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Abstract
The overall aim of biomedical research is to understand disease mechanisms and
to provide a drug to eventually cure the disease. This challenging endeavour
requires an early research phase that deals with identifying target genes or proteins
playing an important role in the disease. At this stage one uses animal models
mimicking human disease to determine differences between healthy and diseased
animals. Once potential drug targets have been found, compounds are screened
and promising compounds go into the preclinical phase where their efficacy and,
most importantly, safety are assessed. Those having proven to be efficacious and
safe proceed to toxicology where the maximum tolerable dosage is assessed in,
mainly, non-rodent species.
According to the Bundesministerium für Ernährung und Landwirtschaft, more
than 2 million animals were used for animal testing in German laboratories in
2017. The majority of these animals were mice and rats but also dogs, cats and
monkeys are model organisms used for testing. While it is commonly accepted
that other mammalian species resemble human biology to a great extent, one has
to bear in mind that there are species-specific differences.
One of the aims of this thesis was to investigate how similar widely used model
species are to human and to each other on a molecular level. For this purpose we
assessed the relationship between protein sequence identity and gene expression
correlation with an emphasis on mouse and rat. We found that the majority
of genes are highly similar, both on sequence and gene expression level. There
were, however, cases with low sequence identity but high expression correlation.
These cases were investigated in greater detail and the hypothesis that sequences
annotated in widely used databases like Ensembl, UniProt, or RefSeq, may contain
errors or are incomplete, was confirmed.
Therefore, we investigated whether sequence information from related species can
be used to derive a target’s sequence in a species with poor annotation. The
a&o-tool was developed to exploit sequence similarity between related species
and short-read RNA-Seq data to refine or validate target sequences. Since long-
read RNA-Seq data would greatly improve the results as entire transcripts are
sequenced as a whole, we conducted a pilot study for comparing short- and long-
read sequencing data. Even though PacBio’s SMRT sequencing technology still
shows some issues with respect to data quality, it is a very promising approach
that is going to prove valuable for sequence refinement.
Another important goal of this thesis was to develop a score to assess a human
target’s conservation across several model species. Publicly available data on the
homology relationships between genes and RNA-Seq data build the basis for this
score. Using a set of presumably highly conserved genes in human and mouse, we
found that the proposed score yields reasonable results. An enrichment of Gene
Ontology terms further strengthened our confidence in the conservation score.
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Zusammenfassung
Das übergeordnete Ziel der biomedizinischen Forschung ist es, die einer Krankheit
zugrunde liegenden Mechanismen zu verstehen und Medikamente zu finden, mit
deren Hilfe die Krankheit letztendlich geheilt werden kann. Hierfür müssen zun-
ächst geeignete Gene oder Proteine, welche eine wichtige Rolle bei der Entstehung
und dem Verlauf der jeweiligen Krankheit spielen, identifiziert werden. Um Un-
terschiede zwischen gesunden und erkrankten Individuen zu ermitteln, werden
häufig Tiermodelle eingesetzt, welche die Krankheit bzw. bestimmte Aspekte der
Krankheit nachbilden. Sobald geeignete Zielmoleküle identifiziert wurden, werden
mögliche Wirkstoff evaluiert, welche die Aktivität des Zielmoleküls beeinflussen
können. Vielversprechende Wirkstoffe gehen dann in die präklinische Phase, in der
die Wirksamkeit sowie die Sicherheit des Wirkstoffes nachgewiesen werden müssen,
bevor in der Toxikologie die maximal tolerierte Dosis ermittelt wird. Während
alle bisherigen Versuche zumeist mit Nagern durchgeführt werden, kommen hier
höhere Säugetiere zum Einsatz.
Laut des Bundesministeriums für Ernährung und Landwirtschaft wurden im Jahr
2017 in deutschen Laboratorien über 2 Millionen Versuchstiere verwendet. Die
Mehrheit dieser Tiere waren Mäuse und Ratten, aber auch Hunde, Katzen und
Affen stellen wichtige Spezies dar. Im Allgemeinen geht man davon aus, dass
Säugetiere die Vorgänge im menschlichen Körper gut abbilden. Allerdings sollte
man sich immer darüber im Klaren sein, dass es Spezies-spezifische Unterschiede
gibt, die es zu berücksichtigen gilt.
Eines der Ziele dieser Dissertation war es deshalb zu untersuchen, wie ähnlich weit
verbreitete Tiermodelle zueinander und zum Menschen auf molekularer Ebene
sind. Hierfür wurde die Sequenzidentität mit der Korrelation der Genexpression
verglichen, was zu dem Ergebnis führte, dass der Großteil der orthologen Gene
sowohl auf Sequenz- als auch auf Expressionsebene sehr ähnlich sind. Allerdings
gab es auch Fälle, in denen wir eine hohe Expressionskorrelation bei niedriger
Sequenzidentität beobachteten. Diese Fälle wurden genauer untersucht und unsere
Hypothese, dass die in Datenbanken wie z.B. Ensemble, UniProt oder RefSeq
annotierten Sequenzen möglicherweise fehlerhaft oder unvollständig sind, wurde
bestätigt.
Daher eruierten wir die Möglichkeit bekannte Sequenzen von verwandten Spezies
zu verwenden, um mangelhaft annotierte Sequenzen zu verbessern. Als Resultat
stellen wir das a&o-tool vor, welches sich Orthologiebeziehungen und short-
read RNA-Seq Daten zu Nutze macht, um die Sequenz eines Zielproteins zu
vervollständigen bzw. zu validieren. Dieser Ansatz würde von sogenannten
long-read RNA-Seq Technologien profitieren, da Transkripte hiermit über ihre
volle Länge sequenziert werden können. Deshalb führten wir eine Pilotstudie
zum Vergleich von short- und long-read Technologien durch. Obwohl die SMRT
Sequenziertechnologie von PacBio noch einige Schwächen aufweist, implizieren
unsere Ergebnisse, dass es sich um eine vielversprechende Plattform handelt.
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Ein weiteres Ziel dieser Arbeit war es, eine Metrik zu entwickeln, anhand derer man
den Grad der Konserviertheit eines humanen Zielgens in verschiedenen Tiermodel-
len bestimmen kann. Als Datengrundlage dienen frei verfügbare Informationen
bezüglich der Homologiebeziehungen zwischen Spezies sowie RNA-Seq Daten. Um
unseren Ansatz zu validieren, wurden humane Gene verwendet, welche in Mäusen
vermutlich hoch konserviert sind. Basierend auf diesem Datensatz und einer Gene
Ontology Überrepräsentationsanalyse in Genen mit niedrigen und hohen Werten
bezüglich unserer Metrik, können wir schlussfolgern, dass die Metrik zu plausiblen
Ergebnissen führt.
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Chapter 1

Introduction

One of the main pillars of biomedical research is the application of mammalian
animal models to better understand human diseases. In essence, animal models
allow researchers to mimic human disease phenotypes in order to investigate the
underlying molecular mechanisms. This is of particular importance during the
early research phase of drug development, which comprises the identification and
validation of disease-related genes or proteins to derive possible drug targets.
Subsequently, known compounds are screened to identify candidate drugs altering
the target’s activity. Finally, promising compounds are tested for their safety
and efficacy. Although advanced in vitro assays, such as organs-on-a-chip, and in
silico methods have recently been developed and are gaining increasing attention,
animal experiments are still the method of choice for many steps in biomedical
research [45].
Common model organisms include mouse, rat, dog, pig, and cynomolgus monkey,
which all greatly differ from human in their obvious physical appearance, their
susceptibility to disease, and their response to environmental and experimental
influences. For example, substances that are carcinogenic in mice are often not
carcinogenic in humans, and vice versa [8].
On a genetic level, these model species are, however, fairly similar to human.
Comparative analyses of the human and mouse genomes have revealed that only
a few human genes do not have an equivalent one in mouse [23,76,77,116,118].
For example, the UniProt Consortium [118] states that 75 % of protein-coding
genes in C57BL/6J mice have a one-to-one orthologue in human.
The term “orthology” is a more specific form of the general evolutionary principle,
called “homology”. Two genes are homologous if they originate from a common
ancestor via gene duplication or a speciation event during evolution [35,36]. In
biomedical research one is particularly interested in orthologous genes, i.e., genes
in two distinct species, which were derived from a common ancestor by a speciation
event.

1



2 CHAPTER 1. INTRODUCTION

As it is generally assumed that homologous genes share similar function, homology
information is often used to assess whether experimental findings obtained in one
species can be translated into another mammalian species.
Homology relationships are, however, mainly derived from sequence similarity
and may not suffice to derive functional similarity. Although orthologues share
the same sequence, they may be involved in different pathways and thus show
diverging functions.
Therefore, it is crucial to keep the possibility of differences, with severe effects,
in mind when planning animal experiments. A tragic example is the case of
TGN1412, a CD28 superagonist antibody, for which efficacy and safety were
shown in cynomolgus monkey. However, all six healthy volunteers of the phase I
clinical study suffered from a life-threatening cytokine storm and had to be treated
in an intensive care unit [10,43,112]. Hansen and Leslie [43] stress the fact that
minor differences between the human and cynomolgus monkey sequence of the
drug’s target CD28 probably alter the binding affinity and contributed to the
severe side effects observed in human.
By integrating additional information like gene expression data, we can investigate
functional similarity of orthologous genes. Here, RNA sequencing (RNA-Seq) is
the technology of choice to derive genome-wide gene expression by sequencing the
RNA transcribed from all genes, the so called transcriptome.
In this thesis, the link between sequence similarity and gene expression was
investigated in greater detail by studying various model species that are of interest
to biomedical research. The ultimate goal was to assess whether combining
sequence similarity and gene expression can improve early biomedical research
and reduce the number of experiments conducted in animals.
One issue researchers often encounter in drug development, is the incompleteness
and incorrectness of sequence information available in public databases. As Steven
L. Salzberg [103] has put it, despite the rapid improvement in genome sequencing
and assembly technologies, “errors in annotation are just as prevalent as they
were in the past, if not more so.” While there are tools focusing on improving
the overall gene structure [56, 131], biomedical researchers would often benefit
from an approach to reconstruct the sequence of a specific target protein, even in
species with poor genome annotation, as many of these, such as rat and dog, are
highly relevant for biomedical research. Therefore, we aim to develop a tool that
makes use of a well annotated protein sequence from a closely related species to
derive the target’s protein sequence in a de novo transcriptome assembly of the
species of interest. Thereby, we can provide a small contribution to improving the
overall situation in genome annotation stated by Salzberg.
As the approach described above would greatly benefit from directly sequencing
entire RNA molecules without the need of assembly, one project dealt with
the possibility to use long read sequencing technologies. Here, the focus was
to compare short- and long-read sequencing and the possibility of obtaining
full-length transcripts.
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Another important aspect of this thesis is target prioritisation. To our knowledge,
this is mainly done on information about the target gene in human. The scoring
approach implemented in OpenTargets [18] incorporates mouse models into their
target-disease-association score. However, we wanted to take it a step further
and provide a method that takes sequence and expression based information of a
variety of model species into account. The resulting target conservation score does
not only facilitate target prioritisation, but also species selection as we are able to
determine the model species in which the human target gene is conserved best.
Overall, this thesis aims to provide insight into the link between sequence inform-
ation and gene expression across a broad spectrum of model species—in particular
those relevant for biomedical research—and human. If we were able to ensure
that we are using the correct target sequence and the most suitable model species
in silico, we could reduce the number of projects failing at late stages of drug
development due to species related differences and thus spare thousands of animal
lives.

Outline
This thesis is structured as follows: Chapter 2 covers background information
required for the following chapters. The background chapter starts with a de-
scription of the drug development process emphasising the role of animal models
and the high number of failing drug discovery projects. Then the evolutionary
concept of homology will be explained in greater detail, before RNA sequencing
is introduced. Here, we cover short- and long-read sequencing technologies and
explain the different bioinformatics analysis strategies. A brief introduction of
Nextflow, a framework for building scalable and reproducible analysis pipelines,
concludes the background chapter.
In Chapter 3, we investigate gene expression patterns within and between mouse
and rat, before we examine the relationship between orthology and gene expression
correlation in the two rodent species.
Chapter 4 focuses on available genome annotations and the fact that sequence
information provided via public databases may contain errors or may be incomplete.
We assess the proportion of affected genes and investigate whether exploiting
orthology relationships and de novo transcriptome assemblies from RNA-Seq data
can improve these sequences. Finally, we introduce and apply the a&o-tool that
was developed to perform sequence refinement for poorly annotated genes by using
an orthologous bait protein and a de novo transcriptome assembly of short-read
RNA-Seq data. The approach behind the a&o-tool would greatly benefit from
long-read sequencing data as the assembly step could be skipped. Therefore,
Chapter 5 presents the results of a pilot study for the comparison of long- and
short-read RNA-Seq data.
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In Chapter 6 a score is proposed which provides a measure for the conservation of
a human target gene across several model species. The scores resulting from the
application to all human protein-coding genes using mouse and rat as model species,
are used to investigate the individual subscores as well as their contribution to the
overall conservation score. Results are validated via a Gene Ontology enrichment
of genes with low and high conservation scores. Furthermore, we use a data
set containing human and mouse disease connections, provided by the Jackson
Laboratory, for validation of the proposed conservation score.
Chapter 7 concludes this thesis and provides ideas for further research.



Chapter 2

Background

This chapter paves the way for the following ones by providing background on
concepts that are important for the understanding of this thesis. As the thesis
was conducted at the University of Tübingen and Boehringer Ingelheim, the
pharmaceutical context is established before we define homology. Then, short-
and long-read RNA sequencing are introduced and important bioinformatics
analysis steps that were used in this thesis are explained. A brief introduction of
modern approaches to data processing concludes this chapter.

2.1 From target identification to a marketed
drug

A disease and an unmet clinical need lie at the root of the drug development
pipeline which starts with basic research to elucidate the molecular mechanisms
of the disease (see Figure 2.1). During target identification, researchers look
into molecular mechanisms which are causally linked to the disease and that
are suitable for pharmacological intervention, i.e., gene or protein inhibition or
activation [49]. These genes or proteins are referred to as drug targets and have
to meet certain requirements regarding their efficacy, safety and druggability. The
latter describes the fact that a therapeutic compound can bind to the target and
trigger a measurable response. Following its selection, the target is validated using
in vitro assays and animal models.
The aim of the discovery phase is to determine candidate compounds affecting the
target by, e.g., performing a high-throughput screening of large compound sets
against the target. Once such hit molecules are found, they are further investigated
and optimised with respect to their potency and selectivity (mainly in vitro) as
well as their efficacy and safety (mainly in vivo). Successful compounds then
move on to in vivo studies where their pharmacology, i.e., pharmacokinetics and
pharmacodynamics, as well as their toxicology are investigated in different model
species. Pharmacokinetics examines how long it takes for the drug to be absorbed

5
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Figure 2.1: Required steps to proceed from basic research to a drug on the
market. The European equivalent to the American FDA (U.S. Food and Drug
Administration) is the EMA (European Medicines Agency). Target ID: target
identification; IND: investigational new drug; NDA: new drug application; Mfg:
manufacturing. Figure reprinted with permission from [102].

and metabolised, while pharmacodynamics looks into the concentration of the
drug and how that is related to the drug’s effects, both beneficial and adverse
ones [70]. Toxicological experiments aim at assessing the toxicity of the drug and
its metabolites to ensure safety before the drug is tested in clinical trials.
Once a drug has passed the preclinical studies, where it is only tested in in vitro
assays and model species, it is transferred into the clinics. In the clinical trials the
drug is administered to humans, first to healthy volunteers an then to patients, to
investigate its effects and its therapeutic value in human.
Finally, after an average of 12 years [102] of development, a drug successfully
passing the clinical trials has to be approved by regulatory agencies like the U.S.
Food and Drug Administration (FDA) or the European Medicines Agency (EMA).
Clearly, the attrition rate of the drug development process is high, i.e., the initial
compound screening leads to hundreds of thousands of hits of which many do not
show suitable drug-like properties [92]. The term drug-like refers to a wide range
of structural, physio- and biochemical, as well as pharmacokinetic and toxicity
related properties, such as solubility, molecular weight or bioavailability [57]. The
majority of the selected hits then fail due to insufficient efficacy or safety. Cook
et al. [21] have analysed the small-molecule drug projects at AstraZeneca between
2005 and 2010 with respect to project success and the reasons for project failure.
They found that 66 % of the projects in the preclinical phase and 59 % of those in
the clinical trial phase I were successful. However, of these only 15 % succeeded
in phase II clinical trials. During the investigated period of time only five projects
reached phase III clinical trials of which 60 % were successful. In preclinical and
phase I clinical trials safety was the major cause of project failure while in phase
II clinical trials, a lack of efficacy lead to project closure in most of the cases.
One of the main reasons for the high number of compounds failing due to insuffi-
cient efficacy in human is probably the diverging molecular function of drug targets
in human and the model species used for identifying the target and assessing the
drug’s therapeutic effects.
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2.2 Homology
Translating experimental findings between species is a critical step occurring at
different stages of the drug development process like target identification or moving
from pre-clinical testing to clinical trials. To investigate a target gene in different
model organisms, one has to make sure that the gene exists and is highly similar
in each of the species. The term “homology”, coined by Fitch [35,36], describes
the fact that two genes originated from a common ancestor. Depending on the
type of evolutionary event separating the two genes, one further distinguishes
“orthologues” and “paralogues”. A speciation event leads to orthologous genes
while a gene duplication results in paralogous genes (see Figure 2.2).

Figure 2.2: This example shows three species (𝑆, 𝐴 and 𝐵) and speciation
as well as gene duplication evens to explain the terms “homologue”, “paralogue”
and “orthologue”. The genes 𝑔1 and 𝑔2 are inparalogues as they resulted from
a gene duplication in 𝑆. A speciation event lead to species 𝐴 and 𝐵 containing
the orthologous genes 𝑔1𝑎 and 𝑔1𝑏. Because 𝑔2𝑏 was duplicated in species 𝐵,
the resulting genes 𝑔2𝑏1 and 𝑔2𝑏2 are both orthologous to 𝑔2𝑎 in 𝐴. Due to the
duplication of gene 𝑔 in 𝑆, 𝑔1𝑎 and 𝑔2𝑎 are referred to as outparalogues. The figure
is reprinted with permission from [115].

As we do not know how genes really evolved across different species, two approaches
for orthology inference have been established: Sequence similarity based ones,
such as InParanoid/MultiParanoid [94, 111] or eggNOG [48], and phylogeny-
based methods, like EnsemblCompara GeneTrees [132] or UPhO [12]. A more
comprehensive list of homology prediction methods can be found in [115].
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Comparative genomics is often based on the general assumption that orthologous
genes are functionally similar and can therefore be used for functional annotation
of closely related species. It is also assumed that orthologues are functionally more
similar than paralogous genes. This is referred to as the “orthology conjecture”.
However, up to date there are numerous contradicting studies on whether the
ortholog conjecture is true. Nehrt et al. [79] have used Gene Ontology (GO)
annotation and microarray analysis in human and mouse to test the ortholog
conjecture and found that paralogues are more functionally similar to each other
than orthologues. Inspired by the conclusion drawn by Nehrt et al., Chen and
Zhang [19] critically evaluated the suitability of GO terms for the assessment of
functional similarity. Furthermore, they used RNA-Seq instead of microarrays
to investigate the expression similarity of orthologues and paralogues. In contra-
diction to Nehrt et al., they found that expression similarity is greater between
orthologues than between within-species paralogues and that GO terms suffer from
biases that render them unsuitable for the assessment of the ortholog conjecture.
Another study compared tissue-specificity of gene expression between orthologues
and paralogues and found that tissue-specificity is conserved in orthologous genes
while it differs for paralogous genes [60].

2.3 RNA sequencing
Examining the gene expression of potential drug targets is a crucial part of target
identification and validation as it provides insight into the targets’ disease link [49]
and their expression profile across different tissues. Nowadays RNA sequencing
is the technology of choice to determine gene expression on a genome-wide level.
The preparation of a complementary DNA (cDNA) library from the isolated RNA
precedes the actual sequencing as most technologies do not sequence RNA directly
but its cDNA. Briefly, RNA is isolated from a tissue sample, filtered for, e.g.,
mRNA and reverse transcribed to cDNA. Sequencing adapters are then added to
both ends of the cDNA fragments. During library preparation one also assesses
the RNA quality, in particular with respect to RNA degradation by computing
the sample’s RNA integrity number (RIN). Together with the amount of RNA
the RIN is used to filter for high quality samples which then are sequenced.
The sequencing itself results in nucleotide sequences referred to as “reads”. There
are several RNA-Seq methods which can be classified into short- and long-read
sequencing methods according to the length of these reads.
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2.3.1 Short-read sequencing

The most widely used sequencing method is sequencing by synthesis [39,52] offered
by Illumina. Here read lengths up to 300 bp can be reached [51].

Sequencing by synthesis

Sequencing by synthesis is performed on glass slides, so-called flow cells, that are
made up of lanes coated with two types of oligos required for the hybridisation of
cDNA fragments to the the flow cell. By generating a sequence complementary
to the immobilised fragment, a double stranded DNA molecule is formed. This
double-stranded DNA is then denaturated and the original sequence template is
washed off. Using a method called bridge amplification the resulting sequence
molecule is clonally amplified. This process is repeated until millions of clusters,
each containing copies of a single cDNA fragment, are produced.
The actual sequencing then starts by extending the sequencing primer and adding
fluorescently labelled nucleotides that bind to the fragments on the flow cell. By
exciting the clusters with light and detecting the emitted flourescent signals, the
base is determined. This process of adding nucleotides and determining the added
base via imaging is repeated until the desired read length is achieved.
If the cDNA fragments are sequenced in only one direction, so-called single-end
reads are generated. In an additional step, the reverse strand is synthesised and
the sequencing steps are repeated to obtain a second read from the other side
of the cDNA fragment. Since this method yields two reads per fragment, it is
referred to as paired-end sequencing. Even though paired-end sequencing is more
expensive, it is beneficial for the identification of novel isoforms, the analysis of
isoform expression, or the investigation of poorly annotated species [20,38,55].

Raw data analysis

An initial quality control of raw reads precedes all further analyses and includes
general sequence quality, GC content, sequence length distribution, duplication
levels, adapter content, and the presence of overrepresented sequences [15, 20].
Samples with sufficient quality are then subjected to further processing which
depends on the desired analysis.

2.3.2 Analysis of short-read data

Mapping-based analysis

Here, we are going to present the steps required for expression analysis in species
with an annotated genome. By aligning raw reads to the reference genome,
expressed genes are detected and their expression level can be quantified based on
the number of mapped reads. Usually, the mapping process results in an alignment
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stored in SAM (sequence alignment map) or BAM (binary alignment map) format.
Together with an annotation file (usually in gene transfer format (GTF)) the
alignment is then used for counting reads mapping to each annotated gene region.
Since factors like the total number of sequenced reads in a sample (sequencing
depth) or the gene length affect the number of reads mapping to the gene, these
counts have to be normalised before they can be compared within or between
samples. RPKM (reads per kilobase of exon per million reads mapped) [75], for
single-end sequencing, and FPKM (fragments per kilobase of exon per million
reads mapped) [122], for paired-end reads, are widely used normalisation methods
that aim at eliminating the effect of sequencing depth and gene length. Another
normalisation method that also takes sequencing depth and gene length into
account is the TPM (transcripts per million) [64]. When used for differential
gene expression, all three units, do however still suffer from the issue that longer
genes are more likely to be called as differentially expressed [17]. Quantile
normalisation, the trimmed mean of M values (TMM) [97], or DESeq [66] aim at
making expression levels truly comparable between samples.

De novo transcriptome assembly from short reads

The analysis described above relies on the availability of an annotated reference
genome. Depending on the quality of the available reference, transcripts might be
missed and some species entirely lack a reference genome. In both cases one can
resort to de novo transcriptome assembly from the short-read RNA-Seq data.
Most assemblers apply one of two basic approaches: Overlap-layout-consensus
(OLC) graphs or de Brujin graphs. The OLC approach involves the computation
of all pairwise overlaps between reads and searching for a path through the
graph visiting every node exactly once (Hamiltonian path problem). Because the
Hamiltonian path problem is NP-complete, the OLC approach is computationally
intense and not solvable in an efficient manner for millions of short reads [50,91]
as in a typical RNA-Seq experiment. In the de Brujin graph approach, reads
are split into all possible substrings of length 𝑘, so-called 𝑘-mers. The de Brujin
graph is constructed by using unique (𝑘-1)-mers as nodes and connecting two
nodes 𝑣𝑖 and 𝑣𝑗, if there is a 𝑘-mer whose first 𝑘-1 bases match 𝑣𝑖 and whose last
𝑘-1 bases match 𝑣𝑗 . Contiguous sequences (contigs) are then generated by solving
an Eulerian path problem, i.e., finding paths that visit every edge once, on this
graph. In contrast to a Hamiltonian path, an Eulerian path can be determined
efficiently [91]. Hence, de Brujin graphs are the method of choice for short-read
data.
Both, the OLC and the de Brujin graph approach, are applicable to genomic as
well as transcriptomic data, however, transcriptome assemblers have to take some
challenging properties of RNA-Seq reads into account [68]. First of all, highly
abundant transcripts lead to a greater number of reads. Many genome assemblers
would remove these transcripts as they would be misunderstood as repetitive
regions. Secondly, RNA-Seq protocols may be strand-specific. To detect overlaps
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between forward and reverse strand reads, one often includes both versions of
the reads in the de Brujin graph. Thirdly, transcriptome assemblers have to be
splice-aware. Several transcripts might be alternative isoforms of one gene and
may, therefore, contain identical subsequences because they share exons.
There are several published transcriptome assemblers such as Trinity [40],
Oases [105], SPAdes-rna [13], or BinPacker [65], to just name a few. Recently,
Hölzer and Marz [46] compared several de novo transcriptome assemblers across
different species and found that, although some assemblers perform well on most
of the data sets, it is still advisable to test different assemblers and assembly
parameters as there is not a single tool that performs best on all data sets.
Once the transcriptome has been assembled, one can, for example, investigate the
assembled sequences or map the reads back to the assembled transcriptome to
derive gene expression levels.

2.3.3 Long-read sequencing

While short-read sequencing enables the analysis of gene expression at relatively
low cost and high throughput, it is less suitable for de novo isoform identification
because the short reads have to be assembled into transcripts. Long-read sequen-
cing technologies like the Single Molecule, Real-Time (SMRT) sequencing offered
by Pacific Biosciences (PacBio), recently acquired by Illumina, generate reads
with a median read length of 50 kb and up to more than 100 kb (PacBio’s Sequel
system). Therefore, most transcripts can be sequenced as a whole, eliminating
the need for transcript assembly as required for short-read data.
In this thesis long-read data from PacBio’s Sequel system has been analysed, thus
PacBio’s SMRT sequencing approach will be introduced in greater detail below.

SMRT sequencing

In contrast to Illumina’s sequencing by synthesis, SMRT sequencing does not
involve clonal amplification of the synthesised cDNA molecules. Instead, a single
cDNA molecule is transformed into a circular DNA molecule by adding hairpin
structures of single-stranded DNA to both sides of the double-stranded DNA.
Together with a polymerase, this molecule is then loaded into a zero-mode wave-
guide (ZMW) [30] where it is sequenced [85]. The DNA-polymerase complex
is immobilised at the bottom of the ZMW and a solution containing all four
fluorescently labelled nucleotides is added. Once the polymerase incorporates one
of the nucleotides into the generated DNA strand, the fluorophore is detached
from the nucleotide and a camera records the emitted light signal. This results
in so-called polymerase reads (see Figure 2.3A) which are split into subreads by
removing the adapter DNA sequence. In an error-correction step these subreads
are summarised in a circular consensus sequence (CCS). These CCSs are then
processed with PacBio’s bioinformatics pipeline.
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Figure 2.3: PacBio’s Iso-Seq protocol. A) The cDNA molecule is extended by
single-stranded DNA and this SMRTbell template is then sequenced in a ZMW.
The resulting polymerase read is split into subreads which are summarised by a
CCS. B) All CCSs generated in a sequencing run are classified into full-length (FL)
and non full-length (nFL) sequences. The FL reads are then clustered by similarity
and high-quality isoforms are aligned to the reference genome to obtain unique,
collapsed isoforms. This figure is a combination of adapted figures from [86,125].

PacBio’s raw read data analysis

The generated CCSs are classified into full-length (FL) and non-full-length (nFL)
reads (see Figure 2.3B), i.e., if a CCS contains the 5′ and 3′ adapter sequences
and a poly-A sequence, it is a full-length read. These FL and nFL reads are
clustered by sequence similarity to obtain error-corrected candidate sequences. In
the following polishing step, these candidate transcripts are split into high- and
low-quality isoforms based on their accuracy and the high-quality ones are then
mapped to a reference genome, if available. The alignment to a reference allows
the set of isoforms to be further cleaned as redundant isoforms are collapsed. The
resulting set of unique isoforms is referred to as “PacBio isoforms” in this thesis.
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2.4 A modern approach to data processing
The analysis of RNA-Seq data involves several independent tools (see section 2.3.2)
being applied to many (potentially thousands of) samples. In recent years, there
have been several attempts to ease the process of developing such bioinformatics
pipelines and to provide a framework for reproducible data analysis. Snake-
make [59], Bpipe [101], and Nextflow [25] are examples for workflow languages
with Nextflow gaining increasing attention by the (bioinformatics) community.
A Nextflow pipeline consists of processes that are connected by channels through
which data is passed from one process to the next. Each process contains a script
which is executed as a bash script in the host system. Therefore, it can be written
in any programming language supported by the host system.
Let us look at an example process which generates the genome index required by
STAR, a popular aligner used to align RNA-Seq reads to a reference genome (see
Listing 2.1). In lines seven and eight we declare the input of the process. The
path to the reference genome which is to be indexed, is provided via the Channel
genome_file that has been created earlier in the script. Lines ten and 11 specify
that the directory genome_dir is made available to the following process performing
the actual STAR alignment via the Channel genome_dir_ch. The process script
performs the actual task of creating the output directory genome_dir_ch and
generating the genome index which is then stored in genome_dir_ch.
Incorporating Docker [72] and Singularity [63] further increases reproducibility and
also portability because the required software is packed into so-called containers in
which the Nextflow processes are then run. That way the software does not have
to be installed on the host system and one can even define separate environments
with, for example, differing software versions for individual processes. Whenever
possible, processes are run in parallel, e.g., the quality analysis of raw reads
can be done for all samples in parallel as these processes do not depend on one
another. Furthermore, Nextflow facilitates highly scalable data analysis as it is
easily configurable to run the processes on a high performance cluster or a cloud
platform.
Although we did not use any of their pipelines in this thesis, we want to point
out that the nf-core [33] makes Nextflow pipelines for common tasks such as
RNA-Seq analysis easily accessible and usable, even for people new to Nextflow.
The initiative evolved from the highly active community of Nextflow users and
aims at establishing a collection of pipelines fulfilling certain standards.
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Listing 2.1: An example Nextflow process creating the genome index for the
STAR aligner.

1 /*
2 * create the STAR genome index
3 */
4

5 process make_star_genome_index {
6

7 input:
8 file(genome) from genome_file
9

10 output:
11 file(genome_dir) into genome_dir_ch
12

13 script:
14 """
15 mkdir genome_dir
16

17 STAR --runMode genomeGenerate \
18 --genomeDir genome_dir \
19 --genomeFastaFiles ${genome} \
20 --runThreadN 16
21 """
22 }



Chapter 3

Assessing the relationship
between orthology and gene
expression correlation

The content of this chapter was partially published in:

J. F. Söllner, G. Leparc, T. Hildebrandt, H. Klein, L. Thomas,
E. Stupka and E. Simon. An RNA-Seq atlas of gene expression in
mouse and rat normal tissues. Scientific Data 2017: 4

I analysed the data, conducted the downstream analyses, and generated the figures
presented in this thesis. G. Leparc implemented and described the data analysis
pipeline and carried out the primary analysis of the data. T. Hildebrandt directed
the RNA preparation and sequencing of the samples and was involved in the
design of the study. H. Klein contributed code and supervised the design of the
primary data analysis pipeline. L. Thomas performed the in-vivo analyses. E.
Stupka reviewed the draft of the paper. E. Simon analysed data (results not
included in this thesis), wrote the first draft of the manuscript and supervised the
complete study.

3.1 Background
All living organisms consist of a variety of different tissues and organs which play
very diverse roles in maintaining the body’s functionality. The existence of a wide
range of highly specialised cells expressing distinct sets of proteins facilitates this
process.
In diseased individuals the cells’ function is affected and biomedical research aims
at determining the underlying mechanisms to differentiate healthy from diseased
individuals. Ideally, one would investigate the proteome directly. Unfortunately,
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there are still limitations like the detection of lowly expressed proteins or tech-
nical issues when separating large protein complexes [41]. Therefore, researchers
often resort to RNA sequencing as a surrogate for proteomics analyses, which
is also reflected by the fact that repositories of proteomics data are used less
commonly [130] than those containing RNA-Seq data.
To determine differences between healthy and diseased tissue, one has to acquire
samples from both tissue types. In human studies, it is often not feasible to
obtain healthy tissue, imagine brain biopsies, and in animal models it would
also be desirable to reduce the number of sacrificed animals. Therefore, data
repositories such as the Genotype-Tissue Expression Project (GTEx) and the rat
BodyMap [141], providing access to RNA-Seq data from healthy individuals, are
a valuable resource. The aim of the project upon which this chapter is based, was
to add gene expression data sets from mouse and rat acquired in a well controlled
experiment and capturing a wide range of tissues, to the public domain.
In this chapter we will investigate the descriptive analysis of the generated
RNA-Seq data sets. Furthermore, the combined data from mouse and rat are
examined to assess whether gene expression patterns are tissue- or species-specific
and whether conserved genes share gene expression patterns.

3.2 Methods

3.2.1 RNA-Seq data

Samples from 13 tissues were taken from three male BL/6J mice (C57BL/6J) and
three male Wistar Han rats (Crl:WI(Han)). The investigated tissues were: Brain,
kidney, heart, thymus, pancreas, esophagus, stomach, duodenum, jejunum, ileum,
colon, liver and muscle (quadriceps). Total RNA was extracted and libraries were
prepared according to standard protocols (see our publication [109] for details).
Sequencing was then performed as 50 bp, single-end reads and seven bases index
reads on an Illumina HiSeq2000.

3.2.2 RNA-Seq data mapping, counting and normalisa-
tion

We had to exclude one sample (mouse_11_heart) from the analysis due to technical
issues. FastQC [15] (v0.11.2) was used to evaluate the read quality of all remaining
samples. RNA-Seq reads from mouse and rat were aligned to the corresponding
Ensembl 84 reference genome with STAR [26] (v2.5.2a11) and alignment quality
metrics were obtained with RNASeQC [24] (v1.1812). Duplication rates were
identified using bamUtil [54] (v1.0.11) and assessed with the dupRadar [104] (v1.4)
Bioconductor [47] R [93] package. We used Cufflinks [121] (version 2.2.114) to
get the reads per kilobase of transcript per million mapped reads (RPKM) and
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the featureCounts [108] software package to obtain read counts. The subsequent
analysis was conducted in R: Count values were normalised to trimmed mean
of M-values (TMM) [98] using the calcNormFactors() function from the edgeR
package [69] and these were voom normalised using the corresponding function
from the limma [95] package.

3.2.3 Inter-species expression patterns

As an initial quality control we performed the following on the voom-transformed
gene expression values of mouse and rat separately: Distribution analysis, principal
component analysis (PCA), and hierarchical clustering.

3.2.4 Intra-species expression patterns

To investigate whether mouse and rat share gene expression patterns, we quer-
ied the one-to-one rat orthologue for all protein-coding mouse genes using the
biomaRt package [27, 28] (version 2.32.1) with Ensembl version 84. Based on
these orthologous pairs we compiled merged expression matrices, one with median
tissue RPKMs for correlation analysis and one with voom-normalised counts for
PCA. To assess the tissue-specific correlation of the two species, we computed the
Pearson’s correlation coefficient and generated scatter plots for each tissue.

3.2.5 Comparing gene expression and sequence identity

When querying the rat orthologues from Ensembl, we also retrieved the sequence
identity which is calculated from the pairwise protein sequence alignment. For
each pair of orthologous genes, Ensembl reports a query and a target sequence
identity (see Figure 3.1). We summarised these two values using their mean value
which was then compared to the Pearson’s correlation coefficient of median tissue
expression (RPKM).

Figure 3.1: Schematic illustration of the terms query and target sequence identity
as used by Ensembl. Black letters indicate matching amino acids while grey ones
represent mismatches. The proportion of the sequence of interest (top) covered by
the pairwise protein sequence alignment with an orthologous sequence (bottom) is
referred to as “query identity”. The percentage of the orthologous sequence covered
by the alignment is called “target identity”.
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3.3 Results

3.3.1 Inter-species expression patterns

Based on the percentage of variance explained by each principal component (see
Figure 3.2) we concluded that in mouse the majority of variance was explained by
the first two components (PC1 and PC2), while in rat PC1 explained the greatest
proportion of variance in the data. Due to the high dimensionality of the data, the
percentage of variance explained by the other principal components only declined
slowly.

Figure 3.2: The percentage of total variance explained by the first ten principal
components for mouse (left) and rat (right).

Projecting the samples into the space spanned by PC1 and PC2, revealed that
the effect tissue origin had on the gene expression of mouse and rat was greater
than the animal effect (see Figure 3.3A). Samples from muscular tissue, i.e., heart
and quadriceps, were close to each other. This was particularly pronounced in
rat. Brain samples formed a cluster which was separated from all other clusters.
A larger, more mixed cluster consisted of samples from the gastrointestinal (GI)
tract, i.e., duodenum, jejunum, ileum and colon, and thymus. Apart from the GI
samples, liver and pancreas were the tissues with the most variability. In mouse,
PC3 separated thymus samples from the other tissue clusters (see Figures 3.3B
and 3.3C). A hierarchical clustering analysis of the two data sets confirmed the
observation that the tissue effect is greater than the animal effect (see Figure 3.4).
In mouse, the samples from the GI tract again formed a mixed cluster. In rat, we
noted that the colon samples were grouped together and that their cluster was
more similar to stomach and esophagus than to the other GI tissues. Furthermore,
one pancreas sample in rat was separated from the other two pancreas samples.
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(A) PC1 vs. PC2

(B) PC1 vs. PC3

(C) PC2 vs. PC3

Figure 3.3: Principal component analysis of mouse and rat gene expression values.
Samples are coloured by tissue and the numbers in brackets correspond to the
proportion of variance explained by the respective principal component.
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Figure 3.4: Hierarchical clustering of mouse (left) and rat samples (right) based
on voom-transformed log(counts per million). The Canberra distance between
samples and the complete linkage method were used for clustering.
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3.3.2 Intra-species expression patterns

A comparison of the gene expression between mouse and rat showed that, in
general, the expression of one-to-one orthologues is well correlated (see Figure 3.5).
There are, however, a number of genes which are not expressed in only one of the
two species. Therefore, the overall Perason’s correlation coefficient was around 0.7
in all tissues even though the majority of the points cluster along the diagonal.

(A) Pancreas, Liver, Stomach, Duodenum, Jejunum, Ileum, Colon, Kidney, and Quadriceps.



22 CHAPTER 3. MOUSE-RAT ATLAS

(B) Thymus, Heat, Esophagus, and Brain.

Figure 3.5: Tissue-specific correlation of gene expression in mouse and rat. R:
Pearson’s correlation coefficient; grey line: diagonal.

Dimensionality reduction revealed that the first three PCs are those explaining the
greatest portion of the total variance in the data set (see Figure 3.6A). Projecting
the data into the space spanned by PC1 and PC2 (see Figure 3.6B), a clustering
by tissue instead of species was observed. The GI tract again formed a rather
mixed up supercluster which was separated from the other tissues. Quadriceps
and heart samples from both species clustered together, with the esophagus cluster
being the closest neighbouring cluster. The greater spread of pancreas samples
from both species that we observed in the variability analysis in section 3.3.1 was
also visible in Figure 3.6b. Brain samples from both mouse and rat formed the
most distinct clusters. Figures 3.6C and 3.6D clearly showed that PC3 separated
the two species.
In the hierarchical clustering of the combined mouse and rat expression data (see
Figure 3.7), we observed that, for the majority of tissues, samples from both
species cluster together. For example, kidney samples from mouse and rat form
two clusters that can be merged into a joint kidney cluster. The two muscular
tissues are an exception because mouse heart and quadriceps as well as rat heart
and quadriceps form a cluster. These two clusters are, however, again similar to
each other.
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Figure 3.6: Principal component analysis of merged mouse and rat gene expression.
A) Percentage of total variance explained by the first ten principal components
(PCs). B)-D) Gene expression transformed to the space spanned by different
combinations of PC1 to PC3. Point shape and colour represent the tissue and
species of origin, respectively. Numbers in brackets correspond to the explained
variance.
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Figure 3.7: Hierarchical clustering of the combined voom-transformed log(counts
per million) for one-to-one orthologues in mouse and rat. The Canberra distance
between samples and the complete linkage method were used for clustering.
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Interestingly, the similarity of gastrointestinal tissues is higher within each of the
two species and the distance between the two GI clusters is relatively high. The
rat pancreas samples also do not cluster with the corresponding samples in mouse.

3.3.3 Comparing gene expression and sequence identity

To investigate our hypothesis that highly conserved genes share gene expression
patterns across tissues, we compared the expression correlation and the annotated
sequence identity (see Figure 3.8). As expected, the majority of the orthologous
gene pairs clustered in the upper right corner, i.e., both their protein sequences
and their expression patterns across tissues were very similar. However, 11 %
of the orthologues had a sequence identity greater than 80 % but a low positive
(< 0.5) or even a negative expression correlation. A low expression correlation
across tissues indicates that the gene was expressed in different tissues in the two
species. In 4 % of the cases we observed lower protein sequence identity (< 80 %)
while the expression correlation was high (> 80 %).

Figure 3.8: Comparison of sequence identity and expression correlation between
mouse and rat one-to-one orthologues. The grey rectangles mark orthologous genes
with either high sequence similarity and low expression correlation or low sequence
identity and high correlation coefficients.

3.4 Discussion
In this chapter we have presented the results from the descriptive analyses of
two RNA-Seq data sets from mouse and rat, each comprising 13 tissues. When
analysing the two data sets separately, we observed that the difference in gene
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expression was greater between tissues than between animals. The biological
similarity between tissues was also visible in our analyses as samples from muscular
tissues (heart and quadriceps) were close to each other and samples from the
gastroinestinal tract formed a bigger cluster which could be distinguished from
other tissues. The tissue clusters were preserved when performing the same
analysis on the combined data set, however, PC3 separated the two species from
each other. Therefore, it would be interesting to investigate PC3 of the combined
data in greater detail to determine the genes driving this differentiation. The
hierarchical clustering confirmed that, in general, the tissue of origin has a greater
effect on gene expression than the animal and its species. The analysis of the
human transcriptome by Melé et al. [71] also found that expression varies more
between tissues than between individuals. Furthermore, it would be surprising to
see large differences between animals because we investigated gene expression in
inbred strains.
The comparison of gene expression correlation and reported amino acid sequence
identity of the integrated data showed that for the majority of one-to-one ortho-
logous gene pairs our assumption that homologous genes share expression patterns
across tissues holds true. Since homology refers to genes sharing a common an-
cestor [87], it is not surprising to find orthologous genes whose sequence is highly
similar but their gene expression correlation is low. We hypothesise that these
genes have developed diverging functions in mouse and rat and a more detailed
investigation of the corresponding genes with respect to their biological function
would be a valuable next step. As noted by Pearson [87], low sequence similarity
is often observed for homologous genes. On the one hand, our observation that
there are genes with low sequence identity but high expression correlation confirms
this statement. On the other hand, some of these cases might also be caused by
erroneous sequence information. In the next chapter we will investigate whether
poor sequence annotation is an issue and how to deal with it.



Chapter 4

Exploiting orthology and de novo
transcriptome assembly to refine
target sequence information

The content of this chapter was partially published in:

J. F. Söllner, G. Leparc, M. Zwick, T. Schönberger, T. Hildebrandt,
K. Nieselt and E. Simon. Exploiting orthology and de novo transcrip-
tome assembly to refine target sequence information. BMC Medical
Genomics 2019: 12, 69

I implemented the Nextflow pipeline, performed the analyses and wrote the paper.
G. Leparc designed the prototype of the underlying method. G. Leparc and M.
Zwick provided advice regarding the implementation. M. Zwick reviewed the
paper. T. Schönberger prepared the cynomolgus monkey samples. T. Hildebrandt
directed the RNA preparation and sequencing of the samples and was involved in
the design of the cynomolgus monkey study. K. Nieselt and E. Simon supervised
the study and edited and reviewed the paper.

4.1 Background
Before a compound can proceed into the clinics where it is tested in humans, it
has to prove its efficacy and safety in non-human species throughout the drug
development process. Once a drug progresses towards the preclinical phase of
the drug development pipeline, toxicological studies are performed to assess its
safety and for dose selection. Although in vitro and in silico methods have gained
increasing interest in recent years [5,14,34,78,82,99], it is still indispensable to
perform in vivo testing. To prevent unnecessary animal testing and failure of
drug discovery projects in late stages of the pipeline, it is crucial to correctly
assess the compound’s activity on the target early on. Here established cellular

27



28 CHAPTER 4. A&O-TOOL

and biochemical in vitro assays play an important role. By introducing a DNA
template of the known target protein into bacteria or cell lines, one achieves the
expression of the target protein in the host system. Errors in the introduced
sequence may, however, negatively impact the interpretability of results as the
compound’s activity is over- or underestimated, the selected dose is too high or
too low, and finally, in vivo experiments are misinterpreted.
Genes, transcript, or protein sequences are usually retrieved from public databases
like Ensembl [142], UniProt [118], and RefSeq [83] which contain information for
most model species that are of interest to biomedical research. One should, how-
ever, note that the knowledge regarding genome annotation and the availability
of reliable sequences varies greatly between different species. This is emphas-
ised by the comparison of the number of manually reviewed protein sequences
in UniProtKB/Swiss-Prot (accessed: 26/04/2018) to the number of annotated
transcripts in Ensembl (version 91). The high number of annotated transcripts
and reviewed proteins indicates that human and mouse are the two species whose
genomes have been investigated in greater detail than those of other species (see
Figure 4.1). This is easily explained by the fact that mouse is a commonly used
model species in biomedical research aiming to cure human diseases. Although
non-human primates such as cynomolgus monkey (Macaca fascicularis) and rhesus
macaque (Macaca mulatta) are important model organisms, their genomes are not
as well characterised as those of human or mouse. Interestingly, there is also very
little information available for the Chinese hamster genome even though Chinese
hamster ovary (CHO) cells are important production systems for biopharmaceut-
icals such as monoclonal antibodies. The sequence information available through
the public databases originates from a combination of sophisticated computational
pipelines and expert curation. One example is the NCBI’s automated genome
annotation pipeline which builds its predicted gene models based on the align-
ment of known protein sequences, transcripts, and RNA-Seq data to a reference
genome [119]. Existing sequences from related species are also considered for in
the alignment process. This obviously results in an annotation bias as there is
more reliable information available for well characterised species, like human or
mouse, which leads to a more extensive and more trustworthy genome annotation
than in less well characterised species. Therefore, the sequence information stored
in the databases may be incomplete or erroneous [11].
There are also tools that make use of transcriptome assemblies to derive gene
models. Scipio [56], for example, aligns query proteins to a reference genome to
determine the exon-intron structure as well as splice sites in the corresponding
gene. MIKADO [131] follows a different approach, it aims to improve transcript
models by combining multiple transcriptome assemblies. Both tools focus on the
gene’s structure.
Instead of determining a gene’s overall structure, we want to reconstruct the
protein sequence of an individual target by exploiting orthology relationships and
RNA-Seq reads. Therefore, we implemented the a&o-tool. It uses RNA-Seq data
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Figure 4.1: The x-axis corresponds to the number of annotated transcripts in
Ensembl while the y-axis shows the number of manually reviewed protein sequences
in UniProtKB/Swiss-Prot that are available for some of the commonly used model
species in biomedical research. 𝑅2 and the regression line emphasise the correlation
between the two numbers. CHO: Chinese Hamster Ovary cells.

from the species of interest and a bait protein sequence from a related species to
first compute a de novo transcriptome assembly and to then search the assembled
contiguous sequences that best match the bait. The target’s protein sequence is
derived by searching open reading frames (ORFs) in the best matching contig and
translating these into an amino acid sequence. A multiple sequence alignment as
well as descriptive metrics based on pairwise alignments offer the possibility to
asses the quality of the refined sequence.
We begin this chapter by investigating how many sequences are presumably poorly
annotated in five model species commonly used in biomedical research. The
general idea to use RNA-Seq data and an orthologous protein to refine such poorly
annotated sequences, is then evaluated via a reciprocal best hit BLAST approach.
RNA-Seq reads from all five species and human were assembled into tissue-specific
transcriptomes (brain, liver, and kidney) and the 20,350 manually reviewed human
protein sequences in UniProtKB/Swiss-Prot (from now on referred to as “known
human protein sequences”) were used as bait sequences. Finally, we introduce the
a&o-tool, an automated sequence refinement pipeline, and apply it to a set of
presumably poorly annotated sequences to assess its performance.
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4.2 Methods

4.2.1 Data description

The analyses in this chapter are based on paired-end RNA-Seq raw read data from
two publicly available and one internally generated data sets (see Table 4.1). For
mouse, rat, dog and pig we used data published by Fushan et al. [37] which in-
cludes samples from brain, kidney and liver. The Human Protein Atlas [128,129]
provides human RNA-Seq data from various tissues including those available in
the Fushan et al. data. The internal data set consists of data from two cynomol-
gus monkeys (Macaca fascicularis) and contains samples from brain, kidney and
liver, amongst other tissues. Raw read data were processed the same way as in
Chapter 3 to obtain normalised expression values. For all six species—human,

Table 4.1: RNA-Seq data sets used for the analyses.

species data source RNA-Seq details

human Uhlén et al. 17 × 106 reads per sample
mouse, rat, dog, pig Fushan et al. 15 × 106 reads per sample

cynomolgus monkey internal
55 × 106 reads per sample,
RIN median 8.7,
2x85 bp on HiSeq3000

mouse, rat, dog, pig, and cynomolgus monkey—we retrieved manually reviewed
protein sequences from UniProtKB/Swiss-Prot (accessed on June 9th, 2018).

4.2.2 Proportion of genes to be improved

We queried all orthologous gene pairs between human and the other five species
using the biomaRt [27,28] R [93] package (version 2.32.1) with Ensembl version
92. The target and query protein sequence identities (see Figure 3.1) of these gene
pairs were used to calculate the difference in sequence identity as:

Δ𝑠𝑒𝑞_𝑖𝑑 = 𝑡𝑎𝑟𝑔𝑒𝑡_𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 − 𝑞𝑢𝑒𝑟𝑦_𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 (4.1)

The difference Δ𝑠𝑒𝑞_𝑖𝑑 was used to determine genes in the non-human species
that showed a diverging protein sequence compared to their human one-to-one
orthologue. We hypothesised that if, for example, 99 % of the orthologous protein
sequence matches the human protein but the human sequence only matches the
orthologous protein sequence in 78 % of its amino acids, the orthologous sequence
might be incomplete or contain errors. A query identity that is higher than the
target identity could, for example, indicate that the orthologous protein is too
long which may be the result of a missing stop codon.
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To estimate the number of potentially incomplete or incorrect sequences, we
computed Δ𝑠𝑒𝑞_𝑖𝑑 for all one-to-one orthologous gene pairs between human and
the other species (mouse, rat, dog, pig, and cynomolgus monkey). A gene in the
non-human species was called “affected” if its absolute Δ𝑠𝑒𝑞_𝑖𝑑 was greater than
the species’ mean + 2 times standard deviation. We are aware that this threshold
is rather conservative. Our aim was to detect genes with the most significant
deviation from their human orthologue and based the choice of the threshold on
the distribution of Δ𝑠𝑒𝑞_𝑖𝑑 (see Figure A.1).
Of course, differing protein sequences are also the result of divergence during
evolution and these cases should not be considered for further analysis. To rule
out that the difference in sequence identity reflects evolutionary events instead of
poor annotation, we filtered for genes with a high absolute Δ𝑠𝑒𝑞_𝑖𝑑 in only one
of the five non-human species, i.e., in the other four species the protein sequence
was conserved.

4.2.3 De novo transcriptome assemblies

BinPacker [65] (version v1.0) and rnaSPAdes, which is part of the SPAdes pack-
age [13] (version 3.11.1), were used for de novo assembly of tissue-specific tran-
scriptomes. Both assemblers were run with their default parameters.
We compared the two assemblers based on TransRate [107] metrics and found
that the rnaSPAdes assemblies contained a high number of contigs with less than
200 bp. These short contigs may result in the a&o-tool mainly detecting fragments
instead of entire transcripts. Together with the observation that the coverage of
known human sequences was higher with BinPacker, this led to the decision to
use BinPacker for further analyses and in the a&o-tool.

4.2.4 Evaluation of detection rates in human and related
species from RNA-Seq assemblies

As we aimed to use protein sequences of closely related species to derive the
corresponding protein sequence from the assembled transcriptome of a poorly
annotated species, we first validated this approach by using curated human
UniProtKB/Swiss-Prot and assemblies from human RNA-Seq data.
A reciprocal best hit (RBH) BLAST search (see Figure 4.2) was used to determine
the best matching contig in the assembled transcriptome for a given human bait
protein. In the forward step, we determined the best matching contig by aligning
each human protein sequence to all assembled contigs (tblastn, NCBI BLAST+ [6]
version 2.7.1). In the backward search, the best hits were then aligned back to
all known human sequences (blastx, NCBI BLAST+ version 2.7.1). All BLAST
parameters were left at their default values, except for the e-value threshold which
we set to 1 × 10−4 to remove highly insignificant highest scoring pairs (HSPs)
from the results.
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forward BLAST search 

backward BLAST search 

• query: all known human proteins (UniProtKB/Swiss-
Prot) 

• database: assembled contigs 

• query: best hits from forward search 
• database: all known human proteins 

(UniProtKB/Swiss-Prot) 

reciprocal best hits (RBH) 

best hit in backward search = corresponding query 
protein in forward search 

Figure 4.2: Workflow diagram of the reciprocal best hit BLAST approach. In the
forward search all known human proteins were searched in the assembled contigs.
For each query proteins the best hit was determined and used as query in the
backward BLAST search against all known human proteins. Based on the BLAST
results the proteins with a reciprocal best hit were determined.

The detection rate, i.e., the rate of RBHs, was calculated as the proportion of
known human proteins that led to the correct human protein as the best hit in
the backward search.
We hypothesised that proteins which were not found as RBH (non-RBH) showed
a lower gene expression than those found as an RBH. To investigate this, we
compared gene expression levels of these two groups. The biomaRt R package
and Ensembl (version 92) were used to map human UniProt accession numbers to
Ensembl gene identifiers and to query orthologous Ensembl gene identifiers.
We also examined the sequence identity from the BLAST results as well as the
coverage of the human protein sequence. The coverage was calculated as the
proportion of the number of amino acids in the human protein covered by the
alignment (alignment end - start position) in relation to its length.
The detection rates were also determined for mouse, rat, dog, pig, and cynomolgus
monkey. Tissue-specific assemblies from each species were used to construct
separate databases for the forward (tblastn) search to which the known human
protein sequences were aligned. In the backward (blastx) search the best hits were
aligned to the database of all known human proteins.
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4.2.5 Generalised refinement pipeline

The reciprocal best hit BLAST approach described above was used to evaluate
whether a protein sequence from a closely related species can reliably identify
the corresponding protein in the transcriptome assembly of a species of interest.
As BLAST HSPs do not necessarily represent the entire contig and the RBH
approach requires a comprehensive set of curated protein sequences, which is
not available for most model organisms, we have implemented a generalised and
automated refinement pipeline, the a&o-tool (see Figure 4.3). For the successful
application of the a&o-tool it is crucial that the input meets two criteria: 1)
The RNA-Seq data is of high quality and originates from paired-end sequencing
of samples in which the target protein’s transcript is expected to be expressed
at reasonable levels. Alternatively, a high-quality, pre-computed transcriptome
assembly is provided. 2) A reliable orthologous protein sequence (referred to as
“bait”) is available.
If paired-end RNA-Seq reads are provided, a de novo transcriptome assembly is
generated using BinPacker (version v1.0; with the default parameters). Alternat-
ively, a pre-computed assembly can serve as the entry point for the pipeline. We
recommend to pre-compute the transcriptome assembly in case the same RNA-
Seq data are to be used for repeatedly running the a&o-tool with different bait
sequences. Firstly, the assembly process is computationally intense and secondly,
the quality of the assembly might be improved by trying different assemblers
and/or parameter settings.
The transcriptome assembly is then used as the database for a tblastn (NCBI
BLAST+ version 2.7.1) search in which the orthologous bait sequence is aligned
to the assembly. We sort the BLAST result by bitscore and e-value to determine
the best matching assembly contigs. The n best matching contigs are extracted
and their cDNA sequence is fetched from the transcriptome assembly. n is a
user-defined parameter. By setting it to n=1, only the best matching contig is
chosen, values greater than one lead to multiple hits that are processed in the
following steps of the pipeline. For assemblies derived from short-read RNA-Seq
reads, we recommend n> 1 (default: 5) as transcripts are often represented by
multiple contigs that were not combined properly during the assembly process.
We use TransDecoder [42] (version 5.2.0) to search the n resulting cDNA se-
quence(s) for open reading frames and, for each of them, we chose the translation
of the longest ORF into an amino acid sequence as the output protein.
To validate the resulting protein sequence(s), we use visualisation of a multiple
sequence alignment (MSA) as well as quantitative metrics. In the MSA we align
the resulting protein sequence(s) with the bait sequence and optional orthologous
proteins from other related species. If an annotated version of the target sequence
is available, it can also be included in the set of optional orthologues to allow for
the comparison of the annotated and the refined sequence(s). The a&o-tool uses
MUSCLE [29] (version 3.8.31) to compute and visualise the MSA.
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Figure 4.3: Schematic overview of the a&o-tool, an automated sequence refine-
ment pipeline. Dark grey boxes mark input files while light grey boxes represent
processing steps. Dashed lines indicate alternative processes. Entry points for the
pipeline are either short-read RNA-Seq data which are assembled into a transcrip-
tome or a pre-computed transcriptome assembly. The FASTA file of orthologous
sequences must contain a bait sequence which is searched in the (pre-computed)
assembly to retrieve best matching contigs. If the bait protein is from human, the
curated human UniProtKB/Swiss-Prot sequences may provided as an additional
input that is used for a reciprocal best hit BLAST search. In the resulting contigs,
ORFs are determined and translated into protein sequences. These, as well as
the orthologous sequences including the bait, are visualised in a MSA and quality
control metrics are computed. All required and optional input is provided via a
JSON file. MSA: Multiple sequence alignment; ORF: Open reading frame; RBH:
Reciprocal best hit; BLAST: Basic local alignment search tool.
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If an annotated protein sequence of the target is available, we perform two
alignments: 1) The annotated sequence is aligned to the bait protein and 2) the
refined sequence(s) are aligned to the bait protein. In both cases we compute
Δ𝑠𝑒𝑞_𝑖𝑑. If an annotated sequence is provided, we compare the resulting Δ𝑠𝑒𝑞_𝑖𝑑
values to determine whether the refinement has led to a decreased difference in
sequence identity. If no existing sequence is available, we only report Δ𝑠𝑒𝑞_𝑖𝑑 for
the alignment of the refined sequence(s) to the orthologous bait protein.
Nextflow [25] was used to automate the procedure described above. A configuration
file in JSON format provides all required information regarding the pipeline input
and its parameters. One can either pass the paths to the paired-end RNA-Seq
reads or the path to a pre-computed assembly. A FASTA file containing the
orthologous bait protein sequence as well as other optional sequences, which should
be included in the MSA, has to be provided.
The software required by a&o-tool (BinPacker, BLAST+, MUSCLE, and Python)
are provided via a Docker [72] container. To make the pipeline easily accessible,
we have set up a GitHub repository (https://github.com/Julia-F-S/a-o-tool) that
also includes some example data.

4.3 Results

4.3.1 Proportion of genes to be improved

The number of potentially poorly annotated genes in the five non-human species
ranged from 474 in dog (3 % of all dog genes which have one-to-one orthologues
in human) to 259 in mouse, i.e., 1.5 % of all mouse genes which have one-to-one
orthologues in human (see Figure A.2).

4.3.2 De novo transcriptome assemblies

The assembly of RNA-Seq data from six species and the three tissues brain, liver,
and kidney, resulted in 18 tissue-specific transcriptomes. The mean contig length
in the human assemblies was 1,369 bases (mean across assemblies from all tissues)
and 29.2 % of the contigs (again mean across all three assemblies) contained an
open reading frame (ORF). The mean percentage of the contig covered by the
ORF was 43.1 %. Details on the quantitative metrics for all 18 assemblies can be
found in Table A.1.
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4.3.3 Evaluation of detection rates in human and related
species from RNA-Seq assemblies

A reciprocal best BLAST search was applied to determine whether we can use
RNA-Seq data to improve or validate existing protein sequences.
In the tissue-specific transcriptomes of human, 64 % of all known human pro-
teins were detected as RBH (mean across tissues; see Figure 4.4). The average
number of genes with an FPKM ≥ 1, a lower boundary for genes to be con-
sidered as expressed [128], was 14,265 (70 % of the 20,350 human proteins in
UniProtKB/Swiss-Prot). Therefore, we concluded that the majority of expressed
protein-coding genes was detected by the RBH approach.

Figure 4.4: Percentage of all 20,350 known human proteins that had an RBH in
the respective assembly. Bars indicate the detection rate resulting from the search
with the assembled transcriptome from the individual species and tissue.

The reciprocal BLAST search with all known human sequences and the tissue-
specific transcriptome assemblies from mouse, rat, dog and pig resulted in a lower
detection rate of around 50 % (see Figure 4.4). In comparison to the search
of the known human proteins in the human assemblies, the reciprocal BLAST
search with the known human proteins and the tissue-specific cynomolgus monkey
assemblies led to an increase in detection rate of about 3.9 % (mean increase
across tissues).
To investigate our hypothesis that proteins without an RBH are not represented
in the transcriptome because they are lowly or not expressed, we compared
the expression levels of genes associated with proteins leading to an RBH and
those not having an RBH. This comparison confirmed our hypothesis (Wilcoxon
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rank sum test: p-value <1 × 10−4 for all tissues in all species; see Figure 4.5).
Interestingly, we observed that there are also genes associated with proteins
without an RBH that are highly expressed. A more detailed investigation of
these genes revealed that they code for multiple proteins which are represented by
different UniProt accession numbers. One example is the human GNAS complex
locus (Ensembl identifier ENSG00000087460): Its median expression in kidney is
FPKM > 330 and it is associated with the UniProt accession numbers Q5JWF2,
P84996, O95467, and P63092. We do, however, only find an RBH in the kidney
transcriptome for Q5JWF2, P84996, and O95467 but not for P63092. In summary,

(A) human (B) mouse

(C) rat (D) dog

(E) pig (F) cynomolgus monkey

Figure 4.5: Expression levels of proteins with a reciprocal best BLAST hit (found)
and those without (notFound). A Wilcoxon rank sum test was used to determine
pairwise significance (****: p-value ≤ 0.0001).

the reciprocal best hit BLAST analysis confirmed that an orthologous protein
sequence can be used to reliably detect the corresponding orthologous sequence in
the transcriptome assembly of a species of interest.
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4.3.4 Application of the generalised refinement pipeline

With the a&o-tool we present an automated sequence refinement pipeline that
can be used to refine or validate a target protein’s sequence (see Figure 4.3).
An example for the successful application of the a&o-tool is the pig orthologue
of the human protein DnaJ homolog subfamily C member 11 (DJC11_HUMAN,
UniProt Accession Q9NVH1). In comparison to its human orthologue, the pig
sequence (Ensembl version 88, ID ENSSSCP00000003669.2) was shorter (169
amino acids missing at N-terminus) while the human sequence was well conserved
in mouse, rat, and dog (>94 % protein sequence identity). By applying the
a&o-tool, we were able to retrieve a full-length protein sequence that matched the
human protein almost perfectly. The resulting sequence was further supported
by an update of the pig sequences with Ensembl (version 90) as it matched the
sequence of ENSSSCP00000003669.3 (see Figure 4.6). To determine whether the

Figure 4.6: Multiple sequence alignment of the human protein DnaJ homolog
subfamily C member 11 and its orthologous protein sequences in rat, mouse, pig,
and dog. pig_refined corresponds to the refined sequence and pig_ensembl90
is the updated pig sequence released with Ensembl 90. The figure has been
published in [110] under the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/).

a&o-tool is able to improve the sequence information of a variety of proteins, we
applied it to the set of pig proteins that are presumably poorly annotated (see
Figure A.2) with human proteins as the orthologous bait sequences. For 73 of
the 293 proteins we did not get any result because they either did not have a
hit in the initial BLAST search or the detected contig did not contain an ORF.
The remaining 220 proteins were filtered for those having an RBH. Furthermore,
we excluded proteins from further analysis for which the query identity or the
target identity differed by more than 3 % between the values provided by Ensembl
and those derived from the alignment with the Swiss-Prot sequence. This led to
131 proteins for which we examined the results of the a&o-tool and found that a
decrease in Δ𝑠𝑒𝑞_𝑖𝑑 was achieved for 98 proteins (mean decrease: 19.5 %; see
Figure 4.7).

http://creativecommons.org/licenses/by/4.0/
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Figure 4.7: The x-axis shows the difference between target and query sequence
identity, Δ𝑠𝑒𝑞_𝑖𝑑, and the y-axis corresponds to the number of genes with a certain
Δ𝑠𝑒𝑞_𝑖𝑑. Light grey bars show the distribution of Δ𝑠𝑒𝑞_𝑖𝑑 for all presumably
poorly annotated pig proteins, i.e., those with |Δ𝑠𝑒𝑞_𝑖𝑑| greater than the specie’s
mean + 2 times standard deviation. Dark grey bars show the distribution after
the application of the a&o-tool and illustrate the overall reduction of Δ𝑠𝑒𝑞_𝑖𝑑.

4.4 Discussion
In this chapter we investigated whether de novo assembled transcriptomes from
paired-end RNA-Seq data and an orthologous protein sequence can be used to
reliably identify the corresponding sequence in a species of interest. Furthermore,
we introduced the a&o-tool, an automated pipeline to refine or validate incomplete
or erroneous protein sequences by exploiting orthology and de novo transcriptome
assembly.
The evaluation of detection rates in a reciprocal best hit BLAST search using
human protein sequences and de novo assembled tissue-specific transcriptomes
from a variety of species—human, mouse, rat, dog, pig, and cynomolgus mon-
key—showed that this approach leads to high detection rates which are in line
with the proportion of expressed proteins. The Human Protein Atlas webpage, for
example, states that 59 % of all examined proteins are expressed in liver, 68 % in
kidney and 74 % in brain [2].
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When interpreting the hit rates in the RBH analysis, one should keep in mind
that UniProtKB/Swiss-Prot typically does not contain all isoforms of a gene, i.e.,
it is a simplified collection that does not appropriately account for the fact that
most genes have several isoforms that are often expressed tissue-specifically. Fur-
thermore, most sequences that were not detected corresponded to lowly expressed
gene. These two reasons may explain the slightly lower hit rates in comparison to
the expected number of expressed genes.
It should also be noted that, although UniProtKB/Swiss-Prot contains a compre-
hensive set of well curated human proteins, it does not represent an exhaustive
set of all human proteins. Pertea et al. [90] have analysed the GTEx [117] data
and, as a result, released a new gene and transcript catalogue that adds roughly
1,000 protein-coding genes to those present in UniProtKB/Swiss-Prot.
We observed differences in the achieved hit rates depending on the source of the
RNA-Seq data used for the assembly. The highest hit rates were obtained with
the cynomolgus monkey assemblies followed by human. In the four species for
which sequencing data were published by Fushan et al. (mouse, rat, dog, and
pig), we saw the lowest proportion of RBHs. These differences are probably due
to varying quality of the input RNA used for sequencing and the resulting read
quality. The RNA from cynomolgus monkey had an RNA integrity number (RIN;
median across samples) of 8.7 and 4.96 × 107 sequencing reads were uniquely
mapped to the reference genome (median across samples). With a median RIN of
7.5 the quality of the Fushan data for mouse, rat, pig, and dog was significantly
lower and as a result only 1.36 × 107 (median of per species medians) reads were
uniquely mappable. We did not have RIN values for the Human Protein Atlas
data but with 1.15 × 107 the number of uniquely mapped reads (again median
across samples) was even lower.
The RBH analysis also led to the conclusion that using human proteins as bait
sequences is a valid approach if one does not have access to a reliable sequence
from a more closely related species. We do, however, recommend to choose the
bait protein from a species with minimum evolutionary distance to the species of
interest to rule out that the sequence is missed due to evolutionary divergence.
Here we used short-read RNA-Seq data for de novo transcriptome assembly. One
should bear in mind that, due to the inherent properties of short-read sequencing
data, the contigs in the assembled transcriptome do not necessarily correspond
to full-length transcripts. This may lead to the identification of a contig which
belongs to the correct transcript but which is too short. As a result, the contig
cannot be translated into a complete protein sequence because, for example, the
initiation codon is missing. Another scenario one might be faced with is that the
resulting protein is too long due to 5’ UTRs containing initiation codons that
belong to upstream open reading frames [136].
To solve these two issues, we suggest to remove short contigs or ones hardly covered
by reads from the assembly by adding a filtering step to the a&o-tool. One could
also replace or combine the short-read RNA-Seq data with long-read data from,
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for example, PacBio or Oxford Nanopore sequencing. These platforms generate
supposedly full-length transcripts and could therefore eliminate the error-prone
assembly step.
Regarding the application of the a&o-tool to targets from families of highly similar
proteins, we advise special caution when interpreting the results. For similar bait
proteins our tool might identify the same contig as best match and thus return
the same translated sequence for different members of a protein family.
After the thorough evaluation of the general approach behind the a&o-tool,
we applied the tool to all pig genes that were found to be potentially poorly
annotated. We observed a shift of the median difference in sequence identity
towards 0. Therefore, we concluded that, for the majority of proteins, the sequence
information could be improved and that the target-centric a&o-tool facilitates
target identification and validation.
Finally, it may be concluded that RNA-Seq data and orthologous protein sequences
from closely related species can be used to improve or validate protein sequences
in species with poor annotation. With the a&o-tool we automated this approach
and provide a tool that can be easily incorporated at different stages of the drug
development process.



Chapter 5

A pilot study for the comparison
of long- and short-read RNA-Seq
data

5.1 Introduction
In recent years long-read sequencing technologies, such as those developed by
Pacific BioSciences and Oxford Nanopore, have gained increasing attention for
genome and transcriptome sequencing. While Illumina’s short-read sequencing
has become very cost-efficient and easily accessible, it currently only generates
a maximum read length of 300 bp [51]. In case of RNA-Seq this is sufficient
for quantitative gene expression analysis but in order to investigate transcript
sequences and alternative splicing events, the reads first have to be assembled
into contiguous sequences that ideally correspond to the whole transcripts. The
quality of the resulting genomic or transcript sequences depends on the chosen
assembler and may suffer from assembly errors. With PacBio’s Sequel systems
performing single-molecule real-time sequencing, an average read length of 46 kb
is achieved [84]. Especially in case of RNA sequencing, this drastic increase in
read length has revolutionised the field, as it is now possible to sequence entire
transcripts and the assembly step is rendered obsolete for basically all transcripts.
For example, protein-coding rat transcripts annotated in Ensembl version 92 had
a mean length of 2,254 bp and a maximum length of 25,658 bp.
There are already numerous studies that investigate alternative splicing on single-
gene [16,127] or whole-transcriptome level using long-read sequencing. For example,
Anvar et al. [9] have used the human breast cancer cell line MCF-7 and three
human tissues to examine the interplay of transcription initiation, splicing, and
polyadenylation. While the majority of long-read sequencing technologies are
primarily applied within the research community, they are slowly advancing to
clinical applications [7].

42
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In this chapter we present the results of a pilot study comprising one rat liver
sample which has been sequenced on PacBio’s Sequel system. To assess the quality
and compare results between long- and short-read sequencing, we also sequenced
this sample, as well as additional samples, on an Illumina NextSeq500. The main
questions we wanted to answer with this pilot study were, 1) how many of the
annotated transcripts are detected, 2) how do the detected sequences compare
to well-curated data, 3) are the PacBio sequences supported by short-read data
and if yes, how well, 4) are lowly expressed transcripts detected with long-read
sequencing?

5.2 Methods

5.2.1 PacBio and Illumina RNA-Seq data

For this study, samples were collected from three tissues (brain pre-frontal cortex,
kidney cortex and liver) from four male Brown Norway rats. All 12 samples were
split into aliquots for short-read sequencing with Illumina. These aliquots were
sequenced on a NextSeq500 to obtain paired-end reads with a read length of 76
bases. For the long-read sequencing on a PacBio Sequel, a pilot study with just
one liver sample (sample id 677_3) was conducted.
PacBio reads were processed with SMRTLink (v6.0.1) and the Ensembl Rattus
norvegicus reference genome (Rnor_6.0) according to the PacBio Iso-Seq protocol
(see Figure 2.3B) by the sequencing laboratory c.ATG. The report also contained
some information generated during the sequencing process. For example, the
SMRT cells were loaded using the diffusion method with 4 nM and a movie time
of 600 min was used. Furthermore, the following statistics on the productivity of
the zero-mode waveguides were provided: P0 refers to the percentage of ZMWs
which did not produce a polymerase read, P1 is the percentage of ZMWs that
produced exactly one polymerase read and P2 is the percentage of ZMWs which
produced inconsistent signals.
A Boehringer in-house RNA-Seq pipeline was used to process the Illumina
reads. Quality control of FASTQ files was performed with FastQC [15] (ver-
sion v0.11.5). Samples were aligned to the Ensembl Rattus norvegicus reference
genome (Rnor_6.0) using STAR [26] (version 2.5.2b). The resulting BAM files
were subjected to further quality control with picardmetrics [106] (version 0.2.4).
dupRadar [104] (version 1.2.2) was run to assess duplication rates. Duplicated
reads were, however, not removed.
The BAM files were sorted with SAMtools [4] (version 1.7) and transcripts were
quantified with RSEM [64] (version 1.3.0) to obtain their expression as transcripts
per million (TPM) and fragments per kilobase million (FPKM). In addition to
RSEM, featureCounts from the subread package [108] (version subread-1.5.1) was
used to summarise read mappings. Based on the variance-stabilised counts we
performed a principal component analysis (PCA) using DESeq2 [66] to detect
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potential outliers and investigated the distribution of expression values.
As the liver samples showed a high number of lowly expressed genes, we used the
independent rat data published by Fushan et al. [37] to determine liver-specific
genes according to the following specificity score (unpublished work by Eric
Simon): Given a set of tissues T of length 𝑡 and a vector of gene expression values
e = [𝑒1, 𝑒2, . . . , 𝑒𝑡] we computed the arithmetic mean expression across all tissues
as:

𝜇 =
∑︀𝑡

𝑖=1 𝑒𝑖

𝑡
(5.1)

The specificity vector, spec is then computed as:

𝑠𝑝𝑒𝑐𝑖 = 𝑒𝑖 − 𝜇

𝑒𝑖 + 𝜇 + 10−9 (5.2)

Where each element is the tissue-specificity of the gene for tissue𝑖 ∈ T. To
determine whether a gene is specifically expressed in a tissue one could either
define an arbitrary threshold or use the tissue with the highest specificity score
among the examined ones. Later in this chapter, we are going to use the latter
approach as we did not want to rely on an arbitrarily chosen threshold.

5.2.2 Comparing PacBio isoforms to the rat genome

SQANTI [114] was applied to compare PacBio isoforms to the Ensembl reference
genome (Rnor_6.0) and the corresponding annotation. The tool first maps the
PacBio isoforms to the provided reference genome using GMAP [138] to determine
splice junctions. These detected splice junctions are then compared to annotated
splice junctions and transcripts are classified into structural categories accordingly
(see Figure 5.1). Full splice matches (FSM) are transcripts that perfectly match
a reference transcript with respect to its splice junctions. An incomplete splice
match (ISM) is a fragment of an annotated transcript, i.e., it matches parts of the
reference perfectly but does not contain all splice junctions. If PacBio isoforms
can be mapped to a reference gene but use known splice junctions to form an
unknown transcript, they are classified as novel in catalogue (NIC). In case an
unknown transcript of an annotated gene arises from splice junctions which are
not annotated, the PacBio isoform is referred to as novel not in catalogue (NNC).
Then there transcripts which are referred to as “novel genes”. These are further
classified into: Genic Intron (lying in a gene’s intronic region), Genic Genomic
(overlapping intronic and exonic region), Intergenic (located between to genes),
Fusion Transcripts, and Antisense (matching the complementary sequence of an
annotated gene).
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Figure 5.1: SQANTI transcript classification. FSM: Full splice match, ISM:
Incomplete splice match, NIC: Novel in catalogue, NNC: Novel not in catalogue, SJ:
Splice junction. This figure is part of Figure 1 in Tardaguila et al. [114] which has
been published under the creative commons license 4.0 https://creativecommons.
org/licenses/by/4.0/legalcode.

We also compared the number of transcripts per gene derived from SQANTI
results to that from Illumina RSEM results and investigated alignments using the
Integrative Genomics Viewer (IGV) [96,120] (version 2.3.98).

5.2.3 Comparing PacBio isoforms to known sequences
from rat and human

We aligned the PacBio isoforms to all rat and human protein sequences in
UniProtKB/Swiss-Prot and the larger set of rat and human cDNA sequences
available in Ensembl. In both cases a Nextflow pipeline performing a reciprocal
best hit BLAST approach was used. PacBio isoforms were aligned to the human
amino acid sequences with blastx and to nucleotide sequences with blastn. The
best hits were then aligned back to the set of PacBio isoforms using tblastn
(proteins) or blastn (transcripts). All BLAST parameters, except for the e-value
threshold which was set to 1 × 10−4, were used with their default values implemen-
ted in NCBI BLAST+ version 2.7.1. The results were investigated with respect to
whether a reciprocal best hit was found as well as the sequence identity of BLAST
HSPs and the coverage of the query sequence. Furthermore, we incorporated the
results from SQANTI to compare the expression between isoforms which had a
reciprocal best hit and those which did not. We also contrasted the classification
of isoforms into known and novel genes/transcripts with their RBH property.

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
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5.2.4 Comparing PacBio and Illumina data

Mapping rates

Illumina reads obtained from sample 677_3 were assembled with StringTie [89]
using the BAM file generated by STAR in the in-house RNA-Seq pipeline and
the Ensembl 92 reference annotation. As a result, StringTie generates a GTF file
containing annotated and novel features. For PacBio isoforms such an annotation
file was produced by SQANTI. Using gffcompare [88] (version 0.11.2) we compared
both GTF files to the Ensembl reference annotation and retrieved sensitivity and
precision values at several levels, e.g., base, exon, and intron level. We did not set
the -R option of gffcompare, therefore, the sensitivity values were not adjusted, i.e.,
reference genes not supported by any data were also included in the calculations.

Coverage of PacBio isoforms by Illumina reads

To compare the data we obtained from the Illumina sequencing runs to those
from PacBio sequencing, we merged all FASTQ files from the four liver samples
and mapped them to the PacBio isoforms using STAR. Each PacBio isoform was
considered to be a reference sequence, i.e., a “chromosome”. We applied SAMtools
to index the resulting BAM file and computed the number of mapped reads per
reference sequence.
We applied the same procedure to the Illumina reads from the single liver sample
677_3 to get a direct comparison between Illumina and PacBio data obtained
from the same sample. Furthermore, we also aligned the short reads from kidney
and brain to the PacBio isoforms to assess whether their coverage of the PacBio
liver isoforms differs from that with short-read data from liver.

Detection limit

To get an idea for the expression threshold sufficient for detecting a transcript
with PacBio sequencing, we compared transcript expression, based on RSEM
results, between transcripts that were associated with a PacBio isoform and those
that were not.

Overlap of detected transcripts

We compared the set of transcripts associated with PacBio isoforms by SQANTI
to the set of transcripts expressed based on RSEM results of short-read data. A
transcript was considered to be expressed if its FPKM was greater than 5.
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5.3 Results

5.3.1 PacBio and Illumina RNA-Seq data
The productivity statistics of the ZMWs (see Table 5.1) showed that the library
was overloaded, i.e. a high number of ZMWs contained more than one molecule.
Overloaded ZMWs produce inconsistent signals because multiple polymerase-
template complexes are in the same ZMW and/or there is high background signal.
In summary, 40% of ZMWs produced a polymerase read.
In total we obtained 4.5 million filtered subreads that were processed with SMRT-
Link and eventually led to 8,106 error-corrected PacBio isoforms. Details on the
results of intermediate processing steps can be found in Table A.2.

Table 5.1: Productivity metrics of the Sequel run as provided by the sequencing
facility. P0, P1 and P2 refer to the productivity category which is described in the
column “description”. “value” corresponds to the percentage of all ZMWs that fall
in the respective category. The column “ideal” provides reference values for each
category.

productivity value [%] ideal description

P0 3.965 P2>P0 ZMWs which did not produce a polymerase
read

P1 39.893 30-45 ZMWs which produced a polymerase read
P2 56.142 < 10 ZMWs which produced inconsistent signals

(multiple polymerase-template-complexes,
high background signal)

Illumina samples had an average of 30 million reads of which more than 85 %
were uniquely mapped to the reference genome (see Table A.3). Only one kidney
sample (677_8) had fewer (74 %) uniquely mapped reads. In the PCA, samples
clustered by tissue (see Figure A.3). Interestingly, the liver samples formed a
cluster which was very distinct from the other tissue clusters in PC1. Their
distribution of TPM expression values also differed from those of kidney and
brain (see Figure A.4) and revealed that liver samples had a high number of
lowly expressed transcripts. To determine whether this reflected a batch effect
or a true biological difference, we compared all Illumina samples to the rat data
published by Fushan et al. [37] (see Chapter 4) and found that the pattern of
liver samples forming a separate cluster which is very distinct from the cluster
consisting of kidney and brain samples, was confirmed by a correlation analysis
(see Figure A.5). By computing the tissue specificity score defined in Equation 5.2
for each gene with an expression above the detection limit of 1 TPM [2], we
determined 2,146 genes with the highest specificity score in liver. Comparing the
distribution of expression levels of these genes across all 12 Illumina samples (see
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Figure A.6), showed that the median expression of liver-specific genes was higher
in liver samples than in brain or kidney samples (t-test p-value: 3.54 × 10−28).
Hence, we concluded that the higher number of lowly expressed genes was not
due to technical issues and the data were suitable for further analyses.

5.3.2 Comparing PacBio isoforms to the rat genome

The reference genome and available annotation are valuable resources when
characterising isoforms obtained with PacBio long-read sequencing. By aligning
the candidate isoforms to an annotated reference one can, for example, assess
how many isoforms map to known genes and how many are not present in the
annotation. The analysis of the 8,106 PacBio isoforms with SQANTI showed
that 7,475 PacBio isoforms were mapped to a set of 4,363 annotated genes. 631
PacBio isoforms could not be mapped to an annotated gene, however, 99 of
them mapped to the complementary strand of a known gene. SQANTI uses the
term “novel gene” to refer to a genomic locus without an annotated gene but
mapping PacBio isoforms, i.e., several PacBio isoforms can be assigned to the
same novel gene. Thus, more than 50 % of all 8,106 PacBio isoforms matched an
annotated transcript, either in all splice junctions or a subset of splice junctions.
The majority of those in the FSM and ISM category contained an open reading
frame (ORF) and were thus predicted to be protein-coding (see Figure 5.2). We
also investigated the number of transcripts per gene, both for long- and short-read
data (see Figure 5.3), and found that PacBio sequencing led to more genes with
multiple transcripts. In particular, genes with five and more transcripts were
almost exclusively detected in the PacBio data. To examine these genes in greater
detail, we looked at the alignment of the 12 genes with more than 10 transcripts
and observed an interesting pattern. In eight out of 12 loci, the length of the
PacBio isoforms declined successively at the 5′ end while they were identical in
the retained parts of the sequence (see Figure 5.4 for an example). We think that
these are artefacts.

5.3.3 Comparing PacBio isoforms to known sequences
from rat and human

Since the annotation of the rat genome is incomplete and contains errors (see
Chapter 4), we aligned the PacBio isoforms to all rat/human protein sequences in
UniProtKB/Swiss-Prot and the larger set of rat/human cDNA sequences available
in Ensembl.
The reciprocal best hit BLAST search of the PacBio isoforms with all rat proteins
in UniProtKB/Swiss-Prot led to 79.2 % of the isoforms being part of an HSP
and 35.2 % of all PacBio isoforms having an RBH (see Table 5.2). Using human
instead of rat protein sequences raised the number of PacBio isoforms resulting in
an HSP by more than 10 % to 89.8 %. With 51.2 % RBH isoforms, there were also
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Figure 5.2: Distribution of structural categories identified by SQANTI. FSM: Full
Splice Match, ISM: Incomplete Splice Match, NIC: Novel in Catalogue, NNC: Novel
Not in Catalogue. The opacity reflects the proportion of transcripts predicted to
be protein-coding in each category. The figure was created with minor adaptations
using the original SQANTI [114] code.

almost 16 % more isoforms having an RBH in human UniProtKB/Swiss-Prot than
in rat UniProtKB/Swiss-Prot. When we looked at the number of RBHs in relation
to the number of proteins with a hit in the forward BLAST search, i.e., those we
can actually find in the backward search, 44.5 % (rat) and around 80 % (human)
were found. Further relaxing the constraints such that the PacBio isoform does
not have to be the best hit in the backward search but only a significant one,
yielded a hit rate of 57.3 % of all isoforms and 72.3 % of initially hit isoforms for
rat. Using human sequences again led to an increase in both hit rates, 74 % of all
isoforms and 82.4 % of initial hits had an RBH.
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Figure 5.3: Comparison of the number of transcripts per gene between PacBio
and Illumina. For the Illumina counts we only considered transcripts with an
FPKM>5.

Figure 5.4: Alignment of PacBio isoforms to the rat genome at the C3 gene
locus (chr9:9721105-9747167) as an example to illustrate PacBio artefacts. The
gene’s annotated exon-intron-structure is shown at the bottom. The aligned PacBio
isoforms are drawn in the panel in the middle and the barplot on top of the middle
panel summarises the coverage.
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Table 5.2: Results of the reciprocal best hit BLAST search. The columns
“query” and “DB” correspond to query and database in the forward BLAST
search, respectively. “pb_iso” stands for PacBio isoforms, “sp” indicates that
UniProtKB/Swiss-Prot sequences were used, “ens95” means that sequences came
from Ensembl, and the abbreviations “rn” and “hs” denote the species. “iso” is the
percentage of rat PacBio isoforms being part of an HSP in the forward BLAST
step. “RBH_iso” is the number of reciprocal best BLAST hits in relation to the
total number of query sequences while “RBH_init” corresponds to the number of
reciprocal best BLAST hits in relation to the number of initial hits in the forward
search. “bf_ab_iso” and “bf_ab_init” are the number of isoforms whose best hit
in the forward search leads to the isoform as a hit (not necessarily the best one) in
the backward search, divided by the number of isoforms or the number of initial
hits.

query DB iso
[%]

RBH_iso
[%]

RBH_init
[%]

bf_ab_iso
[%]

bf_ab_init
[%]

pb_iso sp_rn 79.20 35.25 44.50 57.28 72.32
pb_iso sp_hs 89.80 51.16 56.97 73.96 82.36

pb_iso ens95_rn 97.27 55.37 56.92 80.58 82.84
pb_iso ens95_hs 78.32 49.19 62.80 68.52 87.48

sp_rn sp_hs NA NA 95.43 NA 98.38
ens95_rn ens95_hs NA NA 66.05 NA 90.26

Since UniProtKB/Swiss-Prot contains protein sequences, it does not reflect the
entire transcriptome. To allow for the detection of non-coding isoforms, we
also performed the reciprocal best hit BLAST approach with the set of cDNA
sequences in Ensembl. Using rat Ensembl sequences led to higher numbers in all
measured categories in comparison to the search against rat UniProtKB/Swiss-
Prot sequences. 97.3 % of PacBio isoforms had an initial hit in the forward
BLAST step and more than 82 % of them had an RBH. Interestingly, the number
of initial hits decreased by more than 10 % when aligning PacBio isoforms to
human cDNA instead of protein sequences. This might be due to a higher number
of similar transcripts per gene in the Ensembl data set compared to the number
of proteins in the UniProtKB/Swiss-Prot data set. As a result, all other numbers
corresponding to a percentage of all PacBio isoforms declined. Those relating
to the number of initial hits increased by about 5 %. We also compared the rat
cDNA sequences from Ensembl to the protein sequences in UniProtKB/Swiss-Prot
to get a theoretical upper limit for the number of hits to expect. Practically, this
number cannot be reached because not all genes are expressed at the same time
in a given tissue. Furthermore, the sets of sequences retrieved from the databases
are not complete, so the numbers of hits we obtained are only an estimate for
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the theoretical upper limit. In case of the UniProtKB/Swiss-Prot sequences a
reciprocal best hit rate of 95.4 % was observed and 98.4 % of the rat proteins had
a significant reciprocal hit. When comparing the rat Ensembl sequences to those
in human one gets 66 % reciprocal best, and 90.3 % reciprocal hits.
Since the reciprocal best hit BLAST search of PacBio isoforms and the set of
well-curated human protein sequences in UniProtKB/Swiss-Prot led to almost
90 % of isoforms having an initial hit of which 57 % had a reciprocal best hit, we
decided to proceed with the analysis based on this comparison.
A more detailed investigation of the BLAST results of the reciprocal best hits
showed that the coverage of query isoforms by their corresponding HSP varied
heavily, both in the forward and the backward search (see Figure 5.5A). The
majority of PacBio isoforms were, however, covered well (see Table 5.3 for quantiles
of the distribution). The pairwise alignments of the HSPs had an overall high
number of matches (see Figure 5.5B and Table 5.3).

Table 5.3: Quantiles of coverage and sequence identity from the RBH search of
PacBio isoforms and human proteins. Coverage refers to the percentage of the
PacBio isoform covered by the HSP and sequence identity is the percentage of
matches in the alignment. The forward search is that aligning PacBio isoforms to
human proteins and in the backward step best hits from the forward search are
aligned back to PacBio isoforms.

min 1𝑠𝑡 quartile median 3𝑟𝑑 quartile max

coverage (forward) 2.34 40.74 58.87 74.73 98.74
coverage (backward) 2.34 40.78 58.88 74.81 98.38

identity (forward) 32.34 82.44 90.29 96.11 100.00
identity (backward) 32.34 82.47 90.32 96.13 100.00
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Figure 5.5: Distribution of the percentage of the PacBio transcript covered by
the HSP (A) and the percentage of matches in the HSP alignment (B). Only data
of reciprocal best hits is shown. The dark grey histogram results from the search
of PacBio isoforms in human UniProtKB/Swiss-Prot (forward). The light grey
histogram reflects the distribution based on the search of best hits from the forward
step in the set of all PacBio isoforms (backward).

SQANTI provided us with an Ensembl gene as well as transcript identifier for all
PacBio isoforms which were successfully aligned to the rat genome. Using these
identifiers we compared the expression of isoforms having a reciprocal best hit in
our search of PacBio isoforms in human UniProtKB/Swiss-Prot sequences and
those which did not lead to a reciprocal best hit (see Figure 5.6). Even though
the visual difference between the tissues in the two groups is not very pronounced,
pairwise Wilcoxon rank sum tests revealed that all tissues, except for kidney
on the isoform expression level, showed a significantly different mean expression
between the RBH and the notRBH isoforms (significance level: 0.05).
We hypothesised that the set of isoforms not leading to an RBH contains more
novel genes and transcripts than those having a reciprocal best hit. Investigating
both sets of PacBio isoforms with respect to the gene and transcript categories into
which SQANTI classified them (see Table A.4), showed that there are more novel
genes and transcripts among the notRBH isoforms than in the RBH ones. A two-
sided Fisher’s exact test confirmed that the RBH category and the gene/transcript
categories are not independent (gene category p-value: 2.8 × 10−147; transcript
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Figure 5.6: Expression levels of genes (A) and transcripts (B) associated with
PacBio isoforms having a reciprocal best hit (RBH) and those without one (notRBH)
in the BLAST search of PacBio isoforms in human UniProtKB/Swiss-Prot.

category p-value: 2.0 × 10−115). The 22 PacBio isoforms classified as novel by
SQANTI but having a reciprocal best BLAST hit when searched in human
UniProtKB/Swiss-Prot proteins were of particular interest. We therefore investig-
ated these further by looking at their alignments to the rat reference genome. In
eight cases there is an annotated gene in RefSeq to which the respective PacBio
isoform matched well. Nine isoforms are supported by Illumina reads and we
therefore suspect they are genes which are missing in the Ensembl annotation.
Five isoforms seem to be artefacts because they were of poor quality, i.e., they con-
tained many insertions, deletions and mismatches, and were mostly not supported
by Illumina reads.

5.3.4 Comparing PacBio and Illumina data

Mapping rates

We have examined the alignment to the reference genome, both for PacBio and
Illumina data, with respect to sensitivity and precision at several levels (see
Table 5.4). On average, the sensitivity obtained with the short-read data was 34 %
higher than that achieved with long-read data. This means that more annotated
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features (exons, transcripts, loci etc.) were detected with Illumina than with
PacBio. The precision, i.e., the proportion of annotated features in the set of
input features, achieved with both sequencing technologies was comparable (mean
difference of 8 %).

Table 5.4: Sensitivity and precision at several levels achieved with Illumina and
PacBio when comparing the data to the reference genome. The intron chain level
refers to the intron-exon structure excluding the terminal exons. The transcript
level is a more stringent version of the intron chain level as it also requires matching
terminal exons (max. 100 differing bases at the outer boundaries).

Illumina PacBio

sensitivity precision sensitivity precision

Base level 54.9 74.1 15.4 71.5
Exon level 52.4 88.6 16.3 82.6
Intron level 55.3 95.8 18.3 93.3
Intron chain level 40.3 64.4 10.0 42.7
Transcript level 37.1 53.7 7.5 37.9
Locus level 38.1 59.6 9.2 61.3

Coverage of PacBio isoforms by Illumina reads

To assess whether the long-read data is supported by short-read data, we aligned
Illumina reads to PacBio isoforms. A sanity check for the alignments was performed
by examining the distribution of the number of mapped reads when aligning
Illumina reads from different tissues to our long-read liver data. As expected,
we found that the alignment of the Illumina reads from liver samples yielded
the highest fraction of mapped reads (Figure A.8). The results from aligning
reads from sample 677_3 and the merged liver samples to PacBio isoforms were
investigated in greater detail.
In the single sample case, 53 PacBio isoforms were not covered by any Illumina
read and 36 of them were classified as novel transcripts by SQANTI. Using the
merged liver samples decreased these numbers to 19 not covered isoforms (10 novel
transcripts). In both cases none of the isoforms had a reciprocal best BLAST hit
when compared to human UniProtKB/Swiss-Prot sequences. A comparison of the
number of isoforms per locus (based on SMRTLink processing) between isoforms
to which no Illumina read was mapped and those covered by short reads, showed
that isoforms which were not covered, belonged to loci with a higher number of
isoforms. The 19 PacBio isoforms not covered in the alignment of merged liver
reads to PacBio isoforms are from loci with an average of 14.20 isoforms while
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the rest of the isoforms come from loci with an average of 1.64 isoforms (t-test
p-value: 1.7 × 10−2). As we saw earlier in this chapter (see section 5.3.2), most of
these isoforms are probably artefacts.
For the nine isoforms not covered by Illumina reads but successfully mapped to
the reference, we also compared reference transcript length and the number of
exons and found that they were associated with longer transcripts (t-test p-value:
1.5 × 10−2) which contain more exons (t-test p-value: 8.6 × 10−5). This was also
confirmed by the data from the single sample alignment, though less pronounced
(data not shown).
When we investigated the expression of genes associated with highly, lowly (exclud-
ing not covered) and not covered isoforms we saw that the highly covered isoforms
corresponded to highly expressed genes while those with few mapped Illumina
reads corresponded to genes with lower expression (see Figure 5.7). Interestingly,
those not covered mapped to genes with even higher median expression than those
highly covered with short reads. In case of lowly and highly covered isoforms we
did not observe a difference between the single sample 677_3 and the merged
liver samples. Merging the liver samples did, however, reduce the number of not
covered isofoms and it emphasised the fact that isoforms to which not a single
Illumina read mapped, were associated with highly expressed genes.

Figure 5.7: Expression of genes associated with PacBio isoforms based on short-
read data for PacBio isoforms highly, lowly and not covered by Illumina reads
(either from sample 677_3 only or from the pool of all liver samples). High and low
coverage was defined using the 3𝑟𝑑 and the 1𝑠𝑡 quartile. Lowly covered isoforms do
not include those with zero mapped reads.
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Detection limit

One of the main questions we wanted to answer with this pilot study, was which
expression level is required for a transcript to be detected by long-read sequencing.
A comparison of the expression based on the short-read data from sample 677_3,
showed that genes to which a PacBio isoform was mapped had a median TPM
of around 30 while those without a matching PacBio isoform had significantly
lower expression levels (see Figure 5.8). There were 27 transcripts which had an
associated PacBio isoform but an expression of 0.

Figure 5.8: Comparison of gene expression between genes to which a PacBio
isoform was mapped and those without an associated isoform.

Overlap of detected transcripts

Based on the analysis of PacBio isoforms with SQANTI, we compared the set of
associated transcripts to that of expressed genes detected with Illumina data (see
Figure 5.9A). Interestingly, there are more transcripts detected by only one of
the two platforms than ones detected by both. Especially the set of transcripts
only detected with Illumina appears to be quite large. A look at the expression of
these transcripts compared to those found by both technologies, showed that they
mainly correspond to lowly expressed transcripts (see Figure 5.9B).
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(A) Venn diagram of transcripts detected by
PacBio and Illumina.

(B) Comparison of transcript expression based on short-read data
between transcripts detected with PacBio and Illumina and those
only detected with Illumina.

Figure 5.9: Overlap of transcripts detected with PacBio and Illumina.

5.4 Discussion and outlook
In this chapter the results from a pilot study were presented in which rat liver,
brain and kidney samples were examined with the aim to compare short- and
long-read transcriptomic data. All samples were sequenced with Illumina to obtain
short-read data and one liver sample was sequenced using PacBio’s Sequel system
to generate long reads.
During the initial quality control of the short-read data we noticed that the liver
samples had a high number of lowly expressed genes. Since Yu et al. [141] also
found that liver and muscle had the lowest numbers of expressed genes (FPKM
≥ 1) and we observed this in other data sets, we were confident that this was
not a technical batch effect. Also, our primary aim was to use these data to
confirm isoforms which were detected with PacBio’s long-read sequencing and
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not to compare expression between tissues, therefore, we did not expect the high
number of lowly expressed genes to negatively impact our results.
From the productivity values of the Sequel run we concluded, that the SMRT
cells were overloaded (high P2). Although the 40 % of ZMWs that produced
one polymerase read (P1) was within the ideal range provided by the sequencing
laboratory (30-45 %), it appeared quite low in comparison to recommendations
by the developer of the Iso-Seq pipeline, Elizabeth Tseng [84, 123] (50-75 %).
Therefore, the productivity of our run was not optimal but it should not impair the
results of our study (personal communication with David Stucki, Senior Scientist
at PacBio). In her presentation [84], Elizabeth Tseng provided additional reference
numbers obtained from processing human data from a “best case” scenario with
the IsoSeq3 pipeline. The number of CCS (264,467 vs. 572,406) as well as the
number of full-length reads (234,476 vs. 430,257) also seemed rather low. The
percentage of full-length reads was, however, comparable to the number provided
in Tseng’s presentation (88 % and 75 %, respectively). Of course, one has to keep
in mind that the values used as a reference stem from an ideal sequencing run
using samples from another species.
After clustering full-length reads, the IsoSeq3 pipeline polishes the resulting
isoforms to generate consensus sequences that are split into high and low quality
isoforms. Both have ≥ two full-length read support but high quality isoforms
have an accuracy of ≥99 % while the accuracy of low quality isoforms is less than
99 % [126]. Since we observed more low quality isoforms than expected for the
IsoSeq3 protocol (personal communication David Stucki), we had a high number
of polished isoforms with low predicted accuracy. Here, one should, however, keep
in mind that a hard cut-off of 99 % is used and isoforms with an accuracy of
98.9 % are already classified as having low quality.
When we investigated the alignment of PacBio isoforms to the reference genome,
we observed a number of loci with enrichment in isoforms that successively declined
in length. Initially, we expected them to be merged during the clustering step in
the IsoSeq pipeline. Their difference at the 5′ end was, however, too big for them
to be identified as the same isoform since the IsoSeq3 pipeline clusters full-length
reads by considering two reads to be the same isoform if their: 1) difference at
5′ end is <100 bp, 2) difference at 3′ end is <30 bp and 3) gaps in exons are
<10 bp with no limit on the number of gaps [126]. These successively shorter
isoforms could be either due to alternative transcription start sites, incomplete
reverse transcription [134], or RNA degradation. For the latter to be ruled out, a
5′ cap selection would have to be done to correctly determine transcription start
sites and hence ensure that transcripts are really full-length. This would probably
reduce the already low number of detected isoforms but it may also increase the
chances of finding transcripts with lower expression since less reads are used for
these truncated transcripts.
Another approach would be to simply remove the redundant isoforms by either
using the longest representative or collapsing them [62,124,133,134]. A validation
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of PacBio transcripts with PCR, performed by the authors of SQANTI, showed that
it is generally advisable to apply further filtering steps to the IsoSeq output [114].
SQANTI also includes a classifier which uses FSM transcripts (positive class) and
NNC transcripts with noncanonical splice junctions (negative class) derived from
the input to remove artefacts. Unfortunately, the thorough evaluation of this
method and its application to the pilot study’s data were outside the scope of this
thesis.
In general, the points discussed above hint at a low sequencing depth and we were
advised to look into rarefaction curves (personal communication with David Stucki)
to determine whether more data would increase our isoform yield. Unfortunately,
this is beyond the scope of this thesis.
Mapping the PacBio isoforms to the reference genome of rat showed that the
majority could be associated with an annotated transcript and were predicted to
be protein-coding. The average length of isoforms classified as FSM by SQANTI
(2130 bp) compared well to that of the matching reference transcripts (2146 bp).
Analysing the overlap of transcripts detected with PacBio and Illumina showed that
there is a substantial number of transcripts detected with both platforms (27 %).
There are, however, also many transcripts detected by only one of the technologies.
We found that those only detected with Illumina were generally lower expressed
than those detected by both platforms. Considering the potential artefacts we
identified, the 35 % only found with PacBio should be investigated in greater
detail. Weirather et al. [135] have evaluated the performance of Illumina, PacBio,
and Oxford Nanopore on a gold standard data set comprising 68 transcripts
with various alternative splicing events. They found that the two long-read
sequencing technologies outperform Illumina, i.e., we can be confident that some
of these transcripts only detected with PacBio are true novel isoforms which
should be validated.
The fact that we found more reciprocal (best) hits in the reciprocal BLAST of
PacBio isoforms vs. human protein sequences than in the search against rat
proteins, confirmed the observation we made in Chapter 4 that the rat annotation
is incomplete and rat is sufficiently closely related to human to exploit human
annotation to improve that of rat.
The high number of reciprocal (best) hits in the comparison to rat cDNA sequences
annotated in Ensembl (version 95) showed that the long-read data covered the
rat transcriptome well. Interestingly, we observed a decrease in initial hits when
aligning PacBio isoforms to human cDNA sequences. Those having a reciprocal
best hit showed a lower sequence identity across HSPs (median: 85.78 %; data
not shown) than in the search against human proteins (median: 90.29 %; data
not shown). Therefore, we concluded that the difference between rat PacBio
isoforms and human is relatively high on a nucleotide sequence level but, due to
the degenerated genetic code, the resulting proteins are similar. This finding may
hint at a still high error-rate in PacBio isoforms which contradicts the findings
of another study that has shown that the error correction in the IsoSeq method
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reduces the error rate from 14.20 % in subreads to 1.72 % in CCS [135].
The alignment of Illumina reads to PacBio isoforms showed that only a negligible
number of isoforms was not at all covered by short reads and the majority had a
high number of mapped reads. Some of the isoforms not covered by any reads
were also not successfully mapped to the rat genome and may thus be true novel
isoforms. One should, however, not only look at the number of mapped reads but
also at their distribution along the isoform to determine whether it is uniformly
covered or whether, for example, the 5′ end is less well covered. To make this
analysis feasible for thousands of isoforms, an appropriate metric to summarise
the density of mapped reads along the PacBio isoform would have to be found.
We were also able to show that, in our data set, a transcript was likely to
be discovered with long-read sequencing if its expression was above 30 TPM.
There were, however, 27 isoforms with a PacBio isoform but 0 expression for
the associated transcript. Looking into these cases revealed that these tran-
scripts belonged to genes with either several very similar annotated transcripts
or to ones that have a high number of different transcripts. For example, the
PacBio isoform PB.2596.1 was mapped to the transcript Trim39-204 (Ensembl
identifier: ENSRNOT00000084559) of the gene Trim39 (Ensembl identifier: ENS-
RNOG00000000785) which had a TPM of 0 in sample 677_3. Visualisation of the
alignment showed that PB.2596.1 matched Trim39-204 well, i.e., it was correctly
aligned to Trim39-204 instead of one of the other three protein-coding, annotated
transcripts. Therefore, we assumed that in case of these 27 transcripts, either
the RSEM isoform expression quantification might be incorrect or the transcripts
were simply not captured with short-read sequencing.
Despite the fact that the long-read data generated in this study suffered from
low accuracy for many isoforms and a 5′ cap selection is highly recommended
to increase the number of true full-length isoforms, we obtained encouraging
results. The long-read isoforms were mostly confirmed by the comparison to 1)
the rat genome, 2) human, well curated protein sequences and 3) short-read data.
Therefore, we recommend sequencing all tissue samples with PacBio performing a
5′ cap selection to then look into tissue specific isoforms or investigate the novel
isoforms in greater detail. We are confident that the genome annotation of such a
common model organism as rat can greatly benefit from a follow-up study.
A recently published method, LoReAn [22], already combined short- and long-read
RNA-Seq data, as well as protein information, to improve genome annotation. As
it has, so far, only been applied with two fungal and two plant data sets, it would
be very interesting to investigate the LoReAn approach in greater detail and to
apply it to mammalian genomes, if feasible.



Chapter 6

Assessing a target’s conservation
across model organisms

6.1 Introduction
The analysis of reasons for pharmaceutical project closure performed by
Cook et al. [21] showed that the majority of the projects were terminated due to
efficacy and safety issues (see chapter 2.1 for more details) with a shift from safety
to efficacy related reasons the farther the project has advanced along the drug
development pipeline. This lack of efficacy and safety may be due to differences
between the model species—like mouse, rat, dog, pig, or cynomolgus monkey—and
human. Despite their general genetic, anatomical and physiological similarity to
human, one has to critically assess the suitability of certain model organisms for
drug development.
The most commonly used model species, mouse and rat, shared their last common
ancestor with human around 90 million years ago (MYA) (see Figure 6.1). The
two species frequently used for non-rodent safety studies, dog and pig, are even
more distantly related to human with their last common ancestor with human
being about 96 MYA. Cynomolgus monkey is closest to human with their last
common ancestor having occurred roughly 30 MYA. Consequently, we must expect
targets to act differently in different species. By determining these discrepancies
in advance in silico, we could spare millions of animal lives. This would be in
line with the aim to reduce animal experiments as defined in the principles of
the 3Rs [100] (Replacement, Reduction and Refinement). Furthermore, not
performing experiments whose result cannot be translated into human due to
species differences, reduces cost and time, both valuable assets for pharmaceutical
companies. To prevent unnecessary animal testing, it is important to carefully
investigate and compare different types of information about the target in human
and the potential model species. Initiatives like “Illuminating the Druggable
Genome” aim to assemble a comprehensive collection of data sets such as literature
based target information, gene expression or disease associations. The gathered
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Figure 6.1: Phylogenetic tree of human, cynomolgus monkey, mouse, rat, dog
and pig. The branch length represents the divergence time in million years ago
(MYA). This figure is an adapted version of a figure created with TimeTree [61].

information is accessible via Pharos [81] and also includes a list of orthologous
genes. OpenTargets [18] takes it a step further and considers mouse models when
computing a score measuring target-disease-association. These approaches are
valuable for target prioritisation and to decrease the number of projects failing due
to target related issues in efficacy and safety. To our knowledge there is, however,
no method that assesses a target’s properties in rodent and non-rodent model
species. In addition to ranking potential targets, such a score would facilitate the
a priori determination of suitable model species and allow for the determination
of the conservation level of specific gene sets.
Therefore, we present the target conservation score which takes sequence, gene
expression and function related information into account to provide a measure for
the conservation of a target gene across different model organisms. In the following,
we first introduce the total conservation score, which is the weighted mean of
altogether eight subscores, that are explained in detail below. We will apply it to
all protein-coding human genes and analyse the results. A brief description of the
database implemented for storage and retrieval of the computed scores is going to
be presented. Attempts to validate the proposed score and a discussion of the
results conclude this chapter.
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6.2 Methods

6.2.1 Target conservation score

The target conservation score is the weighted mean of eight subscores, that model
three different sequence homology aspects—expression, functional, and network
conservation—for orthologous gene pairs between human and a chosen model
species.
The conservation score for a human gene 𝑔𝐻𝑠 in species 𝑠 is computed as the
weighted sum of subscores that are calculated for all orthologous pairs (𝑔𝐻𝑠, 𝑔𝑠

𝑜):

𝑠𝑠𝑝𝑒𝑐𝑖𝑒𝑠(𝑔𝐻𝑠, 𝑠) =𝑤1 * 𝑠ℎ𝑜𝑚

+ 𝑤2 *
∑︀𝑛𝑠

𝑜=1 𝑠𝑖𝑑(𝑔𝐻𝑠, 𝑔𝑠
𝑜)

𝑛𝑠

+ 𝑤3 *
∑︀𝑛𝑠

𝑜=1 𝑠𝑔𝑜𝑐(𝑔𝐻𝑠, 𝑔𝑠
𝑜)

𝑛𝑠

+ 𝑤4 *
∑︀𝑛𝑠

𝑜=1 𝑠𝑤𝑔𝑎(𝑔𝐻𝑠, 𝑔𝑠
𝑜)

𝑛𝑠

+ 𝑤5 *
∑︀𝑛𝑠

𝑜=1 𝑠𝑒𝑥𝑝(𝑔𝐻𝑠, 𝑔𝑠
𝑜)

𝑛𝑠

+ 𝑤6 *
∑︀𝑛𝑠

𝑜=1 𝑠𝑠𝑝𝑒𝑐(𝑔𝐻𝑠, 𝑔𝑠
𝑜)

𝑛𝑠

+ 𝑤7 *
∑︀𝑛𝑠

𝑜=1 𝑠𝑛𝑒𝑡(𝑔𝐻𝑠, 𝑔𝑠
𝑜)

𝑛𝑠

+ 𝑤8 *
∑︀𝑛𝑠

𝑜=1 𝑠𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑜(𝑔𝐻𝑠, 𝑔𝑠
𝑜)

𝑛𝑠

(6.1)

The total conservation score for 𝑔𝐻𝑠 in then th weighted sum of the species scores
in all considered species:

𝑠𝑡𝑜𝑡𝑎𝑙(𝑔𝐻𝑠) =
𝑆∑︁

𝑠=1
𝑤𝑠 *

(︃
𝑠𝑠𝑝𝑒𝑐𝑖𝑒𝑠(𝑔𝐻𝑠, 𝑠)

)︃
(6.2)

With:

∙ 𝑆: number of species

∙ 𝑛𝑠: number of orthologues for 𝑔𝐻𝑠 in species 𝑠

∙ 𝑤𝑠: species weight, e.g., 1
𝑆

∙ 𝑤1, . . . , 𝑤8: score weights, e.g., 1
8
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∙ 𝑠ℎ𝑜𝑚: subscore based on the number of orthologues ( 1
𝑛𝑠

)

∙ 𝑠𝑖𝑑: subscore based on sequence identity

∙ 𝑠𝑔𝑜𝑐: subscore based on synteny

∙ 𝑠𝑤𝑔𝑎: subscore based on genome alignment

∙ 𝑠𝑒𝑥𝑝: subscore based on gene expression correlation across tissues

∙ 𝑠𝑠𝑝𝑒𝑐: subscore based on tissue specificity of gene expression

∙ 𝑠𝑛𝑒𝑡: subscore based on an expression correlation network

∙ 𝑠𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑜: subscore based on Interpro annotation

All subscores are normalised to the range of [0, 1] to make them comparable.

Homology subscores

To model homology conservation, we make use of Ensembl’s cross-species resource,
EnsemblCompara [44], which provides different scores for many organisms both
on the sequence and the gene level. We use three subscores, 𝑠𝑖𝑑, 𝑠𝑔𝑜𝑐, and 𝑠𝑤𝑔𝑎.
Ensembl generates pairwise protein alignments for each orthologous gene pair and
computes the target and query percent identity corresponding to the percentage
of the sequence covered by the alignment (see Figure 3.1). 𝑠𝑖𝑑 is the average of
these two identities.
Ensembl’s gene order conservation (GOC) score (𝑠𝑔𝑜𝑐) captures conserved synteny,
i.e., co-localisation, of the orthologous genes by comparing order, orientation and
homology of two genes up- and downstream of the orthologues. If all four genes
match, the orthologue’s GOC is 100%, for each mismatch 25% are deducted.
While the GOC score accounts for large-scale rearrangements, the whole genome
alignment (WGA) score focuses on nucleotide level differences. It is based on the
assumption that the genomic sequence of orthologues should align well and is
calculated from the pairwise genome alignments available in Ensembl. For each
gene in an orthologous gene pair, the coverage over exons and introns is computed
separately and a weighted score is calculated such that the emphasis is on the
exon coverage [31]:

𝑠𝑤𝑔𝑎 = 𝑐𝑜𝑣𝑒𝑥𝑜𝑛𝑠 + 𝑐𝑜𝑣𝑖𝑛𝑡𝑟𝑜𝑛𝑠 * 𝑝𝑒𝑟𝑐𝑖𝑛𝑡𝑟𝑜𝑛 * (1 − 𝑐𝑜𝑣𝑒𝑥𝑜𝑛𝑠)
100
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where:

∙ 𝑐𝑜𝑣𝑒𝑥𝑜𝑛𝑠: alignment coverage on exons

∙ 𝑐𝑜𝑣𝑖𝑛𝑡𝑟𝑜𝑛𝑠: alignment coverage on introns

∙ 𝑝𝑒𝑟𝑐𝑖𝑛𝑡𝑟𝑜𝑛𝑠: percentage of the gene structure consisting of intronic sequence

By applying different thresholds (depending on the last common ancestor of the
involved species) to 𝑠𝑖𝑑, 𝑠𝑔𝑜𝑐, and 𝑠𝑤𝑔𝑎, Ensembl tags homology relationships as
“high confidence” [31]. For the computation of the conservation score we did,
however, only use the raw scores 𝑠𝑖𝑑, 𝑠𝑔𝑜𝑐, and 𝑠𝑤𝑔𝑎 because the thresholds are
chosen arbitrarily.

Expression subscores

To compare the human target gene to an orthologue with respect to their expression
pattern across different tissues, we compute Pearson’s correlation coefficient 𝜌
of normalised gene expression (tissue median RPKM). This coefficient is then
transformed to be in the range of [0, 1]:

𝑠𝑒𝑥𝑝 =
(︃

𝜌 + 1
2

)︃2

(6.3)

We chose to transform 𝜌 according to Equation 6.3 to penalise negative correlation
because we do not consider a gene to be conserved if it is, for example, lowly
expressed in human liver but highly expressed in mouse liver.
Another expression based subscore aims at capturing similar tissue-specificity
patterns using the tissue-specificity score defined in Equation 5.2. Computing
this score for two orthologous genes results in two vectors with a specificity value
for each tissue. The subscore 𝑠𝑠𝑝𝑒𝑐 is then computed as Kendall’s tau [80] of these
two vectors. A value of 0 indicates that there is no relationship while 1 means
there is a perfect relationship between the two tissue-specificity vectors.
Expression correlation can be exploited further to not only assess direct correlation
between orthologous genes but also their co-expression pattern within each species
separately. This helps us to determine the level of interaction with other genes in
the transcriptome.
Based on the between-species correlation matrices we determine all genes in
the investigated species 𝑠 which are highly correlated to the human target 𝑔𝐻𝑠

(𝜌 >= 0.8, see section 6.3.2 for details on the threshold selection). This set of
genes is referred to as 𝑠𝑒𝑡𝑠

𝑏𝑒𝑡𝑤𝑒𝑒𝑛. Given the gene expression matrices for human
and species 𝑠 (𝑔𝑒𝑛𝑒𝑠 × 𝑡𝑖𝑠𝑠𝑢𝑒𝑠), we compute the pairwise Pearson’s correlation
coefficient across tissues for all genes in each species separately. From these within-
species correlation matrices we determine all highly correlated genes for 𝑔𝐻𝑠 and
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each gene 𝑔𝑠 ∈ 𝑠𝑒𝑡𝑠
𝑏𝑒𝑡𝑤𝑒𝑒𝑛 (𝜌 >= 0.8). Let us call the resulting sets ℎ𝑖𝑔ℎ𝐶𝑜𝑟𝑟𝑔𝐻𝑠

and ℎ𝑖𝑔ℎ𝐶𝑜𝑟𝑟𝑔𝑠 . Based on these sets we determine the difference in the number
of the proportional counts of highly correlated genes in the two species:

𝑠_𝑛𝑒𝑡𝑁𝑢𝑚𝐶𝑜𝑟𝑟 = 1 −
⃒⃒⃒⃒
⃒ |ℎ𝑖𝑔ℎ𝐶𝑜𝑟𝑟𝑔𝐻𝑠|
𝑛𝑢𝑚_𝑔𝑒𝑛𝑒𝑠ℎ𝑠

− |ℎ𝑖𝑔ℎ𝐶𝑜𝑟𝑟𝑔𝑠|
𝑛𝑢𝑚_𝑔𝑒𝑛𝑒𝑠𝑠𝑝𝑒𝑐𝑖𝑒𝑠

⃒⃒⃒⃒
⃒ (6.4)

As a potential alternative to the purely count based network score, we compute
the Jaccard index [53] of the two sets to assesses which fraction of the highly
correlated genes in each species are orthologous:

𝑠_𝑛𝑒𝑡𝑁𝑢𝑚𝑂𝑟𝑡ℎ𝑜 = |𝑜𝑟𝑡ℎ𝑜(ℎ𝑖𝑔ℎ𝐶𝑜𝑟𝑟𝑔𝐻𝑠 , 𝑠) ∩ ℎ𝑖𝑔ℎ𝐶𝑜𝑟𝑟𝑔𝑠|
|𝑜𝑟𝑡ℎ𝑜(ℎ𝑖𝑔ℎ𝐶𝑜𝑟𝑟𝑔𝐻𝑠 , 𝑠) ∪ ℎ𝑖𝑔ℎ𝐶𝑜𝑟𝑟𝑔𝑠|

(6.5)

with 𝑜𝑟𝑡ℎ𝑜(ℎ𝑖𝑔ℎ𝐶𝑜𝑟𝑟𝑔𝐻𝑠 , 𝑠) being the orthologues of the genes in ℎ𝑖𝑔ℎ𝐶𝑜𝑟𝑟𝑔𝐻𝑠 in
species 𝑠.

Functional subscore

To assess functional similarity between orthologues, we compare associated protein
families and domains. Here we exploit the annotation with InterPro [74] accession
numbers provided by Ensembl and compute 𝑠𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑜 as the Jaccard index:

𝑠𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑜 = |𝑠𝑒𝑡ℎ𝑠 ∩ 𝑠𝑒𝑡𝑠|
|𝑠𝑒𝑡ℎ𝑠 ∪ 𝑠𝑒𝑡𝑠|

(6.6)

where 𝑠𝑒𝑡ℎ𝑠 contains all InterPro accession numbers of the human gene and 𝑠𝑒𝑡𝑠

holds all InterPro accession numbers associated with the orthologous gene in a
chosen species 𝑠.

6.2.2 Application to all protein-coding human genes

We computed the target conservation score defined in Equation 6.2 for all human
protein-coding genes annotated in Ensembl version 92 based on their relation
to orthologues in mouse and rat. The gene expression related subscores are
based on the Fushan et al. data [37] comprising three tissues (brain, liver, and
kidney), because they contain a wide range of species that can be incorporated
after successful evaluation of the conservation score.
Based on the resulting scores we investigated the distribution of individual sub-
scores and evaluated the two proposed co-expression network scores. Both network
scores 𝑠_𝑛𝑒𝑡𝑁𝑢𝑚𝐶𝑜𝑟𝑟 (Equation 6.4) and 𝑠_𝑛𝑒𝑡𝑁𝑢𝑚𝑂𝑟𝑡ℎ𝑜 (Equation 6.5) are
calculated by comparing the set of highly correlated genes in two species and
do therefore depend on the correlation threshold used to call a pair of genes
highly correlated. We tested different thresholds (0.7, 0.8, and 0.9) and compared
the distribution of 𝑠_𝑛𝑒𝑡𝑁𝑢𝑚𝐶𝑜𝑟𝑟, 𝑠_𝑛𝑒𝑡𝑁𝑢𝑚𝑂𝑟𝑡ℎ𝑜 as well as the aggregated
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species scores and the conservation score 𝑠𝑡𝑜𝑡𝑎𝑙. Due to the little difference between
the distributions for 0.7 and 0.8, we show kernel density estimates (geom_density()
from ggplot2 [137]) instead of gene counts to facilitate visual comparison.
The impact each subscore has on the total conservation score was evaluated by
following a leave-one-out approach and comparing the resulting score distribution
to that obtained when using all subscores.
Furthermore, we determined groups of genes with low and high scores via k-means
clustering using the kmeans function in R. The number of clusters k was set to
five as one can visually identify roughly five peaks in the distribution of 𝑠𝑡𝑜𝑡𝑎𝑙.
We performed a Gene Ontology enrichment for the two groups of genes with
lowest and highest scores to validate the conservation score. The GO enrichment
was done using the Bioconductor package clusterProfiler [140] which performs a
hypergeometric test. The set of conservation scores for all human protein-coding
genes were used as the gene universe to which the clusters were compared.
The Jackson Laboratory provides the Human - Mouse: Disease Connection
(HMDC) data [3], which combines information from the Mouse Genome Inform-
atics database (MGI) with human disease and phenotype annotation obtained
from NCBI, the Online Mendelian Inheritance in Man (OMIM) and the Human
Phenotype Ontology (HPO) [1]. Due to the lack of a list of genes which were
proven to be well conserved, we used the HMDC data to validate the proposed
conservation score. This approach is based on the assumption that genes being
associated with a certain disease in different species, are most likely well conserved
with respect to sequence and gene expression information. To obtain a list of
presumably well conserved genes, we extracted orthologous human-mouse gene
pairs associated with the same disease ontology [58] identifier. The resulting set
of Entrez [67] identifiers was mapped to Ensembl identifiers using the biomaRt
package (version 2.32.1) with Ensembl version 92 and the distribution of 𝑠𝑠𝑝𝑒𝑐𝑖𝑒𝑠

for mouse was investigated.

6.2.3 targetcon - A relational database storing conserva-
tion scores

To provide easy access to the computed scores for all protein-coding human
genes we have set up a PostgreSQL database, called targetcon, which stores the
underlying Ensembl and expression data as well as the derived conservation scores.
An overview of the database tables and their relations is depicted in Figure 6.2.
Targetcon contains 13 tables which can be grouped into three groups: 1) Ones
that contain data from Ensembl on genes, homology relationships and Interpro
annotation, 2) those which hold the expression data and group them into different
studies, and 3) tables storing the aggregated conservation scores 𝑠𝑠𝑝𝑒𝑐𝑖𝑒𝑠 and 𝑠𝑡𝑜𝑡𝑎𝑙

as well as all subscores and the weights used for the score computation. Currently,
all species and all subscores are weighted equally (see equations 6.1 and 6.2).



6.2. METHODS 69

F
ig

ur
e

6.
2:

D
at

ab
as

e
sc

he
m

a
of

ta
rg

et
co

n.
B

ox
es

co
rr

es
po

nd
to

ta
bl

es
an

d
sh

ow
th

e
ta

bl
e’

s
co

lu
m

ns
w

ith
th

ei
r

ty
pe

.
K

ey
s

to
th

e
le

ft
of

co
lu

m
n

na
m

es
in

di
ca

te
pr

im
ar

y
ke

ys
w

hi
le

ar
ro

w
s

to
th

e
rig

ht
of

co
lu

m
n

na
m

es
m

ar
k

fo
re

ig
n

ke
ys

.
Ta

bl
es

co
nt

ai
ni

ng
a

fo
re

ig
n

ke
y

ar
e

co
nn

ec
te

d
to

th
e

re
fe

re
nc

ed
ta

bl
e

w
ith

an
ar

ro
w

.



70 CHAPTER 6. CONSERVATION SCORE

As the information in targetcon changes with new Ensembl releases but we wanted
to keep old versions available to ensure compatibility with legacy data sets but
also for comparison, a new version of targetcon is created when one wishes to
update to a new Ensembl version.
A fully automated Nextflow pipeline was developed to create the database, to fetch
the expression matrices from the file system and the required Ensembl information,
to prepare the data for the database upload and the subsequent computation of
the conservation scores, and finally to compute and upload the conservation scores
for all human protein-coding genes. The pipeline receives all its input parameters
via a configuration file with the fields described in Table A.5.

6.3 Results

6.3.1 Distribution of subscores

Investigating the distribution of the individual subscores (see Figure 6.3), revealed
that the vast majority of orthology relationships between human protein-coding
genes and genes in mouse or rat were one-to-one homologies (𝑠ℎ𝑜𝑚=1). In most
cases, the orthologous gene pairs showed conserved synteny (𝑠𝑔𝑜𝑐) and a high
coverage on nucleotide level (𝑠𝑤𝑔𝑎). Interestingly, the protein sequence identity
(𝑠𝑖𝑑) showed a broader distribution.
The distribution of the expression correlation across tissues (𝑠𝑒𝑥𝑝) indicates that
the majority of orthologous gene pairs were either strongly correlated or almost
perfectly anti-correlated. Regarding the tissue-specificity subscore 𝑠𝑠𝑝𝑒𝑐, many
orthologous genes were well conserved, there was, however, also a substantial
proportion of cases with weak or no relationship between the tissue-specificity
vectors.
The subscore distributions described so far, only showed minor differences between
human-mouse and human-rat cases. For 𝑠𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑜 we observed that the scores for
rat were lower than those for mouse, indicating that there is a greater overlap
between Interpro annotations of human with those in mouse than those in rat.
One should, however, bear in mind that mouse has been investigated to a greater
extent and therefore more annotation is available which is also more reliable.
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(A) Distribution of 𝑠ℎ𝑜𝑚, 𝑠𝑖𝑑, 𝑠𝑤𝑔𝑎, 𝑠𝑔𝑜𝑐, and 𝑠𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑜.
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(B) Distribution of 𝑠𝑠𝑝𝑒𝑐 and 𝑠𝑒𝑥𝑝.

Figure 6.3: Distribution of (A) the Ensembl-based subscores 𝑠ℎ𝑜𝑚, 𝑠𝑖𝑑, 𝑠𝑔𝑜𝑐, 𝑠𝑤𝑔𝑎,
and 𝑠𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑜 as well as (B) the expression based subscores 𝑠𝑒𝑥𝑝 and 𝑠𝑠𝑝𝑒𝑐 between
human and each of the two rodent species mouse and rat.

6.3.2 Subscores based on co-expression networks

Due to the low dynamic range covered by the network score based on the orthology
relationships between the two species-specific networks (𝑠_𝑛𝑒𝑡𝑁𝑢𝑚𝑂𝑟𝑡ℎ𝑜; see
Figure A.9A), we decided to only use the one comparing the sizes of the species-
specific networks (𝑠_𝑛𝑒𝑡𝑁𝑢𝑚𝐶𝑜𝑟𝑟).
From the distribution of 𝑠_𝑛𝑒𝑡𝑁𝑢𝑚𝐶𝑜𝑟𝑟 (see Figure A.9B), we deduced that a
correlation threshold of 0.9 is too stringent as it led to a high number of genes
having a network score of zero. We did not observe a great difference between
0.7 and 0.8, but since the distribution based on 0.7 was slightly shifted towards
lower scores around 0.5, we decided to use 0.8 as the correlation threshold in the
computation of 𝑠_𝑛𝑒𝑡𝑁𝑢𝑚𝐶𝑜𝑟𝑟. In the aggregated scores (𝑠𝑠𝑝𝑒𝑐𝑖𝑒𝑠 and 𝑠𝑡𝑜𝑡𝑎𝑙) the
two lower thresholds led to a smoother distribution for higher scores between 0.75
and 1 (see Figure A.10).

6.3.3 Subscore impact

The leave-one-out approach to assess the impact of each subscore on 𝑠𝑡𝑜𝑡𝑎𝑙, showed
that all subscores contribute to the conservation score (see Figure 6.4). For each
comparison a Kolmogorov-Smirnov test was performed and all FDR-corrected
p-values were significant at a level of 0.01.
Visually, leaving out the expression based subscores 𝑠𝑒𝑥𝑝 and 𝑠𝑠𝑝𝑒𝑐 led to the most
drastic change in the distribution (see Figure 6.4) emphasising the importance of
expression when assessing the conservation across species.
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Figure 6.4: Distribution of the aggregated conservation score 𝑠𝑓𝑖𝑛𝑎𝑙 using all
subscores (top left) and when leaving out one subscore at a time.
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6.3.4 GO enrichment for genes with high and low scores

For the group of low scoring genes (cluster 5 in Figure 6.5; cluster centre: 0.4),
GO terms related to sensory detection of chemical stimuli and smell were the most
overrepresented terms, followed by processes linked to the immune system (see
Figure 6.6). Since mice and rats are a lot more dependent on their olfactory sense
for survival than humans, it is reasonable that these genes have diverged between
human and the two rodent species [32, 139]. Even though mice are commonly
used as model species in immunological studies, several differences between the
immune system of human and mouse have been reported [73].

Figure 6.5: Grouping human protein-coding genes according to their conservation
score using k-means clustering.

The group with high scoring genes (cluster 3 in Figure 6.5; cluster centre: 0.9) was
enriched for terms related to synaptic signal transduction (see Figure 6.6) which
makes sense as synapses are a common and conserved component of the mammalian
nervous system. Furthermore, there is research confirming the conservation of
gene expression patterns across brain regions between human and mouse [113].
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Figure 6.6: GO Biological Process terms overrepresented in the group of genes
with low (A) and high (B) conservation scores. p.adjust corresponds to the FDR
adjusted p-value and numbers on the x-axis indicate the percentage of genes in the
cluster associated with each GO term.
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6.3.5 Validation using MGI human - mouse disease con-
nection data

The distribution of the 984 presumably well conserved genes retrieved from the
HMDC data set showed a median species score of 0.86 in mouse (see Figure 6.7).
None of the human genes reached a score of exactly 1 (maximum: 0.99) and the
lowest score was 0.42. Comparing the mean 𝑠𝑠𝑝𝑒𝑐𝑖𝑒𝑠 for mouse of human genes
in the HMDC set and those that were not in the HMDC set, we found that the
mean species score is higher for HMDC genes (p-value: 9 × 10−27).

Figure 6.7: Distribution of the mouse species score (see Equation 6.1) for human
genes in the HMDC validation data.

6.4 Discussion
Resources like Pharos or OpenTargets provide extensive information on human
target genes and thereby support researchers during the often tedious process of
prioritising drug targets. Although a target gene may have a strong link to the
investigated disease in human, it might lead to problems farther down the drug
development pipeline if, for example, one fails to find a suitable model species or
effects observed in the animal model cannot be confirmed in human clinical trials.
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In both cases the reason could be that the drug itself or its targeted protein or
pathway are species specific and this aspect has not been addressed appropriately.
In this chapter we proposed a score to assess the conservation of a human target
gene across model species. To our knowledge, we are the first to integrate sequence
and gene expression based information to determine the degree of similarity
between the human genes and its orthologues in several species.
By applying the proposed score to all human protein-coding genes using mouse
and rat as the related species, we were able to investigate the different components
of the score. The observed broad distribution of 𝑠𝑖𝑑 could be due to diverging
exon usage in the different species as it has previously been found that between 14
and 53 % of human alternative splice junctions are not conserved in mouse [116].
A leave-one-out analysis showed that all subscores contribute to the overall
conservation score with the expression based ones playing a particularly important
role. This emphasises that the different sequence and expression based subscores
provide non-redundant information which is beneficial for the assessment of
conservation across multiple species.
For the network subscore we compared two approaches, one only considering the
number of highly correlated genes and one taking the orthology relationships
between the two species into account. Even though the latter would provide
valuable insight into conserved pathways in both species, we had to refrain from
using it for our total score as it only covered a very narrow and low dynamic range
and therefore shifted the conservation score to low values. We hypothesise, that
this shift is caused by 1-to-many orthology relationships. If, for example, a human
gene, which is highly correlated to the target gene, has 20 orthologues in mouse
but only one of them is in the co-expression network of the target’s orthologous
gene, we get a low overlap between the two networks. On the one hand this effect
could be attenuated by only using orthologous genes marked as “high confidence”
based on 𝑠𝑖𝑑, 𝑠𝑤𝑔𝑎, and 𝑠𝑔𝑜𝑐. On the other hand we might introduce a bias into our
analyses as we filter the input by the sequence related features we use to assess
conservation.
In order to deduce some functional information from the co-expression networks, we
tried to integrate Interpro annotation and compare them between the two species.
This did, however, lead to very low dynamic ranges of the resulting network score,
therefore, results were not shown in this thesis. Alternative annotations one could
try to incorporate are Gene Ontology terms or KEGG pathways.
We also tried to extend the network score by not only taking direct neighbours into
account but also those at distance two. However, we did not observe a difference
between the two approaches and therefore did not present details here.
One critical point regarding the network based score is the choice of the correlation
threshold. Considering the lack of a validation set of well conserved genes, we
had to rely on our gut feeling when comparing the score distributions obtained
with different thresholds. Therefore, we think that the the chosen threshold of
0.8 is suitable for the evaluation of the conservation score, but we do not claim
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that it is appropriate for all use cases. In mouse, for example, we observed that
a more stringent threshold of 0.9 revealed three pronounced peaks in the score
distribution which might contain scientifically interesting genes. A thorough
evaluation of thresholds in different scenarios with a comprehensive validation
data set is recommended.
The GO enrichment in low and high scoring human protein-coding genes revealed
that these two groups contained genes which could be assumed to be poorly or
well conserved based on their biological function. Since we only account for the
expression in three tissues, with one of them being brain, the GO enrichment
might be biased towards terms related to brain function. Therefore, we think it
would be exciting to also incorporate a wider range of tissues.
Our attempt to validate the proposed conservation score using human-mouse
disease connection data containing potentially highly conserved genes, showed that
the majority of these genes are detected as highly conserved by the conservation
score. There were, however, also genes which had a rather low score. We think
that this is probably due to the data set also containing gene-disease links without
reliable evidence.
Regarding the data used to compute the score, one has to keep in mind that maybe
not all required information is available for all orthologous gene pairs. In the
current implementation, these cases are discarded. Ideally, one would implement
a reliability score reflecting the completeness of the data. A naive approach would
deduce a certain value from one for each part of information that is missing.
Furthermore, we have to emphasise, that in the current implementation, only
mouse and rat were used to compute the conservation score. The database and
the Nextflow pipeline are, however, designed such that one can easily incorporate
additional species.
In summary, we have presented a score which has great potential to decrease the
amount of animal testing, time, and cost during the drug development process. Its
primary application is target gene ranking based on the conservation level across
several species of interest. By comparing the conservation score of a certain gene
set to the scores of all human protein-coding genes, one could draw conclusions
about how well, for example, a specific pathways is conserved across different
species. Another important use case is determining the best model species for
a target gene by comparing the aggregated species scores of several species. In
retrospect, one could also use the conservation score to check whether an observed
species specific drug response can be explained by differences on the sequence or
expression level.
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Conclusion & outlook

In this thesis we wanted to systematically evaluate how gene expression across
normal tissues is linked to orthology in several commonly used mammalian model
species. Increased understanding of this link can then help to reduce animal
testing in biomedical research as it can, for example, be used to assess a drug
target’s potential to successfully translate from animal models to human patients.
The analysis of RNA-Seq data sets from mouse and rat containing samples from
a wide range of tissues, has shown that the variability in gene expression between
tissues was greater than the variability between animals. This was preserved when
combining the data from both species, however, a species effect was observed,
too. Comparing sequence identity and gene expression correlation of one-to-one
orthologues, we found that the majority are highly similar on sequence and
expression level. There were, however, cases with high expression correlation
despite a low sequence identity. We hypothesised that some of these cases are due
to incorrectly or incompletely annotated sequences in the public databases like
Ensembl.
We systematically estimated the number of genes which might be poorly annotated
in mouse, rat, dog, pig, and cyno. The results indicated that there is a substantial
number of sequences in Ensembl that apparently contain errors or are incomplete.
Using a curated bait sequence from a closely related species and RNA-Seq data of
the species of interest, we were able to improve a large proportion of these sequences.
With the a&o-tool we have developed a tool performing this otherwise tedious
process in an easy-to-use and automated manner. The a&o-tool has already been
successfully used in a number of drug discovery projects at Boehringer Ingelheim
and has thereby proven its value for biomedical research although details cannot
be shown here.
One issue we see with our approach is, that our results heavily depend on the
quality of the de novo transcriptome assembly. We tried two assemblers on our
data and did not observe great differences. A recent review [46] has, however,
nicely point out, that the choice of the assembler can greatly impact the quality of
the resulting assembly and they concluded that it is best to try different assemblers
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as there is not a single one performing best on all different data sets they used for
their study. Long-read sequencing technologies have the potential to solve this
problem as they are able to sequence most transcripts as a whole, rendering the
assembly step obsolete.
To investigate the potential of long-read sequencing technologies, we have conduc-
ted a pilot study using PacBio’s SMRT sequencing. Basic quality control of the
PacBio results showed that the pilot run was successful, but not optimal. Most
PacBio transcripts were confirmed by aligning them to the rat genome and to
human well curated protein sequences as well as by the comparison to short-read
data. We did, however, observe potential quality issues at the 5’ ends of some
transcripts which might be eliminated by using a different sample preparation
protocol. On the other hand these observations might reflect, at least partially,
real transcripts with alternative transcription start sites. Therefore, we recom-
mend to conduct another PacBio sequencing project as well as one using Oxford
Nanopore’s long-read sequencing platform to gain greater insight into the maturity
of these technologies and their applicability in pharmaceutical research.
With the target conservation score, we were the first to integrate sequence and
gene expression based metrics to assess the conservation of a human gene across
several species. First validation attempts implied that the score is capable of
differentiating genes with presumably low conservation from those that, judging
by the biological processes they are involved in, should be highly conserved.
Further research regarding the subscore derived from the comparison of co-
expression networks would greatly improve the conservation score. We think
it would be very interesting to incorporate pathway information to better capture
common biological activity.
A graphical user interface to facilitate easy data retrieval from targetcon would be
desirable. First of all, precomputed scores and the underlying information could
be queried for a single human target gene. These results could then be used for
target prioritisation or the choice of the most suitable model species.
Another feature could include the upload of a gene list or pathway for which
we could determine how well they are conserved in comparison to all human
protein-coding genes.
In contrast to only using precomputed scores, we could also provide a more
dynamic approach where the user can compute the score for a specific target or
a list of targets based on custom expression data to tailor the results to their
scientific question.
In summary, we have shown that by exploiting sequence similarity of orthologues
and their gene expression correlation, the tools and methods developed in this
thesis contribute to the improvement of the drug discovery process. Our work
helps to prevent mistakes being made due to wrongly chosen model species or
wrong dose selection based on an incorrect sequence in toxicological experiments.
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A.1 a&o-tool

(A) mouse (B) rat

(C) dog
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(D) pig (E) cynomolgus monkey

Figure A.1: Distribution of the difference in sequence identities for all human
genes having a one-to-one orthologue in the respective species. The target sequence
identity corresponds to the percentage of the orthologous sequence matching the
human sequence in the amino acid sequence alignment, and query identity is the
percentage of human sequence matching the orthologous sequence. Dashed lines
mark the threshold (mean +/- 2 times standard deviation) for considering a gene
for refinement.

Figure A.2: An UpSet plot depicting the intersections between genes identified
as potentially poorly annotated across species.
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Table A.1: Quantitative metrics for the tissue-specific assemblies computed by
TransRate. The number of contigs, the number of base pairs in the longest contig
and the mean contig length provide information on the basic characteristics of the
assembly. The number of contigs containing an open reading frame (# contigs
with ORF) and the mean percentage of the contig being covered by the ORF
(coverage of contigs with ORF [ %]) help to assess the protein-coding potential of
the assembled contigs.

species tissue #
contigs

max.
contig

length [𝑏𝑝]

mean
contig

length [𝑏𝑝]

# contigs
with
ORF

coverage of
contigs with

ORF [%]

cyno brain 346391 32640 1230.6 62637 34.7
cyno liver 317055 32053 1153.4 53337 34.8
cyno kidney 325290 27390 1180.6 56922 35.0
dog brain 44703 27224 1614.5 20315 51.2
dog liver 35143 17944 1321.3 15247 53.9
dog kidney 38950 22476 1415.3 18019 53.5
human brain 165810 30531 1367.9 42581 39.8
human liver 88083 27458 1383.3 29226 45.9
human kidney 128530 23822 1355.6 37009 43.6
mouse brain 68734 23400 1548.1 24630 46.2
mouse liver 35944 17404 1396.1 14697 52.8
mouse kidney 42561 21694 1555.8 18036 51.4
pig brain 61933 24820 1518.6 24822 49.9
pig liver 37620 18047 1279.3 16114 55.3
pig kidney 39922 17558 1343.6 18032 54.4
rat brain 59378 21744 1605.8 22829 46.4
rat liver 52636 17162 1308.2 17576 48.3
rat kidney 42176 28641 1616.8 18856 51.2
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A.2 PacBio pilot study

Table A.2: Details on intermediate results of the PacBio analysis.

metric value description
polymerase read bases 9,493,170,789 total number of sequenced

bases
polymerase reads 402,505 total number of polymerase

reads
polymerase read length
(mean)

24,135 —

subreads 5,313,295 total number of subreads
subread length (mean) 1,787 —
CCS 264,467 (65.71%) total number of generated

circular consensus
sequences (CCS),
percentage in relation to all
available polymerase reads

full-length reads 234,476 total number of CCS
containing 5’ and 3’ adapter
sequences and poly-A
sequence

full-length reads,
non-chimeric (FLNC)

231,025 —

FLNC mean read length 2,102 —
non-full-length reads 29,968 —
HQ isoforms 20,879 candidate error-corrected

high-quality transcripts
LQ isoforms 108,664 candidate error-corrected

low-quality transcripts
HQ isoform length (min) 381 —
HQ isoform length (max) 20,879 —
HQ isoform length (mean) 2,086 —
unique isoforms 8,106 HQ isoforms collapsed into

unique set of transcript
isoforms by aligning them
to the reference genome
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Figure A.3: Principal component analysis of expression from Illumina short-read
data. Colours represent tissues. The numbers in the axis labels correspond to the
variance explained by the principal component.
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Figure A.4: Distribution of logarithmised TPM expression values of Illumina
samples. Colours correspond to tissues.
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Figure A.5: Clustered sample correlation (Pearson’s correlation coefficient) matrix.
Sample names starting with “SRR” are the Fushan et al. data and those with the
prefix 677 are the internal Illumina samples.



88 APPENDIX A. APPENDIX

Table A.3: Basic information on the 12 rat samples regarding the animal and
tissue they came from. “total_sequences” refers to the number of Illumina reads
and “uniquely_mapped” is the percentage of these reads that were uniquely mapped
to the Ensembl Rattus norvegicus (Rnor_6.0) reference genome.

sample_id tissue animal total_sequences uniquely_mapped [%]

677_1 brain 101 26,247,834 88.65
677_2 kidney 101 26,894,820 85.93
677_3 liver 101 29,145,488 86.23
677_4 brain 102 31,218,437 88.32
677_5 kidney 102 31,027,119 86.25
677_6 liver 102 30,773,234 86.50
677_7 brain 103 30,357,943 88.26
677_8 kidney 103 30,513,775 74.14
677_9 liver 103 29,950,055 86.38
677_10 brain 104 28,638,346 89.28
677_11 kidney 104 33,267,517 86.34
677_12 liver 104 30,099,932 86.76

Table A.4: Contingency table contrasting the reciprocal best BLAST hit category
of PacBio isoforms with their associated gene and transcript category assigned by
SQANTI. Isoforms classified as “known” mapped to an annotated gene/transcript,
“novel” means the isoforms were not mapped to an annotated gene/transcript and
“novel_known_AS” refers to PacBio isoforms that “overlap the complementary
strand of an annotated transcript”[114].

SQANTI_gene_category SQANTI_transcript_category

known novel novel_known_AS known novel

notRBH 3366 510 83 1753 2206
RBH 4109 22 16 2872 1275
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Figure A.6: Expression of 2125 liver-specific genes from Illumina short-read data.
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Figure A.7: Comparison of the query length and the percentage of the query
covered by the HSP. Each dot corresponds to the numbers in the forward search of
an RBH.
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Figure A.8: Distribution of mapped reads normalised by the number reads in the
sample.
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A.3 Conservation score

Table A.5: Input parameters for the targetcon Nextflow pipeline provided via a
configuration file in JSON format.

field
name

description

tgtcon_dbVersion version of the PostgreSQL database to be created
tgtcon_ensemblVersion Ensembl version to be used
tgtcon_host host where the database is to be created
tgtcon_user user with all rights required to create a database
tgtcon_pwd password for tgtcon_user
outdir directory where pipeline output should be stored
target_species list of target species to be used during score

calculation
medExp_input path to a tab-separated file with the columns

“species”, “rpkm_path”, and “design_path”; “species”
must match target_species

study_input path to a tab-separated file with the columns
“species”, “study_name”, i.e., the name to be stored
in the database to differentiate expression data sets;
“species” must match target_species
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Figure A.9: Distribution of the network score based on (A) the overlap of highly
correlated genes and (B) the number of highly correlated genes between human
and the two rodent species with varying correlation thresholds.
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Figure A.10: Impact of varying correlation thresholds on the aggregated species
(A) and total conservation score (B).



A.4. LIST OF PUBLICATIONS 95

A.4 List of publications
∙ J. F. Söllner, G. Leparc, M. Zwick, T. Schönberger, T. Hildebrandt, K.

Nieselt and E. Simon. Exploiting orthology and de novo transcriptome
assembly to refine target sequence information. BMC Medical Genomics
2019: 12, 69

∙ J. F. Söllner, G. Leparc, T. Hildebrandt, H. Klein, L. Thomas, E. Stupka
and E. Simon. An RNA-Seq atlas of gene expression in mouse and rat
normal tissues. Scientific Data 2017: 4

∙ The following publications originated from my post-graduate research at the
Institute of Computational Biology at the Helmholtz Zentrum München. As
part of the statistics team, I participated in the Prostate Cancer DREAM
Challenge and we published our results in an F1000Research article. The
overall results of the DREAM Challenge were published in Lancet Oncology
and JCO Clinical Cancer Informatics.

– I. Kondofersky, M. Laimighofer, C. Kurz, N. Krautenbacher, J. F. Söll-
ner, P. Dargatz, H. Scherb, D. P. Ankerst, C. Fuchs. Three general
concepts to improve risk prediction: good data, wisdom of the crowd,
recalibration [version 1; peer review: 2 approved with reservations].
F1000Research 2016: 5:2671 (Together with the other authors, I pre-
processed the data, established first analyses, and contributed to the
manuscript.)

– J. Guinney, T. Wang, T. D. Laajala, et al. and the Prostate Cancer
Challenge DREAM Community. Prediction of overall survival for
patients with metastatic castration-resistant prostate cancer: develop-
ment of a prognostic model through a crowdsourced challenge with open
clinical trial data. Lancet Oncology 2017: 18, 132-42

– F. Seyednasrollah, D. C. Koestler, T. Wang, et al. and Prostate
Cancer DREAM Challenge Community. A DREAM Challenge
to Build Prediction Models for Short-Term Discontinuation of Docetaxel
in Metastatic Castration-Resistant Prostate Cancer. JCO Clinical
Cancer Informatics 2017: 1, 1-15



Bibliography

[1] About the Human - Mouse: Disease Connection at the Mouse Genome
Informatics website, The Jackson Laboratory, Bar Harbor, Maine. http:
//www.informatics.jax.org/mgihome/projects/aboutHMDC.shtml. Ac-
cessed: 2019-07-18.

[2] The human protein atlas. https://www.proteinatlas.org/about/
assays+annotation. Accessed: 2019-03-10.

[3] The Human - Mouse: Disease Connection (HMDC) at the Mouse Genome
Informatics website, The Jackson Laboratory, Bar Harbor, Maine. http://
www.informatics.jax.org/downloads/reports/MGI_DO.rpt. Accessed:
2019-07-18.

[4] 1000 Genome Project Data Processing Subgroup, A. Wysoker, B. Handsaker,
G. Marth, G. Abecasis, H. Li, J. Ruan, N. Homer, R. Durbin, and T. Fen-
nell. The Sequence Alignment/Map format and SAMtools. Bioinformatics,
25(16):2078–2079, 2009.

[5] Y. Adeleye, M. Andersen, R. Clewell, M. Davies, M. Dent, S. Edwards,
P. Fowler, S. Malcomber, B. Nicol, A. Scott, S. Scott, B. Sun, C. Westmore-
land, A. White, Q. Zhang, and P. L. Carmichael. Implementing Toxicity
Testing in the 21st Century (TT21C): Making safety decisions using tox-
icity pathways, and progress in a prototype risk assessment. Toxicology,
332:102–111, 2015.

[6] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic
local alignment search tool. Journal of Molecular Biology, 215(3):403–410,
1990.

[7] A. Ameur, W. P. Kloosterman, and M. S. Hestand. Single-Molecule Sequen-
cing: Towards Clinical Applications. Trends Biotechnology, 37(1):72–85,
2019.

[8] V. N. Anisimov, S. V. Ukraintseva, and A. I. Yashin. Cancer in rodents: does
it tell us about cancer in humans? Nature Reviews Cancer, 5(10):807–819,
2005.

96

http://www.informatics.jax.org/mgihome/projects/aboutHMDC.shtml
http://www.informatics.jax.org/mgihome/projects/aboutHMDC.shtml
https://www.proteinatlas.org/about/assays+annotation
https://www.proteinatlas.org/about/assays+annotation
http://www.informatics.jax.org/downloads/reports/MGI_DO.rpt
http://www.informatics.jax.org/downloads/reports/MGI_DO.rpt


BIBLIOGRAPHY 97

[9] S. Y. Anvar, G. Allard, E. Tseng, G. M. Sheynkman, E. de Klerk, M. Vermaat,
R. H. Yin, H. E. Johansson, Y. Ariyurek, J. T. den Dunnen, S. W. Turner,
and P. A. C. ‘t Hoen. Full-length mRNA sequencing uncovers a widespread
coupling between transcription initiation and mRNA processing. Genome
Biology, 19(1):46, 2018.

[10] H. Attarwala. TGN1412: From Discovery to Disaster. Journal of Young
Pharmacists, 2(3):332 – 336, 2010.

[11] K. F. Au, V. Sebastiano, P. T. Afshar, J. D. Durruthy, L. Lee, B. A.
Williams, H. van Bakel, E. E. Schadt, R. A. Reijo-Pera, J. G. Underwood,
and W. H. Wong. Characterization of the human ESC transcriptome by
hybrid sequencing. Proceedings of the National Academy of Sciences of the
United States of America, 110(50):E4821–E4830, 2013.

[12] J. A. Ballesteros and G. Hormiga. A New Orthology Assessment Method for
Phylogenomic Data: Unrooted Phylogenetic Orthology. Molecular Biology
and Evolution, 33(8):2117–2134, 2016.

[13] A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S.
Kulikov, V. M. Lesin, S. I. Nikolenko, S. O. N. Pham, A. D. Prjibelski,
A. V. Pyshkin, A. V. Sirotkin, N. Vyahhi, G. Tesler, M. A. X. A. Alekseyev,
and P. A. Pevzner. SPAdes: A New Genome Assembly Algorithm and Its
Applications to Single-Cell Sequencing. Journal of Computational Biology,
19(5):455–477, 2012.

[14] M. Beilmann, H. Boonen, A. Czich, G. Dear, P. Hewitt, T. Mow, P. Ne-
wham, T. Oinonen, F. Pognan, A. Roth, J.-P. Valentin, F. Van Goethem,
R. Weaver, B. Birk, S. Boyer, F. Caloni, A. Chen, R. Corvi, M. Cronin,
M. Daneshian, L. Ewart, R. Fitzgerald, G. Hamilton, T. Hartung, J. Kangas,
N. Kramer, M. Leist, U. Marx, S. Polak, C. Rovida, E. Testai, B. van der
Water, P. Vulto, and T. Steger-Hartmann. Optimizing drug discovery by
investigative toxicology: Current and future trends. ALTEX - Alternatives
to animal experimentation, 36(2):289–313, 2019.

[15] Bioinformatics Group at the Babraham Institute. FastQC: A quality control
tool for high throughput sequence data. http://www.bioinformatics.
babraham.ac.uk/projects/fastqc. Accessed: 2018-11-05.

[16] J. Bruijnesteijn, M. K. H. van der Wiel, N. de Groot, N. Otting, A. J. M.
de Vos-Rouweler, N. M. Lardy, N. G. de Groot, and R. E. Bontrop. Extensive
Alternative Splicing of KIR Transcripts. Frontiers in Immunology, 9:2846,
2018.

[17] J. H. Bullard, E. Purdom, K. D. Hansen, and S. Dudoit. Evaluation of
statistical methods for normalization and differential expression in mRNA-
Seq experiments. BMC Bioinformatics, 11(1):94, 2010.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc


98 BIBLIOGRAPHY

[18] D. Carvalho-Silva, A. Pierleoni, M. Pignatelli, C. Ong, L. Fumis, N. Kara-
manis, M. Carmona, A. Faulconbridge, A. Hercules, E. McAuley, A. Miranda,
G. Peat, M. Spitzer, J. Barrett, D. G. Hulcoop, E. Papa, G. Koscielny, and
I. Dunham. Open Targets Platform: new developments and updates two
years on. Nucleic Acids Research, 47(D1):D1056–D1065, 2019.

[19] X. Chen and J. Zhang. The Ortholog Conjecture Is Untestable by the
Current Gene Ontology but Is Supported by RNA Sequencing Data. PLoS
Computational Biology, 8(11):e1002784, 2012.

[20] A. Conesa, P. Madrigal, S. Tarazona, D. Gomez-Cabrero, A. Cervera,
A. McPherson, M. W. Szcześniak, D. J. Gaffney, L. L. Elo, X. Zhang, and
A. Mortazavi. A survey of best practices for RNA-seq data analysis. Genome
Biology, 17(1):13, 2016.

[21] D. Cook, D. Brown, R. Alexander, R. March, P. Morgan, G. Satterthwaite,
and M. N. Pangalos. Lessons learned from the fate of AstraZeneca’s drug
pipeline: a five-dimensional framework. Nature Reviews Drug Discovery,
13(6):419–431, 2014.

[22] D. E. Cook, J. E. Valle-Inclan, A. Pajoro, H. Rovenich, B. P. H. J. Thomma,
and L. Faino. Long-Read Annotation: Automated Eukaryotic Genome
Annotation Based on Long-Read cDNA Sequencing. Plant Physiology,
179:38–54, 2019.

[23] P. Dehal, P. Predki, A. S. Olsen, A. Kobayashi, P. Folta, S. Lucas, M. Land,
A. Terry, C. L. Ecale Zhou, S. Rash, Q. Zhang, L. Gordon, J. Kim, C. Elkin,
M. J. Pollard, P. Richardson, D. Rokhsar, E. Uberbacher, T. Hawkins,
E. Branscomb, and L. Stubbs. Human chromosome 19 and related regions in
mouse: Conservative and lineage-specific evolution. Science, 293(5527):104–
111, 2001.

[24] D. S. DeLuca, J. Z. Levin, A. Sivachenko, T. Fennell, M.-D. Nazaire,
C. Williams, M. Reich, W. Winckler, and G. Getz. RNA-SeQC: RNA-
seq metrics for quality control and process optimization. Bioinformatics,
28(11):1530–1532, 2012.

[25] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo, and
C. Notredame. Nextflow enables reproducible computational workflows.
Nature Biotechnology, 35(4):316–319, 2017.

[26] A. Dobin, C. A. Davis, C. Zaleski, F. Schlesinger, J. Drenkow, M. Chaisson,
P. Batut, S. Jha, and T. R. Gingeras. STAR: ultrafast universal RNA-seq
aligner. Bioinformatics, 29(1):15–21, 2012.

[27] S. Durinck, Y. Moreau, A. Kasprzyk, S. Davis, B. D. Moor, A. Brazma, and
W. Huber. BioMart and Bioconductor: a powerful link between biological



BIBLIOGRAPHY 99

databases and microarray data analysis. Bioinformatics, 21(16):3439–3440,
2005.

[28] S. Durnick, P. T. Spellman, E. Birney, and W. Huber. Mapping Identifiers
for the Integration of Genomic Datasets with the R/Bioconductor package
biomaRt. Nature Protocols, 4(8):1184–1191, 2009.

[29] R. C. Edgar. MUSCLE: multiple sequence alignment with high accuracy
and high throughput. Nucleic Acids Research, 32(5):1792–1797, 2004.

[30] J. Eid, A. Fehr, J. Gray, K. Luong, J. Lyle, G. Otto, P. Peluso, D. Rank,
P. Baybayan, B. Bettman, A. Bibillo, K. Bjornson, B. Chaudhuri, F. Chris-
tians, R. Cicero, S. Clark, R. Dalal, A. Dewinter, J. Dixon, M. Foquet,
A. Gaertner, P. Hardenbol, C. Heiner, K. Hester, D. Holden, G. Kearns,
X. Kong, R. Kuse, Y. Lacroix, S. Lin, P. Lundquist, C. Ma, P. Marks,
M. Maxham, D. Murphy, I. Park, T. Pham, M. Phillips, J. Roy, R. Sebra,
G. Shen, J. Sorenson, A. Tomaney, K. Travers, M. Trulson, J. Vieceli, J. We-
gener, D. Wu, A. Yang, D. Zaccarin, P. Zhao, F. Zhong, J. Korlach, and
S. Turner. Real-time DNA sequencing from single polymerase molecules.
Science, 323:133–138, 2009.

[31] EMBL-EBI. Orthology quality-controls. https://www.ensembl.org/info/
genome/compara/Ortholog_qc_manual.html#wga. Accessed: 2019-07-29.

[32] R. D. Emes, S. A. Beatson, C. P. Ponting, and L. Goodstadt. Evolution
and comparative genomics of odorant- and pheromone-associated genes in
rodents. Genome Research, 14(4):591–602, 2004.

[33] P. A. Ewels, A. Peltzer, S. Fillinger, J. Alneberg, H. Patel, A. Wilm, M. U.
Garcia, P. Di Tommaso, and S. Nahnsen. nf-core: Community curated
bioinformatics pipelines. bioRxiv, 2019.

[34] M. Failli, J. Paananen, and V. Fortino. Prioritizing target-disease associ-
ations with novel safety and efficacy scoring methods. Scientific Reports,
9(1):9852, 2019.

[35] W. M. Fitch. Distinguishing homologous from analogous proteins. Systematic
Zoology, 19(2):99–113, 1970.

[36] W. M. Fitch. Homology a personal view on some of the problems. Trends
in Genetics, 16(5):227–231, 2000.

[37] A. A. Fushan, A. A. Turanov, S. G. Lee, E. B. Kim, A. V. Lobanov, S. H.
Yim, R. Buffenstein, S. R. Lee, K. T. Chang, H. Rhee, J. S. Kim, K. S.
Yang, and V. N. Gladyshev. Gene expression defines natural changes in
mammalian lifespan. Aging Cell, 14(3):352–365, 2015.

https://www.ensembl.org/info/genome/compara/Ortholog_qc_manual.html#wga
https://www.ensembl.org/info/genome/compara/Ortholog_qc_manual.html#wga


100 BIBLIOGRAPHY

[38] M. Garber, M. G. Grabherr, M. Guttman, and C. Trapnell. Computational
methods for transcriptome annotation and quantification using RNA-seq.
Nature Methods, 8(6):469–477, 2011.

[39] S. Goodwin, J. D. McPherson, and W. R. McCombie. Coming of age: ten
years of next-generation sequencing technologies. Nature Reviews Genetics,
17:333–351, 2016.

[40] M. G. Grabherr, B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson,
I. Amit, X. Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli,
N. Hacohen, A. Gnirke, N. Rhind, F. di Palma, B. W. Birren, C. Nusbaum,
K. Lindblad-Toh, N. Friedman, and A. Regev. Trinity: reconstructing a
full-length transcriptome without a genome from RNA-Seq data. Nature
Biotechnology, 29(7):644–652, 2011.

[41] Z. R. Gregorich and Y. Ge. Top-down proteomics in health and disease:
Challenges and opportunities. Proteomics, 14(10):1195–1210, 2014.

[42] B. J. Haas, A. Papanicolaou, M. Yassour, M. Grabherr, D. Philip, J. Bowden,
M. B. Couger, D. Eccles, B. Li, M. D. Macmanes, M. Ott, J. Orvis, and
N. Pochet. De novo transcript sequence reconstruction from RNA-Seq:
reference generation and analysis with Trinity. Nature Protocols, 8(8):1–43,
2013.

[43] S. Hansen and R. G. Q. Leslie. TGN1412: scrutinizing preclinical trials of
antibody-based medicines. Nature, 441:282, 2006.

[44] J. Herrero, M. Muffato, K. Beal, S. Fitzgerald, L. Gordon, M. Pignatelli,
A. J. Vilella, S. M. J. Searle, R. Amode, S. Brent, W. Spooner, E. Kulesha,
A. Yates, and P. Flicek. Ensembl comparative genomics resources. Database,
2016:bav096, 2016.

[45] K. Herrmann, F. Pistollato, and M. Stephens. Beyond the 3rs: Expanding
the use of human-relevant replacement methods in biomedical research.
ALTEX - Alternatives to animal experimentation, 36(3):343–352, Jul. 2019.

[46] M. Hölzer and M. Marz. De novo transcriptome assembly: A comprehensive
cross-species comparison of short-read RNA-Seq assemblers. Gigascience,
8(5), 2019.

[47] W. Huber, V. J. Carey, R. Gentleman, S. Anders, M. Carlson, B. S. Carvalho,
H. C. Bravo, S. Davis, and L. Gatto. Orchestrating high-throughput genomic
analysis with Bioconductor. Nature Methods, 12(2):115–121, 2015.

[48] J. Huerta-Cepas, D. Szklarczyk, K. Forslund, H. Cook, D. Heller, M. C.
Walter, T. Rattei, D. R. Mende, S. Sunagawa, M. Kuhn, L. J. Jensen,
C. von Mering, and P. Bork. eggNOG 4.5: a hierarchical orthology framework



BIBLIOGRAPHY 101

with improved functional annotations for eukaryotic, prokaryotic and viral
sequences. Nucleic Acids Research, 44(D1):D286–D293, 2015.

[49] J. P. Hughes, S. Rees, S. B. Kalindjian, and K. L. Philpott. Principles of
early drug discovery. British Journal of Pharmacology, 162:1239–1249, 2011.

[50] Illumina. De Novo Assembly Using Illumina Reads. https:
//www.illumina.com/Documents/products/technotes/technote_
denovo_assembly_ecoli.pdf. Accessed: 2019-06-14.

[51] Illumina. Illumina sequencing platforms. https://www.illumina.com/
systems/sequencing-platforms.html. 2019-04-28.

[52] Illumina. Introduction to SBS Technology. https://emea.illumina.
com/science/technology/next-generation-sequencing/sequencing-
technology.html. Accessed: 2019-05-20.

[53] P. Jaccard. Distribution de la flore alpine dans le Bassin des Dranses et
dans quelques regions voisines. Bulletin de la Société vaudoise des Sciences
Naturelles, 37:241–272, 1901.

[54] G. Jun, M. K. Wing, G. R. Abecasis, and H. M. Kang. An efficient and
scalable analysis framework for variant extraction and refinement from
population scale DNA sequence data. Genome Research, 25(6):918–925,
2015.

[55] Y. Katz, E. T. Wang, E. M. Airoldi, and C. B. Burge. Analysis and design
of RNA sequencing experiments for identifying isoform regulation. Nature
Methods, 7(12):1009–1015, 2010.

[56] O. Keller, F. Odronitz, M. Stanke, M. Kollmar, and S. Waack. Scipio: Using
protein sequences to determine the precise exon/intron structures of genes
and their orthologs in closely related species. BMC Bioinformatics, 9, 2008.

[57] E. H. Kerns and L. Di. Drug-like Properties: Concepts, Structure Design
and Methods. Elsevier, 2008.

[58] W. A. Kibbe, C. Arze, V. Felix, E. Mitraka, E. Bolton, G. Fu, C. J.
Mungall, J. X. Binder, J. Malone, D. Vasant, H. Parkinson, and L. M.
Schriml. Disease Ontology 2015 update: an expanded and updated database
of human diseases for linking biomedical knowledge through disease data.
Nucleic Acids Research, 43:D1071–D1078, 2015.

[59] J. Köster and S. Rahmann. Snakemake—a scalable bioinformatics workflow
engine. Bioinformatics, 28(19):2520–2522, 2012.

[60] N. Kryuchkova-Mostacci and M. Robinson-Rechavi. Tissue-Specificity of
Gene Expression Diverges Slowly between Orthologs , and Rapidly between
Paralogs. PLOS Computational Biology, 12(12):1–13, 2016.

https://www.illumina.com/Documents/products/technotes/technote_denovo_assembly_ecoli.pdf
https://www.illumina.com/Documents/products/technotes/technote_denovo_assembly_ecoli.pdf
https://www.illumina.com/Documents/products/technotes/technote_denovo_assembly_ecoli.pdf
https://www.illumina.com/systems/sequencing-platforms.html
https://www.illumina.com/systems/sequencing-platforms.html
https://emea.illumina.com/science/technology/next-generation-sequencing/sequencing-technology.html
https://emea.illumina.com/science/technology/next-generation-sequencing/sequencing-technology.html
https://emea.illumina.com/science/technology/next-generation-sequencing/sequencing-technology.html


102 BIBLIOGRAPHY

[61] S. Kumar, G. Stecher, M. Suleski, and S. B. Hedges. TimeTree: A Resource
for Timelines, Timetrees, and Divergence Times. Molecular Biology and
Evolution, 34(7):1812–1819, 2017.

[62] R. Kuo. tama. https://github.com/GenomeRIK/tama. Accessed: 2019-08-
08.

[63] G. M. Kurtzer, V. Sochat, and M. W. Bauer. Singularity: Scientific con-
tainers for mobility of compute. PLoS One, 12(5):e0177459, 2017.

[64] B. Li and C. N. Dewey. RSEM: accurate transcript quantification from
RNA-Seq data with or without a reference genome. BMC Bioinformatics,
12(1):323, 2011.

[65] J. Liu, G. Li, Z. Chang, T. Yu, B. Liu, R. McMullen, P. Chen, and X. Huang.
BinPacker: Packing-Based De Novo Transcriptome Assembly from RNA-seq
Data. PLoS Computational Biology, 12(2):1–15, 2016.

[66] M. I. Love, W. Huber, and S. Anders. Moderated estimation of fold change
and dispersion for rna-seq data with deseq2. Genome Biology, 15:550, 2014.

[67] D. Maglott, J. Ostell, K. D. Pruitt, and T. Tatusova. Entrez Gene:
gene-centered information at NCBI. Nucleic Acids Research, 39(Database
issue):D52–D57, 2011.

[68] J. A. Martin and Z. Wang. Next-generation transcriptome assembly. Nature
Reviews Genetics, 12(10):671–682, 2011.

[69] D. J. McCarthy, Y. Chen, and G. K. Smyth. Differential expression analysis
of multifactor rna-seq experiments with respect to biological variation.
Nucleic Acids Research, 40(10):4288–4297, 2012.

[70] B. Meibohm and H. Derendorf. Basic concepts of pharmacokinetic/phar-
macodynamic (PK/PD) modelling. International Journal of Clinical Phar-
macology and Therapeutics, 35(10):401–413, 1997.

[71] M. Melé, P. G. Ferreira, F. Reverter, D. S. DeLuca, J. Monlong, M. Sammeth,
T. R. Young, J. M. Goldmann, D. D. Pervouchine, T. J. Sullivan, R. Johnson,
A. V. Segrè, S. Djebali, A. Niarchou, T. G. GTEx Consortium, F. A. Wright,
T. Lappalainen, M. Calvo, G. Getz, E. T. Dermitzakis, K. G. Ardlie, and
R. Guigó. The human transcriptome across tissues and individuals. Science,
348(6235):660–665, 2015.

[72] D. Merkel. Docker: lightweight linux containers for consistent development
and deployment. Linux Journal, 2014(239):2, 2014.

[73] J. Mestas and C. C. W. Hughes. Of Mice and Not Men: Differences between
Mouse and Human Immunology. Journal of Immunology, 2004.

https://github.com/GenomeRIK/tama


BIBLIOGRAPHY 103

[74] A. L. Mitchell, A. Sangrador-Vegas, A. Luciani, F. Madeira, G. Nuka,
G. A. Salazar, H.-Y. Chang, L. J. Richardson, M. A. Qureshi, M. I. Fraser,
M. Blum, N. D. Rawlings, R. Lopez, S. El-Gebali, S. Pesseat, S.-Y. Yong,
S. C. Potter, T. Paysan-Lafosse, R. D. Finn, A. Marchler-Bauer, N. Thanki,
H. Mi, P. D. Thomas, D. A. Natale, S. C. Tosatto, M. Necci, C. Orengo,
I. Sillitoe, T. K. Attwood, P. C. Babbitt, S. D. Brown, P. Bork, A. Bridge,
C. Rivoire, C. J. Sigrist, N. Redaschi, A. P. Pandurangan, J. Gough, D. R.
Haft, G. G. Sutton, H. Huang, and I. Letunic. InterPro in 2019: improving
coverage, classification and access to protein sequence annotations. Nucleic
Acids Research, 47(D1):D351–D360, 2018.

[75] A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer, and B. Wold. Map-
ping and quantifying mammalian transcriptomes by RNA-Seq. Nature
Methods, 5(7):621–628, 2008.

[76] Mouse Genome Sequencing Consortium. Initial sequencing and comparative
analysis of the mouse genome. Nature, 420(6915):520–562, 2002.

[77] R. J. Mural, M. D. Adams, E. W. Myers, H. O. Smith, G. L. G. Miklos,
R. Wides, A. Halpern, P. W. Li, G. G. Sutton, J. Nadeau, S. L. Salzberg,
R. A. Holt, C. D. Kodira, F. Lu, L. Chen, Z. Deng, C. C. Evangelista,
W. Gan, T. J. Heiman, J. Li, Z. Li, G. V. Merkulov, N. V. Milshina, A. K.
Naik, R. Qi, B. C. Shue, A. Wang, J. Wang, X. Wang, X. Yan, J. Ye,
S. Yooseph, Q. Zhao, L. Zheng, S. C. Zhu, K. Biddick, R. Bolanos, A. L.
Delcher, I. M. Dew, D. Fasulo, M. J. Flanigan, D. H. Huson, S. A. Kravitz,
J. R. Miller, C. M. Mobarry, K. Reinert, K. A. Remington, Q. Zhang, X. H.
Zheng, D. R. Nusskern, Z. Lai, Y. Lei, W. Zhong, A. Yao, P. Guan, R.-R.
Ji, Z. Gu, Z.-Y. Wang, F. Zhong, C. Xiao, C.-C. Chiang, M. Yandell, J. R.
Wortman, P. G. Amanatides, S. L. Hladun, E. C. Pratts, J. E. Johnson,
K. L. Dodson, K. J. Woodford, C. A. Evans, B. Gropman, D. B. Rusch,
E. Venter, M. Wang, T. J. Smith, J. T. Houck, D. E. Tompkins, C. Haynes,
D. Jacob, S. H. Chin, D. R. Allen, C. E. Dahlke, R. Sanders, K. Li, X. Liu,
A. A. Levitsky, W. H. Majoros, Q. Chen, A. C. Xia, J. R. Lopez, M. T.
Donnelly, M. H. Newman, A. Glodek, C. L. Kraft, M. Nodell, F. Ali, H.-J.
An, D. Baldwin-Pitts, K. Y. Beeson, S. Cai, M. Carnes, A. Carver, P. M.
Caulk, A. Center, Y.-H. Chen, M.-L. Cheng, M. D. Coyne, M. Crowder,
S. Danaher, L. B. Davenport, R. Desilets, S. M. Dietz, L. Doup, P. Dullaghan,
S. Ferriera, C. R. Fosler, H. C. Gire, A. Gluecksmann, J. D. Gocayne, J. Gray,
B. Hart, J. Haynes, J. Hoover, T. Howland, C. Ibegwam, M. Jalali, D. Johns,
L. Kline, D. S. Ma, S. MacCawley, A. Magoon, F. Mann, D. May, T. C.
McIntosh, S. Mehta, L. Moy, M. C. Moy, B. J. Murphy, S. D. Murphy, K. A.
Nelson, Z. Nuri, K. A. Parker, A. C. Prudhomme, V. N. Puri, H. Qureshi,
J. C. Raley, M. S. Reardon, M. A. Regier, Y.-H. C. Rogers, D. L. Romblad,
J. Schutz, J. L. Scott, R. Scott, C. D. Sitter, M. Smallwood, A. C. Sprague,
E. Stewart, R. V. Strong, E. Suh, K. Sylvester, R. Thomas, N. N. Tint,



104 BIBLIOGRAPHY

C. Tsonis, G. Wang, G. Wang, M. S. Williams, S. M. Williams, S. M. Windsor,
K. Wolfe, M. M. Wu, J. Zaveri, K. Chaturvedi, A. E. Gabrielian, Z. Ke,
J. Sun, G. Subramanian, J. C. Venter, C. M. Pfannkoch, M. Barnstead, and
L. D. Stephenson. A comparison of whole-genome shotgun-derived mouse
chromosome 16 and the human genome. Science, 296(5573):1661–1671,
2002.

[78] S. S. Negi, C. H. Schein, G. S. Ladics, H. Mirsky, P. Chang, J.-B. Ras-
cle, J. Kough, L. Sterck, S. Papineni, J. M. Jez, L. Pereira Mouriès, and
W. Braun. Functional classification of protein toxins as a basis for bioin-
formatic screening. Scientific Reports, 7(1):13940, 2017.

[79] N. L. Nehrt, W. T. Clark, P. Radivojac, and M. W. Hahn. Testing the
Ortholog Conjecture with Comparative Functional Genomic Data from
Mammals. PLoS Computational Biology, 7(6), 2011.

[80] R. B. Nelsen. Kendall tau metric. http://www.encyclopediaofmath.org/
index.php?title=Kendall_tau_metric&oldid=12869. Accessed: 2019-
01-31.

[81] D.-T. Nguyen, S. Mathias, C. Bologa, S. Brunak, N. Fernandez, A. Gaulton,
A. Hersey, J. Holmes, L. J. Jensen, A. Karlsson, G. Liu, A. Ma’ayan,
G. Mandava, S. Mani, S. Mehta, J. Overington, J. Patel, A. D. Rouillard,
S. Schürer, T. Sheils, A. Simeonov, L. A. Sklar, N. Southall, O. Ursu,
D. Vidovic, A. Waller, J. Yang, A. Jadhav, T. I. Oprea, and R. Guha.
Pharos: Collating protein information to shed light on the druggable genome.
Nucleic Acids Research, 45(D1):D995–D1002, 2017.

[82] F. Noor. The Changing Paradigm in Preclinical Toxicology: in vitro and in
silico Methods in Liver Toxicity Evaluations. In Animal Experimentation:
Working Towards a Paradigm Change, chapter 25, pages 610–638. Brill,
2019.

[83] N. A. O’Leary, M. W. Wright, J. R. Brister, S. Ciufo, D. Haddad, R. McVeigh,
B. Rajput, B. Robbertse, B. Smith-White, D. Ako-Adjei, A. Astashyn,
A. Badretdin, Y. Bao, O. Blinkova, V. Brover, V. Chetvernin, J. Choi,
E. Cox, O. Ermolaeva, C. M. Farrell, T. Goldfarb, T. Gupta, D. Haft,
E. Hatcher, W. Hlavina, V. S. Joardar, V. K. Kodali, W. Li, D. Maglott,
P. Masterson, K. M. McGarvey, M. R. Murphy, K. O’Neill, S. Pujar, S. H.
Rangwala, D. Rausch, L. D. Riddick, C. Schoch, A. Shkeda, S. S. Storz,
H. Sun, F. Thibaud-Nissen, I. Tolstoy, R. E. Tully, A. R. Vatsan, C. Wallin,
D. Webb, W. Wu, M. J. Landrum, A. Kimchi, T. Tatusova, M. DiCuccio,
P. Kitts, T. D. Murphy, and K. D. Pruitt. Reference sequence (RefSeq)
database at NCBI: current status, taxonomic expansion, and functional
annotation. Nucleic Acids Research, 44(D1):D733–D745, 11 2015.

http://www.encyclopediaofmath.org/index.php?title=Kendall_tau_metric&oldid=12869
http://www.encyclopediaofmath.org/index.php?title=Kendall_tau_metric&oldid=12869


BIBLIOGRAPHY 105

[84] Pacific Biosciences. ASHG PacBio Workshop: The Iso-Seq
method for discovering alternative splicing in human diseases.
https://www.pacb.com/videos/ashg-pacbio-workshop-the-iso-
seq-method-for-discovering-alternative-splicing-in-human-
diseases/. Accessed: 2019-04-29.

[85] Pacific Biosciences. Overview of SMRT Technology. https://www.pacb.
com/smrt-science/smrt-sequencing/. Accessed: 2019-05-25.

[86] Pacific Biosciences. Pacific Biosciences Glossary of Terms.
https://www.pacb.com/wp-content/uploads/2015/09/Pacific-
Biosciences-Glossary-of-Terms.pdf. Accessed: 2019-05-28.

[87] W. R. Pearson. An introduction to sequence similarity ("Homology") search-
ing. Current Protocols in Bioinformatics, 42:3.1.1–3.1.8, 2013.

[88] G. Pertea. gffcompare. https://github.com/gpertea/gffcompare/
releases/tag/v0.11.2. Accessed: 2019-04-28.

[89] M. Pertea, G. M. Pertea, C. M. Antonescu, T.-C. Chang, J. T. Mendell, and
S. L. Salzberg. StringTie enables improved reconstruction of a transcriptome
from RNA-seq reads. Nature Biotechnology, 33(3):290–295, 2015.

[90] M. Pertea, A. Shumate, G. Pertea, A. Varabyou, Y.-c. Chang, A. K. Madu-
gundu, A. Pandey, and S. L. Salzberg. Thousands of large-scale RNA
sequencing experiments yield a comprehensive new human gene list and
reveal extensive transcriptional noise. bioRxiv, 2018.

[91] P. A. Pevzner, H. Tang, and M. S. Waterman. An Eulerian path approach to
DNA fragment assembly. Proceedings of the National Academy of Sciences
of the United States of America, 98(17):9748–9753, 2001.

[92] R. A. Prentis, Y. Lis, and S. R. Walker. Pharmaceutical innovation by the
seven UK-owned pharmaceutical companies (1964-1985). British Journal of
Clinical Pharmacology, 25(3):387–396, 1988.

[93] R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2018.

[94] M. Remm, C. E. V. Storm, and E. L. L. Sonnhammer. Automatic Clustering
of Orthologs and In-paralogs from Pairwise Species Comparisons. Journal
of Molecular Biology, 314:1041–1052, 2001.

[95] M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi, and G. K.
Smyth. limma powers differential expression analyses for RNA-sequencing
and microarray studies. Nucleic Acids Research, 43(7):e47, 2015.

https://www.pacb.com/videos/ashg-pacbio-workshop-the-iso-seq-method-for-discovering-alternative-splicing-in-human-diseases/
https://www.pacb.com/videos/ashg-pacbio-workshop-the-iso-seq-method-for-discovering-alternative-splicing-in-human-diseases/
https://www.pacb.com/videos/ashg-pacbio-workshop-the-iso-seq-method-for-discovering-alternative-splicing-in-human-diseases/
https://www.pacb.com/smrt-science/smrt-sequencing/
https://www.pacb.com/smrt-science/smrt-sequencing/
https://www.pacb.com/wp-content/uploads/2015/09/Pacific-Biosciences-Glossary-of-Terms.pdf
https://www.pacb.com/wp-content/uploads/2015/09/Pacific-Biosciences-Glossary-of-Terms.pdf
https://github.com/gpertea/gffcompare/releases/tag/v0.11.2
https://github.com/gpertea/gffcompare/releases/tag/v0.11.2


106 BIBLIOGRAPHY

[96] J. T. Robinson, H. Thorvaldsdóttir, W. Winckler, M. Guttman, E. S.
Lander, G. Getz, and J. P. Mesirov. Integrative genomics viewer. Nature
Biotechnology, 29:24, 2011.

[97] M. D. Robinson and A. Oshlack. A scaling normalization method for
differential expression analysis of RNA-seq data. Genome Biology, 11(3):R25,
2010.

[98] M. D. Robinson and A. Oshlack. A scaling normalization method for
differential expression analysis of RNA-seq data. Genome Biology, 11(3):R25,
2010.

[99] E. L. Roggen. In vitro Toxicity Testing in the Twenty-First Century. Fron-
tiers in Pharmacology, 2:3, 2011.

[100] W. M. S. Russel and R. L. Burch. The principles of humane experimental
technique. London, Methuen.

[101] S. P. Sadedin, B. Pope, and A. Oshlack. Bpipe: a tool for running and
managing bioinformatics pipelines. Bioinformatics, 28(11):1525–1526, 2012.

[102] J. A. Salon, D. T. Lodowski, and K. Palczewski. The Significance of G
Protein-Coupled Receptor Crystallography for Drug Discovery. Pharmaco-
logical Reviews, 63(4):901–937, 2011.

[103] S. L. Salzberg. Next-generation genome annotation: we still struggle to get
it right. Genome Biology, 20(92), dec 2019.

[104] S. Sayols, D. Scherzinger, and H. Klein. dupradar: a bioconductor package
for the assessment of pcr artifacts in rna-seq data. BMC Bioinformatics,
17(1):428, 2016.

[105] M. H. Schulz, D. R. Zerbino, M. Vingron, and E. Birney. Oases: robust
de novo RNA-seq assembly across the dynamic range of expression levels.
Bioinformatics, 28(8):1086–1092, 2012.

[106] K. Slowikowski. picardmetrics. https://github.com/slowkow/
picardmetrics/archive/0.2.4.tar.gz. Accessed: 2019-02-10.

[107] R. Smith-Unna, C. Boursnell, R. Patro, J. M. Hibberd, and S. Kelly. Trans-
Rate: reference-free quality assessment of de novo transcriptome assemblies.
Genome Research, 26:1134–1144, 2016.

[108] G. K. Smyth, W. Shi, and Y. Liao. featureCounts: an efficient general
purpose program for assigning sequence reads to genomic features. Bioin-
formatics, 30(7):923–930, 2013.

https://github.com/slowkow/picardmetrics/archive/0.2.4.tar.gz
https://github.com/slowkow/picardmetrics/archive/0.2.4.tar.gz


BIBLIOGRAPHY 107

[109] J. F. Söllner, G. Leparc, T. Hildebrandt, H. Klein, L. Thomas, E. Stupka,
and E. Simon. An RNA-Seq atlas of gene expression in mouse and rat
normal tissues. Scientific Data, 4, 2017.

[110] J. F. Söllner, G. Leparc, M. Zwick, T. Schönberger, T. Hildebrandt, K. Nies-
elt, and E. Simon. Exploiting orthology and de novo transcriptome assembly
to refine target sequence information. BMC Medical Genomics, 12(1):69,
2019.

[111] E. L. Sonnhammer and G. Östlund. InParanoid 8: orthology analysis
between 273 proteomes, mostly eukaryotic. Nucleic Acids Research,
43(D1):D234–D239, 2015.

[112] R. Stebbings, L. Findlay, C. Edwards, D. Eastwood, C. Bird, D. North,
Y. Mistry, P. Dilger, E. Liefooghe, I. Cludts, B. Fox, G. Tarrant, J. Robinson,
T. Meager, C. Dolman, S. J. Thorpe, A. Bristow, M. Wadhwa, R. Thorpe,
and S. Poole. “Cytokine Storm” in the Phase I Trial of Monoclonal Antibody
TGN1412: Better Understanding the Causes to Improve PreClinical Testing
of Immunotherapeutics. Journal of Immunology, 179(5):3325–3331, 2007.

[113] A. D. Strand, A. K. Aragaki, Z. C. Baquet, A. Hodges, P. Cunningham,
P. Holmans, K. R. Jones, L. Jones, C. Kooperberg, and J. M. Olson.
Conservation of Regional Gene Expression in Mouse and Human Brain.
PLoS Genetics, 3(4):e59, 2007.

[114] M. Tardaguila, L. de la Fuente, C. Marti, C. Pereira, F. J. Pardo-Palacios,
H. del Risco, M. Ferrell, M. Mellado, M. Macchietto, K. Verheggen, M. Edel-
mann, I. Ezkurdia, J. Vazquez, M. Tress, A. Mortazavi, L. Martens,
S. Rodriguez-Navarro, V. Moreno-Manzano, and A. Conesa. SQANTI:
extensive characterization of long read transcript sequences for quality con-
trol in full-length transcriptome identification and quantification. Genome
Research, 28:396–411, 2018.

[115] F. Tekaia. Inferring Orthologs: Open Questions and Perspectives. Genomics
Insights, 9:17–28, 2016.

[116] T. A. Thanaraj, F. Clark, and J. Muilu. Conservation of human alternative
splice events in mouse. Nucleic Acids Research, 31(10):2544–2552, 2003.

[117] The GTEx Consortium. The genotype-tissue expression (gtex) pilot analysis:
Multitissue gene regulation in humans. Science, 348(6235):648–660, 2015.

[118] The UniProt Consortium. UniProt: the universal protein knowledgebase.
Nucleic Acids Research, 45:158–169, 2017.

[119] F. Thibaud-Nissen, A. Souvorov, T. Murphy, M. DiCuccio, and P. Kitts.
Eukaryotic Genome Annotation Pipeline. 2013. Available from: https:
//www.ncbi.nlm.nih.gov/books/NBK169439/.

https://www.ncbi.nlm.nih.gov/books/NBK169439/
https://www.ncbi.nlm.nih.gov/books/NBK169439/


108 BIBLIOGRAPHY

[120] H. Thorvaldsdóttir, J. T. Robinson, and J. P. Mesirov. Integrative Genomics
Viewer (IGV): high-performance genomics data visualization and exploration.
Briefings in Bioinformatics, 14(2):178–192, 2012.

[121] C. Trapnell, B. A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M. J. van
Baren, S. L. Salzberg, B. J. Wold, and L. Pachter. Transcript assembly and
abundance estimation from RNA-Seq reveals thousands of new transcripts
and switching among isoforms. Nature Biotechnology, 28(5):511–515, 2010.

[122] C. Trapnell, B. A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M. J. van
Baren, S. L. Salzberg, B. J. Wold, and L. Pachter. Transcript assembly
and quantification by RNA-Seq reveals unannotated transcripts and isoform
switching during cell differentiation. Nature Biotechnology, 28(5):511–515,
2010.

[123] E. Tseng. https://github.com/PacificBiosciences/stsPlots/issues/
2#issuecomment-254292866. Accessed: 2019-04-29.

[124] E. Tseng. cDNA_Cupcake. https://github.com/Magdoll/cDNA_Cupcake.
Accessed: 2019-08-08.

[125] E. Tseng, Y. Li, and A. Töpfer. Iso-Seq Deep Dive. https:
//www.dropbox.com/s/0hlqi7b79kzi8bh/20180517_AsiaUGM_
BioinformaticsDeck_English_V5.pdf?dl=0. Accessed: 2019-05-28.

[126] E. Tseng, Y. Li, and A. Töpfer. Isoseq deep dive. https://www.dropbox.
com/s/0hlqi7b79kzi8bh/20180517_AsiaUGM_BioinformaticsDeck_
English_V5.pdf?dl=0, 2018. Accessed: 29 April 2019.

[127] E. Tseng, H.-T. Tang, R. R. AlOlaby, L. Hickey, and F. Tassone. Altered
expression of the FMR1 splicing variants landscape in premutation car-
riers. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms,
1860(11):1117–1126, 2017.

[128] M. Uhlén, L. Fagerberg, B. M. Hallström, C. Lindskog, P. Oksvold,
A. Mardinoglu, Å. Sivertsson, C. Kampf, E. Sjöstedt, A. Asplund, I. Ols-
son, K. Edlund, E. Lundberg, S. Navani, C. A.-k. Szigyarto, J. Odeberg,
D. Djureinovic, J. O. Takanen, S. Hober, T. Alm, P.-h. Edqvist, H. Berling,
H. Tegel, J. Mulder, J. Rockberg, P. Nilsson, J. M. Schwenk, M. Hamsten,
K. V. Feilitzen, M. Forsberg, L. Persson, F. Johansson, M. Zwahlen, G. V.
Heijne, J. Nielsen, and F. Pontén. Tissue-based map of the human proteome.
Science, 347(6220), 2015.

[129] M. Uhlén, P. Oksvold, L. Fagerberg, E. Lundberg, K. Jonasson, M. Forsberg,
M. Zwahlen, C. Kampf, K. Wester, S. Hober, H. Wernerus, L. Björling,
and F. Ponten. Towards a knowledge-based Human Protein Atlas. Nature
Biotechnology, 28(12), 2010.

https://github.com/PacificBiosciences/stsPlots/issues/2#issuecomment-254292866
https://github.com/PacificBiosciences/stsPlots/issues/2#issuecomment-254292866
https://github.com/Magdoll/cDNA_Cupcake
https://www.dropbox.com/s/0hlqi7b79kzi8bh/20180517_AsiaUGM_BioinformaticsDeck_English_V5.pdf?dl=0
https://www.dropbox.com/s/0hlqi7b79kzi8bh/20180517_AsiaUGM_BioinformaticsDeck_English_V5.pdf?dl=0
https://www.dropbox.com/s/0hlqi7b79kzi8bh/20180517_AsiaUGM_BioinformaticsDeck_English_V5.pdf?dl=0
https://www.dropbox.com/s/0hlqi7b79kzi8bh/20180517_AsiaUGM_BioinformaticsDeck_English_V5.pdf?dl=0
https://www.dropbox.com/s/0hlqi7b79kzi8bh/20180517_AsiaUGM_BioinformaticsDeck_English_V5.pdf?dl=0
https://www.dropbox.com/s/0hlqi7b79kzi8bh/20180517_AsiaUGM_BioinformaticsDeck_English_V5.pdf?dl=0


BIBLIOGRAPHY 109

[130] M. Vaudel, K. Verheggen, A. Csordas, H. Raeder, F. S. Berven, L. Martens,
J. A. Vizcaíno, and H. Barsnes. Exploring the potential of public proteomics
data. Proteomics, 16(2):214–225, 2016.

[131] L. Venturini, S. Caim, G. G. Kaithakottil, D. L. Mapleson, and D. Swarbreck.
Leveraging multiple transcriptome assembly methods for improved gene
structure annotation. bioRxiv, 2017.

[132] A. J. Vilella, J. Severin, A. Ureta-Vidal, L. Heng, R. Durbin, and E. Birney.
EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic
trees in vertebrates. Genome Research, 19(2):327–335, 2009.

[133] B. Wang, M. Regulski, E. Tseng, A. Olson, S. Goodwin, W. R. McCombie,
and D. Ware. A comparative transcriptional landscape of maize and sorghum
obtained by single-molecule sequencing. Genome Research, 28(6):921–932,
2018.

[134] B. Wang, E. Tseng, M. Regulski, T. A. Clark, T. Hon, Y. Jiao, Z. Lu,
A. Olson, J. C. Stein, and D. Ware. Unveiling the complexity of the maize
transcriptome by single-molecule long-read sequencing. Nature Communica-
tions, 7(1):11708, 2016.

[135] J. L. Weirather, M. de Cesare, Y. Wang, P. Piazza, V. Sebastiano, X.-
J. Wang, D. Buck, and K. F. Au. Comprehensive comparison of Pacific
Biosciences and Oxford Nanopore Technologies and their applications to
transcriptome analysis. F1000Research, 6:100, 2017.

[136] K. Wethmar, A. Barbosa-Silva, M. A. Andrade-Navarro, and A. Leutz.
uORFdb — a comprehensive literature database on eukaryotic uORF biology.
Nucleic Acids Research, 42:60–67, 2014.

[137] H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag
New York, 2016.

[138] T. D. Wu and C. K. Watanabe. GMAP: a genomic mapping and alignment
program for mRNA and EST sequences. Bioinformatics, 21(9):1859–1875,
2005.

[139] J. M. Young, C. Friedman, E. M. Williams, J. A. Ross, L. Tonnes-Priddy, and
B. J. Trask. Different evolutionary processes shaped the mouse and human
olfactory receptor gene families. Human Molecular Genetics, 11(5):535–546,
2002.

[140] G. Yu, L.-G. Wang, Y. Han, and Q.-Y. He. clusterprofiler: an r package for
comparing biological themes among gene clusters. OMICS: A Journal of
Integrative Biology, 16(5):284–287, 2012.



110 BIBLIOGRAPHY

[141] Y. Yu, J. C. Fuscoe, C. Zhao, C. Guo, M. Jia, T. Qing, D. I. Bannon,
L. Lancashire, W. Bao, T. Du, H. Luo, Z. Su, W. D. Jones, C. L. Moland,
W. S. Branham, F. Qian, B. Ning, Y. Li, H. Hong, L. Guo, N. Mei, T. Shi,
K. Y. Wang, R. D. Wolfinger, Y. Nikolsky, S. J. Walker, P. Duerksen-
Hughes, C. E. Mason, W. Tong, J. Thierry-Mieg, D. Thierry-Mieg, L. Shi,
and C. Wang. A rat RNA-Seq transcriptomic BodyMap across 11 organs
and 4 developmental stages. Nature Communications, 5(1):3230, 2014.

[142] D. R. Zerbino, P. Achuthan, W. Akanni, M. R. Amode, D. Barrell, J. Bhai,
K. Billis, C. Cummins, A. Gall, L. Gil, L. Gordon, L. Haggerty, E. Haskell,
T. Hourlier, O. G. Izuogu, S. H. Janacek, T. Juettemann, K. To, M. R.
Laird, I. Lavidas, Z. Liu, J. E. Loveland, T. Maurel, W. Mclaren, B. Moore,
J. Mudge, N. Murphy, V. Newman, M. Nuhn, D. Ogeh, C. K. Ong, A. Parker,
M. Patricio, H. S. Riat, H. Schuilenburg, D. Sheppard, H. Sparrow, K. Taylor,
A. Thormann, A. Vullo, B. Walts, A. Zadissa, A. Frankish, S. E. Hunt,
M. Kostadima, N. Langridge, F. J. Martin, M. Muffato, E. Perry, M. Ruffier,
D. M. Staines, S. J. Trevanion, B. L. Aken, F. Cunningham, A. Yates, and
P. Flicek. Ensembl 2018. Nucleic Acids Research, 46:754–761, 2018.


	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	From target identification to a marketed drug
	Homology
	RNA sequencing
	Short-read sequencing
	Analysis of short-read data
	Long-read sequencing

	A modern approach to data processing

	Assessing the relationship between orthology and gene expression correlation
	Background
	Methods
	RNA-Seq data
	RNA-Seq data mapping, counting and normalisation
	Inter-species expression patterns
	Intra-species expression patterns
	Comparing gene expression and sequence identity

	Results
	Inter-species expression patterns
	Intra-species expression patterns
	Comparing gene expression and sequence identity

	Discussion

	Exploiting orthology and de novo transcriptome assembly to refine target sequence information
	Background
	Methods
	Data description
	Proportion of genes to be improved
	De novo transcriptome assemblies
	Evaluation of detection rates in human and related species from RNA-Seq assemblies
	Generalised refinement pipeline

	Results
	Proportion of genes to be improved
	De novo transcriptome assemblies
	Evaluation of detection rates in human and related species from RNA-Seq assemblies
	Application of the generalised refinement pipeline

	Discussion

	A pilot study for the comparison of long- and short-read RNA-Seq data
	Introduction
	Methods
	PacBio and Illumina RNA-Seq data
	Comparing PacBio isoforms to the rat genome
	Comparing PacBio isoforms to known sequences from rat and human
	Comparing PacBio and Illumina data

	Results
	PacBio and Illumina RNA-Seq data
	Comparing PacBio isoforms to the rat genome
	Comparing PacBio isoforms to known sequences from rat and human
	Comparing PacBio and Illumina data

	Discussion and outlook

	Assessing a target's conservation across model organisms
	Introduction
	Methods
	Target conservation score
	Application to all protein-coding human genes
	targetcon

	Results
	Distribution of subscores
	Subscores based on co-expression networks
	Subscore impact
	GO enrichment for genes with high and low scores
	Validation using MGI human - mouse disease connection data

	Discussion

	Conclusion & outlook
	Appendix
	a&o-tool
	PacBio pilot study
	Conservation score
	List of publications

	Bibliography

