theoretical work, a
random noise SAR was simulated. In addition, the relevant metrics regarding CS were
stated and computed for CS based SAR imaging. On the transmitter side, narrow-
band Gaussian pulses instead of chirps are used. On the receiver side a reduced
number of samples from the backscatter is recorded replacing Nyquist sampling in
fast time, i.e. the range direction. But also in slow time, i.e. the velocity direction, a
reduced number of samples is taken, which in practical implementation means to leave
out some of the chirps. Based on the reduced set of samples, CS is used to reconstruct
the missing samples in slow time and fast time. The reconstruction matrix includes
delayed replica from the transmit signal according to classical FFT processing. The
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authors showed that the matrix fulfills the random isometry property (RIP) and
is therefore a feasible matrix for CS processing in this application. The simulation
results implied that the approach provides sufficient reconstructions for a SNR of
20 dB while using only 10 % of the samples in both directions.

3.3 Automotive Radar

Although it took not long after the discovery of radar principles, until first experi-
ments were conducted on automotive radar, it still used to be rather a gadget for
the luxury segment than a meaningful ADAS function for a long time. According
to the overview on automotive radar history given in [55], the first experiments go
back until the beginning of the 1970ies using different frequency bands as there were
not yet dedicated any frequency bands to automotive radar. Naturally, some of the
prototypes applied rather clumsy radar antennas, but still it was possible to show,
how beneficial in preventing accidents radar can be. But apparently, for a long time
radar was still far from being an application in the mass market.

Meanwhile, an already well-established radar application in the automotive con-
text, are speed measurements that exploit the Doppler shift of a transmitted CW
to determine the velocity of a vehicle. Allocating automotive radar frequencies to
77 GHz and in some regions also to 24 GHz, allowed the realization of handy antenna
form factors. This resulted not only in easier antenna mounting, but also enabled
a cheaper antenna manufacturing, so that radar came closer to become a basic
feature for the mass market. In the meantime, a variety of radar functionalities
are implemented and used on the streets as part of ADAS functionalities such as
adaptive cruise control (ACC), blind spot detection (BSD), lane change assistant or
parking slot measurement.

Because of the cheap and comparably simple to implement architecture, automotive
radar systems rely on FMCW principles. Since the transmit signal is quite often, if
not almost always, implemented as a FMCW chirp, it is also referred to as a pulsed
radar, although the receive architecture differs clearly from pulsed radar architectures.
Phased array antennas focus the radar beam, which must not be confused with
electronic beam steering (EBS) that allows to adjust the beam electronically during
operation. Phased arrays feature not adjustable phase shifts in between the antennas
but are fix, so that there is no beam adjusting possible, later on. But multiple
antennas allow eletronic beam forming (EBF) during signal post processing and
approaching imaging radar functionalities with DoA algorithms.

But still, there are many challenges ahead that come together with increasing
numbers of radar systems on the streets and new expectations on the functionality
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and robustness that are induced by the developments towards autonomous vehicles.
On the one hand, there are challenges to build handy, low-cost radar systems
incorporating more functionalities such as imaging, on the other hand stands the
availability of high computational power even in vehicles. This combination paves
the way to think of future radar systems detached from the FMCW principle where
reasonable and explore benefits of implementing new algorithms such as CS.

3.3.1 Automotive Noise Radar Application

Although noise radars are not necessarily UWB radars, it seems fair to compare their
respective state of the art, because both concepts usually cover a broad frequency
spectrum and both set therefore similar constraints and requirements to the radar
architecture. Since UWB radars are normally limited in range, they are mainly
considered for SRR applications in the automotive domain. SRRs are aimed at taking
over obstacle and collision detection within the vicinity of the car.

A SRR implementation was analyzed in [79], where UWB pulses were used. The
aim was to compare different pulse modulations against each other, since coding
or modulating the transmit pulses helps to deal with potential interfering users in
the illumination range or by multi-path propagation of other transmitting units.
The modulation was performed with pseudo-random codes, namely Gold codes and
maximum length feedback shift register (MLFSR) codes. Two different pulse bases
are taken into consideration for the modulation, on the one hand a mono-cycle pulse
and on the other hand a Gaussian pulse while both of them have a pulse duration
of 1 ns. In the following of the paper, the authors compare the performance for the
different modulations applied to the different basic pulse shapes. It turned out that
the best performance is achieved in the combination of a Gaussian pulse that is
modulated with the MLFSR code. The simulation considered the application of an
UWB SRR implemented in a vehicular application scenario.

Based on the work in [79], the work was continued in [80] while using the insight
that the mono-cycle Gaussian pulse performs best. The extension in this work
consists in principle of evaluating different modulations. Here, a maximum range of
up to 5 m was tested for the automotive SRR. In comparison to the previous work,
a shorter pulse width of 300 ps was implemented. The mono-cycle Gaussian pulses
have a magnitude of only 3 V. This time, the modulation of the Gaussian pulses
consists of pseudo-random noise (PRN) codes. The receiver was implemented with an
oscilloscope that features a bandwidth of 12 GHz and a sampling rate of 40 GS/sec.
The oscilloscope is used as an ADC including thresholding. Hence, the correlation
of the sampled signal with the reference signal is performed in the digital domain.
With this experiment setup the authors obtained only an accuracy of roughly 20 cm
at a range of approximately 2 m, which improved at a range of 5 m to 1 cm.
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Besides signal processing, at least at some point adequate chips and hardware
implementations are necessary to bring new radar concepts to the market. One of
the few examples was set in [66], were a chip for automotive 77 GHz radars was
brought to silicon. It is not limited to noise or UWB radar but can be also used for
FMCW radar signal transmission and acquisition. For UWB radar operation, the
chip offers the feature to configure PRN transmit waveforms. The PRN sequences
correspond to maximum length sequences (MLS) that are generated by a linear
feedback shift registers (LFSR) on the chip. With binary dividers the clock frequency
can be set, while the maximum clock frequency is 4.25 GHz. Selecting the maximum
clock frequency results in maximum resolution of less than 4 cm. The binary dividers
make it possible to implement subsampling approaches such as CS based methods as
well. The receiver stage is conceptualized as a cross-correlation receiver. According to
the State-of-the-Art, the cross-correlations are performed in the baseband. Therefore,
the chip provides a local oscillator (LO) mixing stage, first. In order to find the
time delays comprised by the receive signal, after baseband conversion, the receive
signal is correlated with the MLS that are implemented as the reference filter bank.
For the computational implementation of the CCFs the efficient Fast Hadamard
Transform (FHT) approach is used.

3.3.2 Multi-range Radar

With the development towards fully automated vehicles, that demands more robust
and highly reliable sensor systems than the ones that are available today, redundancy
becomes increasingly interesting despite the higher costs to improve the safety of the
autonomous systems. In this context for example data fusion is discussed intensively,
but this is beyond of the scope of this work. Apart from including additional and
complementary sensors, it is worth to consider to evolve single sensor types themsel-
ves in order to obtain more robust sensors in the future. A low-key approach is to
extend the functionality of existing sensors in the signal processing chain. Besides
bridging the time until future sensor hardware is ready for the streets, it also adds
value to existing sensors and provide insights for future sensors as well.

Automotive radar sensors are often categorized according to their application
range that implies also different main lobe beam widths. Different maximum ranges
allow different opening angles and range resolutions, which specifies suitable radar
applications. While LRR systems are ideal for ACC, where a narrow beamwidth is
required, MRR and SRR systems usually have wide opening angles. For the latter,
targets within the vicinity of a vehicle are separated by DoA estimation algorithms
such as in [42; 101]. LRRs feature narrow beamwidths for two reasons. The first
reason is to increase the gain and therefore the transmit power in the main lobe
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direction in order to improve the illumination of targets that are located ahead.
Regarding the high free space attenuation at the carrier frequency at 77 GHz, fo-
cusing the beam mitigates the effort to reach the intended maximum ranges of an LRR.

The second reason to design the LRR beamwidth to be narrow, is caused by the
application itself. Once a vehicle that is moving ahead is detected, the ego vehicle
should lock that distance. Consequently, it is sufficient to only track the speed
and distance of the vehicle in front making a DoA estimation obsolete. But after
leaving the motorway, where ACC is a useful tool, other challenges than checking
the speed and distance of the vehicle arise. Actually, in urban or rural landscapes
ACC systems provide low to no benefit at all. Instead, the target location in range
and azimuth location becomes essential in order to locate pedestrians or bicycles at
intersections. At this point, radar systems that are able to cover several distances
including their implied beampattern come into play. After entering urban environ-
ments and leaving the motorway, it is advantageous to switch radar sensors into
another operating mode instead of mounting separate radar sensors for each functi-
onality. In the following, approaches that cover this problem statement are presented.

To realize a radar system that is suitable for more than one range it takes ad-
justments in two domains, the antenna hardware and the signal design. On the
hardware side the beampattern of the antenna array needs to be adjusted to meet the
illumination requirement of the respective range. The toggling between two ranges
and their respective antenna beams was realized via switching in [37; 92]. Except
for the lag in time, mechanical or electronic switching between two antenna designs
does not introduce any additional drawbacks regarding range or azimuth resolution,
when compared to systems that are dedicated to a single range.

Both antenna designs are conceptualized for LRR and MRR systems, whereas the
beam for the mid range is divided into two beams that feature main lobes of 30°
each. In [37] the physical antenna elements for MRR and LRR are placed next to
each other, thus resulting in two separate neighboring antenna apertures. During
MRR operation the azimuth direction is resolved by digital beamforming (DBF).
Slomian realized a different implementation in [92] that preserves the location of the
antenna aperture. Instead of two neighbor structures, the different antenna arrays
were stacked in different dielectric layers. Both antenna designs were realized as
microstrip antenna arrays for 77 GHz.

Apart from the adjustment of the scene illumination by adequate antennas, the
signal processing also needs to be adapted to different ranges in order to obtain the
best granularity in terms of range resolution. In radar technology this can be reached
by adapting the chirp bandwidth or pulse length, depending on the implemented
radar system. A solution that is applied on the receiver side is propose in [63].
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Table 3.1 – Comparison to the State of the art

reference [37] [83] [64] [92] [96] [50]
Multiple range resolutions – X X – X –
Multiple opening angles X – – X – –
Range adjusted beam pattern X – – X – –
Multiple target detection – X X – – X

Multi path propagation – – X – – X

Angle separation – – – – X X

There, different sharpening filters are designed that are tailored to different range
gates. At the receiver side the signal is applied to the parallel sharpening filters.
For the transmit pulse, pulse compression parameters are implemented that are
fitted to the maximum intended range and the aimed maximum resolution. The
received pulse is focused first with autocorrelation function (ACF) and then fitted
with least error sharping filters, thus compressing the signal to the desired pulse
width. Another approach that actually gained a high popularity in automotive radar,
was pursued in [64]. Multi-ranging is imprinted in the transmit pulses. The transmit
signal is composed of several pulses, that are parametrized in bandwidth and ramp
duration and ramp distance in order to include different ranges and implied resolution
constraints. From neighboring range cells the clutter is estimated, thus increasing
the robustness and reliability of multi-range signal processing.

3.3.3 Interference in automotive radar

Interference occurs in several aspects in automotive radar systems and its impact is
significant. Several interfering radar signals that overlap in frequency can cause a
high power level on the receiver circuitry that drives the receiver in its non-linear
operating mode after saturation. This effect cannot be fulfilled by a simple filter. In
addition, interfering signals can result in frequency shifts, which is especially critical
for FMCW radar systems. Because FMCW based radar architectures rely on the
comparable simple signal acquisition, that compares the transmit and receive signal,
which results in the low-frequent beat signal, interference induced frequency shifts
will not be recognized. As shown in [30], two interfering FMCW signals result in
additional spikes in the baseband signal. This leads either to the detection of ghost
targets or actually existent targets are blurred or obscured.

A first source for interference is the RF front-end by itself. Since the transmit and
receive antennas are usually co-located, crosstalk between the antennas needs to be
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considered as a pitfall immanent to the circuit design. In [9] it was suggested to
compensate the crosstalk between transmit and receive antennas through spectrum
analysis. In a scenario without any targets, the spectral components of the beat signal
are evaluated and memorized. These measurements are used as a reference to generate
a threshold profile that is applicable to the range profile during later measurements.
Since the antennas are fixed, once the RF front-end was designed, the calibration
design is feasible, but it cannot prevent any transistors that are part of the receiver
circuitry to be driven into saturation. Naturally, calibration cannot be applied to cros-
stalk from other radar systems in a scenario that is as dynamic as the automotive one.

Consequently, mutual interference between several radar systems remains a critical
aspect in automotive radar systems. As the penetration rate of radar systems on
the streets is still at a manageable level, turning off the radar during a detected
interference remains a feasible practice for now. But it is not a valid longterm
solution, since the number of radar systems and therefore interfering systems on
the roads will continue to increase significantly. Furthermore, highly automated or
autonomous vehicles will become even more dependent on radar sensors as ADAS
functionalities will take over more and more tasks in the future.

The interference topic is discussed in [48] regarding collision detection. Automotive
radar systems featuring a center frequency of 24 GHz are applied in the experiment.
The transmit signals were designed to be PRN sequences. Thus, the mutual in-
terference is lowered significantly, when different PRN sequences are used for each
transmitting system. But also, the interference between systems that use the same
PRN sequences remains low, which proofs the suitability of applying PRN sequences
instead of FMCW signals in the automotive use case. Nevertheless, it might be
difficult to introduce PRN radar signals, while FMCW radar systems are still on the
road. The impact of the PRN sequences on FMCW can be imagined close to the
impact of orthogonal frequency division multiplexing (OFDM) radar systems.

Using only OFDM radar systems, the role of crosstalk could be diminished sig-
nificantly as is understandable by the orthogonal frequency signal design. But
considering the scenario, where OFDM and FMCW are co-existing on the road, the
crosstalk between OFDM radar and FMCW based radar systems becomes an issue
for the latter, as shown in [69]. On the one hand, OFDM increases the noise floor,
which decreases the SNR. With a lower SNR, the minimum receive power needs to
increased to ensure a reliable target detection. Otherwise, low-key targets could get
lost in the overall noise level. On the other hand, OFDM introduces spikes to the
FMCW radar, thus being a throwback regarding the mitigation of interference.

In order to identify interferences in OFDM systems that also result only from other
OFDM radar systems, [69] proposed to sort first the spectral components according to
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their weight and to remove afterwards the strongest components, which are assumed
to be clearly a result from interference. Under the assumption that interferences
hold the dominant spectral components, the suggested method can be projected
to FMCW based radar systems as well. The impact of noise modulated pulses on
FMCW was analyzed in [85], whereas the focus is set on the co-existence between
communication and radar systems.

3.3.4 Summary and research interest

New applications of radar systems in the automotive context require new concepts
and methodologies in order to meet their requirements. These new requirements can
be fulfilled by making use of CS methods, which are applicable after computational
capacities have been increased dramatically in the past decades. This development
not only intesified research on CS, but also research on noise radar systems. So far,
noise radar systems were not in the focus of automotive radar system development.
The author intends to show the potential of noise radar systems, especially for future
applications that come along with the development towards autonomuous systems.
The thesis at hand uses the signal acquisition enhancing methods of CS and applies
them on an accordingly modified noise radar system for future automotive radar
system applications.





4 Compressive Sensing based Noise Radar

In contrast to image perception, which is very close to human perception and therefore
easy to understand and interpret as a human being, radar requires a slightly different
approach. Radar basically reports all reflecting points within the illuminated area.
But a peak amplitude can also result from additive superposition of multi-path
propagation. In addition, a high reflectivity of a comparable small object, clutter
or interference can impede the interpretation of the received backscatter. During
signal processing it is the aim to resolve ambiguities in range, azimuth and Doppler,
if possible. If it is possible or not, is influenced by the design of the transmit signal
itself. In summary, radar captures anything, but it takes some adequate smart signal
processing to extract the information that should be revealed.
As the requirements to detect various information lead to very diverse and some

times even contradictory requirements, radar systems are usually dedicated to
particular applications, e.g. range-Doppler measurement, near-range separation of
objects, clutter detection or weather monitoring. The signal parameters, which
define the radar application, comprise a carrier frequency, which is either defined
by regulations or practical considerations such as desired maximum range and
the according free space attenuation. For the latter, timing aspects such as ramp
duration and pulse intervals are crucial, too. Not only the carrier frequency, but also
bandwidth and antenna configuration play an important role regarding resolution
and separability.
After signal acquisition and initial signal processing, the output still needs to be

interpreted. Mainly here, in the data processing part, it is useful and even necessary,
to dedicate the radar to certain applications. That is to ensure that correct objects
are identified, whereas it is useful to know what typical objects are and what their
typical characteristics are. In automotive applications, there are typical velocities
for cars or pedestrians that differ significantly from common applications that are
often found in the field of airborne systems, for example. Also, in urban scenarios
other dimensions can be expected than in applications that are dedicated to earth
observation.

This diversity is reflected in a huge variety of applications of CS to radar in order
to improve or even enhance its functionality. It is sensible to split a radar system
into several parts in order to describe and address manifold CS applications such
as in Figure 4.1. The three main categories in terms of types of CS application
to a radar system are stated here as RF frontend, low level and high level signal
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Figure 4.1 – Radar function blocks for CS applications

processing. Integrating CS methods addresses different challenges in each of the three
categories. Main challenges in radar applications comprise range and resolution as
well as illumination field. In addition, separability of different objects in azimuth,
range and also elevation direction belongs to the inevitable limitations along with
interference and sampling. The radar RF frontend includes all physical and analog
RF components such as transmit and receive antennas but also their application
and signal generation. This first category is important from the point of view
of CS to generate the required transmit waveforms according to the selected CS
implementation. But also the antenna configuration in the physical as well as the
application sense are important set screws for the implementation of CS methods.
Antenna arrays cover geometrical implementations such as linear, which is the most
common one in automotive radar so far, planar, circular or triangular alignment.
They can be designed as phased arrays with fixed or adjustable phase shifts

between individual antenna arrays. Phase shifts in between antenna arrays allow
to steer the beam of the complete antenna in specified directions. In case of fix
phase shifts the beam steering is performed only once and adjusts the radar to cover
a certain area, either in horizontal or in range direction. The latter is helpful to
reach a particular range, e.g. by narrowing down the beam in order to obtain a
higher gain in the main lobe direction and hence an increased range. The other
way round, a wide opening angle qualifies the radar to resolve objects that are
closer to the radar platform and, depending on the antenna configuration, obtain
the azimuth position of an object. With a wider beam the antenna gain decreases
in main lobe direction and accordingly results in a limitation in range direction
that needs therefore to be taken into account. The antenna platform is interesting
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for CS methods regarding the realization of patterns that can be used as physical
measurement matrices. By switching the activated antennas, the directivity can be
adjusted to illuminate different range and azimuth or even elevation areas. Hence, by
combining different antenna setups, a diversity in range and azimuth direction can
be obtained that enables the application of CS signal acquisition and reconstruction.
Accordingly, especially on the receiver side this can be used to enhance DBF using
CS for obtaining super-resolution in azimuth direction.
Designing phased arrays and implementing DBF belongs to the category of low

level signal processing, which is depicted on the bottom right corner of Figure 4.1
including functional radar blocks. In this category, everything related to signal
acquisition and processing is included. For signal acquisition it is not only possible
to implement direct sampling, but also a cross-correlation receiver instead, which is
using either filter banks or a reference signal such as the transmit signal. The latter
is especially suitable for continuous waveforms, while cross-correlation approaches fit
to pulse-based radar systems. Direct sampling is rarely applied because usually the
required sampling rates are subject to expensive ADCs featuring high sampling rates.
While correlating the receive signal with the transmit signal is a favorable way of
dealing with continuous transmit waveforms, it is not applicable for pulsed waveforms,
which rather work with a correlation receiver. Correlation receivers require a high
amount of filters, specifically at least one filter per range gate. Same applies for
additional dimensions that should be resolved, such as azimuth and velocity dimension.
The required amount of filters is a major drawback for correlation receivers, not
only regarding implementation effort, but also regarding acquisition time. That
is why correlation receivers are rather used for short distances such as tank level
measurements or when it is sufficient to obtain a coarse range estimation. But,
with CS the situation for cross-correlation receivers can be understood as a problem
statement tackling signal reconstruction from incomplete measurements. Hence, CS
can be applied for reducing a full correlation setup to a subspace filter bank and to
reconstruct the originally received signal with an adequate matrix. When considering
direct FFT conversion at the analog stage, also here a subspace of Fourier coefficients
can be applied instead of the full set. CS is then applied to reconstruct the remaining
relevant Fourier coefficients. Acquiring different spectral components can be also
implemented by using non-uniform sampling. Instead of sampling each and every
single value according to the Nyquist frequency such as in direct sampling, samples
in varying time distances are acquired, which is equivalent to the usage of different
sampling frequencies. This approach is especially feasible for continuous signals
that comprise a high bandwidth. The approach of non-uniform sampling allows to
mitigate the requirements regarding high-sampling-rate ADCs, although it does not
avoid it completely. Apart from non-uniform sampling, it is also possible to apply
random measurement sequences on the signal and therefore transform the signal into
another domain.

The signal processing stage comprises the possibility for pulse-Doppler processing,
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which is widely used in radar systems that are applying modulated pulses such
as chirps. Additionally, in this block direction of arrival (DoA) estimators are
implemented that process signals obtained from EBF in order to obtain a spatial
resolution in azimuth direction. DoA estimation can be performed using CS methods
either on single or multiple snapshots. Depending on the realized signal acquisition
concept, in this block the CS signal reconstruction is implemented, which comprises
either 2D- or 3D-FFT computation, CS reconstruction algorithms and other low-level
processing such as constant false alarm rate (CFAR) detectors and peak detection. It
belongs to the third category on the upper right corner of Figure 4.1 and is described
as high level signal processing, because it operates on a higher level of abstraction,
such as target and object clustering, categorizing and tracking. Sometimes, it is also
referred to as data processing in order to point out the increased distance from the
raw radar signal.
Extracted peaks that are recognized as targets are clustered to objects, which

are classified and tracked. In this stage, the context of the radar measurements
becomes crucial to obtain meaningful results. CS is applicable here to support
classical methods and supplement additional information for example from super-
resolution techniques or reduce false alarms by merging the results from classical
signal processing and CS processing methods. As a result from high level signal
processing, adaptive beamforming (ABF) can be adjusted in such a way, that either
the illumination area is cut onto the region, where objects have been recognized and
tracked or CS illumination patterns are realized. Not all processing interfaces within
the radar signal processing chain are equally suitable for CS methods as the trade-off
between additional effort and benefits needs to be kept in mind. Especially in the
cost-sensitive automotive segment, the silicon design should be only modified if a
significant improvement can be expected that finally, in the best case, even lowers
the overall costs.
This chapter is organized as follows. First, a study is presented on how to

apply CS methods to different existing radar architectures. Then, simulation results
are evaluated, before a CS noise radar is chosen for further analysis. The signal
and receiver models are introduced as well as according CS metrics and analysis.
Finally, different approaches are compared against each other with a proof-of-concept
simulation until results from a demonstrator, which is based on a validated emulation,
lead to final conclusions.

4.1 Compressive Sensing for Automotive Radar

From the huge variety of possibilities how to address different issues of radar systems
using CS methods, some approaches were analyzed in more depth by the author of
this thesis. In the following, the analyzed approaches that qualify for automotive
applications are addressed. The criteria used to select approaches to be analyzed,



4.1 Compressive Sensing for Automotive Radar 55

were to increase range or azimuth resolution and to improve the robustness towards
noise and interference. Overall four methods are introduced and described from
mathematical and simulation point of view, whereas one method that qualified best
and looked most promising is discussed and demonstrated in detail.

4.1.1 Pulsed Radar - RMPI and SAR

Pulsed radar systems have the benefit of being robust towards interference. Although
the required Nyquist frequency for sampling can be lowered e.g. by pulse compression,
direct sampling remains an issue. Sampling pulses can be imagined as trying to make
a perfect camera snapshot of an athlete jumping into a pool. Instead of hitting the
camera trigger once and almost certainly missing the perfect time to do so, a video
can project the scenario into a sequence that can be evaluated later on and allows
to find the ideal point in time. That is in principle the concept behind RMPI, that
works for different technologies, first of all camera such as in [11; 76]. The RMPI
makes use of the fact that the signal acquisition in CS consists of projecting the
signal into a different domain.
Therefore, instead of directly sampling a narrow pulse, the pulse is convoluted

with several projection or measurement signals, which corresponds in this case to
spreading the information of the signal, i.e. the peak location, across several dense
signals, i.e. the measurement signals here. Hence the observations, which result from
integrating the signals that are obtained by the projection process, contain partially
the original information in terms of varying energy levels. The crucial part here is
to generate the random measurement sequences in a reproducible way so that on
the one hand the sequences qualify to spread the information sufficiently and on the
other hand the requirements on memory capability does not explode in order to store
the measurement matrices for recovery. In [89], the author proposed to generate the
measurement matrices by hardware, i.e. by using RF effects of microstrip lines.

As such, the measurement matrix qualifies to spread the signal sufficiently on the
one hand and on the other hand, the sequences that are generated depend only on the
input signal, so that it can be re-generated for reconstruction while only saving the
input signal, e.g. a step function. Of course, the RF hardware effort is initially high,
as the bulk is realized here, contradicting the trend towards SDR. Nevertheless, using
RMPI and even implementing it in silicon, although not by using microstrip lines,
was proved to be feasible in [51], where it was used as an analog-to-information (A2I)
converter.

Whereas the principle of using RMPI for pulse acquisition and ToF reconstruction
was discussed by the author in [88], it is here carried on for the acquisition of
radar pulses, that are implemented as chirps. The natural domain for sparsity of a
chirp is the time domain. Therefore the RMPI can be designed close to the camera
implementation in [11], which uses among others the mathematical foundations that
were laid out in [75]. Direct sampling is replaced by several parallel analog RF mixers
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Figure 4.2 – Block diagram of RMPI radar hardware architecture

in the receive path that modulate the received signal with random measurement
signals. As suggested by the author in [88; 89], the pseudo-random measurement
signals can be obtained from either analog or digital generator functions that avoid
the necessity to store the measurement matrix. The schematic block diagram is
depicted in Figure 4.2.

Still operating on RF hardware, the signals projected in parallel by the microstrip
lines, are integrated during the maximum roundtrip time, which also defines the PRI
of the chirp transmission cycle. Given enough initial power of the transmitted pulse,
the PRI defines the maximum target distance for unambiguous range detection. In
practical implementations, attenuation resulting from free space propagation limits
the range, too, especially for pulses. The transmit signal consists of a short linear
chirp that is delayed by τd at the receiver stage. The time shift τd comprises the
propagation of the transmit signal and the velocity induced Doppler shift according
to (4.1).

τd = 2 · (r − vr · t)
c0

(4.1)

Hence, the underlying model of the received signal is stated such as in (4.2).

sr(t) =
{

e jπα·(t−τd−ts/2)2
, if |t− τd − ts/2| 6 ts

0, otherwise
(4.2)

The chirp rate α is the quotient from bandwidth over chirp duration ts. During the
measurement process, random signals are generated and used for convolution with the
received signal. The random signals, that result from a random process with standard
normal distribution, state the measurement and reconstruction matrix A ∈ CM×N .
Accordingly, the resulting observation b is used to state the reconstruction objective
in (4.3).

min ||sr||1 s.t. min ||Asr − b||1 6 ε (4.3)
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Figure 4.3 – Reconstruction accuracy for RMPI receiver over subsampling rate and SNR

For a proof-of-concept simulation, the aim was to demonstrate the theoretical
feasibility of the approach for a reliable reconstruction in the aforementioned pulsed
radar system. A reconstruction result was considered to be successful, if the correct
time bin was obtained, while the absolute value of the peak amplitude was treated
as secondary. The terminology time bin refers to the multiples k, i.e. time steps, of
the sampling time interval ∆t that results from the assumed sampling frequency.
In these experimental simulations that are subject to purely theoretical contem-

plation, a bandwidth of 0.5 GHz was applied with the subsequent range resolution of
rres = 0.3 m. Furthermore, the sampling frequency was set to fs = 1.1 ·B and the
maximum distance in range to 300 m. The chirp duration was set to 10 ns within
the simulation. Results of the simulation show that only 10 % of the measurements
that are needed in Nyquist designs are sufficient for a perfect reconstruction result
in time at an SNR of 3 dB. For reconstruction, an IP algorithm was used for the
BP approach such as described in Appendix 2.4 and a greedy algorithm, namely
an implementation of the OMP according to [99], see Appendix 2.1. In Figure 4.3
the dependency of the reconstruction accuracy is plotted for subsampling rates
M/N = 0.01 to 0.29 and SNRs from 1 dB to 20 dB while using the OMP algorithm.
The plotted measure for reconstruction accuracy is the difference between the `1-norm
of the reconstructed signal and the true receive signal. In practical implementations
with wideband signals, subsampling still can result in a high implementation effort,
given that all correlation stages need to be implemented in parallel RF hardware
channels. Therefore, in order to mitigate hardware complexity, the measurements
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Figure 4.4 – RMPI based radar: time error

should be split to several measurement cycles, e.g. five channels on hardware. This
implementation approach requires well-designed pseudo-random signal generators
to obtain reproducible measurement sequences but also reconstruction signals. Due
to short pulses and especially limited automotive distances, a measurement and
reconstruction cycle is still expected to remain reasonably short with a manageable
run time, if a greedy algorithm is used. As a benchmark, the measurement cycles
of automotive radar sensors available on the market are taken into account, which
normally range between 60 ms and 80 ms.

To understand the impact of the sub-sampling factor and the SNR on reconstruction
accuracy in time, in Figure 4.4 the time bin deviation between the reconstructed
and true receive signal are plotted. Accordingly, the amplitude deviation is plotted
in Figure 4.5. Other than the error in time, which is here a discrete value due to the
correlation filters, the amplitude error is an analog value, as it is not reconstructed
based on correlation filters. Apart from that, the amplitude error shows the same
tendency such as the errors in time bins. That means, that for very low sub-sampling
or high SNR the error becomes larger.
The advantages of using a RMPI receiver and a pulsed radar in automotive

applications are in the low vulnerability towards interference but also the good
performance in low SNR channels allowing to keep the transmit power comparably
low for a pulsed system. Furthermore, the output of the RMPI receiver is the
reconstructed receive signal and not a frequency shift such as in FMCW receivers.
Thus, a deeper understanding of the illuminated scenery is possible, e.g. to identify
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Figure 4.5 – RMPI based radar: amplitude error

clutter characteristics. A slight drawback originates from the importance of the
sparsity. As depicted in Figure 4.6 from the author’s work on time-of-flight (ToF)
measurements using a RMPI implementation, see [88], the reconstruction accuracy
depends on whether the signal sparsity is anticipated in the correct magnitude in
order to take a sufficient amount of M measurements. The results are transferable
to the proposed RMPI radar receiver regqarding reconstruction accuracy for different
sub-sampling rates. Besides measurement signals provided by a standard normal
random process, uniformly distributed ±1 sequences Bernoulli sequences are used
such as depicted in Figure 4.6. Besides the aforementioned Bernoulli sequences, any
other random process is aplicable [76] as well, except for a {0, 1} sequence, because
that would lead to an unintentional reduction in information. After implementing
the measurement process on hardware, repeated measurements allow to adjust to an
increased sparsity. In order to be able to perform a feasible amount of measurements,
tailoring the radar system to its typical applications is crucial.

To some readers the signal model in (4.2) might look familiar since it is a typical
notation for chirps, such as in SAR applications. Indeed, using the above presented
RMPI receiver approach for range as well as the azimuth direction, SAR images could
be reconstructed sufficiently in magnitude, although the phase was lost during range
and azimuth computation. The raw SAR data in Figure 4.8 show how the original
SAR image in Figure 4.7 is reconstructed after using the RMPI approach with OMP
reconstruction on both measurement directions, i.e. range and azimuth. It should
be noted that the parameters used during the SAR and CS based SAR simulation
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Figure 4.6 – Reconstruction dependency in RMPI receiver systems on sparsity-dependent num-
ber of measurements

and reconstruction are obtained from a typical airborne SAR system, which is why
the range and azimuth dimensions are much higher than required in any automotive
applications.
Expectedly, the result shows that artifacts are obtained by a straightforward

measurement reduction for RMPI and CS based SAR signal acquisition. In order
to analyze the effect of these artifacts on the SAR image, the RMPI was used
separately for range and azimuth signal acquisition, whereas practical implications
were neglected. The comparison between the reconstruction results in Figure 4.9
leads to the initial conclusion, that the performance in SAR image reconstruction is
more suitable for azimuth direction than range direction, although the location of
the maximum peak could be reconstructed in all cases. Only the phase cannot be
reconstructed in all implementations. For SAR the RMPI with CS reconstruction is
rather promising for increasing the resolution in azimuth direction, that is physically
limited by the synthetic aperture as compared with basically drop range measurements
as thus is reducing the SNR, which is a crucial factor in radar measurements. Typical
SAR applications suffer more from reducing measurements in range direction than
CS could level out, when applied such as proposed. But in azimuth direction, it
seems to be a promising approach for super-resolution.

4.1.2 Phased Array

Radar antennas are designed with different specifications regarding detection and
spatial diversity, which depend on the target specification. Gain and spatial illumina-
tion can be adjusted on hardware by connecting single antenna elements to antenna
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Figure 4.7 – Original raw SAR data

arrays. To obtain a linear array, the elements are connected in series and aligned
linearly sharing one common antenna feed. Connecting several antenna elements or
arrays increases the overall antenna gain in main lobe direction, while the beamwidth
of the main lobe is reduced. Besides defining the main lobe, it also shapes the
side lobes of the antenna aperture. Spatial diversity is obtained by placing several
antennas with individual feeds on at least one side, either the transmission or the
receiver side. On the transmitter side, this allows to control signal transmission for
each antenna, while on the receiver side individual receive signals can be acquired
for each receive antenna. By sampling all receive antennas individually, different
spatial propagation channels can be observed within the receive signals. To sum up,
operating radar systems with several connected antennas increases the maximum
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Figure 4.8 – Reconstructed raw SAR data

range a radar system can illuminate from physical point of view, while deploying
several individual antennas enables to benefit from spatial diversity. The benefits
can either consist of an increased chance to observe non-distorted backscatter or of
resolving spatial information. Accordingly, alternating these operation modes makes
it even possible to overlay receive signals obtained from these measurements and
accordingly enhance the radar performance.

For the amplitude of the receive signal not only the LOS and eventually non-line-
of-sight (NLOS) propagation path are pivotal, but also the angle-of-arrival (AoA) at
each antenna. Combining the aperture of the individual antenna elements results
in the overall antenna directivity and hence angle-dependent antenna sensitivity.
Essential for the overall aperture are the number of single antenna elements as well



4.1 Compressive Sensing for Automotive Radar 63

(a) original range (b) reconstructed range

(c) original azimuth (d) reconstructed azimuth

Figure 4.9 – SAR images for Figure 4.9 a original and Figure 4.9 b reconstructed range and
Figure 4.9 c and Figure 4.9 d azimuth processing
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as the distance in between the elements. For a spacing greater than λ/2 between two
neighbor elements, grating lobes, also known as side lobes, appear in the resulting
antenna pattern. Grating lobes reduce the antenna gain in the main lobe direction,
which is in many non-urban ADAS functions the main direction of interest. Hence,
antenna arrays for non-urban long range applications should be designed in such a
way, that grating lobes are avoided, where possible. Contrasting to this approach,
spatial diversity, which is also obtained from grating lobes, can be used as additional
information for separating objects in azimuth direction, making grating lobes actually
useful.
Phased array antennas are arranged in such a way that the antenna signals are

phase-shifted to each other. In order to understand how antenna arrays can be
used for CS techniques, some fundamental equations are recalled in the following.
The equations below not only describe phased arrays, but are also fundamental
for CS equations. In an antenna array comprising N antennas, the i-th receive
signal is the result of the superposition of the signals that arrive at each antenna.
Neglecting for now the superposition of the wavefronts in LOS as well as NLOS
propagation paths, the geometry of the individual antennas within the array induce
phase shifts in azimuth and elevation direction, thus resulting from the AoA ϕ in
azimuth and ϑ in elevation direction. In general cases, where the placement of the
antenna elements either cannot be chosen arbitrarily or in systems with a higher
complexity, introducing the wave vector k = (kx, ky, kz) such as in [72], is helpful for
simplifying the characteristic equations. Hence, the wave vector is stated in (4.4),
while {x, y, z} remain the axes in a Cartesian coordinate system.

kx = 2π
λ
· sin(ϑ) cos(ϕ) (4.4)

ky = 2π
λ
· sin(ϑ) sin(ϕ) (4.5)

kz = 2π
λ
· cos(ϑ) (4.6)

The resulting receive characteristic at each individual element equals the sum of the
phase shifts as stated in 4.7 [72].

yi = e−jkxxie−jkyyie−jkzzi (4.7)
For a linear aligned phased array that is arranged in a Cartesian system in such a
way that (x, y) = 0, (4.7) can be simplified to (4.8).

yi = e−jkzzi (4.8)
If the antenna signals are not considered individually, the total received signal is
computed as the sum over all N antenna array elements (4.9).

y =
N∑
i=1

e−jkzzi (4.9)



4.1 Compressive Sensing for Automotive Radar 65

x

y

z

ϑ

φ

Figure 4.10 – Linear phased array antenna with three elements in Cartesian coordinates

Assuming a spacing of λ/2, which uncorrelates the antenna beams in the sense, that
individual main lobes will exist, and centering the odd number of antenna elements
around zero, (4.9) can be stated in an even more handy way such as in (4.10).

y =
bN/2c∑

m=bN/2c

e−jmπ cos(ϑ). (4.10)

In Figure 4.10 the placement of three antenna elements is sketched in an Cartesian
coordinate system, whereas the elements are arranged corresponding to (4.10). The
single antenna elements are indicated as lines that cross the x-axis, which goes along
with the previously stated assumption, that the elements of the linear array show no
displacement in y- or z-direction. The dotted lines indicate two separate incident
rays, whereas one ray illustrates the incident angle ϕ in azimuth direction and the
other one the incident angle ϑ in elevation direction.
After manufacturing the antenna frontend, the spacing between the antenna

elements is a fixed physical constraint that cannot be adjusted, although the depen-
dency from λ/2, or multiples of it, suggests this necessity for signals with a broader
spectrum. Antennas are therefore often designed for the center frequency of the
target application and the slightly different antenna patterns that result from the
application of deviating frequencies are accepted. For the matter of illustrating the
impact that can be expected for automotive antennas, in an example the spacing
is designed initially for the wavelength at the carrier frequency fc equal to 78 GHz.
The according λ/2-spacing between two antennas is therefore 1.9 mm. The blue
line in Figure 4.11 depicts the resulting antenna pattern for the carrier frequency of
78 GHz and the aforementioned spacing of λ/2. If the carrier frequency is increased
to 79 GHz while keeping the previous spacing, the aperture equals the green line in
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Figure 4.11 – Effect on antenna pattern for different carrier frequencies at a fixed antenna
spacing according to λ/2, fc = 78 GHz

Figure 4.11. Besides, the carrier frequency is decreased to 76 GHz, which results in
the magenta line.
In summary, the simulation results show, that although the amplitude of the

antenna aperture does not change in main beam direction, the side-lobes including
the directional nulls get shifted by tuning the frequency while the physical spacing
remains fixed. For broadband applications, where the deviations cannot be neglected,
the signal processing stage can be calibrated to the frequency dependent changes in
antenna aperture. As the effect is reproducible and computable from mathematical
models, the aperture change therefore can be factored in for such applications that
incorporate DoA estimation, where the side-lobe and directional null shifts play a
role.

For a more general setting, namely a main beam direction other than 90 deg, the
array factor (AF) is introduced according to [52], where the AF is again described
depending on the incident angles ϑ, ϕ.

AF(ϑ, ϕ) =
N−1∑
i=0

ai · e jϕie kri·r̂ (4.11)

The excitation ai · e jϕi depends on the direction of the main beam, which can be
changed with an individual signal phase shift at each antenna element i.

ϕi = i · β (4.12)
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The vector ri = [xi, yi, zi] gives the coordinates according to (4.13).

r̂ = x̂ · sinϑ cosϕ+ ŷ · sinϑ sinϕ+ ẑ · cosϑ. (4.13)

Given a distance d between two antenna elements in a linear array the position of
the ith element is ri = i · d. For a0 = a1 = . . . aN−1 the AF is rewritten as

AF(ϑ, ϕ) = a ·
N−1∑
i=0

e jiβe jkid cosϑ (4.14)

= a ·
N−1∑
i=0

e ji(kd cosϑ+β) (4.15)

= a ·
N−1∑
i=0

e jiψ(ϑ). (4.16)

As a result, the main beam location is controlled with ψ(ϑ) in (4.17), whereas the
wave number corresponds to k = 2π

λ
.

ψ(ϑ) = k · d · cosϑ+ β (4.17)

Accordingly, the central equation to change the main beam direction in a phased
array is

β = −2π
λ
· cos (ϑmax) . (4.18)

The normalized AF can be simplified via
∑N−1

i=0 e i = cN−1
c−1 to the fraction

AF(ϑ, ϕ) = sin (N · ψ/2)
N · sin (ψ/2) (4.19)

Regarding algorithm implementation, the normalized version of the AF in 4.19
is beneficial to runtime, since a for-loop can be avoided. But it should be noted,
that (4.19) becomes undefined for the main lobe direction, since the denominator
becomes zero at this position. Therefore, additional routines are necessary, eventually
eliminating the advantage of the loop-avoiding implementation.
Phased arrays enhance radar perception in multiple ways, such as increasing the

gain in main lobe direction or shaping the beam. In addition, changing the main
lobe direction electronically, allows a highly flexible aperture pattern generation that
can be again used for CS approaches that qualify to increase spatial resolution.

Although other waveforms qualify as well, the same transmit signal that was used
for the RMPI approach is assumed, which is a modulated chirp of chirp duration ts
and the bandwidth B at the carrier frequency fc.

st(t) = e j2πfct · e jπα·(t−
1
2 ts)

2

· rect
(
t− ts

2 , ts
)

(4.20)
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The received signal experiences a time shift depending on the distance of the target
and a Doppler shift according to the relative speed between the platform and the
target, analogous to the previous RMPI approach. Hence, the receive signal sr(t)
incorporates the time shift τd, that comprises both effects.

sr(t) = e j2πfct · e jπα·(t−τd−
1
2 ts)

2

· rect
(
t− τd −

ts
2 , ts

)
(4.21)

The aperture pattern for each main lobe direction ϑi is denoted with the steering
vector a(ϑi) according to (4.22).

a(ϑi) =
[
1 e j2π

d0
λ

sinϑi . . . e j2π(M−1) d0
λ

sinϑi
]T

(4.22)

The resulting steering matrix for K main lobe directions corresponds to A(ϑ) =
[a(ϑ0)a(ϑ1) . . . a(ϑK−1)]. In the context of CS, the steering matrix and hence the
known sensor positions can be understood as an overcomplete dictionary for spatial
CS such as suggested in [68]. The observation that results from the model in (4.23)
is then used for stating the CS optimization problem and solving for superresolution,
i.e. synthetically increasing the number of main lobe directions.

y(t) = A(Θ)sr(t) (4.23)

The signal acquisition is performed using a correlation receiver, whereas each
implemented main lobe direction is processed individually as sketched in the block
schematic principle in Figure 4.12. As could be expected from the overcomplete
dictionary that is stated by the sensor positions, the reconstruction performance of
the CS algorithm is of very good quality. The quality in superresolution for spatial
separability in automotive use cases needs further analysis and evaluation, especially
while incorporating automotive specific constraints that mainly originate in hardware
development costs within a cost-sensitive market.
Due to the equivalently chosen signal model, additionally the signal processing

in range direction can be performed using the RMPI approach, thus easing the
signal acquisition issue. That means, that the reference signal denoted as Srref in
Figure 4.12 either can be a filter bank according to a correlation receiver or a random
measurement sequence. For individual main beam directions, the aperture matrix
Ap ∈ CM×N reflects M spatial sampling points and N samples taken in the range
directions.

yap(ϑi, t) = Ap(ϑi) · sr(t) (4.24)

Consequently, (4.24) is the CS problem statement, which shows the same recon-
struction behavior as the RMPI.
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Figure 4.12 – Principle of CS based signal acquisition of a linear antenna array

4.2 CS Noise Radar

After introducing the RMPI based signal acquisition concept for a pulsed radar and
showing possibilities that phased arrays offer for an improved radar perception, this
section describes the author’s proposal for applying CS to automotive radar, by
implementing a CS based noise radar. The concept uses noise modulated pulses
that are acquired with a modified correlation receiver, deploying only a reduced
number of filter banks. Reducing the number of filter banks is critical in order to
reduce the computation run time for online application, since in automotive scenarios
obstacles need to be recognized fast enough to initiate reaction maneuvers. The
reduced number of correlations and therefore range gates does not imply a limitation
in range or a decrease in range resolution, since the signal acquisition is performed
by applying CS methods.

The CS approach on noise radar will be discussed in more detail as it offers a high
potential for solving the problem of robust radar systems in environments with a
high sensor density while obtaining a comparable high resolution and keeping the
sampling effort low. In contrast to the RMPI approach, no substantial hardware
changes are required. Nevertheless, an access to additional interfaces of FMCW radar
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chips is required, which is indeed a drawback from the effort and cost perspective,
but an effort that still remains at a low scale. The concept and its benefits regarding
interference has been explained in [86] and the theory behind the suggested concept
is elaborated in this section.
The main idea behind using noise modulated pulses for radar is to benefit from

the advantages of pulse shaped radar on the one hand and mitigate its disadvantages
on the other hand. Disadvantages of pulses lie in their range limitation due to free
space propagation but also high side lobes in the frequency domain, that result from
rectangular waveforms. Therefore, despite of the high robustness against interference
that pulsed radar systems show, the possibility for reasonable applications remains
in very short ranges such as tank level measurements in industrial plants. Using
noise modulated pulses instead, levels not only the required transmit power, but also
attenuates the side lobes in the frequency domain.

Additionally, noise modulation comes with a comparable low effort because either
thermal noise can be amplified or delay lines that introduce RF effects such as
suggested by the author in [89] can be used. Noise modulation also improves the
robustness towards interference by adding a fingerprint to each pulse, which is
comparable to coding techniques. However, noise modulation does not necessarily
cause the same pulse spreading in time such as coding, which increases the time
until a scene is captured and hence might cause critical delays for obstacle detection.
Due to replacing direct sampling by CS observations, the sampling rate equals the
pulse repetition interval avoiding the otherwise necessary high Nyquist frequency.
Depending on the object sparsity of the surrounding environment, the number of
correlation based measurements can be reduced by 60 % to 70 % as shown in the
following section, where a proof of concept is given in a simulation. In summary, CS
processed noise radar enables the implementation of a robust pulsed radar system,
while ensuring that each pulse can be recognized by its fingerprint and still mitigating
additional effort in signal acquisition and run time of the correlation receiver.
The concept behind the noise radar goes back to fundamental principles of infor-

mation theory. The following paragraph is a short deep dive into information theory
fundamentals, which recalls fundamental equations from [40] that are essential to
understand why CS works in the suggested signal acquisition concept. According to
Shannon, information is transmitted by signal energy. The signal energy therefore
correlates to the entropy of a signal. Given a signal s(t) that contains a symbol
that should be transmitted, the energy of the symbol is computed by integrating the
squared signal function over time according to (4.25).

Esymbol =
∫ T

0
s2(t)dt (4.25)

In a correlation receiver, which is the principle behind a matched filter (MF) receiver
design, the product of the received signal sr(t) and the expected signal se(t) is used
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to calculate the energy within an intervall corresponding to (4.25).

Esymbol =
∫ T

0
sr(t) · se(t)dt (4.26)

In a general MF system description, the output y(t) corresponds to the convolution
of the input signal x(t) and the system’s unit impulse response h(t).

y(t) = x(t) ∗ h(t) (4.27)

=
∫ ∞
−∞

x(t) · h(t− τ)dτ (4.28)

Accordingly, a MF design specifies the expected signal se(t) in (4.25) to be the
mirrored unit impulse response h(t− τ) in (4.27) delayed by the time τ . Apart from
the time shift τ , the unit impulse response equals the input signal, which is why it is
also referred to as search or correlation filter. Usually, the number of correlation lines
at the receiver stage corresponds to the number of possible symbols and accordingly
covers the full symbol space. In terms of a MF design, a symbol is defined by the time
shift τn resulting in a required number of correlation filters that equals the number
of range gates according to range resolution and maximum range. For unique and
unambiguous correlation results, qualified correlators need to be orthogonal to each
other, meaning that (4.29) needs to be fulfilled, which is at same time a requirement
on CS compliant measurement and reconstruction matrices.∫ T

0
s1(t) · s2(t)dt

!= 0 (4.29)

To avoid inter-symbol interference (ISI), subsequent symbols, i.e. signal copies shifted
by the time delays τ1 and τ2, representing two subsequent range gates, must fulfill
(4.30). ∫ T

0
s1(t− τ1) · s1(t− τ2)dt

!= 0 (4.30)

Using noise modulation, (4.29) is fulfilled for subsequent noise pulses, if the noise is
the result of a random uncorrelated process. Assuming in addition (4.30) for the CS
measurement matrix design, i.e. the correlation receivers, the resulting matrix meets
the requirements on coherence.
The signal acquisition process suggested in [15] relies on noise modulated pulses

that are not only applied to the transmit antennas, but also to the receiver such as in
FMCW receivers. But in contrast to FMCW receivers, the transmit signal is applied
to several delay lines, thus implementing the measurement or reference signals of
the correlation receiver. The resulting time-shifted copies of the transmit signal
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Figure 4.13 – In contrast to CCF receivers, the correlation output is integrated over maximum
pulse roundtrip time.

that are used for correlation in the receiver, represent distortion free receive signals
corresponding to several randomly chosen round-trip times of signal propagation.
Figure 4.13 depicts the block schematic of such a receiver, whereas the measurement
signals are denoted with the matrix A. Basically, it is sufficient to determine the
existence and range of a reflecting target from the energy that is obtained in each
time bin, i.e. range gate, such as in [79]. Beyond short ranges, this method results
in a cumbersome procedure for major distances, if it is aimed to preserve the range
resolution. Therefore, the energy obtained from each time bin is interpreted as an
observation instead, that is used to reconstruct the remaining energy levels by stating
an underdetermined system of equations using the measurement matrix A and the
observations at each range gate.
Assuming N required range gates according to regular correlation receivers, a

subset of M range gates, i.e. time shifts ∆tm are realized. Subsampling ratios are
therefore expressed with the quotient M

N
.

4.2.1 Signal Model

For the noise radar concept, two different noise processes are considered by the
author, whereas one reflects an idealized band-limited white noise signal for analysis
purposes and the second one reflects colored noise, that contains weighted spectral
components within a specified bandwidth. Unless stated otherwise, the waveforms
and the analysis are described in the frequency domain. In (4.31) the band-limited
white noise transmit pulse such as applied in [86] is stated. It serves mainly for study
and analysis purposes of the concept, but in itself it is rather an idealized signal
model than an implementable waveform.

Xwn,nn(f) =
{
N0
2 , if− B

2 ≤ f ≤ B
2

0, otherwise
(4.31)
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The factor corresponds to the thermal noise N0 = kTaB with the Boltzmann constant
k, ambient temperature Ta and bandwidth B. Normalizing (4.31) to one and using
the rectangular function for a closed signal statement, the signal turns into (4.32).

Xwn(f) = rect
(
f

2B

)
(4.32)

In time domain this pulse form corresponds to the sinc-function (4.33).

xwn(t) = 2B sin(2πBt)
2πBt

= 2B sinc (2πBt)
(4.33)

The second noise waveform, i.e. the colored noise, is derived from the rectangular
shape in frequency and features randomly weighted spectral components within the
bandwidth B.

Xrn(f) = W (f) · rect
(
f

2B

)
(4.34)

The weighting function W (f) diversifies the contributions of individual spectral
components within the specified bandwidth. It takes a random process to generate
the weighting coefficients in such a way that the spectral components sum up to
a unique fingerprint for each transmit pulse. As such the weighting function is
generated by a random process that corresponds to a standard normal distribution,
i.e. variance σ = 1 and mean µ = 0, which is described by the probability function
in (4.35).

p(W (f)) = 1
√

2π e− 1
2W (f)2 (4.35)

The waveforms are depicted in time and frequency domain in Figure 4.14.
The channel model features the time delay τl resulting from the two-way propaga-

tion between the radar sensor location and each of the L reflecting targets in the
scene. While the sensor platform is moving with the velocity ve, most targets are
dynamic moving with a velocity vl > 0, which results in relative velocities vr = ve−vl.
The overall time shift τs,l after two-way signal propagation through the channel to
and from the targets, is accordingly composed not only of the time shift τl but also
of the Doppler time shift τD,l.

τs,l = τl + τD,l

= 2rl
c0

+ −2vrt
c0

= 2 (rl − vrt)
c0

(4.36)
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(a) Bandlimited white noise waveform
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(b) Bandlimited random noise waveform

Figure 4.14 – Transmit waveforms in time and frequency domain with Figure 4.14 a white noise
and Figure 4.14 b random noise.

Incorporating the target related channel attenuation al, the receive signal becomes
the sum in (4.37).

Sr,p =
L−1∑
l=0

al · St(f) · e−j2πfcτs,l (4.37)

During the signal acquisition, the channel is assumed to be stationary, so that all
parameters are constant during one sweep. Transmitting several pulses P with time
spacing τp increases the SNR in the receive path on the one hand, on the other hand
it increases the Doppler resolution.

Sr =
P−1∑
p=0

Sr,p · e−j2πfτp

=
P−1∑
p=0

L−1∑
l=0

al · St(f) · e−j2πfτs,l · e−j2πfτp

=
P−1∑
p=0

L−1∑
l=0

al · St(f) · e−j2πf(τs,l+τp)

(4.38)

The transmit signal St(f) in (4.37) and (4.38) corresponds to the waveforms stated
in (4.32) and (4.34).
According to the general radar range equation based on Frii’s formula, the radar

range equation for two-way propagation is defined in (4.39) for a radar systems using
noise waveforms [44].

PR = PTGTGRS0λ
2

(4π)3 LR4
(4.39)
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To determine the minimum detectable receive signal power PR,min not only the
unwanted noise power PN in (2.7) needs to be considered as continuous wave radar
systems. There, a definition depending on the expected SNR is feasible. Instead, the
detectability factor D comes into play in (4.40), which is specific to pulsed waveforms
and replaces the alternative formulation via the SNR.

PR,min > PN ·D (4.40)

To compute the detectability factor D for the medium pulse integration time ti in
(4.41), a threshold D0 is chosen according to the probability of detection and the
probability of false alarm, i.e. false alarm rate (FAR).

D = D0

tiB
(4.41)

The medium integration time [44] is restricted by the time-bandwidth product (4.42),
where the propagation time and the maximum velocity vmax frame constraints on
parameter selection.

ti ·B 6
c0

2vmax
(4.42)

According to [17], the velocity resolution of a noise modulated pulse radar tends to be
rather poor, which can be only met by allowing a sufficiently long pulse integration
time.

After designing the pulse shape, the transmit waveform still has to reflect a realistic
impulse response by limiting the impulse response in time with a window function,
e.g. a rectangular, Hamming or Hann window. As the signal is processed and
analyzed in the frequency domain, the window function in the time domain is not
elaborated here. The inherent limitation of the frequency band that can be adapted
to real environment and hardware constraints, contributes a distortion free channel.

4.2.2 Signal acquisition and reconstruction

In the following paragraphs the signal acquisition using a modified, i.e. reduced
correlation receiver followed by CS signal reconstruction is presented along with the
underlying signal theory. Depending on the analysis aim, it is beneficial to either
work with a signal and processing model in the time domain or in the frequency
domain. The duality of Fourier transformation specifies how to switch easily between
time and Fourier domain, if necessary. According to the frequency shift property
stated in (1) a frequency shift results in an according envelope in the time domain.

e jω0tx(t) dX(ω − ω0) (4.43)
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Vice versa, the time shift property in (2) states that a time shift corresponds to a
frequency shift in the Fourier domain.

x(t− t0) de−jωt0X(ω) (4.44)

Sampling and therefore discretization in the time domain reflects a convolution of the
signal to be sampled with a chain of Dirac pulses spaced with the usually equidistant
interval kT (4.45).

f(t− kT ) = f(t) ∗ δ(t− kT ) (4.45)

Non-uniform sampling varies the spacing between sequential Dirac pulses and hence
realizes different sampling frequencies. The Fourier transformation of a discrete
Dirac pulse chain in (4.46) shows the interdependency between sampling rate and
sampling frequency with k

T
being the correspondent frequency steps to the time

sampling intervals kT .
∞∑

k=−∞

δ(t− kT ) d1
T

∞∑
k=−∞

δ

(
f − k

T

)
(4.46)

The foundation of a correlation receiver lies in designing a filter that maximizes the
output of the filter stage at the receiver side. With a signal s(t) of finite energy E
and the impulse response h(t) corresponding to a transfer function H(f) of a filter,
the output of the filter stage equals y(τ) according to (4.47).

y(τ) =
∫ ∞
−∞

s(τ − t)h(t) d t (4.47)

The energy is computed by integrating the square of the absolute value of an energy
signal, resulting in (4.48). ∫ ∞

−∞
|h(t)|2 d t = E∫ ∞

−∞
|s(t)|2 d t = E

(4.48)

The Cauchy-Schwarz inequalty (4.49) states as a consequence from (4.48), that
the energy at the output of the filter stage cannot exceed the energy of the individual
signals or impulse responses.∫ ∞

−∞
s(τ − t)h(t) d t 6

√∫ ∞
−∞
|s(τ − t)|2 d t

√∫ ∞
−∞
|h(t)|2 d t 6 E (4.49)



4.2 CS Noise Radar 77

The impulse response h(t) can be expressed with its eigenvalues λ, whereas λ > 0.

h(t) = λs(τ − t) (4.50)

In order to maximize the energy at the filter stage output in (4.47), the eigenvalues
are set λ = 1 and therefore the optimal impulse response becomes h(t) = s(τ − t).

max(y(τ)) =
∫ ∞
−∞
|s(τ − t)|2 d t = E (4.51)

A correlation receiver therefore contains a set of time shifted copies of an expected
signal to determine which time shift results in the maximum energy and therefore
obtain the actual time shift. In applications where transmitter and receiver systems
are synchronized e.g. with pilots that are known at both ends, the correct time shift
t = τ is determined. Accordingly, h(t) is matched to the propagation channel and is
therefore called the MF for (4.51). This approach is widely used in communication
systems using methods such as OFDM. In case of moving targets, the correlation
receiver incorporates not only the range propagation time shift but also the velocity
difference between transmitter and moving target. Correlation processing of moving
targets in general, but also for noise modulated pulses [44], includes according to the
time and frequency shift properties in (2) and (1) the propagation component as a
time shift and the Doppler shift component as power to the e-function resulting in
the complex envelope of the receive signal in (4.52).

xr(t) = αxt

(
t− 2r

c

)
e j2π

(
− 2vlfc

c

)
t

= αxt (t− τr,l) e−j2πfcτD,l
(4.52)

With the additional Doppler direction, a non-matched filter with an integration
interval T features additionally the windowing function w(t) providing the range-
Doppler ambiguity function y(r, v) according to (4.53).

y(r, v) =
∫ T

t=0
w(t)xr(t)x∗t

(
t− 2r

c

)
e j2π

(
− 2vlfc

c

)
tt. (4.53)

The matched filter is designed to have the same Doppler integration time as the
receive signal and therefore does not have an additional windowing function (4.54).

y(r, v) =
∫ T

t=0
xr(t)x∗t

(
t− 2r

c

)
e j2π

(
− 2vlfc

c

)
tt. (4.54)

Given an ergodic random process x(t), the ACF Rxx(τ) states the inverse Fourier
transform of the power spectral density function Sx(f) [15]. From the information
theoretical point of view, reflected radar signals are stochastic signals as they carry



78 4 Compressive Sensing based Noise Radar

information about environment and target scenarios that are not known a-priori and
cannot be determined in advance from previous signals. In practice, this assumption
seems to be only partially true, because object tracking is indeed applied on a higher
system level to accelerate radar perception. During one test drive the environment
and target scenario will most of the time not change spontaneously, in the sense that
a car moving in front will not suddenly disappear. On the other hand, it is always
possible that new objects appear out of the blue. Additionally, it is not possible to
determine the target scenario in a street from previous records, because the target
scenario will always be different apart from static objects such as buildings. But still,
a target scenario does not depend from previous scenarios. Technically speaking, the
target scenario system block does not have a memory, that would allow to determine
future targets from previous perceptions. Therefore, even tracking does not prevent
the reflected radar signal from being a stochastic process.

Rxx(τ)⇔ Sx(f) (4.55)

The peak of the ACF at τ = 0 corresponds to the average power Pave(t) of the
ergodic random process x(t). In order to determine the time shift that matches the
one obtained in the receive signal best, either the peak of the individual correlation
functions can be compared or the energy by integrating the correlation function.

Pave(t) = Rxx(τ) (4.56)

The correlation process, which corresponds to a convolution in the time domain,
equals the multiplication of the signal with its conjugate complex and hence the
square of its absolute value for τ = 0 according to the Wiener-Khinchine theorem
[40] stated in (4.57).

u(t) ∗ u∗(t) dU(f) · U∗(f) = |U(f)|2 (4.57)

Using the Wiener-Khinchine theorem as well as the time and frequency shift property,
the reference signals sref (t), i.e. the correlation filter bank, are stated in a reference
matrix using the frequency representation. Since these signals, other than the
transmitted signal do not experience the channel characteristics, it differs from
the original transmit signal only regarding the time shift and is not affected by
other channel characteristics such as noise or attenuation. Hence, the matrix of
reference functions St,ref (f,∆t) corresponds in the compressive sensing context to a
measurement matrix, that is denoted as the measurement matrix Φ in the general
compressive sensing formulation.

St,ref =


e j2πf0∆t0 e j2πf1∆t0 · · · e j2πfN−1∆t0

e j2πf0∆t1 e j2πf1∆t1 · · · e j2πfN−1∆t1

... ... . . . ...
e j2πf0∆tM−1 e j2πf1∆tM−1 . . . e j2πfN−1∆tM−1

 · diag (St,f(0)...f(N−1)
)

(4.58)



4.2 CS Noise Radar 79

The expression diag
(
St,f(0)...f(N−1)

)
denotes the diagonal matrix with the vector

elements of St(f). Using the measurement matrix St,ref , the scalar products in Rxy

of the reference signals and the actual received signal are computed.

Rxy = SHt,ref · Sr (4.59)

So far, the signal acquisition does not differ from other correlation receivers. Depen-
ding on the range that should be covered by a radar and the aimed range resolution,
a complete correlation bank requires too much effort and computational runtime
at the receiver side to be applied in on-line automotive applications that require
fast reaction times. Therefore, instead of processing all N correlations, the signal
acquisition is performed using a random subset of M different reference signals,
i.e. time shifts, stating a reduced compressive sensing measurement matrix. The
M observations from (4.59) are used to reconstruct the original receive signal and
time shift information using an implementation of the OMP algorithm. From this
point the procedure resembles therefore the RMPI approach with the minimization
objective in (4.60), while exploiting the spatial sparsity of the target scenario.

min ||Ŝr||`1 s.t. ||Rxy − SHt,ref · Ŝr||`2 6 ε (4.60)

The feasibility of the measurement matrix is analyzed in the following section, while
the number of sufficient measurements M are determined experimentally.

4.2.3 Compressive Sensing Analysis

To check the feasibility of the measurement matrix, three different metrics are used
for analysis. The worst-case coherence is a measure for the coherence of the columns
of a matrix A [21]. The lower the mutual coherence of the measurement matrix,
the higher is the probability of successful compressive sensing reconstructions. It
is computed by finding the highest scalar product in between the columns of the
matrix A and marks the highest correlation that occurs in between the columns.
The norming factor is the product of the Euklidean norms of the vectors that are
used for scalar product computation.

µA = max
i6i 6=j6N

|〈ai, aj〉|
‖ai‖2‖aj‖2

(4.61)

The coherence between the rows of the matrix are computed with the spectral norm
of A [6], which is the same as the maximum singular value of A or the Euclidean
norm.

‖A‖2 =
√
λmax (ATA) (4.62)

For stating the point-spread function (PSF) of the projection matrix, it is decomposed
to an undersampled transformation operator Fu and the {i, j}-th vectors e of a natural



80 4 Compressive Sensing based Noise Radar

basis, which is derived and explained with the example of an undersampled Fourier
transformation operator in [58].

PSF(i, j) = e∗j · F ∗uFu · ei (4.63)

In the case where the natural basis equals the identity matrix such as here, where the
measurement matrix equals the correlation matrix, the PSF of A equals the Gram
matrix [82] thus corresponding to the ACF matrix of the noise radar correlation
receiver.

G = ATA (4.64)

In the absence of mutual correlation between the matrix elements, the energy is
distributed only on the main diagonal, resulting in PSF(i, j)|i 6=j = 0. This ideal
case cannot be obtained in an undersampled setting, since the subsampling results
in non-idealities within the matrix elements. As a consequence, the PSF obtains
sidelobes, such that PSF(i, j)|i 6=j 6= 0. But also in the full set of correlators, mutual
intereference within the elements occur while being applied and processed by the
same hardware. Based on the PSF, another metric that reflects these non-idealities
is derived to measure the level of incoherence, i.e. the maximum sidelobe-to-peak-
ratio (SPR). According to (4.65), the SPR is the ratio of the maximum PSF obtained
for any sidelobe to the main lobe PSF such as used among others by [58].

max
i 6=j

∣∣∣∣PSF(i, j)
PSF(i, i)

∣∣∣∣ (4.65)

In a real system, where the ideal case of completely disappearing sidelobe elements
cannot be obtained, the matrix A is considered as a feasible matrix, if the diagonal
elements have much higher values than the off-diagonal elements. A high SPR
indicates a low correlation between the rows and columns exist as only auto-correlation
leads to significant levels in the Gram matrix. Although an optimal matrix is
expected to have true random characteristic in oder to increase the probability of
beeing mutually uncorrelated, other and especially also cyclic matrices can be feasible
as well. The latter is of particular interest, since real systems introduce always some
cyclic dependencies by their digital or analog filter characteristic, which is often
even unintendend. In the following, several matrices are compared to each other
according to the mutual coherence and the spectral norm, while the frequency band is
assumed to be limited with an ideal bandpass filter to the specified bandwidth B. In
practical aspects it is not only hard to create this type of waveform, but it also comes
along with high sidelobes in correlation processing. Therefore, another beneficial
aspect of using noise waveforms is that the correlation induced high sidelobes are
reduced and subsequently lead to an improve of the reconstruction performance.
The comparison of the Gram matrices in Figure 4.15 contains an unstructured
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(a) orthogonalized random (b) orthogonalized sorted (c) orthogonalized random

(d) non-orth. random (e) non-orth. sorted (f) non-orth. random

Figure 4.15 – Gram matrices referring to the frequency domain for a Figure 4.15 a, Fi-
gure 4.15 b, Figure 4.15 d, Figure 4.15 e: subset of time shifts, Figure 4.15 c, Figure 4.15 f: matrix
entries. All matrices were designed with N columns and M = 0.1 ·N rows.

random matrix generated according to standard normal distribution in Figures 4.15 c
and 4.15 f. The other matrices are two variations of the reduced correlation matrices.
While both matrices contain a subset of the complete correlation set Sref ∈ CN×N , the
reference selection operator R in one case arranges the extracted subset correlation
matrix A = R · Sref in a sorted way, while in the other case the individual signal
selections are arranged randomly in the resulting subset A ∈ CM×N . The difference
in between the upper and lower lines of matrices in Figure 4.15 is that the upper
line corresponds to non-orthogonalized matrices, which reflects a realistic hardware
based matrix generation. The bottom line is the idealized case of orthogonalized
measurement matrices.

While all matrices show a clear diagonal, the sidelobe patterns differ. Comparing
Figures 4.15 d and 4.15 e reveals that randomizing the subset helps to distribute
correlated sidelobe matrix entries and therefore improves the reconstruction pro-
bability using CS. Especially the difference between the sorted and randomized
subset function alignment should be noted as it shows that randomization leads to a
structure of the Gram matrix by omitting distinct sidelobes.

The interdependency between reducing the correlation set and sidelobe entries is
observed best by direct comparison. For the full correlation set of N randomized
time shifts in Figure 4.16, the Gram matrix shows a pronounced diagonal, while
still in the non-orthogonalized version of the correlation matrix, the Gram matrix
shows some scattered peaks on off-diagonal places as well as Figure 4.16 a. The
coherence of the full but randomized and non-orthogonalized correlation matrix is
µA = 0.071025 and the spectral norm ‖A‖2 = 82.3755. The off-diagonal elements
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(a) non-orthogonalized full set (b) orthogonalized full set

Figure 4.16 – Randomly selected and aligned time shifts of the full set Figure 4.16 a non-
orthogonalized, Figure 4.16 b orthogonalized.

disappear if the matrix is orthogonalized, but the values on the diagonal decrease as
well. Nevertheless, the coherence decreases to µA = 4.2616e− 15 and the spectral
norm to ‖A‖2 = 1. Hence, orthogonalization affects first and foremost the spectral
norm in a significant way, as the coherence µA remains in both cases sufficiently
low, i.e. much lower than one, thus being a good hint for the feasibility of practical
implementation.
Reducing the correlation set to a subset of M randomly picked time shifts, in

that case M = 0.3 ·N as this proofed to be a good compromise between reduction
and performance in diverse environments, the Gram matrix improves regarding the
SPR, while the other measures remain within the same range. As before, the PSF
is compared to the non-orthogonalized correlation matrix in Figure 4.17 a and the
orthogonalized matrix in Figure 4.17 b. Scatterers on the Gram matrix of the non-
orthogonalized version are still present, but show a tendency towards the diagonal.
The mutual coherence is similar to the complete set with µA = 0.060171 while the
spectral norm is slightly improved, i.e. decreased compared to the full set with
‖A‖2 = 62.6076. However, the reduction of the spectral norm is a consequence of
having less rows in total and it has therefore limited value. For the orthogonalized
reduced correlation matrix, the Gram matrix again shows a clear diagonal with only
few and low scatters in the off-diagonal. But the presence of scatterers even in the
orthogonalized version indicates the reduction of the correlations, thus leading to
a rectangular instead of quadratic matrix. Analogously to the full set, the mutual
coherence of the correlation matrix is lower compared to the non-orthogonalized with
µA = 3.2321e− 15 and the spectral norm ‖A‖2 = 1.

In summary, the correlation matrix A = R ·Sref that is designed from time shifted
versions of the transmit waveform, is not completely uncorrelated according to the
PSF evaluation . Furthermore, the correlation matrix is a circulant matrix, that
especially in real hardware implementations is not orthogonal, which is best observed
in Figure 4.17 a with the clear high energy elements within the off-diagonal area.
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(a) non-orthogonalized sub-set of 30 % (b) orthogonalized sub-set of 30 %

Figure 4.17 – Randomly selected and aligned time shifts reduced to 30 % Figure 4.16 a non-
orthogonalized, Figure 4.16 b orthogonalized.

Applying non-orthogonalized and not completely uncorrelated circulant measurement
matrices is justified by the fact, that hardware implementations always introduce
these effects and therefore generating a perfectly uncorrelated matrix is always limited
by system inherent correlations. In addition to the correlations produced within
the time shifted versions of the transmit waveforms, the random process for signal
selection will never be completely random as it can be implemented only in a finite
manner. But also the noise modulation is not completely uncorrelated and depends
on the underlying algorithm of the noise generator that produces sequences that are
actually correlated. These characteristics lead to the non-ideal effects observed in
the PSF analysis of the N ×N matrix designed from a normally distributed random
process that is depicted in Figure 4.16, showing the non-ideal behavior of the applied
random generator.

4.3 Proof-of-Concept

The aim of the analysis performed with the noise radar concept is twofold to provide
for the fact that either the concept itself may fail or further hardware adjustments are
necessary. Especially for distinguishing those effects, a separate evaluation is therefore
helpful. Evaluating the feasibility of the signal acquisition and reconstruction concept
works best if the analysis is performed first detached from any hardware effects and
constraints. Only if this proves to be successful, it makes sense to move on to hardware
analysis. Hence, before emulating the noise radar correlation receiver, a proof-of-
concept is performed in order to demonstrate basic feasibility of the radar concept.
While the proof-of-concept focusses on the signal processing and reconstruction
algorithm, the emulation additionally considers physical sensor characteristics.
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4.3.1 Simulation Model

The proof-of-concept simulation simplifies the radar frontend by assuming isotropic
antenna patterns and ideal transmitter and receiver stages without additional filter
characteristics or noise sources. Each target is modeled as a point scatterer with
equal RCS and the power of the receive signal is normalized to one. Due to the
normalization, the free space propagation is not incorporated in the channel model.
Instead, different SNR levels, that comprise any noise sources, either within the
channel or the system, are used for benchmarking. Thus allows an initial estimate
on applicability to a real system. Hereby, the channel noise is modeled as AWGN
that is superposed to the receive signal. Assuming a discrete time vector of length
N , with elements spaced by the time step ∆t according to the range resolution
and hence time bin, a regular correlation receiver requires N correlation filters.
Sub-sampling defines here the reduction of the correlation matrix to M � N with
the sub-sampling rate r = M

N
. The reduction capacities of the sub-sampling rate

is derived from exploring the reconstruction performance with variations of the
sub-sampling rate. The selection of the correlation filters results from an equally
distributed random process, so that the time bins used by the correlation filters
are not sorted but randomized. Varying the sub-sampling rates benchmarks the
capability and applicability of the CS approach, as a low sub-sampling rate justifies
and at the same time limits the initially raised implementation effort.
Besides SNR and sub-sampling, also the noise radar implementation is varied to

determine the best setup of the individual components, which are measurement and
reconstruction matrix and transmit waveform. Two different matrices are used, one
of them is a completely uncorrelated random matrix, which is hard to realize on
hardware, but is optimal from the perspective of CS requirements. Being completely
uncorrelated random, makes the first matrix most suitable to act as an optimal
CS reference implementation. The other matrix is introduced and analyzed in
Section 4.2.2. It incorporates different randomly selected correlation filters in the
spectral domain. Its characteristics reflect realistic features such as the circular
structure due to the time shifts and the presence of mutual correlation of the matrix
elements. In addition, the implementation of correlation filters, that are generated
by delaying the transmit waveform and are then applied to the receiver, can be easily
reproduced and avoids the necessity of storing the measurement matrix. Together
with the reduced correlation matrix, two different waveforms are used. Both are
pulses, whereas one pulse consists of band-limited white noise (4.32) and the other
waveform features randomly weighted spectral components according to standard
normal distribution (4.34).
During simulation, several system configurations are compared consisting of dif-

ferent matrix and pulse structures. The different matrix structures are a random
matrix with entries derived from a process according to standard normal distribution
and a reduced correlation matrix. All transmit waveforms are in principle pulse
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Table 4.1 – Measurement matrix and waveform combinations for proof-of-concept simulation

ID Measurement matrix Waveform
M1 red. correlation St(f) = rect

(
f

2B

)
M2 random sequences St(f) = rect

(
f

2B

)
M3 red. correlation St(f) = w(f) · rect

(
f

2B

)
M4 random sequences st(t) = e−jπαt

2

shaped. One pulse is obtained from band-limited white noise, the other one from
band-limited noise with weighted components and the third one is a linear chirp
(Table 4.1). First, the different matrices are used to measure band-limited white
noise and perform the reconstruction by minimizing the `1-norm of the receive signal
estimate in the Fourier domain (M1, M2). In (4.66), the reduced correlation matrix
is used as measurement matrix, whereas the optimization objective is the `1 norm of
the reconstructed signal spectrum Sr (M1).

min ||Sr||`1 s.t. ||rxy − SHt,refSr||`2 < ε (4.66)

Furthermore, the reduced correlation matrix is applied to the noise pulse consisting
of randomly weighted spectral components (4.67) (M3).

min ||Sr||`1 s.t. ||Rxy − SHt,refSr,rnd||`2 < ε (4.67)

The same optimization objective is used in (4.68), but there the measurement
and reconstruction matrix is the random matrix Φrnd containing elements that are
generated by a random process according to standard normal distribution (M2).

min ||Sr||`1 s.t. ||y − ΦrndSr||`2 < ε (4.68)

In the fourth and final measurement and reconstruction approach in (4.69), the
random measurement matrix Φrnd projects a linear chirp, such as used in commer-
cial automotive radar systems (M4). In contrast to the other approaches, the CS
acquisition takes place in the time domain.

min ||sr||`1 s.t. ||y − Φrndsr||`2 < ε (4.69)

Table 4.1 lists the matrix-pulse combinations that are used during the proof-of-
concept-simulation. In the following, the four stated acquisition methodologies are
referred to as M1, M2, M3 and M4 according to Table 4.1 in order to simplify
description and improve clarity.

In practical parametrization of the simulation runs, the sub-sampling rate was tuned
from r = 0.01 to r = 0.49, since early evaluation showed that reconstructions already
turned out to have only negligible to none deviations from the original ground truth
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waveform. Although SNR levels are expected to be higher in automotive applications,
the SNR range is between −6 dB up to 6 dB. This not only tests the performance
during adverse conditions, but even demonstrates how the CS methods can improve
the state-of-the-art instead of only preserving it with a new method. The detection
range was covered by sequentially placing the point-scattering target in the short,
mid and long range, i.e. 30 m, 150 m and 270 m. The velocity of the targets was
set to a relative velocity between radar-equipped ego-vehicle and moving target of
20 m/s to ensure comparable results. Furthermore, the analysis is limited to the
evaluation of range reconstruction. In order to obtain a range resolution of 15 cm,
the bandwidth was set to 1 GHz.

4.3.2 Simulation Results

Simulations with each parameter configuration were performed several times to cover
numerical variations from the random processes. For each sub-sampling rate and
SNR level, the absolute error eabs = r̂−rtrue of the reconstructed range r̂ and the true
range rtrue and the relative error erel in range are computed and compared between
the four different matrix and signal model combinations. The aim is to evaluate
the performance regarding probability of information reconstruction while varying
matrix and signal model. Since range reconstruction was applied for different range
distances, the relative error erel of the reconstructed range is used to measure the
reconstruction capability.

erel = r̂ − rtrue
rtrue

(4.70)

Each range region, i.e. short, mid and long range, has a different criticality regarding
deviation from the real range value, thus defining here the ground truth, and there-
fore the relative error additionally benchmarks the impact of range reconstruction
deviations. Accordingly, the first comparison evaluates the CS reconstruction perfor-
mance for the band-limited white noise pulse measured with a random and a reduced
correlation matrix. The different matrix-waveform combinations are denoted with
M1-4, according to Table 4.1. The proof-of-concept results are structured as follows.
First, the results for a pulsed band-limited white noise waveform measured with a
reduced correlation matrix and a random matrix are presented. Then the results of
the RMPI approach using a linear chirp is compared to a reduced correlation receiver
using band-limited random noise. In the final comparison a closer look is given to
the difference in performance between the white noise and colored noise waveform
while applying a reduced correlation matrix for measurement and reconstruction.

Applying a random matrix to a pulsed waveform is close to classical CS approaches,
where it was proven that random matrices fulfill the RIP condition while showing a
low mutual coherence. Accordingly, the reconstruction performance in Figure 4.18 b
and Figure 4.18 d is steadily high, almost independent from the SNR corresponding
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(a) M1: short range
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(b) M2: short range
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(c) M1: long range
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(d) M2: long range

Figure 4.18 – Relative error in range depending on sub-sampling rate in percent and SNR level
for bandlimited white noise transmit waveform. Short range performance is represented with
a target located at 30 m for Figure 4.18 a M1 (reduced correlation measurement matrix) and
Figure 4.18 b M2 (random measurement matrix). Long range performance is tested with a target
at 270 m for Figure 4.18 c M1 and Figure 4.18 d M2.

to general CS findings. In a correlation based concept, the matrix is already close
to the transmit waveform. Band-limited white noise as transmit waveform and
simultaneously basic waveform for generation of correlation filters increase the
mutual coherence and therefore reduces the reconstruction capabilities. Therefore,
the dependency of the reconstruction performance decreases for lower SNR levels,
which according to the results in Figure 4.18 a and Figure 4.18 c can be partially
compensated by increasing the number of measurements, i.e. correlations.

A separate evaluation of SNR and sub-sampling impact on reconstruction fidelity
reveals the higher influence of SNR while using the correlation-related approach in
Figure 4.19 a compared to the random matrix in Figure 4.19 c, that indicates even
a negligible effect from SNR on M2. Reducing the sub-sampling rate below 15 %
is possible using the random matrix of M2, see Figure 4.19 d, while the reduced
correlation in M1 needs at least 30 % of the correlation set to reduce and stabilize
the reconstruction error to a minimum. Still, the correlation effort is reduced by
70 % in M1.
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(b) M1: sub-sampling
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(d) M2: sub-sampling

Figure 4.19 – Boxplots to evaluate the relative mid-range error for M1 regarding Figure 4.19 a
SNR and Figure 4.19 b sub-sampling. Same for M2 with Figure 4.19 c SNR and Figure 4.19 d
sub-sampling.

The following comparison includes the reduced correlation matrix, but this time
in combination with the noise waveform consisting of randomly weighted spectral
components (M3). The measurement M4 consists of a random measurement matrix
projecting a chirp waveform to several observations. For both, M3 and M4, the low
reconstruction error is remarkable with its close-to-zero characteristic, even for SNRs
below zero and sub-sampling rates below 20 %. In contrast to M3 but same as M2,
the relative error drops not gradually but shows a clear cut between reconstruction
errors that are close to zero and errors that indicate a performance far beyond
feasibility. While the reduced correlation matrix in combination with random noise
apparently provides accurate results, see Figure 4.20 a and Figure 4.20 c, the results
for a linear chirp keep a remaining error offset such as depicted in Figure 4.20 b. Also
in Figure 4.20 d a remaining error in relative range exists, but only for very low SNR
and subsampling levels.
The consistency in the finding of the remaining error offset for M4 reveals while

analyzing the according boxplot for M4 in Figure 4.21 c and Figure 4.21 d. There,
the statistics are plotted regarding the SNR (Figure 4.21 c) and sub-sampling (Fi-
gure 4.21 d) dependency for a target distance representing the mid-range, i.e. in
that case 150 m. Apart from the error offset, the SNR dependent boxplot shows only
a slightly increased variation from the mean error compared to its equivalent M4
in Figure 4.21 c, that in addition features a zero mean in the relative error for any
SNR and sub-sampling rate. While several outliers occur for an SNR of −6 dB, there
is almost no variation for higher SNR level. Regarding sub-sampling, the results
indicate a minimum sub-sampling rate of at least 18 % for M3 and at least 22 % for
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(a) M3: short range
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(b) M4: short range
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(c) M3: long range
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(d) M4: long range

Figure 4.20 – Relative error in range depending on sub-sampling rate in percent and SNR level.
Short range performance is represented with a target located at 30 m for Figure 4.20 a M3 and
Figure 4.20 b M4. Long range performance is tested with a target at 270 m for Figure 4.20 c M3
and Figure 4.18 d M4.

the chirp implementation M4.
A numerical comparison is performed in Table 4.2 with the sub-sampling rates

r = 0.21, 0.31 and 0.41, because this is the sub-sampling region, where the error
figures change most drastically. The SNR of −3 dB represents a case far below SNR
levels where commercial radar is still operational, which ranges approximately between
10 dB and 20 dB. Those assumptions on automotive radar propagation channels are
approximated by evaluating the results at 6 dB, thus still being below usual SNR
levels but also covering regions, where the error figures show major improvements.
Error figures comprise additional error values apart from the previously addressed
relative error, that are captured in Table 4.2. Namely, it contains besides relative
errors also absolute errors and standard deviation for both, absolute error σabs and
relative error σrel. Values for short range and long range representatives are extracted
since the boxplots in Figure 4.19 and Figure 4.21 refer already to that range. The
values show how standard deviation correlates with the magnitudes of the error
figures, thus indicating that valid conclusions are possible based on the relative and
absolute error distribution.
The measurement setup that uses a linear chirp in combination with random
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(b) M3: sub-sampling
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(d) M4: sub-sampling

Figure 4.21 – Boxplots to evaluate the relative mid-range error for M3 regarding Figure 4.21 a
SNR and Figure 4.21 b sub-sampling. Same for M4 with Figure 4.21 c SNR and Figure 4.21 d
sub-sampling.

matrices shows a stable behavior throughout all parameters including a constant
offset of approximately 0.7 m such as indicated already during boxplot analysis.
Comparing results for different sub-sampling rates shows drastic improvements for
M1 after increasing the amount of correlations by only 10 %. Increasing the SNR to
6 dB improves the reconstruction results towards the low error figures of M2 and
M4, while diminishing the importance of sub-sampling as well. M2 finally shows the
best performance among the acquisition and reconstruction configurations listed in
Table 4.2.

Measurements for M3 are left out in the table, as they turned out to have error
metrics that are mostly zero and otherwise way lower than turned out from the other
measurements M1, M2 and M4. Therefore, purely numerical comparisons do not
give a deeper understanding of error characteristics for M3. However, comparing M1
and M3 reveals the effect of the noise waveform on reconstruction results. Both mea-
surements use reduced correlation matrices, which are easier to handle in real world
implementations given the possibility of significant reduction in correlation effort.
The only difference in the shape of the transmit and hence correlation waveforms
consists of the weighting of the spectral components instead of homogeneously incor-
porating all spectral components within the allocated radar bandwidth. Although
the waveforms differ only slightly, the impact on the error figures is significant as
revealed in Figure 4.22. While there are only few outliers for an SNR below zero
for M3 in Figure 4.22 c, the results for M1 show comparable confidence values only
above a 0 dB level, while still featuring outliers (Figure 4.22 c). The dependency on
sub-sampling rates as depicted in Figure 4.22 b for M1 and Figure 4.22 d for M3
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Table 4.2 – Proof-of-concept error metrics

-3 dB 6 dB
30 m M1 M2 M4 M1 M2 M4
eabs 2.8341 0.0034091 0.73295 0.040909 0.0034091 0.69205

0.15682 0.0034091 0.56932 0.036364 0 0.56591
0.045455 0 0.70909 0.029545 0 0.61023

σabs 22.809 0.021561 0.40462 0.55309 0.021561 0.43931
12.783 0 0.38925 0.3432 0 0.45126
0.1923 0 0.39207 0.34433 0 0.43451

erel 0.09447 0.00011364 0.024432 0.0013636 0.00011364 0.023068
0.0052273 0.00011364 0.018977 0.0012121 0 0.018864
0.0015152 0 0.023636 0.00098485 0 0.020341

σrel 0.76029 0.0007187 0.013487 0.018436 0 0.014644
0.42609 0.0007187 0.012975 0.01144 0 0.015042
0.0064101 0 0.013069 0.011478 0 0.014484

270 m M1 M2 M4 M1 M2 M4
eabs 22.464 0.0034091 0.6 0.046945 0.0034091 0.69545

5.3773 0 0.67159 0.022727 0 0.74318
2.4 0 0.57955 0.011364 0 0.82841

σabs 60.902 0.021561 0.443 0.2976 0.021561 0.46914
33.75 0 0.42943 0.29511 0 0.45379
17.064 0 0.42538 0.19974 0 0.40072

erel 0.083159 1.262e-05 0.0022222 0.00017378 1.262e-05 0.0025758
0.019906 0 0.0024874 8.4133e-05 0 0.0027525
0.0088844 0 0.0021465 4.2066e-05 0 0.0030682

σrel 0.22545 7.9815e-05 0.0016407 0.0011017 7.9815e-05 0.0017375
0.12494 0 0.0015905 0.0010925 0 0.0016807
0.063167 0 0.0015755 0.0007394 0 0.0014841

shows the high potential in reducing the amount of correlations, especially regarding
M3.

4.3.3 Evaluation and Discussion

The overall conclusion of the proof-of-concept is that all applied CS methodologies
result in a satisfactory reconstruction performance during low SNR levels while
significantly reducing the amount of correlation filters or random measurements.
Nevertheless, detailed error figures show strong variations within the implemented
approaches, especially when it comes to receive signals with very low SNRs or low
sub-sampling rates. There, the diversity and need for matrix design adjustments in
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(b) M1: long range
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(c) M3: short range
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(d) M3: long range

Figure 4.22 – Boxplots to evaluate the relative error for M1 regarding Figure 4.22 a SNR at
short range and Figure 4.22 b sub-sampling at long range. Same for M3 with Figure 4.22 c SNR
for short range and Figure 4.22 d sub-sampling for long range.

different scenarios that impact the receive signal becomes evident, whereas correlation
and random matrices turn out to differ in robustness. Comparing white noise, random
noise and linear chirps shows that the selected waveform has an even if not higher
impact on the reconstruction success than the measurement matrices. This finding
reveals the limitation of coherence as a metric for feasible measurement matrices as
it does not capture the actual characteristics of a transmit waveform but only its
signal model if it captures it at all. Otherwise, only the mutual coherence of the
measurement matrix is captured ignoring real signal features, that may even vary
during measurements, completely. In contrast, the RIP incorporates the relation
between matrix and signal characteristics, thus enabling to determine benchmarks
based on matrix-signal interdependencies.

Using a correlation receiver introduces the issue of increasing the coherence between
measurement signals and received signal, thus impacting the reconstruction capability
of the system. Accordingly, the error figures of M1, which uses a white noise pulse,
are more prone towards a decreasing SNR and tend to require more correlations than
the other waveforms to provide similar low relative or absolute errors. In contrast to
M1, the relative error of M3 that uses random noise pulses is almost not influenced at
all by low SNR levels. The improvement of the error figures is directly connected to
the random weighting of the spectral components, as it makes each pulse unique and
therefore distinguishable. The relative and absolute error in range does not decrease
gradually but abruptly. This indicates the moment, where the matrices meet CS
requirements regarding RIP. Since a matrix does not change its characteristics, the
mutual coherence remains the same and is independent from actual shapes of the
receive signal. Therefore, mutual coherence is not feasible as stand-alone criterion
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to determine any conclusions about the reconstruction process. Hence, the mutual
coherence is not feasible as stand-alone metric, but needs in addition the RIP to
incorporate real signal characteristics such as noise and distortions. This shows, at
which moment the initially feasible measurement matrix needs to be adapted to
signal variations by increasing the number of measurements in the most simple case.
The dependency from the similarity between measurement signals and receive

signal becomes not only obvious in the comparison between M1 and M3, but also M1
and M2. Differently to the previous comparison, here the pulse remains the same
but instead of a reduced correlation matrix a random matrix is used as measurement
matrix. According to Figure 4.18 b and Figure 4.18 a a sub-sampling rate of 15 %
is sufficient for a successful range reconstruction using random matrices instead
of reduced correlation matrices. Nevertheless, in practical implementations it is
more challenging to implement a hardware-based pseudo-random generator that
reproduces the measurement signals perfectly at the receiver side or alternatively
storing the complete measurements matrix than designing several delay lines.
Comparing M2 with M3, the boxplots in Figure 4.19 c and Figure 4.21 a show

the same behavior, that suggests SNR as a minor impacting factor to both systems.
But also the behavior regarding sub-sampling is almost the same such as depicted
in Figure 4.19 d and Figure 4.21 b. Hence, using a random noise modulated pulse
results in a comparable reconstruction performance including the favorable features
of a random measurement and reduced correlation acquisition approach.

M4 uses a linear chirp instead of random measurements. Apart from the remaining
constant offset that is almost equal for all ranges, sub-sampling rates and SNRs (see
Table 4.2), the reconstruction results appear reliable for a safe operation. Nevertheless,
M3 features lower deviations according to the boxplot in Figure 4.21 b than M4
in Figure 4.21 d. While comparing the deviations for different SNRs, M4 shows in
Figure 4.21 c more outliers and higher variations than M3 in Figure 4.21 a.

In summary, M3 with its random noise pulse and the reduced correlation receiver
fulfills the CS requirements on coherence between signal and measurement signal,
whereas the pulse modulation turns out to be a crucial part in a stable correlation
receiver relying on CS. At the same time, the correlation approach results in less
hardware adjustments than a random measurement implementation. The correlation
matrix with not completely incoherent elements reflects the fact, that analog hardware
always introduces correlation to transmit and receive signals, which is sensible to
be taken into account while designing the measurement and reconstruction matrix.
Based on these findings, the radar emulation introduced in the following Chapter 5
uses the methodology of M3. It will be analyzed, how actual RF hardware with focus
on physical characteristics of the applied antenna arrays, affects the reconstruction
methodology.
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This chapter contains practical implementations to demonstrate several performance
aspects of radar and noise radar in particular. Due to chip manufacturing and
intellecutal property rights, raw radar signals are hardly accessible in commercial
radar systems. Since manufacturing a radar signal processing chip was not the scope
of this work, therefore the demonstrator consists partially of emulated components.
For validation purposes a LFMCW radar system was set up in parallel to ensure
meaningful conclusions from the noise radar demonstrator.
The heart of the demonstration is a physical radar sensor mounted on a FPGA

development board and allowing access to low-level beat signals. As such it is the
reference version for a phenomenological radar sensor model that can be used in a
very versatile way allowing physical emulation of the proposed noise radar concept.
For increasing realistic sensor behavior, data-driven weather models are developed
and applied. The extracted information is used to determine typical changes in
the receive signal characteristic corresponding to different weather conditions that
the radar radome is exposed to. The work flow to establish a demonstrator for
analysis using a sensor emulation is visualized in Figure 5.1. The orange colored
blocks indicate real world components, while and blue-colored blocks highlight virtual
components. Green blocks represent the semi-virtual validation process.

The chapter structure reflects the block structure in Figure 5.1. It starts with an
introduction and parameter description of the physical radar sensor. The design of
performed test measurements is then introduced and the measurements are analyzed
regarding weather conditions affecting the radar radome. The implementation

Figure 5.1 – Demonstration work flow: Real world radar sensor and measurements (orange)
are used to generate virtual models and systems (blue). The real and virtual radar are validated
with point-wise measurements in LFMCW mode (green).
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of a phenomenological radar sensor simulation, that is validated by point-wise
measurements, follows afterwards. The phenomenological radar sensor model is used
to emulate the CS noise radar and evaluate it regarding reconstruction performance
and reliability in noisy or interference-affected propagation channels.

5.1 LFMCW Radar

In Section 2.1.2 the underlying principles of LFMCW radar systems are presented.
Here, a radar sensor is described that serves as reference and benchmark for a phe-
nomenological sensor simulation. After developing the radar sensor model according
to the parameters of the radar sensor, the model is validated against real-world
measurements with focus on the range profile, since the objective of the CS noise
radar is to improve the range reconstruction. Besides validation measurements, the
hardware radar system is used for measurements related to weather and environment
conditions, specifically rain effects on the radome, that lead to data-driven behavior
models of adverse environmental conditions. The parametrization of the development
board that is used to operate and configure the radar sensor, is limited by the
contradicting optimization goals of resolution and range. Acceptable trade-offs need
to be tailored to individual target applications.

Figure 5.2 – INRAS’ Radarbook with mounted 77 GHz RF frontend
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Figure 5.3 – Configurable chirp parameters on radar development board

5.1.1 Radarbook Parametrization

The reference LFMCW radar system that was used for real world measurements was
the radar development platform Radarbook from the Austrian company INRAS,
depicted in Figure 5.2. The corresponding data sheet is attached in Chapter 6. The
benefit of this radar development platform is not only a fully working 77 GHz radar
system that almost allows out-of-the-box measurements, but especially the access
to the beat signal at the intermediate frequency. Commercial radar systems often
return preprocessed target and object lists that are extracted with signal processing
that is tailored to particular applications such as BSD or ACC. In Figure 5.2 some
essential components of the radar frontend are annotated, that are described in
more detail in Chapter 6. RX marks the eight linear receive antenna arrays, each
consisting of eight patch elements. The antenna elements as well as the antenna
arrays are spaced with λ/2. On the right side of the RF frontend are four transmit
antennas TX placed with mutual distance 7λ/2. As a result, a virtual antenna of up
to 32 channels can be implemented with this multiple-input multiple-output (MIMO)
frontend, whereas the transmit antennas are addressed sequentially.
Configuration and beat signal acquisition is performed by a remote host PC

using the provided MATLAB or Python class. The core of the radar sensor is the
RCC1010 chip from Infineon used for transmit signal configuration, generation and
acquisition. Signal configuration is restricted to chirp configuration. The setup
allows to vary linear chirps in the frequency range between 76 GHz to 81 GHz with
a maximum bandwidth of 4 GHz, thus covering the full allocated frequency band
of automotive radar. In order to adapt the radar platform to different applications
in different scenarios, the parameters of the transmit chirps can be configured by
the user. Afterwards, the signal processing of the sampled beat signal is completely
programmable by the user, thus allowing a versatile radar operation. Different
environments, e.g. intersections or highways such as described in Table 2.4 require
adaptation of the transmit chirp parameters in terms of covered bandwidth and
chirp timing to fulfill different application specifications such as resolution or range.
Of course, the parametrization is not only subject of compromises to meet different
and even opposing criteria, but is in addition restricted by hardware. Considering
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the transmit signal as a time-dependent frequency signal model fT (t) = fstop−fstart
tup

· t
according to (2.16), the frequency is linearly increased from the start frequency fstart
to the stop frequency fstop during the rise time tup such as depicted in Figure 5.3,
where configurable chirp parameters are annotated for two chirp trains, each lasting
for the interval time TI . In most automotive radar implementations, the bandwidth
B = fstop − fstart is allocated around the center frequency fc = 77 GHz. A chirp
interval consists of Np chirps. The number of chirps can be raised to at most Np = 256
chirps. The number of chirps and therefore slow time samples, defines the resolution
∆vp in velocity direction.

∆vp = 2|vp,max|
Np

(5.1)

The velocity resolution depends on the maximum velocity vp,max. The pulse period Tp,
which corresponds to the slow-time sampling rate Tp, defines the maximum relative
velocity vp,max, which is resolvable with the radar configuration. While slow-time
sampling refers here to the pulses, fast time refers to values within a pulse. The
velocity vp and therefore vp,max depends among others on Doppler frequency fD and
the slow time sampling rate Tp such as stated in (5.2). The maximum Doppler shift
fD,max is limited to the maximum bandwidth of the system, hence fD,max = B/2.

vp = fD
c0tup
B

vp,max (fD,max) = c0tup
4Tp

(5.2)

The Doppler time shift only needs to be considered if either the relative velocity
of a reflecting target is significant or the time interval Tp between two pulses is
sufficient to result in a notable Doppler shift. Hence, targets moving with same
speed will not introduce any Doppler frequencies. Additional timing limitations
regarding Tp originate from required configuration time between two chirps equal to
the configuration time Tcfg of 50 µs, which needs to be considered while setting the up-
chirp duration tup and down-chirp duration tdo. The sum of the up-chirp, down-chirp
and the configuration time provide the minimum duration of Tp = tup + tdo + Tcfg.
After all Np chirps are transmitted, a minimum initialization time of Tinit = 2 ms is
required before the next train of chirps can be transmitted. Hence, a chirp interval
needs at least the time

TI = NpTp + Tinit . (5.3)

Parameter selection of up-chirp duration tup and number of fast time samples
N .is restricted to the maximum sampling frequency of the ADCs. While all ADCs
are enabled, the overall sampling frequency equals 80 MHz resulting in a sampling
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frequency fAD = 10 MHz per receive channel. Hence, the fast time sampling frequency
fs of individual chirps, which is restricted by ADC capabilities, is computed by

fs = N

tup
. (5.4)

As indicated with N green dots, replacing one continues line of a ramp in Figure 5.3,
sampling only takes place during the up-chirp. During down-chirps, signal acquisition
remains in idle mode. With the maximum expected necessary sampling frequency of
fs = 2fr,max the required sampling frequency still needs to be decreased to include
cascaded-integrator-comb-filter (CIC) filter of order Ndiv for the sake of system
robustness. Since the transfer function of the CIC filters is adapted to the ADC
clock dividers, the denotation of the filter order and clock divider are the same, i.e.
Ndiv = b20 MHz

fs
c. It needs to be ensured that the sampling frequency fs is less than

20 MSPS, which corresponds to the maximum sampling rate at each intermediate
frequency (IF) channel. The number of fast time samples N results from the chirp
rise time tup and the realized sampling frequency fs = 20 MHz

Ndiv
, see (5.5). It should

be noted, that the minimum applicable ramp duration tup is 71 µs.

N =
⌊
tup

20 MHz
Ndiv

⌋
(5.5)

For radar perception, the maximum unambiguous range rmax in (5.6) and the range
resolution ∆r are among the most relevant parameters.

rmax = ∆R,resNf

2 (5.6)

With the range resolution

∆R,res = c0

2Bc

(5.7)

the maximum frequency related to range fr,max is calculated by using the chirp rate
α = B

tup
and maximum round-trip time tr,max, as

fr,max = B

tup
· 2rmax

c0
= B

tup
· N∆R,res

c0
= N

2tup
. (5.8)

In conclusion, not only range resolution ∆R,res as given in (5.7) restricts the maximum
unambiguous range rmax in (5.6), but also the number of samplesN that is constrained
by ADC sampling rate. In (5.9) the dependency of the required number of samples
N from the quotient of the maximum distance and the range resolution is stated
explicitly.

N = rmax
∆R,res

= rmax ·
2B
c

(5.9)
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(a) Radar with host PC (b) Measurement setting

(c) Range profile 1 GHz (d) Range profile 4 GHz

Figure 5.4 – Corner reflector measurements: Figure 5.4 a shows the Radarbook and the host
PC and Figure 5.4 b depicts the measurement setting with a corner reflector placed 3 min front
of the radar. The range profile is displayed in Figure 5.4 c for 1 GHz bandwidth and in Fi-
gure 5.4 d for 4 GHz bandwidth.

Measurements with a corner reflector placed 3 m in front of the radar sensor such
as depicted in Figure 5.4, demonstrate how bandwidth affects range resolution, but
also peak power. The same scenario was measured with a bandwidth of 1 GHz and
4 GHz and all 32 virtual antennas were processed by applying a FFT to the range
profile. The range profile shows signal level intensities depending on distance. It
contains all virtual antennas, i.e. RX-TX combinations, hence several lines are found
in Figure 5.4.
In addition to maximum ranges and velocities, the question of minimum ranges

also needs to be answered. Depending on mechanical antenna dimension d and the
wavelength λ of the carrier frequency, far-field and near-field regions are defined for
radar operation. According to (2.43) the transition between near field and far field
happens at the minimum far field range rff,min > 2d2

λ
. Many radar signal processing

assumptions regarding signal propagation do not hold below that range and therefore
near field reflections need to be considered. The Radarbook features four transmit
antennas that are switched on sequentially and that are spaced by 7λ/2. Together
with the fix dimension of the receive antennas that are operated simultaneously, the
begin of the far field region depends on the active transmit antenna. According to
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Chapter 6, the antenna dimension alters with [25.614 39.250 52.887 66.523] mm. The
variation in antenna dimension results in minimum far field ranges rff,min between
34 cm and 2.3 m. These individual minimum far field ranges for each antenna are
sketched in Figure 5.5.

25.614 39.250 52.887 66.523
antenna dimension d in [mm]
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Figure 5.5 – Begin of far field region for different TX antenna postions.

5.1.2 Measurement of weather effects

In general, three categories of interfaces can be distinguished that are impacted
by adverse weather and environment conditions. Namely, those are the radar or
specifically its radome, the propagation channel and reflecting targets. In Section 2.3.2
adverse weather and environment conditions were discussed with the result, that
specific rain attenuation only becomes important in heavy storm events as automotive
radar covers only short radar ranges compared to other radar applications. However,
radome impacting effects may cause severe attenuation of the radar backscatter that
even outweighs the changes in reflectivity of target surfaces. Therefore, the focus in
this work lies on effects occurring in the ultimate vicinity of the radar affecting the
radome. Rain drops covering the radome attenuate the receive backscatter before it
reaches the receive antennas and additionally act as lenses, depending on their shape.
Besides static attenuation as a result from partial or complete radome water coverage,
dynamic variations caused by radome drying or non-continuous events need to be
distinguished in case there are variations within a radar sweep. The aim is not only to
consider effects resulting from adverse weather conditions, but also to develop models
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(a) Radar mounting (b) Target location

Figure 5.6 – Experiment setup for static measurement of rain effects: Figure 5.6 a radar moun-
ted on railing, Figure 5.6 b geometry of targets and radar

that mimic realistic adverse weather conditions. These models generate stimulation
signals that can either be applied in a holistic environment-sensor simulation such as in
[78] or applied directly on a real radar sensor. Thus enables a faster sensor validation
since adverse weather conditions are hardly reproducible and measurement campaigns
cannot be planned according to unpredictable environment conditions. Depending on
rain drop coverage or water film on the radar radome, individual attenuation models
can be observed during measurements. Attenuation is not stationary, but it changes
depending on the rain intensity, i.e. the change of the rain drop coverage on the
radome, and the intensity of other water sources, such as splash water. A stationary
attenuation can be only observed, if the water coverage on the radome remains
constant. Otherwise, a drying process on the radome can be observed on the radome
attenuation depending on time that shows how the receive signal level recovers from
adverse weather attenuation. In summary, overall radome attenuation consists of
specific rain attenuation as(t), attenuation from constant water coverage acwc(t) and
attenuation from dynamic water coverage adwc(t), which comprises singular events
and dynamic change of intensities. The specific rain attenuation as(t) results from
the atmospheric propagation channel attenuation. As most rain events are lasting
for a longer period of time and rain events can be treated separately, specific rain
attenuation is assumed as a constant value as as stated in Table 2.6 in Section 2.3.1.
The other parameters, i.e. static and dynamic attenuation, were determined from
measurements. In typical automotive scenarios and applications, where a radar
is mounted on a moving platform, there are many environment parameters and
effects that impact radar backscatter and therefore results of signal processing. Thus
makes it hard to isolate weather effects from other influences during realistic test
drives. However, a well-defined and controlled environment and scenario enables the
separation of weather and environment influences from other effects, such as Doppler
and multi-path propagation. Typical dynamic scenarios were analyzed in order to
extract individual elements that are part of a complete weather and environment
scenario. Based on the analysis, experiments were designed that reflect particular
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effects with focus on radome effects. Concentrating on the radome results from
understanding that interface as the most critical one, even compared to experimental
changes of the RCS by temporal water coverage of an object. A constant water
coverage on the radome occurs, when the drying process of either a water film or
single rain drops is prevented by a constant source of a water stream or water drops.
The prevention of stopping the drying process of water drops needs to be understood
as a statistical process, i.e. for each drying water drop there will be a new water
drop. In that scenario, the attenuation from the constant water coverage is also
assumed to be static acwc.

Splash water is a sum of highly time variant single events. Assuming P events of
the attenuation process asw,p(t), each delayed by individual point in times τp, it can
be stated with the individual static scaling factor αp as

asw(t) =
P−1∑
p=0

αp · asw,p(t− τp) (5.10)

The attenuation from the dynamic water coverage adwc(t) reflects the change of
the water coverage on the radome. After an initial water coverage status and an
according initial attenuation ai,wc, the radome can be either subject to a drying
process, reflected by the time variant attenuation adp(t) or a constant increase of the
water reflected by the time variant attenuation awp(t). A constant increase in water
coverage results in a time process of attenuation that differs from the time process
of attenuation of the drying, therefore it needs to be taken into account separately.
The overall attenuation resulting from a dynamic water coverage produces (5.11).
It factors in the points in time, when the different processes start with τdp for the
drying process and τwp for the process that increases the water coverage.

adwc(t) = ai,wc + adp(t− τdp) + awp(t− τwp) (5.11)

Unpredictable weather models in combination with various environment effects
including multi-path propagation, micro-Doppler and non-stationary propagation
channels make it hard to identify with a high fidelity weather induced effects within
the backscatter from real driving maneuvers. Nevertheless, real field measurements
served as source for creating static scenarios that isolate individual effects and
quantify their impact using measurements.
The experiment setup consists of the radar such as described in Section 5.1.1,

which is supported by a Raspberry Pi camera in order to evaluate the measurement
results. Together with the radar, the camera is mounted in a water-proof installation
box that serves on the one hand as a radome and on the other hand as a housing
for all environment perception sensors and a Raspberry Pi taking over the role of a
controller. As depicted in Figure 5.6 a, the radar box, which refers to the environment
sensor configuration placed in one housing with the radar, is mounted on a railing.
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(a) Camera: Dry
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(b) Radome: Dry

(c) Camera: medium wet
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(d) Radome: medium wet

Figure 5.7 – Different constant attenuation due to radome water coverage

Static targets of different shapes and sizes were placed in front of the radar at an
approximately same height as the radar. With a distance of 85 cm to the ground,
the intensity of ground clutter within the ultimate vicinity of the radar is mitigated.
The experiments were conducted for different target distances and repeated several
times, while keeping the height and the mutual distance in between the two used
targets constant. Both targets are metallic, but one target has a rectangular and the
other a cylindrical shape. In Figure 5.6 the experiment setup is depicted from the
perspective of the targets.
Each individual measurement was performed for several minutes and repeated

several times. The radome was moistened in different intensities using a water can
in order to realize constant thick water films as well as an aerosol for application of
water drops. In an analogous manner, the targets were humidified.

For evaluation, the range-azimuth map was considered and annotated closely to
the camera pictures that were recorded in parallel with the co-mounted Raspberry
Pi camera. A comparison between camera and range-azimuth pictures supports a
visual impression of the water coverage affecting the radome. For the identified peak
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levels assigned to individual scenario targets depicted in Figure 5.7 a, the variation is
evaluated for different conditions affecting the radome. The range-azimuth map in
Figure 5.7 b is focused on the target position. Besides the metallic targets also a part
of the table causes an equally strong backscatter, so that there are three main peaks
visible in the map. Initially, the radome in Figure 5.7 a and Figure 5.7 b is completely
dry, which serves as reference for expected attenuations of the peak level. During the
next measurement, the radome is partially covered with water, which already results
in a significant blur of the camera image in Figure 5.7 c. There, the left target is
already hard to recognize and localize for algorithm-based evaluation. In contrast,
the targets are still good to recognize using radar perception in Figure 5.7 d, although
the peak level dropped significantly by approximately 6 dB to 10 dB. Besides the
attenuation, the outlines of the peaks differ compared to measurements with a dry
radome in a way that it might look like split into half. The reason behind it is the lens
effect induced by the structure of the water drops and surfaces covering the radome.
Hence, apart from attenuation also a meander-like structure similar to the camera
picture can be observed on the range-azimuth map while the radome is exposed to
water varying water streams. That is, because the local attenuation changes while
the water is flowing down the radome. Increasing the intensity of the water stream
running down the radome leads finally to an attenuation of approximately 20 dB
in Figure 5.8 b. With the decrease of the signal strength reflected by the actual
dedicated targets, extended targets become more present, as can be observed in the
same graph. That is, because extended targets benefit from a wide reflecting surface
and hence a higher propagation channel diversity, which increases the chances of
less distortions during signal propagation. Hence, the flanking wall to the left of
the targets is still recognizable, besides of the fact that it has a larger surface being
favorable for a high RCS. It should be noted that the extend of an object does not
necessitate a high RCS, because the energy reflected back to the radar depends not
only from the target dimensions but also from scattering characteristics as explained
in Section 2.3.2. Although receive signal levels degrade significantly at a constant
water stream, peaks can still be identified by using a-priori knowledge from dry or
less impacted measurements. In contrast to the radar output, the camera picture
is already completely blurred with unidentifiable objects. Accordingly, tracking
objects can help to compensate single events of radome impacts. Depending on the
surface structure of a radome, it takes some time until the perception recovers from
additional attenuation due to radome water coverage. Figure 5.8 c and Figure 5.8 d
shows a measurement only few seconds after stopping the application of a constant
water stream. Here, the radome features an even surface and hence water flows
down quickly. But due to various design choices, whereas the aim is to integrate the
radome seemless in the front of a vehicle, the radome might include edges or other
shapes, which allows the gathering of water. That might lead to a lasting impact on
signal perception.

While analysis of the range-azimuth map reveals information about stationary at-
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(a) Camera: intensive wet
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(b) Radome: intensive wet

(c) Camera: drying
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(d) Radome: drying

Figure 5.8 – Different constant attenuation due to radome water coverage

tenuation, tracking the peak attenuation allows conclusions about dynamic processes.
Hence, in Figure 5.9 the received peak levels in dB for both targets were tracked for
different dynamic processes during measurement time in seconds. The first dynamic
experiment in Figure 5.9 a shows peak levels for an initially dry radome. In an
intermediate stage the peak level drops by approximately 10 dB before it goes down
by 20 dB. After the waterstream stops, the peak level recovers with a characteristical
exponential drying course shape. The initial peak of the blue marked peak level
attenuation can be understood to be an outlier, which is unrelated to performed
water experiments. Adverse incidents causing this characteristic peak attenuation
course are for example incidents related to splash water. It can be seen as the most
characteristic and significant incident that can occur.
Another dynamic measurement includes a higher diversity of events, i.e. random

repetitive sprinkles on the radome. In Figures 5.9 b to 5.9 d several details of such a
measurement are depicted. Since the measurement already started with water drops
being on the radome surface, a variation in the peak level is already observed in
the beginning of the measurement in Figure 5.9 b. After the radome dried within
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(a) const. waterstream (b) rep. water sprinkles

(c) rep. water sprinkles (d) drying

Figure 5.9 – Peak level attenuation of both targets (blue and orange lines) during various levels
of water coverage on the radome: Figure 5.9 a Application of constant waterstream, Figure 5.9 b
first water sprinkle incident, Figure 5.9 c second water sprinkle incident, Figure 5.9 d drying
radome.

some seconds, the peak level for both targets remains constant until new sprinkles
cover the radome indicated by a short but significant drop of peak level. Figure 5.9 c
shows the detail of the impact that the application of sprinkles has on the radome
revealing a clear temporal correlation between increase in attenuation and water
application. After stopping the repetitive application of water sprinkles, the peak
level remains basically constant with some outliers as shown in Figure 5.9 d, while
the overall attenuation slowly decreases according to the time the radome needs for
drying.

Accordingly, adverse weather conditions can be simulated in general by additional
attenuation of 10 dB to 20 dB occurring in random time intervals. For generating
stimulation models that go beyond that rule of thumb additional requirements
and specifications are necessary. If an environment simulation that provides the
simulation ground truth to a radar sensor offers the level of detail that contains local
weather prediction models or road conditions comprising specific locations of puddles,
realistic timing and intensity of splash and sprinkle models can be generated. If only



108 5 Demonstrator and Experimental Results

a rain intensity is given but a radome structure and rain duration is known, the
impact of rain on the radome and according increase in attenuation over time can be
derived. Therefore, the testing objective needs to be specified properly to design an
appropriate way of incorporating adverse weather conditions into a testing system
without creating a misleading level of detail while using the measurement results for
stimuli generation.

5.1.3 Radar sensor model

It is sensible to transfer prototyping as much into the virtual world as possible,
especially during early development phases. Similar to the reasoning in Section 5.1.2
regarding the level of detail for virtual weather condition models, here the level of
detail also depends from the overall testing goal that should be covered within the
simulation. That is explained in more detail in [32]. While testing algorithms or
functions may be performed sufficiently using radar data at a high level of abstraction,
the evaluation of effects that occur at a low level of abstraction level requires a more
detailed sensor modeling. Accordingly, the level of detail and hence the complexity
needs to be adjusted to the testing objective, whereas not all components need
to correspond to the same real-life fidelity. A modular sensor model allows early
stage prototyping and development with a thoughtful deployment of resources, thus
allowing early experimental designs. As the overall goal is to emulate a noise-
modulated pulsed radar system to test compressive sensing signal processing such as
introduced in Section 4.2.2, the characteristics of the physical radar sensor needs to
be captured by a phenomenological sensor simulation. Electric parameters beyond
noise figures can be neglected in order to perform tests on the function level. Also
realistic simulation of the circuitry including timing or phase and voltage jitter can be
neglected at early prototype development stage, since the feasibility depends mainly
from correct sparsity assumptions and matrix design as discussed in Section 4.2.3.
Based on the real world radar system that was introduced in Section 5.1.1, a

phenomenological radar sensor model has been developed that reflects physical
characteristics of the radar sensor used by the Radarbook. In the following, functional
components of the radar system are shown and its individual components are modeled
and characterized, see also the author’s further work in [91]. The phenomenological
radar sensor model is validated in LFMCW mode against real-world measurements.
Furthermore, the radar sensor model is connected to an exemplary environment
simulation that realizes a high abstraction level with low complexity. As the validation
of the radar simulation is performed in LFMCW mode, the simulated radar system
in this section corresponds to LFMCW processing, which is only relevant in the left
side of Figure 5.10 as explained in the following. On a high level perspective, the
radar system simulation is subdivided in three main parts which can be assigned
to the signal, sensor and environment domain. The signal domain consists of
signal generation, acquisition and processing. Similarly, the environment domain
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Figure 5.10 – Schematic of radar system simulation depicting signal domain on the left, sensor
domain in the center and environment domain on the right.

includes everything that has an effect on the radar backscatter, i.e. propagation
channel, reflecting targets or adverse environment conditions. The actual radar
sensor simulation is integrated in between the signal and the environment domain
and is the heart of the radar system simulation that will be used in the following
to emulate the noise-modulated radar system. Accordingly, the sensor simulation
module features the highest level of complexity and fidelity to the real world compared
to the modules of the signal and the environment domain. The modular concept of
the radar simulation allows to exchange individual components also within the three
main domains of simulation, making it a flexible simulation platform for various
applications.

Signal domain

The components belonging to the signal domain are depicted on the left of Figure 5.10.
They are grouped to three blocks, namely the signal generator, analog and digital
signal processing. The signal generator provides arbitrary transmit waveforms to
the radar sensor model. For LFMCW radar systems the transmit waveform consists
of linear chirp pulses that can be for example parametrized according to the signal
generator of the Radarbook following the design rules in Section 5.1.1.

The transmit waveform is usually not only provided to the transmit antennas but
also to the analog signal processing block that conatins the RF-frontend. During
analog signal processing, the transmit waveform is compared to the receive waveform
before the result is discretized using ADCs for further processing. The implemented
simulation regards losses, noise figure and number of samples of a real system.
The analog signal processing block is followed by the digital signal processing
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block. The latter is exactly the same for the real and the simulated radar as the real
radar signal is processed on the same host PC as the simulation. This is possible
because the interface of the real and simulated radar are identical at the input of
the digital signal processing block.

Environment domain

Simulation at environment level includes propagation channel characteristics, adverse
weather and environment conditions and reflecting targets. The propagation channel
is usually assumed to be an AWGN channel resulting in different SNRs at the receiver
and can be set to one-way or two-way propagation. Different specific rain attenuation
is included as path loss, that considers ambient temperature and humidity as well.
In addition to the implemented LOSs paths also NLOSs can be taken into account.
Adverse weather and environment conditions according to the modeling approach in
Section 5.1.2 are also incorporated as part of the resulting SNR.

Targets are included as reflecting points that belong to objects within the simulated
scenario. In default mode they are characterized by their position and velocity in
{x, y, z} direction and their RCS. While the velocity and RCS are assumed to be
stationary, the position is updated after each pulse for every target. Target parameters
can be either entered manually or by co-simulation with a dedicated environment
simulation. The latter case might require an adaption to the environment simulation
though in order to handle different output specifications, e.g. Doppler frequency
instead of velocity or different coordinate systems.

Sensor domain

The highest level of detail is realized within the sensor domain by incorporating the
physical dimensions of the Radarbook radar sensor into the simulation. Components
that belong to the radar sensor model are depicted in the blue box of the antenna
platform in Figure 5.10. All antennas are realized as microstrip antennas consisting
of patch elements as atomic components. As depicted in Figure 5.11 a, a single
patch element is modeled by its physical dimensions, width Wp, length Lp, and
height hp. In addition, the position f of the feed is specified. Also, the ground
plane is considered with its two dimensional extents in terms of width W and length
L. In the bottom left corner of the directivity plot in Figure 5.11 b, the tilt of the
patch element is indicated, which corresponds to 90 deg according to an assumed
mounting at the front grill of a car. But the actual information of the directivity
plot that belongs to a single patch element consists of the gain that is obtained
in azimuth and elevation direction. It depends on the physical patch, the ground
plane dimensions, and the center frequency, which corresponds to 77 GHz. The 3D
directivity is plotted in a {x, y, z} coordinate system. Both, the transmit and receive
antennas are implemented as linear arrays of eight single patch elements. While
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(a) Parameters (b) Directivity

Figure 5.11 – Microstrip patch element. In Figure 5.11 a the modeled parameters are visualized
and in Figure 5.11 b the directivity of a single patch element is given.

Figure 5.12 – Receive and transmit antennas: (1) is a single patch element, (2) a single receive
antenna and (3) a single transmit antenna.

individual receive antennas consist of a single linear array, each transmit antenna
is build up with two linear transmit antennas. Receive antennas are spaced with λ

2
and transmit antennas with 7λ

2 as stated in Section 5.1.1, which is reflected in the
sensor simulation. In Figure 5.12, the physiscal elements of the receive and transmit
antennas are annotated. While the transmit antennas are switched on sequentially,
the receive antennas are activated constantly and accordingly perceive the radar
backscatter in parallel. Hence, the directivity of all receive antennas equals the
superposition of the directivity of individual receive antennas, while the directivity
of the transmit antennas remains independent from each other. Figure 5.13 depicts
the directivity characteristics of the transmit and receive arrays. The top line shows
the different directivities such as the directivity of individual patch elements, while
the bottom line shows the two dimensional azimuth directivity cut for elevation
angle zero. A single linear antenna array features a broader beamwidth than two
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(a) Single RX (b) Full RX (c) Single TX

(d) Single RX (e) Full RX (f) Single TX

Figure 5.13 – Directivity of Figure 5.13 a single RX array, Figure 5.13 b superposed RX ar-
rays and Figure 5.13 c a single TX array. Directivity cut of Figure 5.13 a single RX array, Fi-
gure 5.13 b superposed RX arrays and Figure 5.13 c a single TX array.

or more superposed linear arrays. Along with a narrower beamwidth, sidelobes
occur. The radiator and collector are simulation-specific components that translate
the characteristics of the antenna directivity in aperture handles. The radiator
specifies the antenna gain in each direction and includes the antenna aperture as well
as the resulting directivity of the transmit antenna array. Similar to the radiator,
the collector computes the backscatter at the receive antenna arrays, whereas the
directivity of the receive antenna array is determined from the previously computed
physical array dimensions. Other than the radiator and collector, the transmitter
and receiver have physical representatives. For the transmitter stage the signal power
as well as the transmitter inherent noise are specified including thermal noise and
noise figure. The receiver stage is modeled by its gain that increases the power of
the receive signal and by the thermal noise of the receiver. The output signal of
the receiver corresponds in the simulation to the time sequence at the real receive
antenna, which is not accessible in the real world radar system. After the receiver,
mixers are located that generate a beat signal and therefore are part of the simulation
within the signal domain. The collocated transmit and receive antennas are part
of the antenna platform, that specifies the mounting position of the sensor system.
The antenna platform is specified with its initial position in {x, y, z} direction and
its velocity in {x, y, z} direction. As indicated in Figure 5.10, a vehicle can be an
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(a) Real range profile (b) Real range-azimuth (c) Real norm range-azimuth

(d) Sim range profile (e) Sim range-azimuth (f) Sim norm range-azimuth

Figure 5.14 – Measurement results for a corner reflector placed at a distance of 3 m: Fi-
gure 5.14 a resulting range profile with peak at 3 m and additional peaks obtained by the en-
vironment, Figure 5.14 b measured range-azimuth map and Figure 5.14 c normalized measured
range-azimuth-map. Simulation results for single point-scattering target at 3 m: Figure 5.14 d
simulated range profile with no additional scatterers, Figure 5.14 e according simulated range-
azimuth map and Figure 5.14 f normalized simulated range-azimuth map.

antenna platform, for example. Here, the antenna platform corresponds to the ego
vehicle. While the velocity is stationary and therefore remains the same during signal
acquisition, the antenna platform position is updated after each pulse.
The developed radar sensor modeled was validated by point-wise measurements

against real measurements. For that purpose, a common comparable interface of the
real and virtual radar sensor is necessary. As the real radar sensor of the Radarbook
offers the opportunity to access the beat signal, which is rare in commercial radar
systems, this was the interface of choice. Both, the simulated and the real world
discretized beat signal {sb,v[k], sbr [k]} are processed with exactly the same algorithms
on a host PC. Therefore, differences that occur during the evaluation can be traced
back to the environment or the sensor itself that is still an abstraction of the real
world sensor. A challenging task is to model the real world environment within the
simulation, especially as reflecting points need to included manually. Since objects
consist of a huge number of reflecting targets and NLOS propagation brings even
visually obscured targets back to the radar, it means a tedious work with little benefit
apart from modeling exactly one single scene. While simulated environments can only
hold explicitly stated objects with a limited number of attributes, a real environment
contains an arbitrary high level of detail. For validation, a clear relation between the
observed real-world scenario and its virtual representative is essential. Therefore, it
was necessary to consider the limitations of the environment simulation and design
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(a) AgSim solution by Creanex (b) Radar simulation

Figure 5.15 – Co-Simulation with agricultural environment simulation. Figure 5.15 a The ra-
dar is mounted on the harvester. The trailer is modeled as point target with adequate RCS.
Figure 5.15 b shows the resulting radar output that indicates the trailer as a peak.

the radar measurements according to that. The initial goal for testing and validating
the radar sensor was to qualify its functionality with regard to peak detection within
the range-azimuth dimension. Accordingly, weather and environment conditions with
impact on the measurements had to be avoided.
To mimic reflectivity of point targets, that are the most straightforward target

in a simulation, cube corners were used to approach the reflecting behavior from
a point scatterer as close as possible. The static corner reflectors were positioned
at distances ranging between 1 m and 10 m while the radar sensor was rotated
within the angles ±45 deg. This simple scenario was adapted in the simulation with
point targets positioned accordingly. For validation the localization and level of
the maximum peak in the range profile as well as in the range-azimuth map were
determined and compared. Corner reflectors were used as validation targets, because
they approximate the focused reflexion characteristic of a sphere, while featuring
higher target gains with lower dimensions than spheres. That also implies, that the
reflected signal power within the radar beam is bundled, thus ensuring that most of
the transmitted power is reflected back to the radar.

Figure 5.14 depicts the measurement and simulation results. While the upper line
contains the measurement results, the bottom line shows the according simulation
results. Although at first sight the results seem to differ, a closer look proves a
variation of less than 1 dB at peak level and the correct localization of the target. The
remaining differences have their source mainly in the differences between simulation
and measurement environment. While the simulation does not contain any other
reflecting targets or surfaces in the surrounding environment, the measurements
were taken in a parking house. Apart from the backscatter of the corner reflector,
clutter from ground, ceiling, sidewalls and columns were obtained. An idea about
the characteristic of the environment is given in Figure 5.4, that displays the same
measurement surroundings. The outline of the maximum peak itself in Figure 5.14 c
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reveals how the used corner reflector still differs from a point-scattering target
and shows to be extended compared to the outline of the peak in the simulation
Figure 5.14 f. It becomes even more obvious while comparing the peak width in
the measured Figure 5.14 a and simulated Figure 5.14 d range profile. Artifacts
introduced by the windowing functions that are used during FFT processing, are
more present in the simulated range-azimuth map due to the lack of other scatterers.
After normalizing to 0 dB and clipping the normalized range-azimuth spectrum to
−35 dB, the effect is mitigated, see Figures 5.14 c and 5.14 f.
The radar sensor model was applied within the project European Initiative to

Enable Validation for Highly Automated Safe and Secure Systems (ENABLE-S3)
[22] to an agricultural simulation platform using asynchronous co-simulation. The
radar sensor model and system simulation where developed with MATLAB. Using
embedded Python, the simulation input from the simulation environment provided
a vector including the required information from surrounding objects and the har-
vesting machine, that acted as the antenna platform, see Figure 5.15. The project
demonstrator and the contributions by the author are documented in [78] and [77].

5.2 Noise Radar

After validating the concept of the noise modulated radar system in Section 4.3, the
aim is to test the practical functionality in more realistic conditions. The previously
developed radar system simulation of Section 5.1.3 serves as an early stage evaluation
platform. Spatial sparsity is crucial for CS based signal processing that is applied to
retrieve information about reflecting targets. The emulation of the radar sensor and
its spatial illumination characteristics may confirm the functionality of the system in
real world applications. Therefore, the spatial sparsity assumption is tested under
more realistic conditions. The modularity of the radar system simulation allows
to replace single blocks while preserving the remaining simulation setup, which
enables to perform fair comparisons between variable components. The radar sensor
model is the heart of the system emulation and is applied for different radar system
architectures. Reflecting targets, propagation channel and weather conditions vary
during the simulation but always in the same way for all radar architectures. The
environment simulation plays an important part in system evaluation as it allows
a direct comparison of the performance of different systems. Otherwise, this is not
possible between a real and a virtual system as results from the validation performed
in Section 5.1.3.
For emulating the noise radar system, the signal domain of the radar system

simulation is replaced by a signal generation providing noise modulated transmit
pulses. The signal processing is realized with a reduced correlation receiver using
a subset of correlation filters. In parallel, a second radar system is implemented
for comparison and benchmarking. This reference LFMCW radar system represents
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commercial state-of-the-art automotive radar systems. It has been evaluated how
the emulated noise radar system performs under different conditions. Furthermore,
the noise radar and LFMCW radar system emulations are tested regarding their
performance during interference. Robustness against interference is a weak point
for FMCW radar systems, motivating the development of alternative systems. The
impact of the noise radar system on FMCW performance is also illuminated to give
an outlook on potential co-existence of the two different radar systems.

5.2.1 Emulation with radar sensor model

As depicted in Figure 5.16, the radar system simulation requires slight adaptations
of the radar system simulation as discussed before and illustrated in Figure 5.10.
Besides replacing the transmit waveform, analog and digital signal processing are also
affected. Instead of mixing the receive signal with the transmit signal, the first analog
processing step consists of correlating the receive signal with a subset of delayed
transmit signals, i.e. the correlation filters and at the same time CS measurement
functions. The observations are provided to the digital signal processing stage, where
the correlation functions also need to be available in order to perform the range
reconstruction using OMP.

As indicated in Figure 5.16, CS reconstruction is only performed in range direction,
while the velocity direction is performed using classical FFT computation on the
reconstructed range profile. The reason is, that there is no additional value in
applying CS for the second perception dimension as well, after the signal acquisition
issue in terms of sampling rate is already solved. CS signal acquisition reduces the
required ADC sampling rate to the PRF as only one single value needs to be sampled
per correlation filter instead of the complete beat signal sequence. Afterwards the
signal does not need to be sampled anymore, so that after reconstructing the first
dimension, which corresponds here to the range direction, it is convenient to use FFT
for resolving the second dimension, thus being here the velocity direction. During
parameter design it is necessary to choose a pulse width large enough to be affected by
the Doppler effect, if the velocity should be reproduced by using the FFT. Otherwise,
the velocity needs to be determined differently, e.g. by tracking a peak for several
measurement cycles.

5.2.2 Performance testing and impact of weather effects

For performance testing, the range profile as well as the range-azimuth map were
evaluated. The number of correlation filters M were selected in order to realize
different sub-sampling rates r = M

N
. Two targets of equal RCS at a distance in

range of 52 m and 67 m in front of the radar sensor are assumed. While the antenna
platform moves with 100 km h−1, the closer target has the velocity 150 km h−1 and
the more distant target 120 km h−1. The results are compared with results from
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Figure 5.16 – Noise radar system simulation

simulation runs performed by an emulation of the corresponding reference LFMCW
radar system. This LFMCW reference simulation differs only in signal model and
signal acquisition from the proposed noise radar system, i.e. alle other parameters
such as simulated targets and propagation channels are identical for both emulated
radar systems. Both radar systems cover the same bandwidth of 1 GHz during
NP = 210 sweeps. The range profile of the LFMCW radar system in Figure 5.17 d
shows the limitation in range resolution depending on applied bandwidt in comparison
to the noise modulated pulsed radar in Figures 5.17 a to 5.17 c, thus showing the
advantage of pulsed radar systems regarding range resolution. For the range profile
in Figure 5.17 a, 10 % of the whole set of correlation filters were used. Compared to
Figure 5.17 c, where 50 % of correlations were used, the overall noise level is increased
significantly, so that the range profile peak of the second more distant target drops
below the noise level. Similar to the proof-of-concept simulation in Section 4.3, a sub-
sampling rate of 30 % is already sufficient to obtain a sufficient PSNR for detecting
both targets in range direction. Although the second more distant peak was lost in
the overall noise level of the range profile using only 10 % of the correlation filters,
in the corresponding range-Doppler evaluation in Figure 5.17 e it becomes visible
again. The signal processing adds gain, which might be enough raising the peak level
over the noise level. It is sufficient for raising the peak level over the noise level to
perfom the FFT in Doppler direction. This signal processing step makes it possible
to determine relative target velocities. But still, using 30 % of correlations provides
a much more reliable result as shown in Figure 5.17 f. The reconstruction results for
the noise radar emulation correspond to the proof-of-concept simulation regarding
the effect of the choice of the sub-sampling rate, i.e. a limitation in reconstruction
reliability depending on the sub-sampling rate. Similar to the findings in Section 4.3,
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(a) RP M
N = 0.1 (b) RP M

N = 0.3 (c) RP M
N = 0.5 (d) RP LFMCW

(e) RD M
N = 0.1 (f) RD M

N = 0.3 (g) RD M
N = 0.5 (h) RD LFMCW

Figure 5.17 – Range profile for different sub-sampling rates, i.e. Figure 5.17 a M
N = 0.1, Fi-

gure 5.17 b M
N = 0.3 and Figure 5.17 c M

N = 0.5 for the noise radar system and Figure 5.17 d
of reference LFMCW system. Accordingly, range-Doppler maps for different sub-sampling rates,
i.e. Figure 5.17 e M

N = 0.1, Figure 5.17 f M
N = 0.3 and Figure 5.17 g M

N = 0.5 for the noise radar
system and Figure 5.17 h of reference LFMCW system.

a sub-sampling factor of 30 % proves to be sufficient to obtain a reliable and robust
range reconstruction.

Taking the insights from the weather measurements in Section 5.1.2 into account,
additional attenuation was applied to the receiver. The levels of attenuation repre-
sent radome impacting effects, that result from adverse weather conditions. Since
additional radome attenuation affects the complete backscatter, channel noise is
lowered in the same way as the target reflection. Accordingly, the signal level and
the noise level are lowered corresponding to the applied radome attenuation. The
range profile in Figure 5.18 a results from 10 dB attenuation and the range profile in
Figure 5.18 b from 20 dB attenuation. However, the limitation lies in receiver noise
and sensitivity. Therefore, while an additional radome attenuation of 50 dB as de-
picted in Figure 5.18 c still allows to detect the target peaks, an attenuation of 60 dB
cannot be compensated anymore. The limit of tolerable radome attenuation needs
to be determined for each receiver system individually and cannot be generalized.

Due to the mostly temporal characteristic of the phenomena resulting from adverse
weather effects, using narrow pulses reduces the probability of coinciding temporal
radome attenuation and receiving a reflected pulse. With longer lasting chirps such
as in LFMCW radar systems a distortion due to e.g. splash water is more likely. If
also the velocity dimension shall be resolved, instead of a single chirp a train of chirps
is transmitted, which increases the chances of making the assumption regarding
stionary weather conditions obsolete. However, in both systems target or object
tracking mitigates the impact of adverse conditions. Supporting methods to handle
temporal adverse conditions therefore consists in a mechanical design that helps to



5.2 Noise Radar 119

(a) 10 dB (b) 20 dB (c) 50 dB

Figure 5.18 – Range profile for different sub-sampling rates, i.e. Figure 5.18 a M
N = 0.1, Fi-

gure 5.18 a M
N = 0.3 and Figure 5.18 a

absorb water and prevent snow or ice layers, which is often taken into account by
implementing a heating of the radome. In addition, the electrical parameters of the
receiver stage need to be designed with sufficient safety margins to be capable of
being sufficiently sensitive for the desired low backscatter power level, especially
for LFMCW radar systems. Radar receivers using CCF, benefit from the signal
processing gain.

5.2.3 Interference in automotive radar

Interference is another factor that motivates to find new approaches for radar signal
acquisition and processing, that are feasible for future scenarios of automated cars,
where the number of radar systems on the streets is expected to be even much
higher than today. Interference from other transmitting systems operating on the
same frequency bands sum up additional backscatter and therefore disturb each
other. Hence, any receive signal sR(t) changes such as stated in a general way in
(5.12) to the resulting receive signal sR,I(t), that is the result of the sum of the
interference sI(t). Additional noise and attenuation from adverse weather conditions
are neglected in favor of clarity within this section.

sR,I(t) = sR(t) + sI(t) (5.12)

Since interference mainly affects the spectral components, it can be understood
and analyzed best in this domain. An additional issue of interference is given by
the fact, that interference is received after one-way propagation instead of two-way
propagation such as the desired radar backscatter. This can result in driving the
receiver to saturation on transistor level, which comes along with additional spectral
components as a result of clipping. In the spectral domain, the receiver side compares
the transmit signal with the receive signal, see Section 3.3. Although radar systems as
any other receiving systems can be interfered by any arbitrary systems that operate
in the same frequency band, the focus remains here on interference by either a radar
system of the same type or the opposite type as this can be assumed to be the most
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(a) RP of LFMCW (b) RP of noise radar

Figure 5.19 – Range profiles after interference from second radar system of same architecture
for Figure 5.19 a LFMCW radar receive and Figure 5.19 b noise modulated correlation receiver.

common scenario. Especially the case, where a pulsed radar system interferes with
an LFMCW radar system requires consideration as it is predictable that current
commercial radar systems will continue to play an important role within at least the
next decades. To find acceptance for new types of radar, an analysis of the impact
on common radar systems is required to ensure potential challenges as well as new
possibilities regarding the co-existence of both systems are considered thoroughly.
Therefore, the same radar sensor emulation was applied to create the reference

LFMCW as well as the suggested noise radar system. It is assumed that both radar
systems are object of interference from another radar system of equal architecture.
Figure 5.19 show resulting range profiles. Frequency shifts and delays of the regular
radar backscatter cannot be distinguished from interference in an LFMCW radar
system without additional information. Therefore, the interference appears as an
additional peak in the range profile according to Figure 5.19 a. In contrast, the
noise modulation of the pulse-based radar system, offers by design a high robustness
towards interference. Besides the inherent robustness against interference of pulsed
radar systems, the noise modulation acts as a unique fingerprint to each pulse, which
leads to a stable interference suppression as long as the interfering radar system does
not produce the same pseudo-random noise. Hence, the interference suppression
works only for truly uncorrelated random or pseudo-random processes for all involved
radar systems. With these assumptions, the resulting range profile in Figure 5.19 b
shows only the peak from a target that was illuminated by the radar system and no
peaks resulting from the interfering radar system.

To determine the impact of a noise pulse radar system on an LFMCW radar system,
the computation of the beat frequency fb(t) is analyzed, which was elaborated in
Section 2.1.2. The beat frequency is the frequency difference of the transmitted
and received frequency ramp in an LFMCW radar system. However, in case of the
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existence of an interference source within the range of the receiving radar system,
interfering frequency components denoted as fI(t) are added to the receive signal,
see (5.13).

fb,I(t) = fT (t)− (fR(t) + fI(t)) = fb(t)− fI(t) (5.13)

Assuming P pulses and L reflecting targets, the received frequency aggregation from
the LFMCW radar system fR,LFMCW (t) corresponds to (5.14), where the transmitted
frequency ramp is shifted by the round-trip time τr,l and the Doppler shift fD,l. The
window function h(t) limits the signal to the chirp duration Tc.

fR,LFMCW (t) =
P,L−1∑
p,l=0

[α(t− 2τr,l − ptp) + fD,l]h (t− Tc − 2τr,l − ptp) . (5.14)

In an LFMCW radar system of bandwidth B with chirp rate α = B
Tc
, the frequency

shift corresponding to the propagation time is computed by

fr,l,LFMCW = ατr,l = α · 2rl
c

(5.15)

and the Doppler shift with

fD,l,LFMCW = ατD,l = α · −2vr,l · pτp
c

. (5.16)

For the noise radar system, the frequency definition of the receive signal fR,NW (t) is
given according to (5.17) such as stated by the author in [85]. Assuming N spectral
components fn weighted with randomly generated factors wn, the received frequency
is the sum of L reflected targets and P reflected pulses. Compared to the LFMCW
radar system, the window function is smaller, because the pulse length ts is less than
the chirp length Tc.

fR,NW (t) =
P,L−1∑
p,l=0

N−1∑
n=0

[wnfn + fD,l,pulse]h (t− ts − τr,l − ptp) (5.17)

In contrast to the LFMCW system, the Doppler shift does not depend to the chirp
rate α and also adheres only to one-way propagation instead of two-way propagation:

fD,l,Pulse = −vr,l
c0 · ptp

. (5.18)

Considering (5.13), the resulting Doppler shift is the difference of the two-way
propagation LFMCW Doppler and one-way propagation noise pulse Doppler shift.
For the sake of simplification it is assumed, that a reflecting target l is a transmitting



122 5 Demonstrator and Experimental Results

Figure 5.20 – Scenario of LFMCW radar system interfered by noise radar system

radar platform at the same time as depicted in Figure 5.20. Accordingly, the
Doppler shift results into (5.19), where fD,I denotes the Doppler frequency shifted
by interference Doppler.

fD,I = fD,l,LFMCW − fD,l,Pulse =
−vr,l

(
2αp2t2p + 1

)
c0ptp

. (5.19)

The beat frequency of the LFMCW radar system is impacted by the pulsed noise
radar system only during the pulse duration as stated with the window function
in (5.20). After the parameters of the environment and target were assumed to be
stationary during individual chirps, the pulsed interference therefore changes the
beat into a time dependent variable.

fb,I(t) =
P,L−1∑
p,l=0

(
ατr,l − fD,I −

N−1∑
n=0

wnfn

)
h (t− ts − τr,l − ptp) . (5.20)

Apparently, the suggested noise radar system is a distortion to LFMCW radar systems,
which was to be expected. However, the duration of the interference distortion is
short compared to another LFMCW radar system. This has been elaborated by the
author in [87]. In a cognitive design it is possible to implement a timing for the
pulsed radar system that transmits only during the down-chirps that are not acquired
by the LFMCW radar system or during system inherent transmission breaks, e.g. for
chirp configuration or signal processing, just as presented by the author in [90] and
[61]. Compared to non-modulated pulsed radar systems, the noise modulation allows
to apply lower power levels, which in addition prevents the interfered radar system
to leave the linear operation point and go into saturation. Hence, a co-existence
between the noise radar system and LFMCW radar systems is possible. Apart from
that, noise modulation and the pulse architecture enable a radar perception that
proves to be robust towards noise. Therefore, the suggested noise radar states a
promising design that meets the challenges and requirements for future radar systems
for automated driving.
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Autonomous driving is expected to reduce fatal accidents significantly, but also
to lead to more efficient mobility concepts after removing human drivers from the
steering wheel. However, automated driving has to be highly reliable to be trusted
and accepted. So far, there are still many safety and security concerns that are rising
whenever an automated vehicle is involved in an accident. Although human drivers
are probably more failure prone, the expected higher safety standard for autonomous
vehicles needs to be fulfilled in order to reach broad acceptance. Satisfying higher
levels of safety requires the improvement and development of current sensor systems
used for ADAS.

Radar sensors are a key component for realizing autonomous driving because their
performance remains robust in adverse or difficult environmental conditions. Beyond
fulfilling complementary sensor functions, additional information such as distance
or velocity are obtained by the radar, too. For automotive radar systems there are
two main aspects that are subject of research and development. These are on the
one hand increasing efficiency and robustness for radar sensor signal acquisition
and processing, and on the other hand accelerating validation and verification of
systems with more and more increased complexity. While the first aspect requires
the development of new signal acquisition and processing methods, the second aspect
requires a paradigm change regarding test systems.

In this thesis, the question was addressed how to improve the architecture and how
to reduce the effort in signal acquisition for advanced radar applications needed for
highly automated and autonomous driving. A noise modulated pulsed radar waveform
was suggested to improve robustness against interference. The signal acquisition
effort was significantly reduced by applying CS methods for signal acquisition and
reconstruction. A demonstrator based on a phenomenological sensor simulation was
used to compare the performance of the suggested Compressive Sensing noise radar
system with a typical LFMCW radar system. The phenomenological radar sensor
simulation was developed according to a real radar system. Furthermore, the sensor
simulation was validated against that radar system. The results showed, that the
suggested noise radar system with its CS based correlation receiver is capable to
perform in a very consistent and reliable way, while reducing the signal acquisition
significantly compared to standard correlation receivers. It was able to outperform
the baseline LFMCW radar system during low SNR and interference scenarios.
First, an insight was given to automotive radar systems and CS. Underlying
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principles and theory were introduced, while highlighting some particular aspects
such as environmental conditions, different radar architectures and interference. In the
state-of-the-art section an overview was given on CS approaches and implementations
as well as automotive and noise related aspects. The main part presented and
evaluated different ways of using CS for automotive radar systems in order to either
improve or extend their functionality. The concept of a noise radar system using CS
for automotive applications was analyzed in detail and tested in a proof-of-concept
simulation. The successful simulation prototype was transferred to an emulation of
a noise radar system with CS signal acquisition and processing. The sensor model
applied in the emulation was developed according to a physical radar system. Besides
testing the functionality of the suggested radar system, the robust performance
during adverse weather conditions, which were derived from measurements, was
evaluated as well as the robustness towards interference from another radar system.
With increasing computational power that is available in passenger cars, which

enables automated driving, new possibilities arise for signal processing methods
that are computationally intensive. Therefore, it was the intention of this work
to contribute to the exploration of such method that support automated driving
and sensing in particular by illuminating how CS can be used for automotive radar
systems. It was the aim to present methods for future radar systems that apply CS in
order to shift the analog signal acquisition effort into the digital domain where signal
processing benefits from increased computational capabilities. Using a CS based
method, it was the aim to show how the signal acquisition effort can be reduced,
while even increasing the system robustness. With an virtual implementation of
the suggested radar system, the feasibility of the approach was demonstrated. That
included the goal of developing a radar sensor model and validate it against point-wise
real world measurements. To be able of deriving strong and reliable statements about
the radar system performance, it was aimed at introducing realistic adverse impacts
such as adverse weather conditions compromising the radome. Finally, future testing
purposes were intended to be realized by connecting the radar system simulation to
an environment simulation. Hence, this thesis comprises a sum of individual goals
serving different aspects but having the common purpose of paving the way for safe
automated driving in the future by using innovative strategies for radar systems.
The analysis of possible CS applications to automotive radar systems revealed

a variety of methods that allow to either to reduce the signal acquisition effort or
augment radar functionality. For pulsed radar systems, CS can be applied to reduce
the sampling rate significantly. However, the example of a SAR implementation or
a phased array system demonstrate that CS can be also used to increase spatial
resolution. Although especially RMPI comes along with a reduction of sampling
effort by 80 % to 90 %, a reduced correlation receiver turned out to be a preferable
implementation. Compared to usual correlation receivers the dimension of the corre-
lation filter bank can be reduced by 70 % and the sampling frequency is reduced to
the PRI. With only 30 % of correlations, i.e. measurements, range information about
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reflecting targets can be reconstructed even for an SNR below zero, which outperforms
significantly SNR levels of 10 dB to 20 dB in automotive propagation channels. The
robust performance and the reduced measurement and signal acquisition effort were
confirmed in a radar system emulation that mimics spatial characteristics of a real
radar sensor. This confirms the plausibility of the suggested radar system, since spa-
tial sparsity is the key characteristic in the CS signal acquisition and reconstruction
method.

The developed radar sensor model was validated against real radar measurements
using the physical LFMCW radar system. The validation was performed using
point-wise measurements with a corner reflector. In addition, the physical radar
system was used to develop models that reflect the radar behavior in adverse weather
conditions. The main factor, which impacts the radar performance, turned out to be
water covering the radome. Therefore, the focus was to determine different static
and dynamic realistic automotive scenarios. It was concluded from measurements
that splash water not only attenuates the radar backscatter by approximately 20 dB,
but that it also results in blurs due to the lens effect of water. Water sprinkles cause
with up to 10 dB less attenuation due to the incomplete partial coverage by water of
the radome. Depending on the surface structure the radome and therefore the radar
perception recovers soon after the application of water sprinkles or a splash water
incident, so that the impact can be mitigated by target tracking. The emulated
noise-radar system proved to tolerate additional radome attenuation up to 60 dB.
The limitation comes from electrical parameters of the receiver stage, i.e. sensitivity
and noise figure.
Besides robustness, interference plays an important part in evaluating the per-

formance of a radar system. It was demonstrated, that the noise radar system
operates in an interference-proof way. Compared to an LFMCW radar system, where
interference causes additional spikes, the noise radar system detects only peaks that
result from reflecting targets. An interfering signal from another radar system is not
reconstructed by the CS processing algorithm but only backscatter that originates
from the own sensor system. On the one hand, pulsed radar systems are already
proof towards interference, because of the correlation receiver. But only the noise
modulation makes sure, that only pulses that were transmitted by a specific radar
are reconstructed, while not spreading the pulse in time domain such as other modu-
lation approaches. Furthermore, the co-existence of LFMCW radar systems with the
suggested noise radar systems was analyzed. The acceptance of new radar concepts
depends on a seamless introduction to market while current commercial radar systems
are not impacted in their performance. Compared to a non-modulated pulsed radar
system, the noise waveform with its low transmit power prevents LFMCW receiver
most likely from clipping.
With the broad scope of automotive radar related aspects, that ranges from CS

acquisition methods over radar architectures to virtual validation and verification
methods the work provides many connecting factors for future research. In order
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to meet alternating requirements on the CS based receiver stage, adaptive signal
acquisition methods can be analyzed in order to preserve the perception robustness
during a changed spatial sparsity, for example. In addition, implementing a cognitive
pulse transmission concept will improve the suggested radar system regarding its
ready-to-market level. Although any pulsed radar system acts as a jammer to
LFMCW radar systems, it was demonstrated in other projects by the author how
the impact can be mitigated by a cognitive design that makes use of transmission
pauses. Before implementing the noise radar system in silicone, tests with a realistic
environment simulation will be beneficial to avoid overlooking pitfalls. Using a
realistic environment simulation will allow to extend the suggested noise radar
system to an imaging SAR, which will add significant value to the radar system for
automated driving. These are only few examples for connecting points, but it shows
that the field of CS in automotive radar systems remains an exiting research field.
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A2I analog-to-information

ABF adaptive beamforming

ACC adaptive cruise control

ACF autocorrelation function

ACPS automated cyber-physical systems

ADAS advanced driver assistance systems

AD analog-to-digital

ADC analog-to-digital-converter

AIC analog-to-information converter

AF array factor

AoA angle-of-arrival

AWGN additional white Gaussian noise

BP basis pursuit

BPDN basis pursuit denoising

BSD blind spot detection

CCF cross-correlation function

CFAR constant false alarm rate

CIC cascaded-integrator-comb-filter

CS Compressive Sensing

CW continuous-wave
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DBF digital beamforming

DCR direct conversion receiver

DCT discrete cosine transformation

DoA direction of arrival

DSP digital signal processor

DTC digital-to-time converter

EAES Entwurf und Architektur Eingebetteter Systeme

EBF eletronic beam forming

EBS electronic beam steering

EMR electromagnetic radiation

ENABLE-S3 European Initiative to Enable Validation for Highly Automated Safe
and Secure Systems

ESA electronical steerable arrays

ESD electro-static discharge

FAR false alarm rate

FFT fast fourier transformation

FHT Fast Hadamard Transform

FM frequency modulated

FMCW frequency modulated continuous wave

FoV field-of-view

FPGA field programmable gate array

GPU graphic processing unit

IEEE Institute of Electrical and Electronics Engineers

IF intermediate frequency

IFFT inverse FFT

IC integrated circuit
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IP interior-point

ISI inter-symbol interference

ISM industrial-scientific-medical

ITS Intelligent Transport Systems

ITU International Telecommunication Union

LabRadOr laboratory radar system

LFMCW Linear FMCW

LFSR linear feedback shift registers

LO local oscillator

LOS line-of-sight

LPDC low-density parity check

LPF low-pass filter

LRR long range radar

LS least squares

LVDS low-voltage differential signal

MF matched filter

MIMO multiple-input multiple-output

MLS maximum length sequences

MLFSR maximum length feedback shift register

MRI magnetic resonance imaging

MRR mid range radar

MWC modulated wave converter

NATO North Atlantic Treaty Organization

NLOS non-line-of-sight

OFDM orthogonal frequency division multiplexing
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OMP orthogonal matching pursuit

PBR pseudo-binary random

PCB printed circuit board

PCR pulse compression rate

pp percentage points

PRF pulse repetition frequency

PRN pseudo-random noise

PRI pulse repetition interval

PSF point-spread function

PSNR peak signal-to-noise ratio

RCS radar cross section

RF radio frequency

RIP random isometry property

RMPI random modulated pre-integration

RNR random noise radar

SAR synthetic aperture radar

SDR software-defined radio

SOTA State-of-the-Art

SIR signal-to-information

SNR signal-to-noise-ratio

SPR sidelobe-to-peak-ratio

SRR short range radar

SuT system under test

TCP/IP Transmission Control Protocol/Internet Protocol

ToF time-of-flight
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TWD through-wall-detection

UWB ultra-wide band

V2V vehicle to vehicle

V2I vehicle to infrastructure

V2x vehicle-to-x
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MIMO-77-TX4RX8 (Preliminary)

3 77-GHz MIMO Frontend

In Fig. 1 the block diagram of the 77-GHz frontend with four transmit (TX) and eight receive
(RX) antennas is shown. The frontend is designed to enable MIMO radar processing for FMCW
waveforms with multiple transmit antennas. The TX antennas can be activated by means of digital
signals in an arbitrary manner in order to implement a virtual array with improved angular resolu-
tion capabilities. According to the block diagram, a RTN7735 in conjunction with the RCC1010 is
used to generate the FMCW transmit signal. The four transmit antennas (TX1 - TX4) are fed from
RPN7720 dual power amplifiers and can therefore be activated in an arbitrary sequence by means
of digital control signals. The activation sequence can be programmed with the trigger and timing
unit implemented in the FPGA of the Radarbook. In addition, the general purpose output signals
of the RCC1010 can be used to control the activation of the TX antennas. The receive path on

Figure 1: Antenna configuration and naming convention for MIMO frontend.

the left side of the frontend is realized with two RRN7745 receivers. The LO signal for the receiver
chips is provided by the first two RF outputs of the RTN7735. The remaining RF output is used
to drive the transmit circuitry of the frontend. The naming convention for the RPN7720 (IFTX1
- IFTX3) and the receive chips (IFRX1 and IFRX2), depicted in the block diagram, is used in the
software framework of the Radarbook to access the different devices. This is required to program
defined activation sequences for the transmit antennas. For example the first RF output of IFTX1
is used to activate the transmit antenna TX1 and the second output is used for antenna TX2. In
the following section the main features of the evaluation plattform consisting of the MIMO frontend
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in conjunction with the Radarbook are summarized.

3.1 Features of the FMCW Radar System

The frontend is designed to operate with the Radarbook and can be configured freely to the needs
of the application at hand. The main features of the frontend include

� Four TX channels,

� Eight RX channels (RRN7745) with differential IF outputs,

� Amplitude power control for all four transmit channels,

� Analog signals for power and temperature monitoring,

� Differential signals for clock synchronization (input and output of RF clock), and

� Frontend identification and storage of calibration data by means of an integrated EEPROM.

The frontend can be operated with the Radarbook. The Radarbook offers a TCP/IP or a USB 3.0
interface, which can be used to configure the modes of operation for the FMCW radar system. The
timing of the FMCW waveform as well as the FMCW ramp parameters can be programmed and
the IF signals can be recorded in real-time. The main features provided by the Radarbook include

� Sampling rates up to 20 MSPS per IF channel,

� Ramp synchronous sampling,

� Arbitrarily programmable FMCW timing,

� MIMO processing with arbitrary antenna activation,

� Configurable signalprocessing, and

� 100 MBit TCP/IP or USB 3.0 interface.
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4 Technical Data of the MIMO Frontend

In the following sections the mechanical and the electrical parameters of the frontend are summa-
rized.

4.1 Mechanical Data

The frontend is built to interface with the Radarbook. In Fig. 2 the dimensions of the board as well
as the position of the mounting holes are depicted. In Tab. 1 the dimensions of the frontend and its
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Figure 2: Dimensions of the MIMO frontend including the position of the mounting holes.

weight are summarized. In the current version the frontend is very lightweight as now additional
heat sink is integrated on the frontend.

Parameter Value

Substrate RO-3003

Dimension x-direction 100 mm

Dimension y-direction 100 mm

Weight frontend 40 g

Weight (frontend and Radarbook) 177 g

Weigth (frontend, Radarbook, and housing) 410 g

Table 1: Mechanical parameters of the MIMO frontend.

An Altium template containing the contour and position of the frontend connector is available
on request.
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4.2 Antenna Configuration

The positions of the transmit and receive antennas are shown in Fig. 3. The origin of the Cartesian
coordinate system is located at the receive antenna RX1. In Tab. 2 the x-coordinates of the
antennas are summarized. All mentioned positions are in mm.

Figure 3: Antenna positions of the MIMO RF frontend.

TX Antenna x-Position (mm) RX Antenna x-Position (mm)

TX1 25.614 RX1 0.000

TX2 39.250 RX2 1.948

TX3 52.887 RX3 3.896

TX4 66.523 RX4 5.844

RX5 7.792

RX6 9.740

RX7 11.690

RX8 13.640

Table 2: Positions of transmit and receive antennas.

The receive antennas are búılt with serial fed patch antennas with eight elements. The transmit
elements use two serial fed patch antennas which are fed from the differential output signal of the
power amplifier.

Parameter Value Unit

GRX Realized Gain (RX) 15.8 dBi

∆SRX Sidelobe suppression (RX) -18 dB

ΘH Horizontal 3 dB beamwidth (RX) 76.5 ◦

ΘV Vertical 3 dB beamwidth (RX) 12.8 ◦

GTX Realized Gain (TX) 17.2 dBi

∆STX Sidelobe suppression (TX) -14 dB

ΘH Horizontal 3 dB beamwidth (TX) 51 ◦

ΘV Vertical 3 dB beamwidth (TX) 13.2 ◦

Table 3: Antenna parameters.
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4.3 Electrical Parameters

In Tab. 4 the electrical parameters of the frontend are specified.

Parameter Condition Min Typ Max Unit

VC1 Supply voltage C1 - 3.2 3.3 3.4 V
VC2 Supply voltage C2 - 4.9 5.0 5.1 V
VC3 Supply voltage C3 - 3.2 3.3 3.4 V
IC1 Supply current C1 @ 3.3 V / all TX enabled - - 2100 mA
IC2 Supply current C2 @ 5.0 V - - 200 mA
IC3 Supply current C3 @ 3.3 V - - 860 mA

Pt Max RF output power 10 dBm
- TX/TX isolation - 22 dB
ft Transmit frequency 76 - 77 GHz

Table 4: Electrical parameters of the frontend.

For a more detailed description of the electrical parameters refer to the data sheet of the
transceivers (RPN7720 and RRN7745).
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4.4 Frontend Connector

The frontend connector is used to interface the frontend with the Radarbook. The connector
supports three programmable supply voltages, 24 digital control signals for the configuration of the
frontend, 12 differential IF signals, and four analog signals for status monitoring. In Fig. 4 the
schematic of the connector is shown.

Figure 4: Schematic of the frontend connector.

The digital control signals are used for operating and testing the FMCW frontend. The digital
signals require a 3.3 V CMOS standard. The configuration of the receivers and the power amplifier
is done with an SPI interface. The reveivers and the power amplifier in the transmit path share a
common SPI interface named (Cfg). The RCC1010 uses a separate SPI interface in order to enable
a fast reconfiguration of the waveform generateion.
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PIN Signal Radarbook Signal Frontend Description

74 FpIO HS1 SpiCfg.Ena IFTX2 SPI enabale for IFTX2 (Cfg)

72 FpIO HS2 SpiCfg.Ena IFTX3 SPI enabale for IFTX3 (Cfg)

70 FpIO HS3 SpiCfg.Ena IFTX1 SPI enabale for IFTX1 (Cfg)

68 FpIO HS4 SpiCfg.So SPI slave data output (Cfg)

73 FpIO HS5 IFTXPaCon.IFTX2 2 Power control PACON2 for IFTX 2

71 FpIO HS6 IFTXPaCon.IFTX2 1 Power control PACON1 for IFTX 2

69 FpIO HS7 IFTXPaCon.IFTX1 2 Power control PACON2 for IFTX 1

67 FpIO HS8 IFTXPaCon.IFTX1 1 Power control PACON1 for IFTX 1

Table 5: Digital control signals for operating the FMCW frontend.

PIN Signal Radarbook Signal Frontend Description

66 FpIO LS1 SpiCfg.Ena IFRX2 SPI enabale for IFRX2 (Cfg)

65 FpIO LS2 IFTXPaCon.IFTX3 1 Power control PACON1 for IFTX 3

62 FpIO LS3 SpiCfg.Ena IFRX1 SPI enabale for IFRX1 (Cfg)

61 FpIO LS4 SpiCfg.Si SPI slave data input (Cfg)

60 FpIO LS5 Rx DigTst Digital test input (RX1 and RX2)

59 FpIO LS6 SpiCfg.Clk SPI clock (Cfg)

58 FpIO LS7 Rcc.Demux1 RCC1010 Demux 1 signal

57 FpIO LS8 Rcc.Demux2 RCC1010 Demux 2 signal

56 FpIO LS9 Rcc.Rst RCC1010 Reset signal

55 FpIO LS10 Rcc.SpiClk RCC1010 SPI clock signal

54 FpIO LS11 Rcc.SpiSi RCC1010 SPI slave data input

52 FpIO LS13 Rcc.SpiSo RCC1010 SPI slave data output

50 FpIO LS15 Rcc.SpiEna RCC1010 SPI enable

Table 6: Digital control signals for operating the FMCW frontend.

PIN Signal Radarbook Signal Frontend Description

8,10 IFG1.IF1 P N IF.4 P N IF signal IFRX1

4,6 IFG1.IF2 P N IF.3 P N IF signal IFRX2

31,33 IFG1.IF3 P N IF.6 P N IF signal IFRX7

27,29 IFG1.IF4 P N IF.5 P N IF signal IFRX8

32,34 IFG2.IF7 P N IF.8 P N IF signal IFRX5

28,30 IFG2.IF8 P N IF.7 P N IF signal IFRX6

24,26 IFG2.IF9 P N IF.2 P N IF signal IFRX3

20,22 IFG2.IF10 P N IF.1 P N IF signal IFRX4

Table 7: Analog IF signals for the receive channels.
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5 Frontend Configuration with Radarbook

The RF frontend can be operated in connection with the Radarbook. The frontend connector is
used to supply and configure the 77-GHz frontends by means of the FPGA. In the following sections
the implemented device drivers and the commands for accessing the drivers are explained in more
detail. The logical mapping of the transceivers is required to configure and operate the frontend.

The FPGA software of the Radarbook provides device drivers for the different RF chips. In
Fig. 5 the software components being used for configuring and operation the frontend are shown.
The drivers for configuring the sampling chain and for the power supply are not included in the
block diagram. The command interface accepts standardized commands from different interfaces

Figure 5: Software architecture and device drivers for frontend configuration.

(ARM, RS232) and forwards the commands to the implemented device drivers. The command
header is used to select the device driver and if multiple devices of the same type are present (e.g.
three IFTX devices, or two receive chips) then a bitmask is used to address the desired component.
The use of a bitmask allows to access multiple devices with a single command. The RF chips as-
sembled to the frontend are accessed by means of SPI compatible interfaces. Therefore, the device
drivers for IFTX, RCC, and IFRX use SPI interfaces (USPIF and USPI8) to access the chips of the
frontend. The USPIF features four SPI interfaces sharing a common clock and data signal whereas
the USPI8 MMP features up to 8 SPI interfaces.

In addition, the Radarbook drives the PACON inputs of the RPN7720 devices of the RF fron-
tend. The PACON signals are connected to the digital configuration Chn0Cfg of the SEQTRIG
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MMP. This enables the activation of different transmit antennas for subsequent measurement cycles.
The mapping of the PACON signals is described in Sec. 5.2.

5.1 RF Device Configuration with SPI Interface

To configure the frontends, SPI compatible interfaces (USPIF and USPI8) are used. The USPIF
is used to interface the RCC1010. The USPIF MMP provides a fully configurable SPI interface
for four distinct SPI channels with a common clock and common MOSI and MISO data signals.
In addition, the MMP includes a transmit and receive FIFO to enable fast block transfers without
interaction from the softcore controller. In the implemented FPGA framework the RCC1010 does
not share its MOSI and MISO signals with other devices in order to ensure a fast configuration of
the FMCW radar system. The channel mapping of the implemented USPIF interface is listed in
Tab. 8. The RCC1010 is connected to channel 0 of the USPIF MMP.

MMP Chn RF Device

USPIF 0 RCC1010

USPIF 1 Not connected

USPIF 2 Not connected

USPIF 3 Not connected

Table 8: Channel mapping of the USPIF MMP.

The USPI8 is compatible to the USPIF interface but offers eight distinct chip enable signals.
Hence, eight devices with a common MOSI and MISO signal can be accessed from a single MMP.
Each channel has its own set of configuration registers. The USP8 is used to access the IFTX
devices as well as the four receiver chips. In Tab. 9 the channel mapping of the USPI8 interface is
summarized.

MMP Chn RF Device

USPI8 0 IFTX1

USPI8 1 IFTX2

USPI8 2 IFTX3

USPI8 4 IFRX1

USPI8 5 IFRX2

Table 9: Channel mapping of the USPI8 MMP.

The different transceiver chips can be accessed by the SPI interfaces. In order to simplify the
configuration, the software implements device drivers for the different RF chips. In the following
section the device drivers for the transmit IFTX and the receive devices IFRX are described in
more detail.
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5.2 IFTX Digital Power Control with SEQTRIG MMP

The SEQTRIG MMP is used to program the timing of the transmit waveform and in addition
it enables the control of the PACON signals of the IFTX devices. These signals can be used to
control the output power of all IFTX devices, if the power control is activated in the IFTX power
control registers. Therefore, the signals can be used to digitally control the activation of the four
transmit antennas. In Fig. 6 the output signals of the SEQTRIG MMP are shown. The Chn0Cfg

Figure 6: Output signals of the SEQTRIG MMP.

configuration word is used to control the PACON signals of the transmit power distribution. A
single bit of the configuration word is used to set the signal during a phase. Hence, the configuration
words can be used to select the desired transmit antenna. In Tab. 10 the routing of the PACON
signals is summarized.

In Tab. 10 the signal name D1 PC1 refers to the PACON1 signal of IFTX1 and D1 PC2 to the
PACON2 signal of IFTX1.

D07 D06 D05 D04 D03 D02 D01 D00

- - - D3 PC1 D2 PC2 D2 PC1 D1 PC2 D1 PC1

Table 10: Byte 0 of configuration word Cfg0 of SEQTRIG MMP.
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6 List of Abbreviations

CAN . . . Controller Area Network

FIFO . . . First In First Out

FMCW . . . Frequency-Modulated Continuous Wave

FPGA . . . Field Programmable Gate Array

MMP . . . Memory Mapped Peripheral

MIMO . . . Multiple Input Multiple Output

MISO . . . Master In Slave Out

MOSI . . . Master Out Slave In

RF . . . Radio Frequency

RX . . . Receive

SEQTRIG . . . Sequence Trigger Unit

SPI . . . Serial Peripheral Interface

TX . . . Transmit

USPIF . . . Universal Serial Peripheral Interface with FIFO
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Background to related methods

1 Mathematics

1.1 Fourier Transformation

The duality of the Fourier transformation comprises the following properties.

e jω0tx(t) dX(ω − ω0) (1)

x(t− t0) de−jωt0X(ω) (2)

ax(t) + by(t) daX(ω) + bY (ω) (3)

x(at) d 1
|a|
X(ω

a
) (4)

∂

∂t
x(t) djωX(ω) (5)

x(t) ∗ y(t) dX(ω) · Y (ω) =
∫ ∞
−∞

x(τ)h(t− τ) d τ (6)

x(t) · y(t) d 1
2π

∫ ∞
−∞

X(γ)Y (ω − γ) d γ (7)

1.2 Information and signal theory

Cauchy-Schwarz inequality with real x1(t), x2(t)

[∫ b

−b
x1(t) · x2(t) d t

]2

6
∫ b

−b
x1(t)2 d t

∫ b

−b
x2(t)2 d t (8)
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2 CS Algorithms

2.1 OMP

%% Orthogonal Matching Pursuit
%-------------------------------------------------------------------------%
% [Tropp2007]: Signal Recovery From Random Measurement Via Orthogonal
% Matching Pursuit
%-------------------------------------------------------------------------%
% Input:
% Phi Nxd measurement matrix
% v Nx1 observation vector (data vector)
% m: level of sparsity (ideal vector)
%
% Output:
% s_hat dx1 estimate of ideal signal
% Lm mx1 Index vector, containing m elements from
% {1,..,d}
% am Nx1 approximation of observation
% rm Nx1 residual rm=v-am
%
% Revision
% Version | Date | Author |
% V1.0 | 30.09.2015 | Zora Slavik | init version
% V1.1 | 09.02.2016 | Zora Slavik | subst. ls_solver
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%function [s_hat,Lm,am,rm]=omp2(Phi,v,m)

% Init
s_hat=zeros(length(Phi),1);
Lm=zeros(m,1);
rm=v;

eps=1e-6;

for t=1:1:m

% index for maximal spatial product
[val,Lm(t,1)]=max(Phi’*rm);
% update subspace of measurement matrix Phi_t
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Phi_t(:,t)=Phi(:,Lm(t,1));

% LS: min||v-Phi_t*xt||_2
xt=general_inverse(Phi_t)*v;
%xt=ls_solver(Phi_t,v);

% update data approximation
am=Phi_t*xt;
%update residual
rm=v-am;

if(norm(rm,2)<eps)
s_hat(Lm(Lm~=0))=xt;
return;

end

end

s_hat(Lm(Lm~=0))=xt;

2.2 CAMP

%% Complex Approximate Messsage Passing (CAMP)
%-------------------------------------------------------------------------%
% [Anitori2012]: Compressive CFAR radar detection
%-------------------------------------------------------------------------%
% input:
% b observation
% A reconstruction matrix
% thr user defined threshold
% dthr threshold step, only for adaptive approach
% delta sets residual step
% output:
% x_hat resulting x estimate
% x_est residual estimate
% sigma_hat estimated standard deviation of the total noise
%
% Revision
% Version | Date | Author |
% V1.0 | 23.09.2015 | Zora Slavik |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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function [x_hat,x_est,sigma_hat]=camp(A,b,thr,dthr,delta)

% Init
if isempty(dthr)

tthr=thr;
else

tthr=thr:-dthr:0;
end

X_hat=zeros(length(A),length(tthr));
X_est=zeros(length(A),length(tthr));
Sigma_hat=zeros(1,length(tthr));
x_hat=zeros(length(A),1);
z=b;
maxiter=100;

for l=1:length(tthr)

for t=1:maxiter

x_est=A.’*z+x_hat;

sigma_hat=median(abs(x_hat))*sqrt(2/log(4));
x_hat=zeros(size(x_hat));

u=real(x_est);
v=imag(x_est);
lambda=tthr(l)*sigma_hat;

ii=find((u.^2+v.^2>lambda^2));
dnr=1+lambda*(sqrt(u(ii).^2+v(ii).^2)-u(ii).^2./...
... sqrt(u(ii).^2+v(ii).^2))./(u(ii).^2+v(ii).^2);
dni=1-lambda*(sqrt(u(ii).^2+v(ii).^2)-v(ii).^2./...
... sqrt(u(ii).^2+v(ii).^2))./(u(ii).^2+v(ii).^2);

mdn=mean(dnr)+mean(dni);

if isnan(mdn)
mdn=0;

end

zn=b-A*x_hat+z/(2*delta).*(mdn);
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z=zn;

x_hat(ii)=u(ii)+i*v(ii)-(lambda*(u(ii)+i*v(ii)))./...
... (sqrt(u(ii).^2+v(ii).^2));

end

X_hat(:,l)=x_hat;
X_est(:,l)=x_est;
Sigma_hat(:,l)=sigma_hat;

end

[sigma_hat,ind]=min(Sigma_hat);
x_hat=X_hat(:,ind);
x_est=X_est(:,ind);

2.3 ROMP

%% Regularized Orthogonal Matching Pursuit
%-------------------------------------------------------------------------%
% [Needell2007]: Signal Recovery From Incomplete and Inaccurate
% Measurements via Regularized Orthogonal Matching Pursuit
%-------------------------------------------------------------------------%
% Input:
% v observation vector (data)
% Phi measurement matrix
% k sparsity
% Output:
% x_hat reconstruction of ideal original signal
% Lm index set
% am data approximation
% rm residuals
%
% V1.1: Reimplement subset selection according to "The stability of
% regularized orthogonal matching pursuit algorithm". Nguyen, Nam H.
% and Tran, Trac D. .
% http://dsp.rice.edu/sites/dsp.rice.edu/files/cs/Stability_of_ROMP.pdf
%
% Revision
% Version | Date | Author |
% V1.0 | 30.09.2015 | Zora Slavik |
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% V1.1 | 23.10.2015 | Zora Slavik |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [x_hat,Lm,am,rm]=romp(Phi,v,k)

% Init
x_hat=zeros(length(Phi),1);
Lm=0;
rm=v;
[m,n]=size(Phi);
Phi_t=zeros(m,k);
Lm=zeros(1,k);

for t=1:1:k

%1. Identify:
% spatial products u
u=Phi’*rm;
% find k biggest spatial products
[u,ind]=sort(abs(u),’descend’);
% excluding entries equal to zero
Lm_set=ind(u(1:k)~=0);
uj=u(Lm_set);

%regularize subsets
diff=2*abs(circshift(uj,[1,-2]))-abs(uj);
kk=ind(diff>=0);

% find the subset with biggest value energy ||uj||_2
%[val,kk]=max(norm(uj(diff>=0),2));
Lm(t)=kk(1);
% update subspace of measurement matrix Phi_t
Phi_t(:,t)=Phi(:,Lm(t));
% LS: min||v-Phi_t*xt||_2
xt=general_inverse(Phi_t(:,1:t))*v;
% update data approximation
am=Phi_t(:,1:t)*xt;
%update residual
rm=v-am;

end

x_hat(Lm)=xt;
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2.4 BPDN

%% Basis Pursuit - Primal-Dual IP
%-------------------------------------------------------------------------%
% []: Primal-Dual Interior Point algorithms for Linear Programming
% George Tzallas-Regas
%-------------------------------------------------------------------------%
% Input:
% A Nxd measurement matrix
% b Nx1 observation vector (data vector)
% kk level of sparsity (ideal vector)
%
% Output:
% s_hat dx1 estimate of ideal signal
% Lm mx1 Index vector, containing m elements from
% {1,..,d}
% am Nx1 approximation of observation
% rm Nx1 residual rm=v-am
%
% Revision
% Version | Date | Author |
% V1.0 | 23.10.2015 | Zora Slavik |
% V1.1 | 11.02.2016 | Zora Slavik | fixed issues with matrix
% | | | inversion, added
% | | | termination criterion
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%function x_hat=bppdip(A,b,kk)

% Init
x=A’*b;
s=x;
s(s<0)=0;
y=A*(1-s);

[m,n]=size(A);

epsilon=1e-3;
gamma=(x.’*s)/n;

alpha=1;
count=200;
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cc=1;

while abs(gamma)>epsilon && cc<=count

if ~(any(s==0))
invs=1./s;
invS=diag(invs);

else
invS=general_inverse(diag(s));

end

dy=general_inverse(A*diag(x)*invS*A.’)*(b-A*invS*gamma*ones(n,1));

ds=-A.’*dy;
dx=invS*gamma*ones(n,1)-diag(x)*ones(n,1)-diag(x)*invS*ds;

x=x+alpha*dx;
s=s+alpha*ds;
y=y+alpha*dy;

gamma_n1=(x.’*s)/n;

if abs(gamma_n1)>10*abs(gamma)
alpha=5e-2;

else
alpha=1;

end

cc=cc+1;
gamma=gamma_n1;

end

x_hat=x;

3 AgSim Co-Simulation

[VisibleObjects]
UseVisibilityView = 1
SensorName = CH-ObjectSensor
; Camera params for identification view
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Fov = 50.0
AspectRatio = 3.542 ; w/h
VisibilityTextureWidth = 100
NearClipDistance = 1.0
FarClipDistance = 500.0
; Visibility sensor configurations
PixelModeOn = 0
PixelBufferCount = 1
MountingPart = CombineHarvester
MountingOffset = 4.25 0.0 1.576
; (zRot, yRot, xRot) = (heading, pitch, roll) in Mounting part coordinate system
MountingAngles = 0.0 10.0 0.0
ShowSensorPose = 1

Object list:
\begin{verbatim}
% (1) Object ID
% (2) Object Group: LC: left corner, RC: right corner
% (3) Object bounding box LC x coordinate in the visibility view (min x)
% (4) Object bounding box RC x coordinate in the visibility view (max x)
% (5) Object bounding box LC y coordinate in the visibility view (min y)
% (6) Object bounding box RC y coordinate in the visibility view (max y)
% (7) Object pixel area center of mass x coordinate in the visibility view
% (8) Object pixel area center of mass y coordinate in the visibility view
% (9) Number of pixels
% (10) distance from sensor to target point
% (11) Heading of object
% (12) Pitch of object
% (13) Speed of object
% (14) Velocity in x-direction
% (15) Velocity in y-direction
% (16) Velocity in z-direction

Sensor attributes (antenna platform):

% (1) x position in world coordinates
% (2) y position in world coordinates
% (3) z position in world coordinates
% (4) yaw/heading of sensor
% (5) pitch of sensor
% (6) roll of sensor
% (7) number of objects
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